include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[safe/jmp/linux-2.6] / arch / sh / kernel / kprobes.c
1 /*
2  * Kernel probes (kprobes) for SuperH
3  *
4  * Copyright (C) 2007 Chris Smith <chris.smith@st.com>
5  * Copyright (C) 2006 Lineo Solutions, Inc.
6  *
7  * This file is subject to the terms and conditions of the GNU General Public
8  * License.  See the file "COPYING" in the main directory of this archive
9  * for more details.
10  */
11 #include <linux/kprobes.h>
12 #include <linux/module.h>
13 #include <linux/ptrace.h>
14 #include <linux/preempt.h>
15 #include <linux/kdebug.h>
16 #include <linux/slab.h>
17 #include <asm/cacheflush.h>
18 #include <asm/uaccess.h>
19
20 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
21 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
22
23 static struct kprobe saved_current_opcode;
24 static struct kprobe saved_next_opcode;
25 static struct kprobe saved_next_opcode2;
26
27 #define OPCODE_JMP(x)   (((x) & 0xF0FF) == 0x402b)
28 #define OPCODE_JSR(x)   (((x) & 0xF0FF) == 0x400b)
29 #define OPCODE_BRA(x)   (((x) & 0xF000) == 0xa000)
30 #define OPCODE_BRAF(x)  (((x) & 0xF0FF) == 0x0023)
31 #define OPCODE_BSR(x)   (((x) & 0xF000) == 0xb000)
32 #define OPCODE_BSRF(x)  (((x) & 0xF0FF) == 0x0003)
33
34 #define OPCODE_BF_S(x)  (((x) & 0xFF00) == 0x8f00)
35 #define OPCODE_BT_S(x)  (((x) & 0xFF00) == 0x8d00)
36
37 #define OPCODE_BF(x)    (((x) & 0xFF00) == 0x8b00)
38 #define OPCODE_BT(x)    (((x) & 0xFF00) == 0x8900)
39
40 #define OPCODE_RTS(x)   (((x) & 0x000F) == 0x000b)
41 #define OPCODE_RTE(x)   (((x) & 0xFFFF) == 0x002b)
42
43 int __kprobes arch_prepare_kprobe(struct kprobe *p)
44 {
45         kprobe_opcode_t opcode = *(kprobe_opcode_t *) (p->addr);
46
47         if (OPCODE_RTE(opcode))
48                 return -EFAULT; /* Bad breakpoint */
49
50         p->opcode = opcode;
51
52         return 0;
53 }
54
55 void __kprobes arch_copy_kprobe(struct kprobe *p)
56 {
57         memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
58         p->opcode = *p->addr;
59 }
60
61 void __kprobes arch_arm_kprobe(struct kprobe *p)
62 {
63         *p->addr = BREAKPOINT_INSTRUCTION;
64         flush_icache_range((unsigned long)p->addr,
65                            (unsigned long)p->addr + sizeof(kprobe_opcode_t));
66 }
67
68 void __kprobes arch_disarm_kprobe(struct kprobe *p)
69 {
70         *p->addr = p->opcode;
71         flush_icache_range((unsigned long)p->addr,
72                            (unsigned long)p->addr + sizeof(kprobe_opcode_t));
73 }
74
75 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
76 {
77         if (*p->addr == BREAKPOINT_INSTRUCTION)
78                 return 1;
79
80         return 0;
81 }
82
83 /**
84  * If an illegal slot instruction exception occurs for an address
85  * containing a kprobe, remove the probe.
86  *
87  * Returns 0 if the exception was handled successfully, 1 otherwise.
