include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[safe/jmp/linux-2.6] / arch / s390 / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2006
19  *
20  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
21  */
22
23 #include <linux/kprobes.h>
24 #include <linux/ptrace.h>
25 #include <linux/preempt.h>
26 #include <linux/stop_machine.h>
27 #include <linux/kdebug.h>
28 #include <linux/uaccess.h>
29 #include <asm/cacheflush.h>
30 #include <asm/sections.h>
31 #include <linux/module.h>
32 #include <linux/slab.h>
33
34 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
35 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
36
37 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
38
39 int __kprobes arch_prepare_kprobe(struct kprobe *p)
40 {
41         /* Make sure the probe isn't going on a difficult instruction */
42         if (is_prohibited_opcode((kprobe_opcode_t *) p->addr))
43                 return -EINVAL;
44
45         if ((unsigned long)p->addr & 0x01)
46                 return -EINVAL;
47
48         /* Use the get_insn_slot() facility for correctness */
49         if (!(p->ainsn.insn = get_insn_slot()))
50                 return -ENOMEM;
51
52         memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
53
54         get_instruction_type(&p->ainsn);
55         p->opcode = *p->addr;
56         return 0;
57 }
58
59 int __kprobes is_prohibited_opcode(kprobe_opcode_t *instruction)
60 {
61         switch (*(__u8 *) instruction) {
62         case 0x0c:      /* bassm */
63         case 0x0b:      /* bsm   */
64         case 0x83:      /* diag  */
65         case 0x44:      /* ex    */
66                 return -EINVAL;
67         }
68         switch (*(__u16 *) instruction) {
69         case 0x0101:    /* pr    */
70         case 0xb25a:    /* bsa   */
71         case 0xb240:    /* bakr  */
72         case 0xb258:    /* bsg   */
73         case 0xb218:    /* pc    */
74         case 0xb228:    /* pt    */
75                 return -EINVAL;
76         }
77         return 0;
78 }
79
80 void __kprobes get_instruction_type(struct arch_specific_insn *ainsn)
81 {
82         /* default fixup method */
83         ainsn->fixup = FIXUP_PSW_NORMAL;
84
85         /* save r1 operand */
86         ainsn->reg = (*ainsn->insn & 0xf0) >> 4;
87
88         /* save the instruction length (pop 5-5) in bytes */
89         switch (*(__u8 *) (ainsn->insn) >> 6) {
90         case 0:
91                 ainsn->ilen = 2;
92                 break;
93         case 1:
94         case 2:
95                 ainsn->ilen = 4;
96                 break;
97         case 3:
98                 ainsn->ilen = 6;
99                 break;
100         }
101
102         switch (*(__u8 *) ainsn->insn) {
103         case 0x05:      /* balr */
104         case 0x0d:      /* basr */
105                 ainsn->fixup = FIXUP_RETURN_REGISTER;
106                 /* if r2 = 0, no branch will be taken */
107                 if ((*ainsn->insn & 0x0f) == 0)
108                         ainsn->fixup |= FIXUP_BRANCH_NOT_TAKEN;
109                 break;
110         case 0x06:      /* bctr */
111         case 0x07:      /* bcr  */
112                 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
113                 break;
114         case 0x45:      /* bal  */
115         case 0x4d:      /* bas  */
116                 ainsn->fixup = FIXUP_RETURN_REGISTER;
117                 break;
118         case 0x47:      /* bc   */
119         case 0x46:      /* bct  */
120         case 0x86:      /* bxh  */
121         case 0x87:      /* bxle */
122                 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
123                 break;
124         case 0x82:      /* lpsw */
125                 ainsn->fixup = FIXUP_NOT_REQUIRED;
126                 break;
127         case 0xb2:      /* lpswe */
128                 if (*(((__u8 *) ainsn->insn) + 1) == 0xb2) {
129                         ainsn->fixup = FIXUP_NOT_REQUIRED;
130                 }
131                 break;
132         case 0xa7:      /* bras */
133                 if ((*ainsn->insn & 0x0f) == 0x05) {
134                         ainsn->fixup |= FIXUP_RETURN_REGISTER;
135                 }
136                 break;
137         case 0xc0:
138                 if ((*ainsn->insn & 0x0f) == 0x00  /* larl  */
139                         || (*ainsn->insn & 0x0f) == 0x05) /* brasl */
140                 ainsn->fixup |= FIXUP_RETURN_REGISTER;
141                 break;
142         case 0xeb:
143                 if (*(((__u8 *) ainsn->insn) + 5 ) == 0x44 ||   /* bxhg  */
144                         *(((__u8 *) ainsn->insn) + 5) == 0x45) {/* bxleg */
145                         ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
146                 }
147                 break;
148         case 0xe3:      /* bctg */
149                 if (*(((__u8 *) ainsn->insn) + 5) == 0x46) {
150                         ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
