KVM: MMU: Fix MMU_DEBUG compile breakage
[safe/jmp/linux-2.6] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/types.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/module.h>
29 #include <linux/swap.h>
30 #include <linux/hugetlb.h>
31 #include <linux/compiler.h>
32
33 #include <asm/page.h>
34 #include <asm/cmpxchg.h>
35 #include <asm/io.h>
36 #include <asm/vmx.h>
37
38 /*
39  * When setting this variable to true it enables Two-Dimensional-Paging
40  * where the hardware walks 2 page tables:
41  * 1. the guest-virtual to guest-physical
42  * 2. while doing 1. it walks guest-physical to host-physical
43  * If the hardware supports that we don't need to do shadow paging.
44  */
45 bool tdp_enabled = false;
46
47 #undef MMU_DEBUG
48
49 #undef AUDIT
50
51 #ifdef AUDIT
52 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
53 #else
54 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
55 #endif
56
57 #ifdef MMU_DEBUG
58
59 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
60 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
61
62 #else
63
64 #define pgprintk(x...) do { } while (0)
65 #define rmap_printk(x...) do { } while (0)
66
67 #endif
68
69 #if defined(MMU_DEBUG) || defined(AUDIT)
70 static int dbg = 0;
71 module_param(dbg, bool, 0644);
72 #endif
73
74 static int oos_shadow = 1;
75 module_param(oos_shadow, bool, 0644);
76
77 #ifndef MMU_DEBUG
78 #define ASSERT(x) do { } while (0)
79 #else
80 #define ASSERT(x)                                                       \
81         if (!(x)) {                                                     \
82                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
83                        __FILE__, __LINE__, #x);                         \
84         }
85 #endif
86
87 #define PT_FIRST_AVAIL_BITS_SHIFT 9
88 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
89
90 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
91
92 #define PT64_LEVEL_BITS 9
93
94 #define PT64_LEVEL_SHIFT(level) \
95                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
96
97 #define PT64_LEVEL_MASK(level) \
98                 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
99
100 #define PT64_INDEX(address, level)\
101         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
102
103
104 #define PT32_LEVEL_BITS 10
105
106 #define PT32_LEVEL_SHIFT(level) \
107                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
108
109 #define PT32_LEVEL_MASK(level) \
110                 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
111
112 #define PT32_INDEX(address, level)\
113         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
114
115
116 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
117 #define PT64_DIR_BASE_ADDR_MASK \
118         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
119
120 #define PT32_BASE_ADDR_MASK PAGE_MASK
121 #define PT32_DIR_BASE_ADDR_MASK \
122         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
123
124 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
125                         | PT64_NX_MASK)
126
127 #define PFERR_PRESENT_MASK (1U << 0)
128 #define PFERR_WRITE_MASK (1U << 1)
129 #define PFERR_USER_MASK (1U << 2)
130 #define PFERR_RSVD_MASK (1U << 3)
131 #define PFERR_FETCH_MASK (1U << 4)
132
133 #define PT_DIRECTORY_LEVEL 2
134 #define PT_PAGE_TABLE_LEVEL 1
135
136 #define RMAP_EXT 4
137
138 #define ACC_EXEC_MASK    1
139 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
140 #define ACC_USER_MASK    PT_USER_MASK
141 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #define CREATE_TRACE_POINTS
144 #include "mmutrace.h"
145
146 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
147
148 struct kvm_rmap_desc {
149         u64 *sptes[RMAP_EXT];
150         struct kvm_rmap_desc *more;
151 };
152
153 struct kvm_shadow_walk_iterator {
154         u64 addr;
155         hpa_t shadow_addr;
156         int level;
157         u64 *sptep;
158         unsigned index;
159 };
160
161 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
162         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
163              shadow_walk_okay(&(_walker));                      \
164              shadow_walk_next(&(_walker)))
165
166
167 struct kvm_unsync_walk {
168         int (*entry) (struct kvm_mmu_page *sp, struct kvm_unsync_walk *walk);
169 };
170
171 typedef int (*mmu_parent_walk_fn) (struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp);
172
173 static struct kmem_cache *pte_chain_cache;
174 static struct kmem_cache *rmap_desc_cache;
175 static struct kmem_cache *mmu_page_header_cache;
176
177 static u64 __read_mostly shadow_trap_nonpresent_pte;
178 static u64 __read_mostly shadow_notrap_nonpresent_pte;
179 static u64 __read_mostly shadow_base_present_pte;
180 static u64 __read_mostly shadow_nx_mask;
181 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
182 static u64 __read_mostly shadow_user_mask;
183 static u64 __read_mostly shadow_accessed_mask;
184 static u64 __read_mostly shadow_dirty_mask;
185
186 static inline u64 rsvd_bits(int s, int e)
187 {
188         return ((1ULL << (e - s + 1)) - 1) << s;
189 }
190
191 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
192 {
193         shadow_trap_nonpresent_pte = trap_pte;
194         shadow_notrap_nonpresent_pte = notrap_pte;
195 }
196 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
197
198 void kvm_mmu_set_base_ptes(u64 base_pte)
199 {
200         shadow_base_present_pte = base_pte;
201 }
202 EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
203
204 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
205                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
206 {
207         shadow_user_mask = user_mask;
208         shadow_accessed_mask = accessed_mask;
209         shadow_dirty_mask = dirty_mask;
210         shadow_nx_mask = nx_mask;
211         shadow_x_mask = x_mask;
212 }
213 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
214
215 static int is_write_protection(struct kvm_vcpu *vcpu)
216 {
217         return vcpu->arch.cr0 & X86_CR0_WP;
218 }
219
220 static int is_cpuid_PSE36(void)
221 {
222         return 1;
223 }
224
225 static int is_nx(struct kvm_vcpu *vcpu)
226 {
227         return vcpu->arch.shadow_efer & EFER_NX;
228 }
229
230 static int is_shadow_present_pte(u64 pte)
231 {
232         return pte != shadow_trap_nonpresent_pte
233                 && pte != shadow_notrap_nonpresent_pte;
234 }
235
236 static int is_large_pte(u64 pte)
237 {
238         return pte & PT_PAGE_SIZE_MASK;
239 }
240
241 static int is_writeble_pte(unsigned long pte)
242 {
243         return pte & PT_WRITABLE_MASK;
244 }
245
246 static int is_dirty_gpte(unsigned long pte)
247 {
248         return pte & PT_DIRTY_MASK;
249 }
250
251 static int is_rmap_spte(u64 pte)
252 {
253         return is_shadow_present_pte(pte);
254 }
255
256 static int is_last_spte(u64 pte, int level)
257 {
258         if (level == PT_PAGE_TABLE_LEVEL)
259                 return 1;
260         if (level == PT_DIRECTORY_LEVEL && is_large_pte(pte))
261                 return 1;
262         return 0;
263 }
264
265 static pfn_t spte_to_pfn(u64 pte)
266 {
267         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
268 }
269
270 static gfn_t pse36_gfn_delta(u32 gpte)
271 {
272         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
273
274         return (gpte & PT32_DIR_PSE36_MASK) << shift;
275 }
276
277 static void __set_spte(u64 *sptep, u64 spte)
278 {
279 #ifdef CONFIG_X86_64
280         set_64bit((unsigned long *)sptep, spte);
281 #else
282         set_64bit((unsigned long long *)sptep, spte);
283 #endif
284 }
285
286 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
287                                   struct kmem_cache *base_cache, int min)
288 {
289         void *obj;
290
291         if (cache->nobjs >= min)
292                 return 0;
293         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
294                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
295                 if (!obj)
296                         return -ENOMEM;
297                 cache->objects[cache->nobjs++] = obj;
298         }
299         return 0;
300 }
301
302 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
303 {
304         while (mc->nobjs)
305                 kfree(mc->objects[--mc->nobjs]);
306 }
307
308 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
309                                        int min)
310 {
311         struct page *page;
312
313         if (cache->nobjs >= min)
314                 return 0;
315         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
316                 page = alloc_page(GFP_KERNEL);
317                 if (!page)
318                         return -ENOMEM;
319                 set_page_private(page, 0);
320                 cache->objects[cache->nobjs++] = page_address(page);
321         }
322         return 0;
323 }
324
325 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
326 {
327         while (mc->nobjs)
328                 free_page((unsigned long)mc->objects[--mc->nobjs]);
329 }
330
331 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
332 {
333         int r;
334
335         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
336                                    pte_chain_cache, 4);
337         if (r)
338                 goto out;
339         r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
340                                    rmap_desc_cache, 4);
341         if (r)
342                 goto out;
343         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
344         if (r)
345                 goto out;
346         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
347                                    mmu_page_header_cache, 4);
348 out:
349         return r;
350 }
351
352 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
353 {
354         mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
355         mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
356         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
357         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
358 }
359
360 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
361                                     size_t size)
362 {
363         void *p;
364
365         BUG_ON(!mc->nobjs);
366         p = mc->objects[--mc->nobjs];
367         return p;
368 }
369
370 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
371 {
372         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
373                                       sizeof(struct kvm_pte_chain));
374 }
375
376 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
377 {
378         kfree(pc);
379 }
380
381 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
382 {
383         return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
384                                       sizeof(struct kvm_rmap_desc));
385 }
386
387 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
388 {
389         kfree(rd);
390 }
391
392 /*
393  * Return the pointer to the largepage write count for a given
394  * gfn, handling slots that are not large page aligned.
395  */
396 static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
397 {
398         unsigned long idx;
399
400         idx = (gfn / KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL)) -
401               (slot->base_gfn / KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL));
402         return &slot->lpage_info[0][idx].write_count;
403 }
404
405 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
406 {
407         int *write_count;
408
409         gfn = unalias_gfn(kvm, gfn);
410         write_count = slot_largepage_idx(gfn,
411                                          gfn_to_memslot_unaliased(kvm, gfn));
412         *write_count += 1;
413 }
414
415 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
416 {
417         int *write_count;
418
419         gfn = unalias_gfn(kvm, gfn);
420         write_count = slot_largepage_idx(gfn,
421                                          gfn_to_memslot_unaliased(kvm, gfn));
422         *write_count -= 1;
423         WARN_ON(*write_count < 0);
424 }
425
426 static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
427 {
428         struct kvm_memory_slot *slot;
429         int *largepage_idx;
430
431         gfn = unalias_gfn(kvm, gfn);
432         slot = gfn_to_memslot_unaliased(kvm, gfn);
433         if (slot) {
434                 largepage_idx = slot_largepage_idx(gfn, slot);
435                 return *largepage_idx;
436         }
437
438         return 1;
439 }
440
441 static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
442 {
443         struct vm_area_struct *vma;
444         unsigned long addr;
445         int ret = 0;
446
447         addr = gfn_to_hva(kvm, gfn);
448         if (kvm_is_error_hva(addr))
449                 return ret;
450
451         down_read(&current->mm->mmap_sem);
452         vma = find_vma(current->mm, addr);
453         if (vma && is_vm_hugetlb_page(vma))
454                 ret = 1;
455         up_read(&current->mm->mmap_sem);
456
457         return ret;
458 }
459
460 static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
461 {
462         struct kvm_memory_slot *slot;
463
464         if (has_wrprotected_page(vcpu->kvm, large_gfn))
465                 return 0;
466
467         if (!host_largepage_backed(vcpu->kvm, large_gfn))
468                 return 0;
469
470         slot = gfn_to_memslot(vcpu->kvm, large_gfn);
471         if (slot && slot->dirty_bitmap)
472                 return 0;
473
474         return 1;
475 }
476
477 /*
478  * Take gfn and return the reverse mapping to it.
479  * Note: gfn must be unaliased before this function get called
480  */
481
482 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
483 {
484         struct kvm_memory_slot *slot;
485         unsigned long idx;
486
487         slot = gfn_to_memslot(kvm, gfn);
488         if (!lpage)
489                 return &slot->rmap[gfn - slot->base_gfn];
490
491         idx = (gfn / KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL)) -
492               (slot->base_gfn / KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL));
493
494         return &slot->lpage_info[0][idx].rmap_pde;
495 }
496
497 /*
498  * Reverse mapping data structures:
499  *
500  * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
501  * that points to page_address(page).
502  *
503  * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
504  * containing more mappings.
505  *
506  * Returns the number of rmap entries before the spte was added or zero if
507  * the spte was not added.