88  */
89 int __kprobes kprobe_handle_illslot(unsigned long pc)
90 {
91         struct kprobe *p = get_kprobe((kprobe_opcode_t *) pc + 1);
92
93         if (p != NULL) {
94                 printk("Warning: removing kprobe from delay slot: 0x%.8x\n",
95                        (unsigned int)pc + 2);
96                 unregister_kprobe(p);
97                 return 0;
98         }
99
100         return 1;
101 }
102
103 void __kprobes arch_remove_kprobe(struct kprobe *p)
104 {
105         if (saved_next_opcode.addr != 0x0) {
106                 arch_disarm_kprobe(p);
107                 arch_disarm_kprobe(&saved_next_opcode);
108                 saved_next_opcode.addr = 0x0;
109                 saved_next_opcode.opcode = 0x0;
110
111                 if (saved_next_opcode2.addr != 0x0) {
112                         arch_disarm_kprobe(&saved_next_opcode2);
113                         saved_next_opcode2.addr = 0x0;
114                         saved_next_opcode2.opcode = 0x0;
115                 }
116         }
117 }
118
119 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
120 {
121         kcb->prev_kprobe.kp = kprobe_running();
122         kcb->prev_kprobe.status = kcb->kprobe_status;
123 }
124
125 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
126 {
127         __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
128         kcb->kprobe_status = kcb->prev_kprobe.status;
129 }
130
131 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
132                                          struct kprobe_ctlblk *kcb)
133 {
134         __get_cpu_var(current_kprobe) = p;
135 }
136
137 /*
138  * Singlestep is implemented by disabling the current kprobe and setting one
139  * on the next instruction, following branches. Two probes are set if the
140  * branch is conditional.
141  */
142 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
143 {
144         kprobe_opcode_t *addr = NULL;
145         saved_current_opcode.addr = (kprobe_opcode_t *) (regs->pc);
146         addr = saved_current_opcode.addr;
147
148         if (p != NULL) {
149                 arch_disarm_kprobe(p);
150
151                 if (OPCODE_JSR(p->opcode) || OPCODE_JMP(p->opcode)) {
152                         unsigned int reg_nr = ((p->opcode >> 8) & 0x000F);
153                         saved_next_opcode.addr =
154                             (kprobe_opcode_t *) regs->regs[reg_nr];
155                 } else if (OPCODE_BRA(p->opcode) || OPCODE_BSR(p->opcode)) {
156                         unsigned long disp = (p->opcode & 0x0FFF);
157                         saved_next_opcode.addr =
158                             (kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
159
160                 } else if (OPCODE_BRAF(p->opcode) || OPCODE_BSRF(p->opcode)) {
161                         unsigned int reg_nr = ((p->opcode >> 8) & 0x000F);
162                         saved_next_opcode.addr =
163                             (kprobe_opcode_t *) (regs->pc + 4 +
164                                                  regs->regs[reg_nr]);
165
166                 } else if (OPCODE_RTS(p->opcode)) {
167                         saved_next_opcode.addr = (kprobe_opcode_t *) regs->pr;
168
169                 } else if (OPCODE_BF(p->opcode) || OPCODE_BT(p->opcode)) {
170                         unsigned long disp = (p->opcode & 0x00FF);
171                         /* case 1 */
172                         saved_next_opcode.addr = p->addr + 1;
173                         /* case 2 */
174                         saved_next_opcode2.addr =
175                             (kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
176                         saved_next_opcode2.opcode = *(saved_next_opcode2.addr);
177                         arch_arm_kprobe(&saved_next_opcode2);
178
179                 } else if (OPCODE_BF_S(p->opcode) || OPCODE_BT_S(p->opcode)) {
180                         unsigned long disp = (p->opcode & 0x00FF);
181                         /* case 1 */
182                         saved_next_opcode.addr = p->addr + 2;
183                         /* case 2 */
184                         saved_next_opcode2.addr =
185                             (kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
186                         saved_next_opcode2.opcode = *(saved_next_opcode2.addr);
187                         arch_arm_kprobe(&saved_next_opcode2);
188
189                 } else {
190                         saved_next_opcode.addr = p->addr + 1;
191                 }
192
193                 saved_next_opcode.opcode = *(saved_next_opcode.addr);
194                 arch_arm_kprobe(&saved_next_opcode);
195         }
196 }
197
198 /* Called with kretprobe_lock held */
199 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
200                                       struct pt_regs *regs)
201 {
202         ri->ret_addr = (kprobe_opcode_t *) regs->pr;
203
204         /* Replace the return addr with trampoline addr */
205         regs->pr = (unsigned long)kretprobe_trampoline;
206 }
207
208 static int __kprobes kprobe_handler(struct pt_regs *regs)
209 {
210         struct kprobe *p;
211         int ret = 0;
212         kprobe_opcode_t *addr = NULL;
213         struct kprobe_ctlblk *kcb;
214
215         /*
216          * We don't want to be preempted for the entire
217          * duration of kprobe processing
218          */
219         preempt_disable();
220         kcb = get_kprobe_ctlblk();
221
222         addr = (kprobe_opcode_t *) (regs->pc);
223
224         /* Check we're not actually recursing */
225         if (kprobe_running()) {
226                 p = get_kprobe(addr);
227                 if (p) {
228                         if (kcb->kprobe_status == KPROBE_HIT_SS &&
229                             *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
230                                 goto no_kprobe;
231                         }
232                         /* We have reentered the kprobe_handler(), since
233                          * another probe was hit while within the handler.