151                 }
152                 break;
153         }
154 }
155
156 static int __kprobes swap_instruction(void *aref)
157 {
158         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
159         unsigned long status = kcb->kprobe_status;
160         struct ins_replace_args *args = aref;
161         int rc;
162
163         kcb->kprobe_status = KPROBE_SWAP_INST;
164         rc = probe_kernel_write(args->ptr, &args->new, sizeof(args->new));
165         kcb->kprobe_status = status;
166         return rc;
167 }
168
169 void __kprobes arch_arm_kprobe(struct kprobe *p)
170 {
171         struct ins_replace_args args;
172
173         args.ptr = p->addr;
174         args.old = p->opcode;
175         args.new = BREAKPOINT_INSTRUCTION;
176         stop_machine(swap_instruction, &args, NULL);
177 }
178
179 void __kprobes arch_disarm_kprobe(struct kprobe *p)
180 {
181         struct ins_replace_args args;
182
183         args.ptr = p->addr;
184         args.old = BREAKPOINT_INSTRUCTION;
185         args.new = p->opcode;
186         stop_machine(swap_instruction, &args, NULL);
187 }
188
189 void __kprobes arch_remove_kprobe(struct kprobe *p)
190 {
191         if (p->ainsn.insn) {
192                 free_insn_slot(p->ainsn.insn, 0);
193                 p->ainsn.insn = NULL;
194         }
195 }
196
197 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
198 {
199         per_cr_bits kprobe_per_regs[1];
200
201         memset(kprobe_per_regs, 0, sizeof(per_cr_bits));
202         regs->psw.addr = (unsigned long)p->ainsn.insn | PSW_ADDR_AMODE;
203
204         /* Set up the per control reg info, will pass to lctl */
205         kprobe_per_regs[0].em_instruction_fetch = 1;
206         kprobe_per_regs[0].starting_addr = (unsigned long)p->ainsn.insn;
207         kprobe_per_regs[0].ending_addr = (unsigned long)p->ainsn.insn + 1;
208
209         /* Set the PER control regs, turns on single step for this address */
210         __ctl_load(kprobe_per_regs, 9, 11);
211         regs->psw.mask |= PSW_MASK_PER;
212         regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
213 }
214
215 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
216 {
217         kcb->prev_kprobe.kp = kprobe_running();
218         kcb->prev_kprobe.status = kcb->kprobe_status;
219         kcb->prev_kprobe.kprobe_saved_imask = kcb->kprobe_saved_imask;
220         memcpy(kcb->prev_kprobe.kprobe_saved_ctl, kcb->kprobe_saved_ctl,
221                                         sizeof(kcb->kprobe_saved_ctl));
222 }
223
224 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
225 {
226         __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
227         kcb->kprobe_status = kcb->prev_kprobe.status;
228         kcb->kprobe_saved_imask = kcb->prev_kprobe.kprobe_saved_imask;
229         memcpy(kcb->kprobe_saved_ctl, kcb->prev_kprobe.kprobe_saved_ctl,
230                                         sizeof(kcb->kprobe_saved_ctl));
231 }
232
233 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
234                                                 struct kprobe_ctlblk *kcb)
235 {
236         __get_cpu_var(current_kprobe) = p;
237         /* Save the interrupt and per flags */
238         kcb->kprobe_saved_imask = regs->psw.mask &
239             (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
240         /* Save the control regs that govern PER */
241         __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
242 }
243
244 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
245                                         struct pt_regs *regs)
246 {
247         ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
248
249         /* Replace the return addr with trampoline addr */
250         regs->gprs[14] = (unsigned long)&kretprobe_trampoline;
251 }
252
253 static int __kprobes kprobe_handler(struct pt_regs *regs)
254 {
255         struct kprobe *p;
256         int ret = 0;
257         unsigned long *addr = (unsigned long *)
258                 ((regs->psw.addr & PSW_ADDR_INSN) - 2);
259         struct kprobe_ctlblk *kcb;
260
261         /*
262          * We don't want to be preempted for the entire
263          * duration of kprobe processing
264          */
265         preempt_disable();
266         kcb = get_kprobe_ctlblk();
267
268         /* Check we're not actually recursing */
269         if (kprobe_running()) {
270                 p = get_kprobe(addr);
271                 if (p) {
272                         if (kcb->kprobe_status == KPROBE_HIT_SS &&
273                             *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
274                                 regs->psw.mask &= ~PSW_MASK_PER;
275                                 regs->psw.mask |= kcb->kprobe_saved_imask;
276                                 goto no_kprobe;
277                         }
278                         /* We have reentered the kprobe_handler(), since
279                          * another probe was hit while within the handler.