508  *
509  */
510 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
511 {
512         struct kvm_mmu_page *sp;
513         struct kvm_rmap_desc *desc;
514         unsigned long *rmapp;
515         int i, count = 0;
516
517         if (!is_rmap_spte(*spte))
518                 return count;
519         gfn = unalias_gfn(vcpu->kvm, gfn);
520         sp = page_header(__pa(spte));
521         sp->gfns[spte - sp->spt] = gfn;
522         rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
523         if (!*rmapp) {
524                 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
525                 *rmapp = (unsigned long)spte;
526         } else if (!(*rmapp & 1)) {
527                 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
528                 desc = mmu_alloc_rmap_desc(vcpu);
529                 desc->sptes[0] = (u64 *)*rmapp;
530                 desc->sptes[1] = spte;
531                 *rmapp = (unsigned long)desc | 1;
532         } else {
533                 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
534                 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
535                 while (desc->sptes[RMAP_EXT-1] && desc->more) {
536                         desc = desc->more;
537                         count += RMAP_EXT;
538                 }
539                 if (desc->sptes[RMAP_EXT-1]) {
540                         desc->more = mmu_alloc_rmap_desc(vcpu);
541                         desc = desc->more;
542                 }
543                 for (i = 0; desc->sptes[i]; ++i)
544                         ;
545                 desc->sptes[i] = spte;
546         }
547         return count;
548 }
549
550 static void rmap_desc_remove_entry(unsigned long *rmapp,
551                                    struct kvm_rmap_desc *desc,
552                                    int i,
553                                    struct kvm_rmap_desc *prev_desc)
554 {
555         int j;
556
557         for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
558                 ;
559         desc->sptes[i] = desc->sptes[j];
560         desc->sptes[j] = NULL;
561         if (j != 0)
562                 return;
563         if (!prev_desc && !desc->more)
564                 *rmapp = (unsigned long)desc->sptes[0];
565         else
566                 if (prev_desc)
567                         prev_desc->more = desc->more;
568                 else
569                         *rmapp = (unsigned long)desc->more | 1;
570         mmu_free_rmap_desc(desc);
571 }
572
573 static void rmap_remove(struct kvm *kvm, u64 *spte)
574 {
575         struct kvm_rmap_desc *desc;
576         struct kvm_rmap_desc *prev_desc;
577         struct kvm_mmu_page *sp;
578         pfn_t pfn;
579         unsigned long *rmapp;
580         int i;
581
582         if (!is_rmap_spte(*spte))
583                 return;
584         sp = page_header(__pa(spte));
585         pfn = spte_to_pfn(*spte);
586         if (*spte & shadow_accessed_mask)
587                 kvm_set_pfn_accessed(pfn);
588         if (is_writeble_pte(*spte))
589                 kvm_release_pfn_dirty(pfn);
590         else
591                 kvm_release_pfn_clean(pfn);
592         rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
593         if (!*rmapp) {
594                 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
595                 BUG();
596         } else if (!(*rmapp & 1)) {
597                 rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
598                 if ((u64 *)*rmapp != spte) {
599                         printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
600                                spte, *spte);
601                         BUG();
602                 }
603                 *rmapp = 0;
604         } else {
605                 rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
606                 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
607                 prev_desc = NULL;
608                 while (desc) {
609                         for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
610                                 if (desc->sptes[i] == spte) {
611                                         rmap_desc_remove_entry(rmapp,
612                                                                desc, i,
613                                                                prev_desc);
614                                         return;
615                                 }
616                         prev_desc = desc;
617                         desc = desc->more;
618                 }
619                 BUG();
620         }
621 }
622
623 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
624 {
625         struct kvm_rmap_desc *desc;
626         struct kvm_rmap_desc *prev_desc;
627         u64 *prev_spte;
628         int i;
629
630         if (!*rmapp)
631                 return NULL;
632         else if (!(*rmapp & 1)) {
633                 if (!spte)
634                         return (u64 *)*rmapp;
635                 return NULL;
636         }
637         desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
638         prev_desc = NULL;
639         prev_spte = NULL;
640         while (desc) {
641                 for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
642                         if (prev_spte == spte)
643                                 return desc->sptes[i];
644                         prev_spte = desc->sptes[i];
645                 }
646                 desc = desc->more;
647         }
648         return NULL;
649 }
650
651 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
652 {
653         unsigned long *rmapp;
654         u64 *spte;
655         int write_protected = 0;
656
657         gfn = unalias_gfn(kvm, gfn);
658         rmapp = gfn_to_rmap(kvm, gfn, 0);
659
660         spte = rmap_next(kvm, rmapp, NULL);
661         while (spte) {
662                 BUG_ON(!spte);
663                 BUG_ON(!(*spte & PT_PRESENT_MASK));
664                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
665                 if (is_writeble_pte(*spte)) {
666                         __set_spte(spte, *spte & ~PT_WRITABLE_MASK);
667                         write_protected = 1;
668                 }
669                 spte = rmap_next(kvm, rmapp, spte);
670         }
671         if (write_protected) {
672                 pfn_t pfn;
673
674                 spte = rmap_next(kvm, rmapp, NULL);
675                 pfn = spte_to_pfn(*spte);
676                 kvm_set_pfn_dirty(pfn);
677         }
678
679         /* check for huge page mappings */
680         rmapp = gfn_to_rmap(kvm, gfn, 1);
681         spte = rmap_next(kvm, rmapp, NULL);
682         while (spte) {
683                 BUG_ON(!spte);
684                 BUG_ON(!(*spte & PT_PRESENT_MASK));
685                 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
686                 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
687                 if (is_writeble_pte(*spte)) {
688                         rmap_remove(kvm, spte);
689                         --kvm->stat.lpages;
690                         __set_spte(spte, shadow_trap_nonpresent_pte);
691                         spte = NULL;
692                         write_protected = 1;
693                 }
694                 spte = rmap_next(kvm, rmapp, spte);
695         }
696
697         return write_protected;
698 }
699
700 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp)
701 {
702         u64 *spte;
703         int need_tlb_flush = 0;
704
705         while ((spte = rmap_next(kvm, rmapp, NULL))) {
706                 BUG_ON(!(*spte & PT_PRESENT_MASK));
707                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
708                 rmap_remove(kvm, spte);
709                 __set_spte(spte, shadow_trap_nonpresent_pte);
710                 need_tlb_flush = 1;
711         }
712         return need_tlb_flush;
713 }
714
715 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
716                           int (*handler)(struct kvm *kvm, unsigned long *rmapp))
717 {
718         int i;
719         int retval = 0;
720
721         /*
722          * If mmap_sem isn't taken, we can look the memslots with only
723          * the mmu_lock by skipping over the slots with userspace_addr == 0.
724          */
725         for (i = 0; i < kvm->nmemslots; i++) {
726                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
727                 unsigned long start = memslot->userspace_addr;
728                 unsigned long end;
729
730                 /* mmu_lock protects userspace_addr */
731                 if (!start)
732                         continue;
733
734                 end = start + (memslot->npages << PAGE_SHIFT);
735                 if (hva >= start && hva < end) {
736                         gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
737                         int idx = gfn_offset /
738                                   KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL);
739                         retval |= handler(kvm, &memslot->rmap[gfn_offset]);
740                         retval |= handler(kvm,
741                                         &memslot->lpage_info[0][idx].rmap_pde);
742                 }
743         }
744
745         return retval;
746 }
747
748 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
749 {
750         return kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
751 }
752
753 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp)
754 {
755         u64 *spte;
756         int young = 0;
757
758         /* always return old for EPT */
759         if (!shadow_accessed_mask)
760                 return 0;
761
762         spte = rmap_next(kvm, rmapp, NULL);
763         while (spte) {
764                 int _young;
765                 u64 _spte = *spte;
766                 BUG_ON(!(_spte & PT_PRESENT_MASK));
767                 _young = _spte & PT_ACCESSED_MASK;
768                 if (_young) {
769                         young = 1;
770                         clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
771                 }
772                 spte = rmap_next(kvm, rmapp, spte);
773         }
774         return young;
775 }
776
777 #define RMAP_RECYCLE_THRESHOLD 1000
778
779 static void rmap_recycle(struct kvm_vcpu *vcpu, gfn_t gfn, int lpage)
780 {
781         unsigned long *rmapp;
782
783         gfn = unalias_gfn(vcpu->kvm, gfn);
784         rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
785
786         kvm_unmap_rmapp(vcpu->kvm, rmapp);
787         kvm_flush_remote_tlbs(vcpu->kvm);
788 }
789
790 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
791 {
792         return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
793 }
794
795 #ifdef MMU_DEBUG
796 static int is_empty_shadow_page(u64 *spt)
797 {
798         u64 *pos;
799         u64 *end;
800
801         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
802                 if (is_shadow_present_pte(*pos)) {
803                         printk(KERN_ERR "%s: %p %llx\n", __func__,
804                                pos, *pos);
805                         return 0;
806                 }
807         return 1;
808 }
809 #endif
810
811 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
812 {
813         ASSERT(is_empty_shadow_page(sp->spt));
814         list_del(&sp->link);
815         __free_page(virt_to_page(sp->spt));
816         __free_page(virt_to_page(sp->gfns));
817         kfree(sp);
818         ++kvm->arch.n_free_mmu_pages;
819 }
820
821 static unsigned kvm_page_table_hashfn(gfn_t gfn)
822 {
823         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
824 }
825
826 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
827                                                u64 *parent_pte)
828 {
829         struct kvm_mmu_page *sp;
830
831         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
832         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
833         sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
834         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
835         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
836         INIT_LIST_HEAD(&sp->oos_link);
837         bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
838         sp->multimapped = 0;
839         sp->parent_pte = parent_pte;
840         --vcpu->kvm->arch.n_free_mmu_pages;
841         return sp;
842 }
843
844 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
845                                     struct kvm_mmu_page *sp, u64 *parent_pte)
846 {
847         struct kvm_pte_chain *pte_chain;
848         struct hlist_node *node;
849         int i;
850
851         if (!parent_pte)
852                 return;
853         if (!sp->multimapped) {
854                 u64 *old = sp->parent_pte;
855
856                 if (!old) {
857                         sp->parent_pte = parent_pte;
858                         return;
859                 }
860                 sp->multimapped = 1;
861                 pte_chain = mmu_alloc_pte_chain(vcpu);
862                 INIT_HLIST_HEAD(&sp->parent_ptes);
863                 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
864                 pte_chain->parent_ptes[0] = old;
865         }
866         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
867                 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
868                         continue;
869                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
870                         if (!pte_chain->parent_ptes[i]) {
871                                 pte_chain->parent_ptes[i] = parent_pte;
872                                 return;
873                         }
874         }
875         pte_chain = mmu_alloc_pte_chain(vcpu);
876         BUG_ON(!pte_chain);
877         hlist_add_head(&pte_chain->link, &sp->parent_ptes);
878         pte_chain->parent_ptes[0] = parent_pte;
879 }
880
881 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
882                                        u64 *parent_pte)
883 {
884         struct kvm_pte_chain *pte_chain;
885         struct hlist_node *node;
886         int i;
887
888         if (!sp->multimapped) {
889                 BUG_ON(sp->parent_pte != parent_pte);
890                 sp->parent_pte = NULL;
891                 return;
892         }
893         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
894                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
895                         if (!pte_chain->parent_ptes[i])
896                                 break;
897                         if (pte_chain->parent_ptes[i] != parent_pte)
898                                 continue;
899                         while (i + 1 < NR_PTE_CHAIN_ENTRIES
900                                 && pte_chain->parent_ptes[i + 1]) {
901                                 pte_chain->parent_ptes[i]
902                                         = pte_chain->parent_ptes[i + 1];
903                                 ++i;
904                         }
905                         pte_chain->parent_ptes[i] = NULL;
906                         if (i == 0) {
907                                 hlist_del(&pte_chain->link);
908                                 mmu_free_pte_chain(pte_chain);
909                                 if (hlist_empty(&sp->parent_ptes)) {
910                                         sp->multimapped = 0;
911                                         sp->parent_pte = NULL;
912                                 }
913                         }
914                         return;
