powerpc/oprofile: IBM CELL: add SPU event profiling support
[safe/jmp/linux-2.6] / arch / powerpc / oprofile / op_model_cell.c
1 /*
2  * Cell Broadband Engine OProfile Support
3  *
4  * (C) Copyright IBM Corporation 2006
5  *
6  * Author: David Erb (djerb@us.ibm.com)
7  * Modifications:
8  *         Carl Love <carll@us.ibm.com>
9  *         Maynard Johnson <maynardj@us.ibm.com>
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License
13  * as published by the Free Software Foundation; either version
14  * 2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/cpufreq.h>
18 #include <linux/delay.h>
19 #include <linux/init.h>
20 #include <linux/jiffies.h>
21 #include <linux/kthread.h>
22 #include <linux/oprofile.h>
23 #include <linux/percpu.h>
24 #include <linux/smp.h>
25 #include <linux/spinlock.h>
26 #include <linux/timer.h>
27 #include <asm/cell-pmu.h>
28 #include <asm/cputable.h>
29 #include <asm/firmware.h>
30 #include <asm/io.h>
31 #include <asm/oprofile_impl.h>
32 #include <asm/processor.h>
33 #include <asm/prom.h>
34 #include <asm/ptrace.h>
35 #include <asm/reg.h>
36 #include <asm/rtas.h>
37 #include <asm/system.h>
38 #include <asm/cell-regs.h>
39
40 #include "../platforms/cell/interrupt.h"
41 #include "cell/pr_util.h"
42
43 #define PPU_PROFILING            0
44 #define SPU_PROFILING_CYCLES     1
45 #define SPU_PROFILING_EVENTS     2
46
47 #define SPU_EVENT_NUM_START      4100
48 #define SPU_EVENT_NUM_STOP       4399
49 #define SPU_PROFILE_EVENT_ADDR          4363  /* spu, address trace, decimal */
50 #define SPU_PROFILE_EVENT_ADDR_MASK_A   0x146 /* sub unit set to zero */
51 #define SPU_PROFILE_EVENT_ADDR_MASK_B   0x186 /* sub unit set to zero */
52
53 #define NUM_SPUS_PER_NODE    8
54 #define SPU_CYCLES_EVENT_NUM 2  /*  event number for SPU_CYCLES */
55
56 #define PPU_CYCLES_EVENT_NUM 1  /*  event number for CYCLES */
57 #define PPU_CYCLES_GRP_NUM   1  /* special group number for identifying
58                                  * PPU_CYCLES event
59                                  */
60 #define CBE_COUNT_ALL_CYCLES 0x42800000 /* PPU cycle event specifier */
61
62 #define NUM_THREADS 2         /* number of physical threads in
63                                * physical processor
64                                */
65 #define NUM_DEBUG_BUS_WORDS 4
66 #define NUM_INPUT_BUS_WORDS 2
67
68 #define MAX_SPU_COUNT 0xFFFFFF  /* maximum 24 bit LFSR value */
69
70 /* Minumum HW interval timer setting to send value to trace buffer is 10 cycle.
71  * To configure counter to send value every N cycles set counter to
72  * 2^32 - 1 - N.
73  */
74 #define NUM_INTERVAL_CYC  0xFFFFFFFF - 10
75
76 /*
77  * spu_cycle_reset is the number of cycles between samples.
78  * This variable is used for SPU profiling and should ONLY be set
79  * at the beginning of cell_reg_setup; otherwise, it's read-only.