280                          * We here save the original kprobes variables and
281                          * just single step on the instruction of the new probe
282                          * without calling any user handlers.
283                          */
284                         save_previous_kprobe(kcb);
285                         set_current_kprobe(p, regs, kcb);
286                         kprobes_inc_nmissed_count(p);
287                         prepare_singlestep(p, regs);
288                         kcb->kprobe_status = KPROBE_REENTER;
289                         return 1;
290                 } else {
291                         p = __get_cpu_var(current_kprobe);
292                         if (p->break_handler && p->break_handler(p, regs)) {
293                                 goto ss_probe;
294                         }
295                 }
296                 goto no_kprobe;
297         }
298
299         p = get_kprobe(addr);
300         if (!p)
301                 /*
302                  * No kprobe at this address. The fault has not been
303                  * caused by a kprobe breakpoint. The race of breakpoint
304                  * vs. kprobe remove does not exist because on s390 we
305                  * use stop_machine to arm/disarm the breakpoints.
306                  */
307                 goto no_kprobe;
308
309         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
310         set_current_kprobe(p, regs, kcb);
311         if (p->pre_handler && p->pre_handler(p, regs))
312                 /* handler has already set things up, so skip ss setup */
313                 return 1;
314
315 ss_probe:
316         prepare_singlestep(p, regs);
317         kcb->kprobe_status = KPROBE_HIT_SS;
318         return 1;
319
320 no_kprobe:
321         preempt_enable_no_resched();
322         return ret;
323 }
324
325 /*
326  * Function return probe trampoline:
327  *      - init_kprobes() establishes a probepoint here
328  *      - When the probed function returns, this probe
329  *              causes the handlers to fire
330  */
331 static void __used kretprobe_trampoline_holder(void)
332 {
333         asm volatile(".global kretprobe_trampoline\n"
334                      "kretprobe_trampoline: bcr 0,0\n");
335 }
336
337 /*
338  * Called when the probe at kretprobe trampoline is hit
339  */
340 static int __kprobes trampoline_probe_handler(struct kprobe *p,
341                                               struct pt_regs *regs)
342 {
343         struct kretprobe_instance *ri = NULL;
344         struct hlist_head *head, empty_rp;
345         struct hlist_node *node, *tmp;
346         unsigned long flags, orig_ret_address = 0;
347         unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
348
349         INIT_HLIST_HEAD(&empty_rp);
350         kretprobe_hash_lock(current, &head, &flags);
351
352         /*
353          * It is possible to have multiple instances associated with a given
354          * task either because an multiple functions in the call path
355          * have a return probe installed on them, and/or more than one return
356          * return probe was registered for a target function.