915                 }
916         BUG();
917 }
918
919
920 static void mmu_parent_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
921                             mmu_parent_walk_fn fn)
922 {
923         struct kvm_pte_chain *pte_chain;
924         struct hlist_node *node;
925         struct kvm_mmu_page *parent_sp;
926         int i;
927
928         if (!sp->multimapped && sp->parent_pte) {
929                 parent_sp = page_header(__pa(sp->parent_pte));
930                 fn(vcpu, parent_sp);
931                 mmu_parent_walk(vcpu, parent_sp, fn);
932                 return;
933         }
934         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
935                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
936                         if (!pte_chain->parent_ptes[i])
937                                 break;
938                         parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
939                         fn(vcpu, parent_sp);
940                         mmu_parent_walk(vcpu, parent_sp, fn);
941                 }
942 }
943
944 static void kvm_mmu_update_unsync_bitmap(u64 *spte)
945 {
946         unsigned int index;
947         struct kvm_mmu_page *sp = page_header(__pa(spte));
948
949         index = spte - sp->spt;
950         if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
951                 sp->unsync_children++;
952         WARN_ON(!sp->unsync_children);
953 }
954
955 static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
956 {
957         struct kvm_pte_chain *pte_chain;
958         struct hlist_node *node;
959         int i;
960
961         if (!sp->parent_pte)
962                 return;
963
964         if (!sp->multimapped) {
965                 kvm_mmu_update_unsync_bitmap(sp->parent_pte);
966                 return;
967         }
968
969         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
970                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
971                         if (!pte_chain->parent_ptes[i])
972                                 break;
973                         kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
974                 }
975 }
976
977 static int unsync_walk_fn(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
978 {
979         kvm_mmu_update_parents_unsync(sp);
980         return 1;
981 }
982
983 static void kvm_mmu_mark_parents_unsync(struct kvm_vcpu *vcpu,
984                                         struct kvm_mmu_page *sp)
985 {
986         mmu_parent_walk(vcpu, sp, unsync_walk_fn);
987         kvm_mmu_update_parents_unsync(sp);
988 }
989
990 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
991                                     struct kvm_mmu_page *sp)
992 {
993         int i;
994
995         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
996                 sp->spt[i] = shadow_trap_nonpresent_pte;
997 }
998
999 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1000                                struct kvm_mmu_page *sp)
1001 {
1002         return 1;
1003 }
1004
1005 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1006 {
1007 }
1008
1009 #define KVM_PAGE_ARRAY_NR 16
1010
1011 struct kvm_mmu_pages {
1012         struct mmu_page_and_offset {
1013                 struct kvm_mmu_page *sp;
1014                 unsigned int idx;
1015         } page[KVM_PAGE_ARRAY_NR];
1016         unsigned int nr;
1017 };
1018
1019 #define for_each_unsync_children(bitmap, idx)           \
1020         for (idx = find_first_bit(bitmap, 512);         \
1021              idx < 512;                                 \
1022              idx = find_next_bit(bitmap, 512, idx+1))
1023
1024 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1025                          int idx)
1026 {
1027         int i;
1028
1029         if (sp->unsync)
1030                 for (i=0; i < pvec->nr; i++)
1031                         if (pvec->page[i].sp == sp)
1032                                 return 0;
1033
1034         pvec->page[pvec->nr].sp = sp;
1035         pvec->page[pvec->nr].idx = idx;
1036         pvec->nr++;
1037         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1038 }
1039
1040 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1041                            struct kvm_mmu_pages *pvec)
1042 {
1043         int i, ret, nr_unsync_leaf = 0;
1044
1045         for_each_unsync_children(sp->unsync_child_bitmap, i) {
1046                 u64 ent = sp->spt[i];
1047
1048                 if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
1049                         struct kvm_mmu_page *child;
1050                         child = page_header(ent & PT64_BASE_ADDR_MASK);
1051
1052                         if (child->unsync_children) {
1053                                 if (mmu_pages_add(pvec, child, i))
1054                                         return -ENOSPC;
1055
1056                                 ret = __mmu_unsync_walk(child, pvec);
1057                                 if (!ret)
1058                                         __clear_bit(i, sp->unsync_child_bitmap);
1059                                 else if (ret > 0)
1060                                         nr_unsync_leaf += ret;
1061                                 else
1062                                         return ret;
1063                         }
1064
1065                         if (child->unsync) {
1066                                 nr_unsync_leaf++;
1067                                 if (mmu_pages_add(pvec, child, i))
1068                                         return -ENOSPC;
1069                         }
1070                 }
1071         }
1072
1073         if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
1074                 sp->unsync_children = 0;
1075
1076         return nr_unsync_leaf;
1077 }
1078
1079 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1080                            struct kvm_mmu_pages *pvec)
1081 {
1082         if (!sp->unsync_children)
1083                 return 0;
1084
1085         mmu_pages_add(pvec, sp, 0);
1086         return __mmu_unsync_walk(sp, pvec);
1087 }
1088
1089 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
1090 {
1091         unsigned index;
1092         struct hlist_head *bucket;
1093         struct kvm_mmu_page *sp;
1094         struct hlist_node *node;
1095
1096         pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
1097         index = kvm_page_table_hashfn(gfn);
1098         bucket = &kvm->arch.mmu_page_hash[index];
1099         hlist_for_each_entry(sp, node, bucket, hash_link)
1100                 if (sp->gfn == gfn && !sp->role.direct
1101                     && !sp->role.invalid) {
1102                         pgprintk("%s: found role %x\n",
1103                                  __func__, sp->role.word);
1104                         return sp;
1105                 }
1106         return NULL;
1107 }
1108
1109 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1110 {
1111         WARN_ON(!sp->unsync);
1112         sp->unsync = 0;
1113         --kvm->stat.mmu_unsync;
1114 }
1115
1116 static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
1117
1118 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1119 {
1120         if (sp->role.glevels != vcpu->arch.mmu.root_level) {
1121                 kvm_mmu_zap_page(vcpu->kvm, sp);
1122                 return 1;
1123         }
1124
1125         trace_kvm_mmu_sync_page(sp);
1126         if (rmap_write_protect(vcpu->kvm, sp->gfn))
1127                 kvm_flush_remote_tlbs(vcpu->kvm);
1128         kvm_unlink_unsync_page(vcpu->kvm, sp);
1129         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1130                 kvm_mmu_zap_page(vcpu->kvm, sp);
1131                 return 1;
1132         }
1133
1134         kvm_mmu_flush_tlb(vcpu);
1135         return 0;
1136 }
1137
1138 struct mmu_page_path {
1139         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1140         unsigned int idx[PT64_ROOT_LEVEL-1];
1141 };
1142
1143 #define for_each_sp(pvec, sp, parents, i)                       \
1144                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1145                         sp = pvec.page[i].sp;                   \
1146                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1147                         i = mmu_pages_next(&pvec, &parents, i))
1148
1149 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1150                           struct mmu_page_path *parents,
1151                           int i)
1152 {
1153         int n;
1154
1155         for (n = i+1; n < pvec->nr; n++) {
1156                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1157
1158                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1159                         parents->idx[0] = pvec->page[n].idx;
1160                         return n;
1161                 }
1162
1163                 parents->parent[sp->role.level-2] = sp;
1164                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1165         }
1166
1167         return n;
1168 }
1169
1170 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1171 {
1172         struct kvm_mmu_page *sp;
1173         unsigned int level = 0;
1174
1175         do {
1176                 unsigned int idx = parents->idx[level];
1177
1178                 sp = parents->parent[level];
1179                 if (!sp)
1180                         return;
1181
1182                 --sp->unsync_children;
1183                 WARN_ON((int)sp->unsync_children < 0);
1184                 __clear_bit(idx, sp->unsync_child_bitmap);
1185                 level++;
1186         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1187 }
1188
1189 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1190                                struct mmu_page_path *parents,
1191                                struct kvm_mmu_pages *pvec)
1192 {
1193         parents->parent[parent->role.level-1] = NULL;
1194         pvec->nr = 0;
1195 }
1196
1197 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1198                               struct kvm_mmu_page *parent)
1199 {
1200         int i;
1201         struct kvm_mmu_page *sp;
1202         struct mmu_page_path parents;
1203         struct kvm_mmu_pages pages;
1204
1205         kvm_mmu_pages_init(parent, &parents, &pages);
1206         while (mmu_unsync_walk(parent, &pages)) {
1207                 int protected = 0;
1208
1209                 for_each_sp(pages, sp, parents, i)
1210                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1211
1212                 if (protected)
1213                         kvm_flush_remote_tlbs(vcpu->kvm);
1214
1215                 for_each_sp(pages, sp, parents, i) {
1216                         kvm_sync_page(vcpu, sp);
1217                         mmu_pages_clear_parents(&parents);
1218                 }
1219                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1220                 kvm_mmu_pages_init(parent, &parents, &pages);
1221         }
1222 }
1223
1224 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1225                                              gfn_t gfn,
1226                                              gva_t gaddr,
1227                                              unsigned level,
1228                                              int direct,
1229                                              unsigned access,
1230                                              u64 *parent_pte)
1231 {
1232         union kvm_mmu_page_role role;
1233         unsigned index;
1234         unsigned quadrant;
1235         struct hlist_head *bucket;
1236         struct kvm_mmu_page *sp;
1237         struct hlist_node *node, *tmp;
1238
1239         role = vcpu->arch.mmu.base_role;
1240         role.level = level;
1241         role.direct = direct;
1242         role.access = access;
1243         if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1244                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1245                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1246                 role.quadrant = quadrant;
1247         }
1248         index = kvm_page_table_hashfn(gfn);
1249         bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1250         hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
1251                 if (sp->gfn == gfn) {
1252                         if (sp->unsync)
1253                                 if (kvm_sync_page(vcpu, sp))
1254                                         continue;
1255
1256                         if (sp->role.word != role.word)
1257                                 continue;
1258
1259                         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1260                         if (sp->unsync_children) {
1261                                 set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
1262                                 kvm_mmu_mark_parents_unsync(vcpu, sp);
1263                         }
1264                         trace_kvm_mmu_get_page(sp, false);
1265                         return sp;
1266                 }
1267         ++vcpu->kvm->stat.mmu_cache_miss;
1268         sp = kvm_mmu_alloc_page(vcpu, parent_pte);
1269         if (!sp)
1270                 return sp;
1271         sp->gfn = gfn;
1272         sp->role = role;
1273         hlist_add_head(&sp->hash_link, bucket);
1274         if (!direct) {
1275                 if (rmap_write_protect(vcpu->kvm, gfn))
1276                         kvm_flush_remote_tlbs(vcpu->kvm);
1277                 account_shadowed(vcpu->kvm, gfn);
1278         }
1279         if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
1280                 vcpu->arch.mmu.prefetch_page(vcpu, sp);
1281         else
1282                 nonpaging_prefetch_page(vcpu, sp);
1283         trace_kvm_mmu_get_page(sp, true);
1284         return sp;
1285 }
1286
1287 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1288                              struct kvm_vcpu *vcpu, u64 addr)
1289 {
1290         iterator->addr = addr;
1291         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1292         iterator->level = vcpu->arch.mmu.shadow_root_level;
1293         if (iterator->level == PT32E_ROOT_LEVEL) {
1294                 iterator->shadow_addr
1295                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1296                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1297                 --iterator->level;
1298                 if (!iterator->shadow_addr)
1299                         iterator->level = 0;
1300         }
1301 }
1302
1303 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1304 {
1305         if (iterator->level < PT_PAGE_TABLE_LEVEL)
1306                 return false;
1307
1308         if (iterator->level == PT_PAGE_TABLE_LEVEL)
1309                 if (is_large_pte(*iterator->sptep))
1310                         return false;
1311
1312         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1313         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1314         return true;
1315 }
1316
1317 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1318 {
1319         iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
1320         --iterator->level;
1321 }
1322
1323 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1324                                          struct kvm_mmu_page *sp)
1325 {
1326         unsigned i;
1327         u64 *pt;
1328         u64 ent;
1329
1330         pt = sp->spt;
1331
1332         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1333                 ent = pt[i];
1334
1335                 if (is_shadow_present_pte(ent)) {