234                          * We here save the original kprobes variables and
235                          * just single step on the instruction of the new probe
236                          * without calling any user handlers.
237                          */
238                         save_previous_kprobe(kcb);
239                         set_current_kprobe(p, regs, kcb);
240                         kprobes_inc_nmissed_count(p);
241                         prepare_singlestep(p, regs);
242                         kcb->kprobe_status = KPROBE_REENTER;
243                         return 1;
244                 } else {
245                         p = __get_cpu_var(current_kprobe);
246                         if (p->break_handler && p->break_handler(p, regs)) {
247                                 goto ss_probe;
248                         }
249                 }
250                 goto no_kprobe;
251         }
252
253         p = get_kprobe(addr);
254         if (!p) {
255                 /* Not one of ours: let kernel handle it */
256                 if (*(kprobe_opcode_t *)addr != BREAKPOINT_INSTRUCTION) {
257                         /*
258                          * The breakpoint instruction was removed right
259                          * after we hit it. Another cpu has removed
260                          * either a probepoint or a debugger breakpoint
261                          * at this address. In either case, no further
262                          * handling of this interrupt is appropriate.
263                          */
264                         ret = 1;
265                 }
266
267                 goto no_kprobe;
268         }
269
270         set_current_kprobe(p, regs, kcb);
271         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
272
273         if (p->pre_handler && p->pre_handler(p, regs))
274                 /* handler has already set things up, so skip ss setup */
275                 return 1;
276
277 ss_probe:
278         prepare_singlestep(p, regs);
279         kcb->kprobe_status = KPROBE_HIT_SS;
280         return 1;
281
282 no_kprobe:
283         preempt_enable_no_resched();
284         return ret;
285 }
286
287 /*
288  * For function-return probes, init_kprobes() establishes a probepoint
289  * here. When a retprobed function returns, this probe is hit and
290  * trampoline_probe_handler() runs, calling the kretprobe's handler.
291  */
292 static void __used kretprobe_trampoline_holder(void)
293 {
294         asm volatile (".globl kretprobe_trampoline\n"
295                       "kretprobe_trampoline:\n\t"
296                       "nop\n");
297 }
298
299 /*
300  * Called when we hit the probe point at kretprobe_trampoline
301  */
302 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
303 {
304         struct kretprobe_instance *ri = NULL;
305         struct hlist_head *head, empty_rp;
306         struct hlist_node *node, *tmp;
307         unsigned long flags, orig_ret_address = 0;
308         unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
309
310         INIT_HLIST_HEAD(&empty_rp);
311         kretprobe_hash_lock(current, &head, &flags);
312
313         /*
314          * It is possible to have multiple instances associated with a given
315          * task either because an multiple functions in the call path
316          * have a return probe installed on them, and/or more then one return
317          * return probe was registered for a target function.