357          *
358          * We can handle this because:
359          *     - instances are always inserted at the head of the list
360          *     - when multiple return probes are registered for the same
361          *       function, the first instance's ret_addr will point to the
362          *       real return address, and all the rest will point to
363          *       kretprobe_trampoline
364          */
365         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
366                 if (ri->task != current)
367                         /* another task is sharing our hash bucket */
368                         continue;
369
370                 if (ri->rp && ri->rp->handler)
371                         ri->rp->handler(ri, regs);
372
373                 orig_ret_address = (unsigned long)ri->ret_addr;
374                 recycle_rp_inst(ri, &empty_rp);
375
376                 if (orig_ret_address != trampoline_address) {
377                         /*
378                          * This is the real return address. Any other
379                          * instances associated with this task are for
380                          * other calls deeper on the call stack
381                          */
382                         break;
383                 }
384         }
385         kretprobe_assert(ri, orig_ret_address, trampoline_address);
386         regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
387
388         reset_current_kprobe();
389         kretprobe_hash_unlock(current, &flags);
390         preempt_enable_no_resched();
391
392         hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
393                 hlist_del(&ri->hlist);
394                 kfree(ri);
395         }
396         /*
397          * By returning a non-zero value, we are telling
398          * kprobe_handler() that we don't want the post_handler
399          * to run (and have re-enabled preemption)
400          */
401         return 1;
402 }
403
404 /*
405  * Called after single-stepping.  p->addr is the address of the
406  * instruction whose first byte has been replaced by the "breakpoint"
407  * instruction.  To avoid the SMP problems that can occur when we
408  * temporarily put back the original opcode to single-step, we
409  * single-stepped a copy of the instruction.  The address of this
410  * copy is p->ainsn.insn.
411  */
412 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
413 {
414         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
415
416         regs->psw.addr &= PSW_ADDR_INSN;
417
418         if (p->ainsn.fixup & FIXUP_PSW_NORMAL)
419                 regs->psw.addr = (unsigned long)p->addr +
420                                 ((unsigned long)regs->psw.addr -
421                                  (unsigned long)p->ainsn.insn);
422
423         if (p->ainsn.fixup & FIXUP_BRANCH_NOT_TAKEN)
424                 if ((unsigned long)regs->psw.addr -
425                     (unsigned long)p->ainsn.insn == p->ainsn.ilen)
426                         regs->psw.addr = (unsigned long)p->addr + p->ainsn.ilen;
427
428         if (p->ainsn.fixup & FIXUP_RETURN_REGISTER)
429                 regs->gprs[p->ainsn.reg] = ((unsigned long)p->addr +
430                                                 (regs->gprs[p->ainsn.reg] -
431                                                 (unsigned long)p->ainsn.insn))
432                                                 | PSW_ADDR_AMODE;
433
434         regs->psw.addr |= PSW_ADDR_AMODE;
435         /* turn off PER mode */
436         regs->psw.mask &= ~PSW_MASK_PER;
437         /* Restore the original per control regs */
438         __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
439         regs->psw.mask |= kcb->kprobe_saved_imask;
440 }
441
442 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
443 {
444         struct kprobe *cur = kprobe_running();
445         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
446
447         if (!cur)
448                 return 0;
449
450         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
451                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
452                 cur->post_handler(cur, regs, 0);
453         }
454
455         resume_execution(cur, regs);
456
457         /*Restore back the original saved kprobes variables and continue. */
458         if (kcb->kprobe_status == KPROBE_REENTER) {
459                 restore_previous_kprobe(kcb);
460                 goto out;
461         }
462         reset_current_kprobe();
463 out:
464         preempt_enable_no_resched();
465
466         /*
467          * if somebody else is singlestepping across a probe point, psw mask
468          * will have PER set, in which case, continue the remaining processing
469          * of do_single_step, as if this is not a probe hit.
470          */
471         if (regs->psw.mask & PSW_MASK_PER) {
472                 return 0;
473         }
474
475         return 1;
476 }
477
478 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
479 {
480         struct kprobe *cur = kprobe_running();
481         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
482         const struct exception_table_entry *entry;
483
484         switch(kcb->kprobe_status) {
485         case KPROBE_SWAP_INST:
486                 /* We are here because the instruction replacement failed */
487                 return 0;
488         case KPROBE_HIT_SS:
489         case KPROBE_REENTER:
490                 /*
491                  * We are here because the instruction being single
492                  * stepped caused a page fault. We reset the current
493                  * kprobe and the nip points back to the probe address
494                  * and allow the page fault handler to continue as a
495                  * normal page fault.