1336                         if (!is_last_spte(ent, sp->role.level)) {
1337                                 ent &= PT64_BASE_ADDR_MASK;
1338                                 mmu_page_remove_parent_pte(page_header(ent),
1339                                                            &pt[i]);
1340                         } else {
1341                                 if (is_large_pte(ent))
1342                                         --kvm->stat.lpages;
1343                                 rmap_remove(kvm, &pt[i]);
1344                         }
1345                 }
1346                 pt[i] = shadow_trap_nonpresent_pte;
1347         }
1348 }
1349
1350 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1351 {
1352         mmu_page_remove_parent_pte(sp, parent_pte);
1353 }
1354
1355 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1356 {
1357         int i;
1358         struct kvm_vcpu *vcpu;
1359
1360         kvm_for_each_vcpu(i, vcpu, kvm)
1361                 vcpu->arch.last_pte_updated = NULL;
1362 }
1363
1364 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1365 {
1366         u64 *parent_pte;
1367
1368         while (sp->multimapped || sp->parent_pte) {
1369                 if (!sp->multimapped)
1370                         parent_pte = sp->parent_pte;
1371                 else {
1372                         struct kvm_pte_chain *chain;
1373
1374                         chain = container_of(sp->parent_ptes.first,
1375                                              struct kvm_pte_chain, link);
1376                         parent_pte = chain->parent_ptes[0];
1377                 }
1378                 BUG_ON(!parent_pte);
1379                 kvm_mmu_put_page(sp, parent_pte);
1380                 __set_spte(parent_pte, shadow_trap_nonpresent_pte);
1381         }
1382 }
1383
1384 static int mmu_zap_unsync_children(struct kvm *kvm,
1385                                    struct kvm_mmu_page *parent)
1386 {
1387         int i, zapped = 0;
1388         struct mmu_page_path parents;
1389         struct kvm_mmu_pages pages;
1390
1391         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1392                 return 0;
1393
1394         kvm_mmu_pages_init(parent, &parents, &pages);
1395         while (mmu_unsync_walk(parent, &pages)) {
1396                 struct kvm_mmu_page *sp;
1397
1398                 for_each_sp(pages, sp, parents, i) {
1399                         kvm_mmu_zap_page(kvm, sp);
1400                         mmu_pages_clear_parents(&parents);
1401                 }
1402                 zapped += pages.nr;
1403                 kvm_mmu_pages_init(parent, &parents, &pages);
1404         }
1405
1406         return zapped;
1407 }
1408
1409 static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1410 {
1411         int ret;
1412
1413         trace_kvm_mmu_zap_page(sp);
1414         ++kvm->stat.mmu_shadow_zapped;
1415         ret = mmu_zap_unsync_children(kvm, sp);
1416         kvm_mmu_page_unlink_children(kvm, sp);
1417         kvm_mmu_unlink_parents(kvm, sp);
1418         kvm_flush_remote_tlbs(kvm);
1419         if (!sp->role.invalid && !sp->role.direct)
1420                 unaccount_shadowed(kvm, sp->gfn);
1421         if (sp->unsync)
1422                 kvm_unlink_unsync_page(kvm, sp);
1423         if (!sp->root_count) {
1424                 hlist_del(&sp->hash_link);
1425                 kvm_mmu_free_page(kvm, sp);
1426         } else {
1427                 sp->role.invalid = 1;
1428                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1429                 kvm_reload_remote_mmus(kvm);
1430         }
1431         kvm_mmu_reset_last_pte_updated(kvm);
1432         return ret;
1433 }
1434
1435 /*
1436  * Changing the number of mmu pages allocated to the vm
1437  * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
1438  */
1439 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
1440 {
1441         int used_pages;
1442
1443         used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
1444         used_pages = max(0, used_pages);
1445
1446         /*
1447          * If we set the number of mmu pages to be smaller be than the
1448          * number of actived pages , we must to free some mmu pages before we
1449          * change the value
1450          */
1451
1452         if (used_pages > kvm_nr_mmu_pages) {
1453                 while (used_pages > kvm_nr_mmu_pages) {
1454                         struct kvm_mmu_page *page;
1455
1456                         page = container_of(kvm->arch.active_mmu_pages.prev,
1457                                             struct kvm_mmu_page, link);
1458                         kvm_mmu_zap_page(kvm, page);
1459                         used_pages--;
1460                 }
1461                 kvm->arch.n_free_mmu_pages = 0;
1462         }
1463         else
1464                 kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
1465                                          - kvm->arch.n_alloc_mmu_pages;
1466
1467         kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
1468 }
1469
1470 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1471 {
1472         unsigned index;
1473         struct hlist_head *bucket;
1474         struct kvm_mmu_page *sp;
1475         struct hlist_node *node, *n;
1476         int r;
1477
1478         pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
1479         r = 0;
1480         index = kvm_page_table_hashfn(gfn);
1481         bucket = &kvm->arch.mmu_page_hash[index];
1482         hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
1483                 if (sp->gfn == gfn && !sp->role.direct) {
1484                         pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
1485                                  sp->role.word);
1486                         r = 1;
1487                         if (kvm_mmu_zap_page(kvm, sp))
1488                                 n = bucket->first;
1489                 }
1490         return r;
1491 }
1492
1493 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1494 {
1495         unsigned index;
1496         struct hlist_head *bucket;
1497         struct kvm_mmu_page *sp;
1498         struct hlist_node *node, *nn;
1499
1500         index = kvm_page_table_hashfn(gfn);
1501         bucket = &kvm->arch.mmu_page_hash[index];
1502         hlist_for_each_entry_safe(sp, node, nn, bucket, hash_link) {
1503                 if (sp->gfn == gfn && !sp->role.direct
1504                     && !sp->role.invalid) {
1505                         pgprintk("%s: zap %lx %x\n",
1506                                  __func__, gfn, sp->role.word);
1507                         kvm_mmu_zap_page(kvm, sp);
1508                 }
1509         }
1510 }
1511
1512 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1513 {
1514         int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
1515         struct kvm_mmu_page *sp = page_header(__pa(pte));
1516
1517         __set_bit(slot, sp->slot_bitmap);
1518 }
1519
1520 static void mmu_convert_notrap(struct kvm_mmu_page *sp)
1521 {
1522         int i;
1523         u64 *pt = sp->spt;
1524
1525         if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
1526                 return;
1527
1528         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1529                 if (pt[i] == shadow_notrap_nonpresent_pte)
1530                         __set_spte(&pt[i], shadow_trap_nonpresent_pte);
1531         }
1532 }
1533
1534 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
1535 {
1536         struct page *page;
1537
1538         gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
1539
1540         if (gpa == UNMAPPED_GVA)
1541                 return NULL;
1542
1543         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1544
1545         return page;
1546 }
1547
1548 /*
1549  * The function is based on mtrr_type_lookup() in
1550  * arch/x86/kernel/cpu/mtrr/generic.c
1551  */
1552 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
1553                          u64 start, u64 end)
1554 {
1555         int i;
1556         u64 base, mask;
1557         u8 prev_match, curr_match;
1558         int num_var_ranges = KVM_NR_VAR_MTRR;
1559
1560         if (!mtrr_state->enabled)
1561                 return 0xFF;
1562
1563         /* Make end inclusive end, instead of exclusive */
1564         end--;
1565
1566         /* Look in fixed ranges. Just return the type as per start */
1567         if (mtrr_state->have_fixed && (start < 0x100000)) {
1568                 int idx;
1569
1570                 if (start < 0x80000) {
1571                         idx = 0;
1572                         idx += (start >> 16);
1573                         return mtrr_state->fixed_ranges[idx];
1574                 } else if (start < 0xC0000) {
1575                         idx = 1 * 8;
1576                         idx += ((start - 0x80000) >> 14);
1577                         return mtrr_state->fixed_ranges[idx];
1578                 } else if (start < 0x1000000) {
1579                         idx = 3 * 8;
1580                         idx += ((start - 0xC0000) >> 12);
1581                         return mtrr_state->fixed_ranges[idx];
1582                 }
1583         }
1584
1585         /*
1586          * Look in variable ranges
1587          * Look of multiple ranges matching this address and pick type
1588          * as per MTRR precedence
1589          */
1590         if (!(mtrr_state->enabled & 2))
1591                 return mtrr_state->def_type;
1592
1593         prev_match = 0xFF;
1594         for (i = 0; i < num_var_ranges; ++i) {
1595                 unsigned short start_state, end_state;
1596
1597                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
1598                         continue;
1599
1600                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
1601                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
1602                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
1603                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
1604
1605                 start_state = ((start & mask) == (base & mask));
1606                 end_state = ((end & mask) == (base & mask));
1607                 if (start_state != end_state)
1608                         return 0xFE;
1609
1610                 if ((start & mask) != (base & mask))
1611                         continue;
1612
1613                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
1614                 if (prev_match == 0xFF) {
1615                         prev_match = curr_match;
1616                         continue;
1617                 }
1618
1619                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
1620                     curr_match == MTRR_TYPE_UNCACHABLE)
1621                         return MTRR_TYPE_UNCACHABLE;
1622
1623                 if ((prev_match == MTRR_TYPE_WRBACK &&
1624                      curr_match == MTRR_TYPE_WRTHROUGH) ||
1625                     (prev_match == MTRR_TYPE_WRTHROUGH &&
1626                      curr_match == MTRR_TYPE_WRBACK)) {
1627                         prev_match = MTRR_TYPE_WRTHROUGH;
1628                         curr_match = MTRR_TYPE_WRTHROUGH;
1629                 }
1630
1631                 if (prev_match != curr_match)
1632                         return MTRR_TYPE_UNCACHABLE;
1633         }
1634
1635         if (prev_match != 0xFF)
1636                 return prev_match;
1637
1638         return mtrr_state->def_type;
1639 }
1640
1641 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
1642 {
1643         u8 mtrr;
1644
1645         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
1646                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
1647         if (mtrr == 0xfe || mtrr == 0xff)
1648                 mtrr = MTRR_TYPE_WRBACK;
1649         return mtrr;
1650 }
1651 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
1652
1653 static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1654 {
1655         unsigned index;
1656         struct hlist_head *bucket;
1657         struct kvm_mmu_page *s;
1658         struct hlist_node *node, *n;
1659
1660         trace_kvm_mmu_unsync_page(sp);
1661         index = kvm_page_table_hashfn(sp->gfn);
1662         bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1663         /* don't unsync if pagetable is shadowed with multiple roles */
1664         hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
1665                 if (s->gfn != sp->gfn || s->role.direct)
1666                         continue;
1667                 if (s->role.word != sp->role.word)
1668                         return 1;
1669         }
1670         ++vcpu->kvm->stat.mmu_unsync;
1671         sp->unsync = 1;
1672
1673         kvm_mmu_mark_parents_unsync(vcpu, sp);
1674
1675         mmu_convert_notrap(sp);
1676         return 0;
1677 }
1678
1679 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
1680                                   bool can_unsync)
1681 {
1682         struct kvm_mmu_page *shadow;
1683
1684         shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
1685         if (shadow) {
1686                 if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
1687                         return 1;
1688                 if (shadow->unsync)
1689                         return 0;
1690                 if (can_unsync && oos_shadow)
1691                         return kvm_unsync_page(vcpu, shadow);
1692                 return 1;
1693         }
1694         return 0;
1695 }
1696
1697 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1698                     unsigned pte_access, int user_fault,
1699                     int write_fault, int dirty, int largepage,
1700                     gfn_t gfn, pfn_t pfn, bool speculative,
1701                     bool can_unsync)
1702 {
1703         u64 spte;
1704         int ret = 0;
1705
1706         /*
1707          * We don't set the accessed bit, since we sometimes want to see
1708          * whether the guest actually used the pte (in order to detect
1709          * demand paging).
1710          */
1711         spte = shadow_base_present_pte | shadow_dirty_mask;
1712         if (!speculative)
1713                 spte |= shadow_accessed_mask;
1714         if (!dirty)
1715                 pte_access &= ~ACC_WRITE_MASK;
1716         if (pte_access & ACC_EXEC_MASK)
1717                 spte |= shadow_x_mask;
1718         else
1719                 spte |= shadow_nx_mask;
1720         if (pte_access & ACC_USER_MASK)
1721                 spte |= shadow_user_mask;
1722         if (largepage)
1723                 spte |= PT_PAGE_SIZE_MASK;
1724         if (tdp_enabled)
1725                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
1726                         kvm_is_mmio_pfn(pfn));
1727
1728         spte |= (u64)pfn << PAGE_SHIFT;
1729
1730         if ((pte_access & ACC_WRITE_MASK)
1731             || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
1732
1733                 if (largepage && has_wrprotected_page(vcpu->kvm, gfn)) {
1734                         ret = 1;
1735                         spte = shadow_trap_nonpresent_pte;
1736                         goto set_pte;
1737                 }
1738
1739                 spte |= PT_WRITABLE_MASK;
1740
1741                 /*
1742                  * Optimization: for pte sync, if spte was writable the hash
1743                  * lookup is unnecessary (and expensive). Write protection
1744                  * is responsibility of mmu_get_page / kvm_sync_page.
1745                  * Same reasoning can be applied to dirty page accounting.