318          *
319          * We can handle this because:
320          *     - instances are always inserted at the head of the list
321          *     - when multiple return probes are registered for the same
322          *       function, the first instance's ret_addr will point to the
323          *       real return address, and all the rest will point to
324          *       kretprobe_trampoline
325          */
326         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
327                 if (ri->task != current)
328                         /* another task is sharing our hash bucket */
329                         continue;
330
331                 if (ri->rp && ri->rp->handler) {
332                         __get_cpu_var(current_kprobe) = &ri->rp->kp;
333                         ri->rp->handler(ri, regs);
334                         __get_cpu_var(current_kprobe) = NULL;
335                 }
336
337                 orig_ret_address = (unsigned long)ri->ret_addr;
338                 recycle_rp_inst(ri, &empty_rp);
339
340                 if (orig_ret_address != trampoline_address)
341                         /*
342                          * This is the real return address. Any other
343                          * instances associated with this task are for
344                          * other calls deeper on the call stack
345                          */
346                         break;
347         }
348
349         kretprobe_assert(ri, orig_ret_address, trampoline_address);
350
351         regs->pc = orig_ret_address;
352         kretprobe_hash_unlock(current, &flags);
353
354         preempt_enable_no_resched();
355
356         hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
357                 hlist_del(&ri->hlist);
358                 kfree(ri);
359         }
360
361         return orig_ret_address;
362 }
363
364 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
365 {
366         struct kprobe *cur = kprobe_running();
367         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
368         kprobe_opcode_t *addr = NULL;
369         struct kprobe *p = NULL;
370
371         if (!cur)
372                 return 0;
373
374         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
375                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
376                 cur->post_handler(cur, regs, 0);
377         }
378
379         if (saved_next_opcode.addr != 0x0) {
380                 arch_disarm_kprobe(&saved_next_opcode);
381                 saved_next_opcode.addr = 0x0;
382                 saved_next_opcode.opcode = 0x0;
383
384                 addr = saved_current_opcode.addr;
385                 saved_current_opcode.addr = 0x0;
386
387                 p = get_kprobe(addr);
388                 arch_arm_kprobe(p);
389
390                 if (saved_next_opcode2.addr != 0x0) {
391                         arch_disarm_kprobe(&saved_next_opcode2);
392                         saved_next_opcode2.addr = 0x0;
393                         saved_next_opcode2.opcode = 0x0;
394                 }
395         }
396
397         /* Restore back the original saved kprobes variables and continue. */
398         if (kcb->kprobe_status == KPROBE_REENTER) {
399                 restore_previous_kprobe(kcb);
400                 goto out;
401         }
402
403         reset_current_kprobe();
404
405 out:
406         preempt_enable_no_resched();
407
408         return 1;
409 }
410
411 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
412 {
413         struct kprobe *cur = kprobe_running();
414         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
415         const struct exception_table_entry *entry;
416
417         switch (kcb->kprobe_status) {
418         case KPROBE_HIT_SS:
419         case KPROBE_REENTER:
420                 /*
421                  * We are here because the instruction being single
422                  * stepped caused a page fault. We reset the current
423                  * kprobe, point the pc back to the probe address
424                  * and allow the page fault handler to continue as a
425                  * normal page fault.
426                  */
427                 regs->pc = (unsigned long)cur->addr;
428                 if (kcb->kprobe_status == KPROBE_REENTER)
429                         restore_previous_kprobe(kcb);
430                 else
431                         reset_current_kprobe();
432                 preempt_enable_no_resched();
433                 break;
434         case KPROBE_HIT_ACTIVE:
435         case KPROBE_HIT_SSDONE:
436                 /*
437                  * We increment the nmissed count for accounting,
438                  * we can also use npre/npostfault count for accounting
439                  * these specific fault cases.
440                  */
441                 kprobes_inc_nmissed_count(cur);
442
443                 /*
444                  * We come here because instructions in the pre/post
445                  * handler caused the page_fault, this could happen
446                  * if handler tries to access user space by
447                  * copy_from_user(), get_user() etc. Let the
448                  * user-specified handler try to fix it first.
449                  */
450                 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
451                         return 1;
452
453                 /*
454                  * In case the user-specified fault handler returned
455                  * zero, try to fix up.