496                  */
497                 regs->psw.addr = (unsigned long)cur->addr | PSW_ADDR_AMODE;
498                 regs->psw.mask &= ~PSW_MASK_PER;
499                 regs->psw.mask |= kcb->kprobe_saved_imask;
500                 if (kcb->kprobe_status == KPROBE_REENTER)
501                         restore_previous_kprobe(kcb);
502                 else
503                         reset_current_kprobe();
504                 preempt_enable_no_resched();
505                 break;
506         case KPROBE_HIT_ACTIVE:
507         case KPROBE_HIT_SSDONE:
508                 /*
509                  * We increment the nmissed count for accounting,
510                  * we can also use npre/npostfault count for accouting
511                  * these specific fault cases.
512                  */
513                 kprobes_inc_nmissed_count(cur);
514
515                 /*
516                  * We come here because instructions in the pre/post
517                  * handler caused the page_fault, this could happen
518                  * if handler tries to access user space by
519                  * copy_from_user(), get_user() etc. Let the
520                  * user-specified handler try to fix it first.
521                  */
522                 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
523                         return 1;
524
525                 /*
526                  * In case the user-specified fault handler returned
527                  * zero, try to fix up.
528                  */
529                 entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
530                 if (entry) {
531                         regs->psw.addr = entry->fixup | PSW_ADDR_AMODE;
532                         return 1;
533                 }
534
535                 /*
536                  * fixup_exception() could not handle it,
537                  * Let do_page_fault() fix it.
538                  */
539                 break;
540         default:
541                 break;
542         }
543         return 0;
544 }
545
546 /*
547  * Wrapper routine to for handling exceptions.
548  */
549 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
550                                        unsigned long val, void *data)
551 {
552         struct die_args *args = (struct die_args *)data;
553         int ret = NOTIFY_DONE;
554
555         switch (val) {
556         case DIE_BPT:
557                 if (kprobe_handler(args->regs))
558                         ret = NOTIFY_STOP;
559                 break;
560         case DIE_SSTEP:
561                 if (post_kprobe_handler(args->regs))
562                         ret = NOTIFY_STOP;
563                 break;
564         case DIE_TRAP:
565                 /* kprobe_running() needs smp_processor_id() */
566                 preempt_disable();
567                 if (kprobe_running() &&
568                     kprobe_fault_handler(args->regs, args->trapnr))
569                         ret = NOTIFY_STOP;
570                 preempt_enable();
571                 break;
572         default:
573                 break;
574         }
575         return ret;
576 }
577
578 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
579 {
580         struct jprobe *jp = container_of(p, struct jprobe, kp);
581         unsigned long addr;
582         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
583
584         memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
585
586         /* setup return addr to the jprobe handler routine */
587         regs->psw.addr = (unsigned long)(jp->entry) | PSW_ADDR_AMODE;
588
589         /* r14 is the function return address */
590         kcb->jprobe_saved_r14 = (unsigned long)regs->gprs[14];
591         /* r15 is the stack pointer */
592         kcb->jprobe_saved_r15 = (unsigned long)regs->gprs[15];
593         addr = (unsigned long)kcb->jprobe_saved_r15;
594
595         memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr,
596                MIN_STACK_SIZE(addr));
597         return 1;
598 }
599
600 void __kprobes jprobe_return(void)
601 {
602         asm volatile(".word 0x0002");
603 }
604
605 void __kprobes jprobe_return_end(void)
606 {
607         asm volatile("bcr 0,0");
608 }
609
610 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
611 {
612         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
613         unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_r15);
614
615         /* Put the regs back */
616         memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
617         /* put the stack back */
618         memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
619                MIN_STACK_SIZE(stack_addr));
620         preempt_enable_no_resched();
621         return 1;
622 }
623
624 static struct kprobe trampoline_p = {
625         .addr = (kprobe_opcode_t *) & kretprobe_trampoline,
626         .pre_handler = trampoline_probe_handler
627 };
628
629 int __init arch_init_kprobes(void)
630 {
631         return register_kprobe(&trampoline_p);
632 }
633
634 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
635 {
636         if (p->addr == (kprobe_opcode_t *) & kretprobe_trampoline)
637                 return 1;
638         return 0;
639 }