1746                  */
1747                 if (!can_unsync && is_writeble_pte(*sptep))
1748                         goto set_pte;
1749
1750                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
1751                         pgprintk("%s: found shadow page for %lx, marking ro\n",
1752                                  __func__, gfn);
1753                         ret = 1;
1754                         pte_access &= ~ACC_WRITE_MASK;
1755                         if (is_writeble_pte(spte))
1756                                 spte &= ~PT_WRITABLE_MASK;
1757                 }
1758         }
1759
1760         if (pte_access & ACC_WRITE_MASK)
1761                 mark_page_dirty(vcpu->kvm, gfn);
1762
1763 set_pte:
1764         __set_spte(sptep, spte);
1765         return ret;
1766 }
1767
1768 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1769                          unsigned pt_access, unsigned pte_access,
1770                          int user_fault, int write_fault, int dirty,
1771                          int *ptwrite, int largepage, gfn_t gfn,
1772                          pfn_t pfn, bool speculative)
1773 {
1774         int was_rmapped = 0;
1775         int was_writeble = is_writeble_pte(*sptep);
1776         int rmap_count;
1777
1778         pgprintk("%s: spte %llx access %x write_fault %d"
1779                  " user_fault %d gfn %lx\n",
1780                  __func__, *sptep, pt_access,
1781                  write_fault, user_fault, gfn);
1782
1783         if (is_rmap_spte(*sptep)) {
1784                 /*
1785                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
1786                  * the parent of the now unreachable PTE.
1787                  */
1788                 if (largepage && !is_large_pte(*sptep)) {
1789                         struct kvm_mmu_page *child;
1790                         u64 pte = *sptep;
1791
1792                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1793                         mmu_page_remove_parent_pte(child, sptep);
1794                 } else if (pfn != spte_to_pfn(*sptep)) {
1795                         pgprintk("hfn old %lx new %lx\n",
1796                                  spte_to_pfn(*sptep), pfn);
1797                         rmap_remove(vcpu->kvm, sptep);
1798                 } else
1799                         was_rmapped = 1;
1800         }
1801         if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
1802                       dirty, largepage, gfn, pfn, speculative, true)) {
1803                 if (write_fault)
1804                         *ptwrite = 1;
1805                 kvm_x86_ops->tlb_flush(vcpu);
1806         }
1807
1808         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
1809         pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
1810                  is_large_pte(*sptep)? "2MB" : "4kB",
1811                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
1812                  *sptep, sptep);
1813         if (!was_rmapped && is_large_pte(*sptep))
1814                 ++vcpu->kvm->stat.lpages;
1815
1816         page_header_update_slot(vcpu->kvm, sptep, gfn);
1817         if (!was_rmapped) {
1818                 rmap_count = rmap_add(vcpu, sptep, gfn, largepage);
1819                 if (!is_rmap_spte(*sptep))
1820                         kvm_release_pfn_clean(pfn);
1821                 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
1822                         rmap_recycle(vcpu, gfn, largepage);
1823         } else {
1824                 if (was_writeble)
1825                         kvm_release_pfn_dirty(pfn);
1826                 else
1827                         kvm_release_pfn_clean(pfn);
1828         }
1829         if (speculative) {
1830                 vcpu->arch.last_pte_updated = sptep;
1831                 vcpu->arch.last_pte_gfn = gfn;
1832         }
1833 }
1834
1835 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
1836 {
1837 }
1838
1839 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
1840                         int largepage, gfn_t gfn, pfn_t pfn)
1841 {
1842         struct kvm_shadow_walk_iterator iterator;
1843         struct kvm_mmu_page *sp;
1844         int pt_write = 0;
1845         gfn_t pseudo_gfn;
1846
1847         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
1848                 if (iterator.level == PT_PAGE_TABLE_LEVEL
1849                     || (largepage && iterator.level == PT_DIRECTORY_LEVEL)) {
1850                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
1851                                      0, write, 1, &pt_write,
1852                                      largepage, gfn, pfn, false);
1853                         ++vcpu->stat.pf_fixed;
1854                         break;
1855                 }
1856
1857                 if (*iterator.sptep == shadow_trap_nonpresent_pte) {
1858                         pseudo_gfn = (iterator.addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
1859                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
1860                                               iterator.level - 1,
1861                                               1, ACC_ALL, iterator.sptep);
1862                         if (!sp) {
1863                                 pgprintk("nonpaging_map: ENOMEM\n");
1864                                 kvm_release_pfn_clean(pfn);
1865                                 return -ENOMEM;
1866                         }
1867
1868                         __set_spte(iterator.sptep,
1869                                    __pa(sp->spt)
1870                                    | PT_PRESENT_MASK | PT_WRITABLE_MASK
1871                                    | shadow_user_mask | shadow_x_mask);
1872                 }
1873         }
1874         return pt_write;
1875 }
1876
1877 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
1878 {
1879         int r;
1880         int largepage = 0;
1881         pfn_t pfn;
1882         unsigned long mmu_seq;
1883
1884         if (is_largepage_backed(vcpu, gfn &
1885                         ~(KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL) - 1))) {
1886                 gfn &= ~(KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL) - 1);
1887                 largepage = 1;
1888         }
1889
1890         mmu_seq = vcpu->kvm->mmu_notifier_seq;
1891         smp_rmb();
1892         pfn = gfn_to_pfn(vcpu->kvm, gfn);
1893
1894         /* mmio */
1895         if (is_error_pfn(pfn)) {
1896                 kvm_release_pfn_clean(pfn);
1897                 return 1;
1898         }
1899
1900         spin_lock(&vcpu->kvm->mmu_lock);
1901         if (mmu_notifier_retry(vcpu, mmu_seq))
1902                 goto out_unlock;
1903         kvm_mmu_free_some_pages(vcpu);
1904         r = __direct_map(vcpu, v, write, largepage, gfn, pfn);
1905         spin_unlock(&vcpu->kvm->mmu_lock);
1906
1907
1908         return r;
1909
1910 out_unlock:
1911         spin_unlock(&vcpu->kvm->mmu_lock);
1912         kvm_release_pfn_clean(pfn);
1913         return 0;
1914 }
1915
1916
1917 static void mmu_free_roots(struct kvm_vcpu *vcpu)
1918 {
1919         int i;
1920         struct kvm_mmu_page *sp;
1921
1922         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1923                 return;
1924         spin_lock(&vcpu->kvm->mmu_lock);
1925         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1926                 hpa_t root = vcpu->arch.mmu.root_hpa;
1927
1928                 sp = page_header(root);
1929                 --sp->root_count;
1930                 if (!sp->root_count && sp->role.invalid)
1931                         kvm_mmu_zap_page(vcpu->kvm, sp);
1932                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1933                 spin_unlock(&vcpu->kvm->mmu_lock);
1934                 return;
1935         }
1936         for (i = 0; i < 4; ++i) {
1937                 hpa_t root = vcpu->arch.mmu.pae_root[i];
1938
1939                 if (root) {
1940                         root &= PT64_BASE_ADDR_MASK;
1941                         sp = page_header(root);
1942                         --sp->root_count;
1943                         if (!sp->root_count && sp->role.invalid)
1944                                 kvm_mmu_zap_page(vcpu->kvm, sp);
1945                 }
1946                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1947         }
1948         spin_unlock(&vcpu->kvm->mmu_lock);
1949         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1950 }
1951
1952 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
1953 {
1954         int ret = 0;
1955
1956         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
1957                 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
1958                 ret = 1;
1959         }
1960
1961         return ret;
1962 }
1963
1964 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
1965 {
1966         int i;
1967         gfn_t root_gfn;
1968         struct kvm_mmu_page *sp;
1969         int direct = 0;
1970         u64 pdptr;
1971
1972         root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
1973
1974         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1975                 hpa_t root = vcpu->arch.mmu.root_hpa;
1976
1977                 ASSERT(!VALID_PAGE(root));
1978                 if (tdp_enabled)
1979                         direct = 1;
1980                 if (mmu_check_root(vcpu, root_gfn))
1981                         return 1;
1982                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
1983                                       PT64_ROOT_LEVEL, direct,
1984                                       ACC_ALL, NULL);
1985                 root = __pa(sp->spt);
1986                 ++sp->root_count;
1987                 vcpu->arch.mmu.root_hpa = root;
1988                 return 0;
1989         }
1990         direct = !is_paging(vcpu);
1991         if (tdp_enabled)
1992                 direct = 1;
1993         for (i = 0; i < 4; ++i) {
1994                 hpa_t root = vcpu->arch.mmu.pae_root[i];
1995
1996                 ASSERT(!VALID_PAGE(root));
1997                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
1998                         pdptr = kvm_pdptr_read(vcpu, i);
1999                         if (!is_present_gpte(pdptr)) {
2000                                 vcpu->arch.mmu.pae_root[i] = 0;
2001                                 continue;
2002                         }
2003                         root_gfn = pdptr >> PAGE_SHIFT;
2004                 } else if (vcpu->arch.mmu.root_level == 0)
2005                         root_gfn = 0;
2006                 if (mmu_check_root(vcpu, root_gfn))
2007                         return 1;
2008                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2009                                       PT32_ROOT_LEVEL, direct,
2010                                       ACC_ALL, NULL);
2011                 root = __pa(sp->spt);
2012                 ++sp->root_count;
2013                 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2014         }
2015         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2016         return 0;
2017 }
2018
2019 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2020 {
2021         int i;
2022         struct kvm_mmu_page *sp;
2023
2024         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2025                 return;
2026         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2027                 hpa_t root = vcpu->arch.mmu.root_hpa;
2028                 sp = page_header(root);
2029                 mmu_sync_children(vcpu, sp);
2030                 return;
2031         }
2032         for (i = 0; i < 4; ++i) {
2033                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2034
2035                 if (root && VALID_PAGE(root)) {
2036                         root &= PT64_BASE_ADDR_MASK;
2037                         sp = page_header(root);
2038                         mmu_sync_children(vcpu, sp);
2039                 }
2040         }
2041 }
2042
2043 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2044 {
2045         spin_lock(&vcpu->kvm->mmu_lock);
2046         mmu_sync_roots(vcpu);
2047         spin_unlock(&vcpu->kvm->mmu_lock);
2048 }
2049
2050 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
2051 {
2052         return vaddr;
2053 }
2054
2055 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2056                                 u32 error_code)
2057 {
2058         gfn_t gfn;
2059         int r;
2060
2061         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2062         r = mmu_topup_memory_caches(vcpu);
2063         if (r)
2064                 return r;
2065
2066         ASSERT(vcpu);
2067         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2068
2069         gfn = gva >> PAGE_SHIFT;
2070
2071         return nonpaging_map(vcpu, gva & PAGE_MASK,
2072                              error_code & PFERR_WRITE_MASK, gfn);
2073 }
2074
2075 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
2076                                 u32 error_code)
2077 {
2078         pfn_t pfn;
2079         int r;
2080         int largepage = 0;
2081         gfn_t gfn = gpa >> PAGE_SHIFT;
2082         unsigned long mmu_seq;
2083
2084         ASSERT(vcpu);
2085         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2086
2087         r = mmu_topup_memory_caches(vcpu);
2088         if (r)
2089                 return r;
2090
2091         if (is_largepage_backed(vcpu, gfn &
2092                         ~(KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL) - 1))) {
2093                 gfn &= ~(KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL) - 1);
2094                 largepage = 1;
2095         }
2096         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2097         smp_rmb();
2098         pfn = gfn_to_pfn(vcpu->kvm, gfn);
2099         if (is_error_pfn(pfn)) {
2100                 kvm_release_pfn_clean(pfn);
2101                 return 1;