80  */
81 static unsigned int spu_cycle_reset;
82 static unsigned int profiling_mode;
83 static int spu_evnt_phys_spu_indx;
84
85 struct pmc_cntrl_data {
86         unsigned long vcntr;
87         unsigned long evnts;
88         unsigned long masks;
89         unsigned long enabled;
90 };
91
92 /*
93  * ibm,cbe-perftools rtas parameters
94  */
95 struct pm_signal {
96         u16 cpu;                /* Processor to modify */
97         u16 sub_unit;           /* hw subunit this applies to (if applicable)*/
98         short int signal_group; /* Signal Group to Enable/Disable */
99         u8 bus_word;            /* Enable/Disable on this Trace/Trigger/Event
100                                  * Bus Word(s) (bitmask)
101                                  */
102         u8 bit;                 /* Trigger/Event bit (if applicable) */
103 };
104
105 /*
106  * rtas call arguments
107  */
108 enum {
109         SUBFUNC_RESET = 1,
110         SUBFUNC_ACTIVATE = 2,
111         SUBFUNC_DEACTIVATE = 3,
112
113         PASSTHRU_IGNORE = 0,
114         PASSTHRU_ENABLE = 1,
115         PASSTHRU_DISABLE = 2,
116 };
117
118 struct pm_cntrl {
119         u16 enable;
120         u16 stop_at_max;
121         u16 trace_mode;
122         u16 freeze;
123         u16 count_mode;
124         u16 spu_addr_trace;
125         u8  trace_buf_ovflw;
126 };
127
128 static struct {
129         u32 group_control;
130         u32 debug_bus_control;
131         struct pm_cntrl pm_cntrl;
132         u32 pm07_cntrl[NR_PHYS_CTRS];
133 } pm_regs;
134
135 #define GET_SUB_UNIT(x) ((x & 0x0000f000) >> 12)
136 #define GET_BUS_WORD(x) ((x & 0x000000f0) >> 4)
137 #define GET_BUS_TYPE(x) ((x & 0x00000300) >> 8)
138 #define GET_POLARITY(x) ((x & 0x00000002) >> 1)
139 #define GET_COUNT_CYCLES(x) (x & 0x00000001)
140 #define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2)
141
142 static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values);
143 static unsigned long spu_pm_cnt[MAX_NUMNODES * NUM_SPUS_PER_NODE];
144 static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS];
145
146 /*
147  * The CELL profiling code makes rtas calls to setup the debug bus to
148  * route the performance signals.  Additionally, SPU profiling requires
149  * a second rtas call to setup the hardware to capture the SPU PCs.
150  * The EIO error value is returned if the token lookups or the rtas
151  * call fail.  The EIO error number is the best choice of the existing
152  * error numbers.  The probability of rtas related error is very low.  But
153  * by returning EIO and printing additional information to dmsg the user
154  * will know that OProfile did not start and dmesg will tell them why.
155  * OProfile does not support returning errors on Stop.  Not a huge issue
156  * since failure to reset the debug bus or stop the SPU PC collection is
157  * not a fatel issue.  Chances are if the Stop failed, Start doesn't work
158  * either.
159  */
160
161 /*
162  * Interpetation of hdw_thread:
163  * 0 - even virtual cpus 0, 2, 4,...
164  * 1 - odd virtual cpus 1, 3, 5, ...
165  *
166  * FIXME: this is strictly wrong, we need to clean this up in a number
167  * of places. It works for now. -arnd
168  */
169 static u32 hdw_thread;
170
171 static u32 virt_cntr_inter_mask;
172 static struct timer_list timer_virt_cntr;
173 static struct timer_list timer_spu_event_swap;
174
175 /*
176  * pm_signal needs to be global since it is initialized in
177  * cell_reg_setup at the time when the necessary information
178  * is available.
179  */
180 static struct pm_signal pm_signal[NR_PHYS_CTRS];
181 static int pm_rtas_token;    /* token for debug bus setup call */
182 static int spu_rtas_token;   /* token for SPU cycle profiling */
183
184 static u32 reset_value[NR_PHYS_CTRS];
185 static int num_counters;
186 static int oprofile_running;
187 static DEFINE_SPINLOCK(cntr_lock);
188
189 static u32 ctr_enabled;
190
191 static unsigned char input_bus[NUM_INPUT_BUS_WORDS];
192
193 /*
194  * Firmware interface functions
195  */
196 static int
197 rtas_ibm_cbe_perftools(int subfunc, int passthru,
198                        void *address, unsigned long length)
199 {
200         u64 paddr = __pa(address);
201
202         return rtas_call(pm_rtas_token, 5, 1, NULL, subfunc,
203                          passthru, paddr >> 32, paddr & 0xffffffff, length);
204 }
205
206 static void pm_rtas_reset_signals(u32 node)
207 {
208         int ret;
209         struct pm_signal pm_signal_local;
210
211         /*
212          * The debug bus is being set to the passthru disable state.
213          * However, the FW still expects atleast one legal signal routing
214          * entry or it will return an error on the arguments.   If we don't
215          * supply a valid entry, we must ignore all return values.  Ignoring
216          * all return values means we might miss an error we should be
217          * concerned about.