456                  */
457                 if ((entry = search_exception_tables(regs->pc)) != NULL) {
458                         regs->pc = entry->fixup;
459                         return 1;
460                 }
461
462                 /*
463                  * fixup_exception() could not handle it,
464                  * Let do_page_fault() fix it.
465                  */
466                 break;
467         default:
468                 break;
469         }
470
471         return 0;
472 }
473
474 /*
475  * Wrapper routine to for handling exceptions.
476  */
477 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
478                                        unsigned long val, void *data)
479 {
480         struct kprobe *p = NULL;
481         struct die_args *args = (struct die_args *)data;
482         int ret = NOTIFY_DONE;
483         kprobe_opcode_t *addr = NULL;
484         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
485
486         addr = (kprobe_opcode_t *) (args->regs->pc);
487         if (val == DIE_TRAP) {
488                 if (!kprobe_running()) {
489                         if (kprobe_handler(args->regs)) {
490                                 ret = NOTIFY_STOP;
491                         } else {
492                                 /* Not a kprobe trap */
493                                 ret = NOTIFY_DONE;
494                         }
495                 } else {
496                         p = get_kprobe(addr);
497                         if ((kcb->kprobe_status == KPROBE_HIT_SS) ||
498                             (kcb->kprobe_status == KPROBE_REENTER)) {
499                                 if (post_kprobe_handler(args->regs))
500                                         ret = NOTIFY_STOP;
501                         } else {
502                                 if (kprobe_handler(args->regs)) {
503                                         ret = NOTIFY_STOP;
504                                 } else {
505                                         p = __get_cpu_var(current_kprobe);
506                                         if (p->break_handler &&
507                                             p->break_handler(p, args->regs))
508                                                 ret = NOTIFY_STOP;
509                                 }
510                         }
511                 }
512         }
513
514         return ret;
515 }
516
517 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
518 {
519         struct jprobe *jp = container_of(p, struct jprobe, kp);
520         unsigned long addr;
521         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
522
523         kcb->jprobe_saved_regs = *regs;
524         kcb->jprobe_saved_r15 = regs->regs[15];
525         addr = kcb->jprobe_saved_r15;
526
527         /*
528          * TBD: As Linus pointed out, gcc assumes that the callee
529          * owns the argument space and could overwrite it, e.g.
530          * tailcall optimization. So, to be absolutely safe
531          * we also save and restore enough stack bytes to cover
532          * the argument area.
533          */
534         memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr,
535                MIN_STACK_SIZE(addr));
536
537         regs->pc = (unsigned long)(jp->entry);
538
539         return 1;
540 }
541
542 void __kprobes jprobe_return(void)
543 {
544         asm volatile ("trapa #0x3a\n\t" "jprobe_return_end:\n\t" "nop\n\t");
545 }
546
547 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
548 {
549         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
550         unsigned long stack_addr = kcb->jprobe_saved_r15;
551         u8 *addr = (u8 *)regs->pc;
552
553         if ((addr >= (u8 *)jprobe_return) &&
554             (addr <= (u8 *)jprobe_return_end)) {
555                 *regs = kcb->jprobe_saved_regs;
556
557                 memcpy((kprobe_opcode_t *)stack_addr, kcb->jprobes_stack,
558                        MIN_STACK_SIZE(stack_addr));
559
560                 kcb->kprobe_status = KPROBE_HIT_SS;
561                 preempt_enable_no_resched();
562                 return 1;
563         }
564
565         return 0;
566 }
567
568 static struct kprobe trampoline_p = {
569         .addr = (kprobe_opcode_t *)&kretprobe_trampoline,
570         .pre_handler = trampoline_probe_handler
571 };
572
573 int __init arch_init_kprobes(void)
574 {
575         saved_next_opcode.addr = 0x0;
576         saved_next_opcode.opcode = 0x0;
577
578         saved_current_opcode.addr = 0x0;
579         saved_current_opcode.opcode = 0x0;
580
581         saved_next_opcode2.addr = 0x0;
582         saved_next_opcode2.opcode = 0x0;
583
584         return register_kprobe(&trampoline_p);
585 }