2102         }
2103         spin_lock(&vcpu->kvm->mmu_lock);
2104         if (mmu_notifier_retry(vcpu, mmu_seq))
2105                 goto out_unlock;
2106         kvm_mmu_free_some_pages(vcpu);
2107         r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
2108                          largepage, gfn, pfn);
2109         spin_unlock(&vcpu->kvm->mmu_lock);
2110
2111         return r;
2112
2113 out_unlock:
2114         spin_unlock(&vcpu->kvm->mmu_lock);
2115         kvm_release_pfn_clean(pfn);
2116         return 0;
2117 }
2118
2119 static void nonpaging_free(struct kvm_vcpu *vcpu)
2120 {
2121         mmu_free_roots(vcpu);
2122 }
2123
2124 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
2125 {
2126         struct kvm_mmu *context = &vcpu->arch.mmu;
2127
2128         context->new_cr3 = nonpaging_new_cr3;
2129         context->page_fault = nonpaging_page_fault;
2130         context->gva_to_gpa = nonpaging_gva_to_gpa;
2131         context->free = nonpaging_free;
2132         context->prefetch_page = nonpaging_prefetch_page;
2133         context->sync_page = nonpaging_sync_page;
2134         context->invlpg = nonpaging_invlpg;
2135         context->root_level = 0;
2136         context->shadow_root_level = PT32E_ROOT_LEVEL;
2137         context->root_hpa = INVALID_PAGE;
2138         return 0;
2139 }
2140
2141 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2142 {
2143         ++vcpu->stat.tlb_flush;
2144         kvm_x86_ops->tlb_flush(vcpu);
2145 }
2146
2147 static void paging_new_cr3(struct kvm_vcpu *vcpu)
2148 {
2149         pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
2150         mmu_free_roots(vcpu);
2151 }
2152
2153 static void inject_page_fault(struct kvm_vcpu *vcpu,
2154                               u64 addr,
2155                               u32 err_code)
2156 {
2157         kvm_inject_page_fault(vcpu, addr, err_code);
2158 }
2159
2160 static void paging_free(struct kvm_vcpu *vcpu)
2161 {
2162         nonpaging_free(vcpu);
2163 }
2164
2165 static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
2166 {
2167         int bit7;
2168
2169         bit7 = (gpte >> 7) & 1;
2170         return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
2171 }
2172
2173 #define PTTYPE 64
2174 #include "paging_tmpl.h"
2175 #undef PTTYPE
2176
2177 #define PTTYPE 32
2178 #include "paging_tmpl.h"
2179 #undef PTTYPE
2180
2181 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
2182 {
2183         struct kvm_mmu *context = &vcpu->arch.mmu;
2184         int maxphyaddr = cpuid_maxphyaddr(vcpu);
2185         u64 exb_bit_rsvd = 0;
2186
2187         if (!is_nx(vcpu))
2188                 exb_bit_rsvd = rsvd_bits(63, 63);
2189         switch (level) {
2190         case PT32_ROOT_LEVEL:
2191                 /* no rsvd bits for 2 level 4K page table entries */
2192                 context->rsvd_bits_mask[0][1] = 0;
2193                 context->rsvd_bits_mask[0][0] = 0;
2194                 if (is_cpuid_PSE36())
2195                         /* 36bits PSE 4MB page */
2196                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
2197                 else
2198                         /* 32 bits PSE 4MB page */
2199                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
2200                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
2201                 break;
2202         case PT32E_ROOT_LEVEL:
2203                 context->rsvd_bits_mask[0][2] =
2204                         rsvd_bits(maxphyaddr, 63) |
2205                         rsvd_bits(7, 8) | rsvd_bits(1, 2);      /* PDPTE */
2206                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2207                         rsvd_bits(maxphyaddr, 62);      /* PDE */
2208                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2209                         rsvd_bits(maxphyaddr, 62);      /* PTE */
2210                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2211                         rsvd_bits(maxphyaddr, 62) |
2212                         rsvd_bits(13, 20);              /* large page */
2213                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
2214                 break;
2215         case PT64_ROOT_LEVEL:
2216                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
2217                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2218                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
2219                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2220                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2221                         rsvd_bits(maxphyaddr, 51);
2222                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2223                         rsvd_bits(maxphyaddr, 51);
2224                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
2225                 context->rsvd_bits_mask[1][2] = context->rsvd_bits_mask[0][2];
2226                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2227                         rsvd_bits(maxphyaddr, 51) |
2228                         rsvd_bits(13, 20);              /* large page */
2229                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
2230                 break;
2231         }
2232 }
2233
2234 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
2235 {
2236         struct kvm_mmu *context = &vcpu->arch.mmu;
2237
2238         ASSERT(is_pae(vcpu));
2239         context->new_cr3 = paging_new_cr3;
2240         context->page_fault = paging64_page_fault;
2241         context->gva_to_gpa = paging64_gva_to_gpa;
2242         context->prefetch_page = paging64_prefetch_page;
2243         context->sync_page = paging64_sync_page;
2244         context->invlpg = paging64_invlpg;
2245         context->free = paging_free;
2246         context->root_level = level;
2247         context->shadow_root_level = level;
2248         context->root_hpa = INVALID_PAGE;
2249         return 0;
2250 }
2251
2252 static int paging64_init_context(struct kvm_vcpu *vcpu)
2253 {
2254         reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
2255         return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
2256 }
2257
2258 static int paging32_init_context(struct kvm_vcpu *vcpu)
2259 {
2260         struct kvm_mmu *context = &vcpu->arch.mmu;
2261
2262         reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
2263         context->new_cr3 = paging_new_cr3;
2264         context->page_fault = paging32_page_fault;
2265         context->gva_to_gpa = paging32_gva_to_gpa;
2266         context->free = paging_free;
2267         context->prefetch_page = paging32_prefetch_page;
2268         context->sync_page = paging32_sync_page;
2269         context->invlpg = paging32_invlpg;
2270         context->root_level = PT32_ROOT_LEVEL;
2271         context->shadow_root_level = PT32E_ROOT_LEVEL;
2272         context->root_hpa = INVALID_PAGE;
2273         return 0;
2274 }
2275
2276 static int paging32E_init_context(struct kvm_vcpu *vcpu)
2277 {
2278         reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
2279         return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
2280 }
2281
2282 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
2283 {
2284         struct kvm_mmu *context = &vcpu->arch.mmu;
2285
2286         context->new_cr3 = nonpaging_new_cr3;
2287         context->page_fault = tdp_page_fault;
2288         context->free = nonpaging_free;
2289         context->prefetch_page = nonpaging_prefetch_page;
2290         context->sync_page = nonpaging_sync_page;
2291         context->invlpg = nonpaging_invlpg;
2292         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
2293         context->root_hpa = INVALID_PAGE;
2294
2295         if (!is_paging(vcpu)) {
2296                 context->gva_to_gpa = nonpaging_gva_to_gpa;
2297                 context->root_level = 0;
2298         } else if (is_long_mode(vcpu)) {
2299                 reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
2300                 context->gva_to_gpa = paging64_gva_to_gpa;
2301                 context->root_level = PT64_ROOT_LEVEL;
2302         } else if (is_pae(vcpu)) {
2303                 reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
2304                 context->gva_to_gpa = paging64_gva_to_gpa;
2305                 context->root_level = PT32E_ROOT_LEVEL;
2306         } else {
2307                 reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
2308                 context->gva_to_gpa = paging32_gva_to_gpa;
2309                 context->root_level = PT32_ROOT_LEVEL;
2310         }
2311
2312         return 0;
2313 }
2314
2315 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
2316 {
2317         int r;
2318
2319         ASSERT(vcpu);
2320         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2321
2322         if (!is_paging(vcpu))
2323                 r = nonpaging_init_context(vcpu);
2324         else if (is_long_mode(vcpu))
2325                 r = paging64_init_context(vcpu);
2326         else if (is_pae(vcpu))
2327                 r = paging32E_init_context(vcpu);
2328         else
2329                 r = paging32_init_context(vcpu);
2330
2331         vcpu->arch.mmu.base_role.glevels = vcpu->arch.mmu.root_level;
2332
2333         return r;
2334 }
2335
2336 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
2337 {
2338         vcpu->arch.update_pte.pfn = bad_pfn;
2339
2340         if (tdp_enabled)
2341                 return init_kvm_tdp_mmu(vcpu);
2342         else
2343                 return init_kvm_softmmu(vcpu);
2344 }
2345
2346 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
2347 {
2348         ASSERT(vcpu);
2349         if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
2350                 vcpu->arch.mmu.free(vcpu);
2351                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2352         }
2353 }
2354
2355 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
2356 {
2357         destroy_kvm_mmu(vcpu);
2358         return init_kvm_mmu(vcpu);
2359 }
2360 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
2361
2362 int kvm_mmu_load(struct kvm_vcpu *vcpu)
2363 {
2364         int r;
2365
2366         r = mmu_topup_memory_caches(vcpu);
2367         if (r)
2368                 goto out;
2369         spin_lock(&vcpu->kvm->mmu_lock);
2370         kvm_mmu_free_some_pages(vcpu);
2371         r = mmu_alloc_roots(vcpu);
2372         mmu_sync_roots(vcpu);
2373         spin_unlock(&vcpu->kvm->mmu_lock);
2374         if (r)
2375                 goto out;
2376         kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
2377         kvm_mmu_flush_tlb(vcpu);
2378 out:
2379         return r;
2380 }
2381 EXPORT_SYMBOL_GPL(kvm_mmu_load);
2382
2383 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
2384 {
2385         mmu_free_roots(vcpu);
2386 }
2387
2388 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
2389                                   struct kvm_mmu_page *sp,
2390                                   u64 *spte)
2391 {
2392         u64 pte;
2393         struct kvm_mmu_page *child;
2394
2395         pte = *spte;
2396         if (is_shadow_present_pte(pte)) {
2397                 if (is_last_spte(pte, sp->role.level))
2398                         rmap_remove(vcpu->kvm, spte);
2399                 else {
2400                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2401                         mmu_page_remove_parent_pte(child, spte);
2402                 }
2403         }
2404         __set_spte(spte, shadow_trap_nonpresent_pte);
2405         if (is_large_pte(pte))
2406                 --vcpu->kvm->stat.lpages;
2407 }
2408
2409 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
2410                                   struct kvm_mmu_page *sp,
2411                                   u64 *spte,
2412                                   const void *new)
2413 {
2414         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
2415                 if (!vcpu->arch.update_pte.largepage ||
2416                     sp->role.glevels == PT32_ROOT_LEVEL) {
2417                         ++vcpu->kvm->stat.mmu_pde_zapped;
2418                         return;
2419                 }
2420         }
2421
2422         ++vcpu->kvm->stat.mmu_pte_updated;
2423         if (sp->role.glevels == PT32_ROOT_LEVEL)
2424                 paging32_update_pte(vcpu, sp, spte, new);
2425         else
2426                 paging64_update_pte(vcpu, sp, spte, new);
2427 }
2428
2429 static bool need_remote_flush(u64 old, u64 new)
2430 {
2431         if (!is_shadow_present_pte(old))
2432                 return false;
2433         if (!is_shadow_present_pte(new))
2434                 return true;
2435         if ((old ^ new) & PT64_BASE_ADDR_MASK)
2436                 return true;
2437         old ^= PT64_NX_MASK;
2438         new ^= PT64_NX_MASK;
2439         return (old & ~new & PT64_PERM_MASK) != 0;
2440 }
2441
2442 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
2443 {
2444         if (need_remote_flush(old, new))
2445                 kvm_flush_remote_tlbs(vcpu->kvm);
2446         else
2447                 kvm_mmu_flush_tlb(vcpu);
2448 }
2449
2450 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
2451 {
2452         u64 *spte = vcpu->arch.last_pte_updated;
2453
2454         return !!(spte && (*spte & shadow_accessed_mask));
2455 }
2456
2457 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
2458                                           const u8 *new, int bytes)
2459 {
2460         gfn_t gfn;
2461         int r;
2462         u64 gpte = 0;
2463         pfn_t pfn;
2464
2465         vcpu->arch.update_pte.largepage = 0;
2466
2467         if (bytes != 4 && bytes != 8)
2468                 return;
2469
2470         /*
2471          * Assume that the pte write on a page table of the same type
2472          * as the current vcpu paging mode.  This is nearly always true
2473          * (might be false while changing modes).  Note it is verified later
2474          * by update_pte().
2475          */
2476         if (is_pae(vcpu)) {
2477                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
2478                 if ((bytes == 4) && (gpa % 4 == 0)) {
2479                         r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
2480                         if (r)
2481                                 return;
2482                         memcpy((void *)&gpte + (gpa % 8), new, 4);
2483                 } else if ((bytes == 8) && (gpa % 8 == 0)) {
2484                         memcpy((void *)&gpte, new, 8);
2485                 }
2486         } else {
2487                 if ((bytes == 4) && (gpa % 4 == 0))
2488                         memcpy((void *)&gpte, new, 4);
2489         }
2490         if (!is_present_gpte(gpte))
2491                 return;
2492         gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
2493
2494         if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
2495                 gfn &= ~(KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL) - 1);
2496                 vcpu->arch.update_pte.largepage = 1;
2497         }
2498         vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
2499         smp_rmb();
2500         pfn = gfn_to_pfn(vcpu->kvm, gfn);
2501
2502         if (is_error_pfn(pfn)) {
2503                 kvm_release_pfn_clean(pfn);
2504                 return;
2505         }
2506         vcpu->arch.update_pte.gfn = gfn;
2507         vcpu->arch.update_pte.pfn = pfn;
2508 }
2509
2510 static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2511 {
2512         u64 *spte = vcpu->arch.last_pte_updated;
2513
2514         if (spte
2515             && vcpu->arch.last_pte_gfn == gfn
2516             && shadow_accessed_mask
2517             && !(*spte & shadow_accessed_mask)
2518             && is_shadow_present_pte(*spte))
2519                 set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
2520 }
2521
2522 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
2523                        const u8 *new, int bytes,
2524                        bool guest_initiated)
2525 {
2526         gfn_t gfn = gpa >> PAGE_SHIFT;
2527         struct kvm_mmu_page *sp;
2528         struct hlist_node *node, *n;
2529         struct hlist_head *bucket;
2530         unsigned index;
2531         u64 entry, gentry;
2532         u64 *spte;
2533         unsigned offset = offset_in_page(gpa);
2534         unsigned pte_size;
2535         unsigned page_offset;
2536         unsigned misaligned;
2537         unsigned quadrant;
2538         int level;
2539         int flooded = 0;
2540         int npte;
2541         int r;
2542
2543         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
2544         mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
2545         spin_lock(&vcpu->kvm->mmu_lock);
2546         kvm_mmu_access_page(vcpu, gfn);
2547         kvm_mmu_free_some_pages(vcpu);
2548         ++vcpu->kvm->stat.mmu_pte_write;
2549         kvm_mmu_audit(vcpu, "pre pte write");
2550         if (guest_initiated) {
2551                 if (gfn == vcpu->arch.last_pt_write_gfn
2552                     && !last_updated_pte_accessed(vcpu)) {
2553                         ++vcpu->arch.last_pt_write_count;
2554                         if (vcpu->arch.last_pt_write_count >= 3)
2555                                 flooded = 1;
2556                 } else {
2557                         vcpu->arch.last_pt_write_gfn = gfn;
2558                         vcpu->arch.last_pt_write_count = 1;
2559                         vcpu->arch.last_pte_updated = NULL;
2560                 }
2561         }
2562         index = kvm_page_table_hashfn(gfn);
2563         bucket = &vcpu->kvm->arch.mmu_page_hash[index];
2564         hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
2565                 if (sp->gfn != gfn || sp->role.direct || sp->role.invalid)
2566                         continue;
2567                 pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
2568                 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
2569                 misaligned |= bytes < 4;
2570                 if (misaligned || flooded) {
2571                         /*
2572                          * Misaligned accesses are too much trouble to fix
2573                          * up; also, they usually indicate a page is not used
2574                          * as a page table.
2575                          *
2576                          * If we're seeing too many writes to a page,
2577                          * it may no longer be a page table, or we may be
2578                          * forking, in which case it is better to unmap the
2579                          * page.
2580                          */
2581                         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
2582                                  gpa, bytes, sp->role.word);
2583                         if (kvm_mmu_zap_page(vcpu->kvm, sp))
2584                                 n = bucket->first;
2585                         ++vcpu->kvm->stat.mmu_flooded;
2586                         continue;
2587                 }
2588                 page_offset = offset;
2589                 level = sp->role.level;
2590                 npte = 1;
2591                 if (sp->role.glevels == PT32_ROOT_LEVEL) {
2592                         page_offset <<= 1;      /* 32->64 */
2593                         /*
2594                          * A 32-bit pde maps 4MB while the shadow pdes map
2595                          * only 2MB.  So we need to double the offset again
2596                          * and zap two pdes instead of one.
2597                          */
2598                         if (level == PT32_ROOT_LEVEL) {
2599                                 page_offset &= ~7; /* kill rounding error */
2600                                 page_offset <<= 1;
2601                                 npte = 2;
2602                         }
2603                         quadrant = page_offset >> PAGE_SHIFT;
2604                         page_offset &= ~PAGE_MASK;
2605                         if (quadrant != sp->role.quadrant)
2606                                 continue;
2607                 }
2608                 spte = &sp->spt[page_offset / sizeof(*spte)];
2609                 if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
2610                         gentry = 0;
2611                         r = kvm_read_guest_atomic(vcpu->kvm,
2612                                                   gpa & ~(u64)(pte_size - 1),
2613                                                   &gentry, pte_size);
2614                         new = (const void *)&gentry;
2615                         if (r < 0)
2616                                 new = NULL;
2617                 }
2618                 while (npte--) {
2619                         entry = *spte;
2620                         mmu_pte_write_zap_pte(vcpu, sp, spte);
2621                         if (new)
2622                                 mmu_pte_write_new_pte(vcpu, sp, spte, new);
2623                         mmu_pte_write_flush_tlb(vcpu, entry, *spte);
2624                         ++spte;
2625                 }
2626         }
2627         kvm_mmu_audit(vcpu, "post pte write");
2628         spin_unlock(&vcpu->kvm->mmu_lock);
2629         if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
2630                 kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
2631                 vcpu->arch.update_pte.pfn = bad_pfn;
2632         }
2633 }
2634
2635 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2636 {
2637         gpa_t gpa;
2638         int r;
2639
2640         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
2641
2642         spin_lock(&vcpu->kvm->mmu_lock);
2643         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2644         spin_unlock(&vcpu->kvm->mmu_lock);
2645         return r;
2646 }
2647 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
2648
2649 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
2650 {
2651         while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
2652                 struct kvm_mmu_page *sp;
2653
2654                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
2655                                   struct kvm_mmu_page, link);
2656                 kvm_mmu_zap_page(vcpu->kvm, sp);
2657                 ++vcpu->kvm->stat.mmu_recycled;
2658         }
2659 }
2660
2661 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
2662 {
2663         int r;
2664         enum emulation_result er;
2665
2666         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
2667         if (r < 0)
2668                 goto out;
2669
2670         if (!r) {
2671                 r = 1;
2672                 goto out;
2673         }
2674
2675         r = mmu_topup_memory_caches(vcpu);
2676         if (r)
2677                 goto out;
2678
2679         er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
2680
2681         switch (er) {
2682         case EMULATE_DONE:
2683                 return 1;
2684         case EMULATE_DO_MMIO:
2685                 ++vcpu->stat.mmio_exits;
2686                 return 0;
2687         case EMULATE_FAIL:
2688                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2689                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2690                 return 0;
2691         default:
2692                 BUG();
2693         }
2694 out:
2695         return r;
2696 }
2697 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
2698
2699 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
2700 {
2701         vcpu->arch.mmu.invlpg(vcpu, gva);
2702         kvm_mmu_flush_tlb(vcpu);
2703         ++vcpu->stat.invlpg;
2704 }
2705 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
2706
2707 void kvm_enable_tdp(void)
2708 {
2709         tdp_enabled = true;
2710 }
2711 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
2712
2713 void kvm_disable_tdp(void)
2714 {
2715         tdp_enabled = false;
2716 }
2717 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
2718
2719 static void free_mmu_pages(struct kvm_vcpu *vcpu)
2720 {
2721         free_page((unsigned long)vcpu->arch.mmu.pae_root);
2722 }
2723
2724 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
2725 {
2726         struct page *page;
2727         int i;
2728
2729         ASSERT(vcpu);
2730
2731         if (vcpu->kvm->arch.n_requested_mmu_pages)
2732                 vcpu->kvm->arch.n_free_mmu_pages =
2733                                         vcpu->kvm->arch.n_requested_mmu_pages;
2734         else
2735                 vcpu->kvm->arch.n_free_mmu_pages =
2736                                         vcpu->kvm->arch.n_alloc_mmu_pages;
2737         /*
2738          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
2739          * Therefore we need to allocate shadow page tables in the first
2740          * 4GB of memory, which happens to fit the DMA32 zone.
2741          */
2742         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
2743         if (!page)
2744                 goto error_1;
2745         vcpu->arch.mmu.pae_root = page_address(page);
2746         for (i = 0; i < 4; ++i)
2747                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2748
2749         return 0;
2750
2751 error_1:
2752         free_mmu_pages(vcpu);
2753         return -ENOMEM;
2754 }
2755
2756 int kvm_mmu_create(struct kvm_vcpu *vcpu)
2757 {
2758         ASSERT(vcpu);
2759         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2760
2761         return alloc_mmu_pages(vcpu);
2762 }
2763
2764 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
2765 {
2766         ASSERT(vcpu);
2767         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2768
2769         return init_kvm_mmu(vcpu);
2770 }
2771
2772 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
2773 {
2774         ASSERT(vcpu);
2775
2776         destroy_kvm_mmu(vcpu);
2777         free_mmu_pages(vcpu);
2778         mmu_free_memory_caches(vcpu);
2779 }
2780
2781 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
2782 {
2783         struct kvm_mmu_page *sp;
2784
2785         list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
2786                 int i;
2787                 u64 *pt;
2788
2789                 if (!test_bit(slot, sp->slot_bitmap))
2790                         continue;
2791
2792                 pt = sp->spt;
2793                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2794                         /* avoid RMW */
2795                         if (pt[i] & PT_WRITABLE_MASK)
2796                                 pt[i] &= ~PT_WRITABLE_MASK;
2797         }
2798         kvm_flush_remote_tlbs(kvm);
2799 }
2800
2801 void kvm_mmu_zap_all(struct kvm *kvm)
2802 {
2803         struct kvm_mmu_page *sp, *node;
2804
2805         spin_lock(&kvm->mmu_lock);
2806         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
2807                 if (kvm_mmu_zap_page(kvm, sp))
2808                         node = container_of(kvm->arch.active_mmu_pages.next,
2809                                             struct kvm_mmu_page, link);
2810         spin_unlock(&kvm->mmu_lock);
2811
2812         kvm_flush_remote_tlbs(kvm);
2813 }
2814
2815 static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
2816 {
2817         struct kvm_mmu_page *page;
2818
2819         page = container_of(kvm->arch.active_mmu_pages.prev,
2820                             struct kvm_mmu_page, link);
2821         kvm_mmu_zap_page(kvm, page);
2822 }
2823
2824 static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
2825 {
2826         struct kvm *kvm;
2827         struct kvm *kvm_freed = NULL;
2828         int cache_count = 0;
2829
2830         spin_lock(&kvm_lock);
2831
2832         list_for_each_entry(kvm, &vm_list, vm_list) {
2833                 int npages;
2834
2835                 if (!down_read_trylock(&kvm->slots_lock))
2836                         continue;
2837                 spin_lock(&kvm->mmu_lock);
2838                 npages = kvm->arch.n_alloc_mmu_pages -
2839                          kvm->arch.n_free_mmu_pages;
2840                 cache_count += npages;
2841                 if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
2842                         kvm_mmu_remove_one_alloc_mmu_page(kvm);
2843                         cache_count--;
2844                         kvm_freed = kvm;
2845                 }
2846                 nr_to_scan--;
2847
2848                 spin_unlock(&kvm->mmu_lock);
2849                 up_read(&kvm->slots_lock);
2850         }
2851         if (kvm_freed)
2852                 list_move_tail(&kvm_freed->vm_list, &vm_list);
2853
2854         spin_unlock(&kvm_lock);
2855
2856         return cache_count;
2857 }
2858
2859 static struct shrinker mmu_shrinker = {
2860         .shrink = mmu_shrink,
2861         .seeks = DEFAULT_SEEKS * 10,
2862 };
2863
2864 static void mmu_destroy_caches(void)
2865 {
2866         if (pte_chain_cache)
2867                 kmem_cache_destroy(pte_chain_cache);
2868         if (rmap_desc_cache)
2869                 kmem_cache_destroy(rmap_desc_cache);
2870         if (mmu_page_header_cache)
2871                 kmem_cache_destroy(mmu_page_header_cache);
2872 }
2873
2874 void kvm_mmu_module_exit(void)
2875 {
2876         mmu_destroy_caches();
2877         unregister_shrinker(&mmu_shrinker);
2878 }
2879
2880 int kvm_mmu_module_init(void)
2881 {
2882         pte_chain_cache = kmem_cache_create("kvm_pte_chain",
2883                                             sizeof(struct kvm_pte_chain),
2884                                             0, 0, NULL);
2885         if (!pte_chain_cache)
2886                 goto nomem;
2887         rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
2888                                             sizeof(struct kvm_rmap_desc),
2889                                             0, 0, NULL);
2890         if (!rmap_desc_cache)
2891                 goto nomem;
2892
2893         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
2894                                                   sizeof(struct kvm_mmu_page),
2895                                                   0, 0, NULL);
2896         if (!mmu_page_header_cache)
2897                 goto nomem;
2898
2899         register_shrinker(&mmu_shrinker);
2900
2901         return 0;
2902
2903 nomem:
2904         mmu_destroy_caches();
2905         return -ENOMEM;
2906 }
2907
2908 /*
2909  * Caculate mmu pages needed for kvm.
2910  */
2911 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
2912 {
2913         int i;
2914         unsigned int nr_mmu_pages;
2915         unsigned int  nr_pages = 0;
2916
2917         for (i = 0; i < kvm->nmemslots; i++)
2918                 nr_pages += kvm->memslots[i].npages;
2919
2920         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
2921         nr_mmu_pages = max(nr_mmu_pages,
2922                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
2923
2924         return nr_mmu_pages;
2925 }
2926
2927 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
2928                                 unsigned len)
2929 {
2930         if (len > buffer->len)
2931                 return NULL;
2932         return buffer->ptr;
2933 }
2934
2935 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
2936                                 unsigned len)
2937 {
2938         void *ret;
2939
2940         ret = pv_mmu_peek_buffer(buffer, len);
2941         if (!ret)
2942                 return ret;
2943         buffer->ptr += len;
2944         buffer->len -= len;
2945         buffer->processed += len;
2946         return ret;
2947 }
2948
2949 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
2950                              gpa_t addr, gpa_t value)
2951 {
2952         int bytes = 8;
2953         int r;
2954
2955         if (!is_long_mode(vcpu) && !is_pae(vcpu))
2956                 bytes = 4;
2957
2958         r = mmu_topup_memory_caches(vcpu);
2959         if (r)
2960                 return r;
2961
2962         if (!emulator_write_phys(vcpu, addr, &value, bytes))
2963                 return -EFAULT;
2964
2965         return 1;
2966 }
2967
2968 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2969 {
2970         kvm_set_cr3(vcpu, vcpu->arch.cr3);
2971         return 1;
2972 }
2973
2974 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
2975 {
2976         spin_lock(&vcpu->kvm->mmu_lock);
2977         mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
2978         spin_unlock(&vcpu->kvm->mmu_lock);
2979         return 1;
2980 }
2981
2982 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
2983                              struct kvm_pv_mmu_op_buffer *buffer)
2984 {
2985         struct kvm_mmu_op_header *header;
2986
2987         header = pv_mmu_peek_buffer(buffer, sizeof *header);
2988         if (!header)
2989                 return 0;
2990         switch (header->op) {
2991         case KVM_MMU_OP_WRITE_PTE: {
2992                 struct kvm_mmu_op_write_pte *wpte;
2993
2994                 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
2995                 if (!wpte)
2996                         return 0;
2997                 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
2998                                         wpte->pte_val);
2999         }
3000         case KVM_MMU_OP_FLUSH_TLB: {
3001                 struct kvm_mmu_op_flush_tlb *ftlb;
3002
3003                 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
3004                 if (!ftlb)
3005                         return 0;
3006                 return kvm_pv_mmu_flush_tlb(vcpu);
3007         }
3008         case KVM_MMU_OP_RELEASE_PT: {
3009                 struct kvm_mmu_op_release_pt *rpt;
3010
3011                 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
3012                 if (!rpt)
3013                         return 0;
3014                 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
3015         }
3016         default: return 0;
3017         }
3018 }
3019
3020 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
3021                   gpa_t addr, unsigned long *ret)
3022 {
3023         int r;
3024         struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
3025
3026         buffer->ptr = buffer->buf;
3027         buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
3028         buffer->processed = 0;
3029
3030         r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
3031         if (r)
3032                 goto out;
3033
3034         while (buffer->len) {
3035                 r = kvm_pv_mmu_op_one(vcpu, buffer);
3036                 if (r < 0)
3037                         goto out;
3038                 if (r == 0)
3039                         break;
3040         }
3041
3042         r = 1;
3043 out:
3044         *ret = buffer->processed;
3045         return r;
3046 }
3047
3048 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
3049 {
3050         struct kvm_shadow_walk_iterator iterator;
3051         int nr_sptes = 0;
3052
3053         spin_lock(&vcpu->kvm->mmu_lock);
3054         for_each_shadow_entry(vcpu, addr, iterator) {
3055                 sptes[iterator.level-1] = *iterator.sptep;
3056                 nr_sptes++;
3057                 if (!is_shadow_present_pte(*iterator.sptep))
3058                         break;
3059         }
3060         spin_unlock(&vcpu->kvm->mmu_lock);
3061
3062         return nr_sptes;
3063 }
3064 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
3065
3066 #ifdef AUDIT
3067
3068 static const char *audit_msg;
3069
3070 static gva_t canonicalize(gva_t gva)
3071 {
3072 #ifdef CONFIG_X86_64
3073         gva = (long long)(gva << 16) >> 16;
3074 #endif
3075         return gva;
3076 }
3077
3078
3079 typedef void (*inspect_spte_fn) (struct kvm *kvm, struct kvm_mmu_page *sp,
3080                                  u64 *sptep);
3081
3082 static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
3083                             inspect_spte_fn fn)
3084 {
3085         int i;
3086
3087         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3088                 u64 ent = sp->spt[i];
3089
3090                 if (is_shadow_present_pte(ent)) {
3091                         if (!is_last_spte(ent, sp->role.level)) {
3092                                 struct kvm_mmu_page *child;
3093                                 child = page_header(ent & PT64_BASE_ADDR_MASK);
3094                                 __mmu_spte_walk(kvm, child, fn);
3095                         } else
3096                                 fn(kvm, sp, &sp->spt[i]);
3097                 }
3098         }
3099 }
3100
3101 static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
3102 {
3103         int i;
3104         struct kvm_mmu_page *sp;
3105
3106         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3107                 return;
3108         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3109                 hpa_t root = vcpu->arch.mmu.root_hpa;
3110                 sp = page_header(root);
3111                 __mmu_spte_walk(vcpu->kvm, sp, fn);
3112                 return;
3113         }
3114         for (i = 0; i < 4; ++i) {
3115                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3116
3117                 if (root && VALID_PAGE(root)) {
3118                         root &= PT64_BASE_ADDR_MASK;
3119                         sp = page_header(root);
3120                         __mmu_spte_walk(vcpu->kvm, sp, fn);
3121                 }
3122         }
3123         return;
3124 }
3125
3126 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
3127                                 gva_t va, int level)
3128 {
3129         u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
3130         int i;
3131         gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
3132
3133         for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
3134                 u64 ent = pt[i];
3135
3136                 if (ent == shadow_trap_nonpresent_pte)
3137                         continue;
3138
3139                 va = canonicalize(va);
3140                 if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
3141                         audit_mappings_page(vcpu, ent, va, level - 1);
3142                 else {
3143                         gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
3144                         gfn_t gfn = gpa >> PAGE_SHIFT;
3145                         pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
3146                         hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
3147
3148                         if (is_error_pfn(pfn)) {
3149                                 kvm_release_pfn_clean(pfn);
3150                                 continue;
3151                         }
3152
3153                         if (is_shadow_present_pte(ent)
3154                             && (ent & PT64_BASE_ADDR_MASK) != hpa)
3155                                 printk(KERN_ERR "xx audit error: (%s) levels %d"
3156                                        " gva %lx gpa %llx hpa %llx ent %llx %d\n",
3157                                        audit_msg, vcpu->arch.mmu.root_level,
3158                                        va, gpa, hpa, ent,
3159                                        is_shadow_present_pte(ent));
3160                         else if (ent == shadow_notrap_nonpresent_pte
3161                                  && !is_error_hpa(hpa))
3162                                 printk(KERN_ERR "audit: (%s) notrap shadow,"
3163                                        " valid guest gva %lx\n", audit_msg, va);
3164                         kvm_release_pfn_clean(pfn);
3165
3166                 }
3167         }
3168 }
3169
3170 static void audit_mappings(struct kvm_vcpu *vcpu)
3171 {
3172         unsigned i;
3173
3174         if (vcpu->arch.mmu.root_level == 4)
3175                 audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
3176         else
3177                 for (i = 0; i < 4; ++i)
3178                         if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
3179                                 audit_mappings_page(vcpu,
3180                                                     vcpu->arch.mmu.pae_root[i],
3181                                                     i << 30,
3182                                                     2);
3183 }
3184
3185 static int count_rmaps(struct kvm_vcpu *vcpu)
3186 {
3187         int nmaps = 0;
3188         int i, j, k;
3189
3190         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
3191                 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
3192                 struct kvm_rmap_desc *d;
3193
3194                 for (j = 0; j < m->npages; ++j) {
3195                         unsigned long *rmapp = &m->rmap[j];
3196
3197                         if (!*rmapp)
3198                                 continue;
3199                         if (!(*rmapp & 1)) {
3200                                 ++nmaps;
3201                                 continue;
3202                         }
3203                         d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
3204                         while (d) {
3205                                 for (k = 0; k < RMAP_EXT; ++k)
3206                                         if (d->sptes[k])
3207                                                 ++nmaps;
3208                                         else
3209                                                 break;
3210                                 d = d->more;
3211                         }
3212                 }
3213         }
3214         return nmaps;
3215 }
3216
3217 void inspect_spte_has_rmap(struct kvm *kvm, struct kvm_mmu_page *sp, u64 *sptep)
3218 {
3219         unsigned long *rmapp;
3220         struct kvm_mmu_page *rev_sp;
3221         gfn_t gfn;
3222
3223         if (*sptep & PT_WRITABLE_MASK) {
3224                 rev_sp = page_header(__pa(sptep));
3225                 gfn = rev_sp->gfns[sptep - rev_sp->spt];
3226
3227                 if (!gfn_to_memslot(kvm, gfn)) {
3228                         if (!printk_ratelimit())
3229                                 return;
3230                         printk(KERN_ERR "%s: no memslot for gfn %ld\n",
3231                                          audit_msg, gfn);
3232                         printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
3233                                         audit_msg, sptep - rev_sp->spt,
3234                                         rev_sp->gfn);
3235                         dump_stack();
3236                         return;
3237                 }
3238
3239                 rmapp = gfn_to_rmap(kvm, rev_sp->gfns[sptep - rev_sp->spt],
3240                                     is_large_pte(*sptep));
3241                 if (!*rmapp) {
3242                         if (!printk_ratelimit())
3243                                 return;
3244                         printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
3245                                          audit_msg, *sptep);
3246                         dump_stack();
3247                 }
3248         }
3249
3250 }
3251
3252 void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
3253 {
3254         mmu_spte_walk(vcpu, inspect_spte_has_rmap);
3255 }
3256
3257 static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
3258 {
3259         struct kvm_mmu_page *sp;
3260         int i;
3261
3262         list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
3263                 u64 *pt = sp->spt;
3264
3265                 if (sp->role.level != PT_PAGE_TABLE_LEVEL)
3266                         continue;
3267
3268                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3269                         u64 ent = pt[i];
3270
3271                         if (!(ent & PT_PRESENT_MASK))
3272                                 continue;
3273                         if (!(ent & PT_WRITABLE_MASK))
3274                                 continue;
3275                         inspect_spte_has_rmap(vcpu->kvm, sp, &pt[i]);
3276                 }
3277         }
3278         return;
3279 }
3280
3281 static void audit_rmap(struct kvm_vcpu *vcpu)
3282 {
3283         check_writable_mappings_rmap(vcpu);
3284         count_rmaps(vcpu);
3285 }
3286
3287 static void audit_write_protection(struct kvm_vcpu *vcpu)
3288 {
3289         struct kvm_mmu_page *sp;
3290         struct kvm_memory_slot *slot;
3291         unsigned long *rmapp;
3292         u64 *spte;
3293         gfn_t gfn;
3294
3295         list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
3296                 if (sp->role.direct)
3297                         continue;
3298                 if (sp->unsync)
3299                         continue;
3300
3301                 gfn = unalias_gfn(vcpu->kvm, sp->gfn);
3302                 slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
3303                 rmapp = &slot->rmap[gfn - slot->base_gfn];
3304
3305                 spte = rmap_next(vcpu->kvm, rmapp, NULL);
3306                 while (spte) {
3307                         if (*spte & PT_WRITABLE_MASK)
3308                                 printk(KERN_ERR "%s: (%s) shadow page has "
3309                                 "writable mappings: gfn %lx role %x\n",
3310                                __func__, audit_msg, sp->gfn,
3311                                sp->role.word);
3312                         spte = rmap_next(vcpu->kvm, rmapp, spte);
3313                 }
3314         }
3315 }
3316
3317 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
3318 {
3319         int olddbg = dbg;
3320
3321         dbg = 0;
3322         audit_msg = msg;
3323         audit_rmap(vcpu);
3324         audit_write_protection(vcpu);
3325         if (strcmp("pre pte write", audit_msg) != 0)
3326                 audit_mappings(vcpu);
3327         audit_writable_sptes_have_rmaps(vcpu);
3328         dbg = olddbg;
3329 }
3330
3331 #endif