218          */
219
220         /*  fw expects physical cpu #. */
221         pm_signal_local.cpu = node;
222         pm_signal_local.signal_group = 21;
223         pm_signal_local.bus_word = 1;
224         pm_signal_local.sub_unit = 0;
225         pm_signal_local.bit = 0;
226
227         ret = rtas_ibm_cbe_perftools(SUBFUNC_RESET, PASSTHRU_DISABLE,
228                                      &pm_signal_local,
229                                      sizeof(struct pm_signal));
230
231         if (unlikely(ret))
232                 /*
233                  * Not a fatal error. For Oprofile stop, the oprofile
234                  * functions do not support returning an error for
235                  * failure to stop OProfile.
236                  */
237                 printk(KERN_WARNING "%s: rtas returned: %d\n",
238                        __func__, ret);
239 }
240
241 static int pm_rtas_activate_signals(u32 node, u32 count)
242 {
243         int ret;
244         int i, j;
245         struct pm_signal pm_signal_local[NR_PHYS_CTRS];
246
247         /*
248          * There is no debug setup required for the cycles event.
249          * Note that only events in the same group can be used.
250          * Otherwise, there will be conflicts in correctly routing
251          * the signals on the debug bus.  It is the responsiblity
252          * of the OProfile user tool to check the events are in
253          * the same group.
254          */
255         i = 0;
256         for (j = 0; j < count; j++) {
257                 if (pm_signal[j].signal_group != PPU_CYCLES_GRP_NUM) {
258
259                         /* fw expects physical cpu # */
260                         pm_signal_local[i].cpu = node;
261                         pm_signal_local[i].signal_group
262                                 = pm_signal[j].signal_group;
263                         pm_signal_local[i].bus_word = pm_signal[j].bus_word;
264                         pm_signal_local[i].sub_unit = pm_signal[j].sub_unit;
265                         pm_signal_local[i].bit = pm_signal[j].bit;
266                         i++;
267                 }
268         }
269
270         if (i != 0) {
271                 ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, PASSTHRU_ENABLE,
272                                              pm_signal_local,
273                                              i * sizeof(struct pm_signal));
274
275                 if (unlikely(ret)) {
276                         printk(KERN_WARNING "%s: rtas returned: %d\n",
277                                __func__, ret);
278                         return -EIO;
279                 }
280         }
281
282         return 0;
283 }
284
285 /*
286  * PM Signal functions
287  */
288 static void set_pm_event(u32 ctr, int event, u32 unit_mask)
289 {
290         struct pm_signal *p;
291         u32 signal_bit;
292         u32 bus_word, bus_type, count_cycles, polarity, input_control;
293         int j, i;
294
295         if (event == PPU_CYCLES_EVENT_NUM) {
296                 /* Special Event: Count all cpu cycles */
297                 pm_regs.pm07_cntrl[ctr] = CBE_COUNT_ALL_CYCLES;
298                 p = &(pm_signal[ctr]);
299                 p->signal_group = PPU_CYCLES_GRP_NUM;
300                 p->bus_word = 1;
301                 p->sub_unit = 0;
302                 p->bit = 0;
303                 goto out;
304         } else {
305                 pm_regs.pm07_cntrl[ctr] = 0;
306         }
307
308         bus_word = GET_BUS_WORD(unit_mask);
309         bus_type = GET_BUS_TYPE(unit_mask);
310         count_cycles = GET_COUNT_CYCLES(unit_mask);
311         polarity = GET_POLARITY(unit_mask);
312         input_control = GET_INPUT_CONTROL(unit_mask);
313         signal_bit = (event % 100);
314
315         p = &(pm_signal[ctr]);
316
317         p->signal_group = event / 100;
318         p->bus_word = bus_word;
319         p->sub_unit = GET_SUB_UNIT(unit_mask);
320
321         pm_regs.pm07_cntrl[ctr] = 0;
322         pm_regs.pm07_cntrl[ctr] |= PM07_CTR_COUNT_CYCLES(count_cycles);
323         pm_regs.pm07_cntrl[ctr] |= PM07_CTR_POLARITY(polarity);
324         pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_CONTROL(input_control);
325
326         /*
327          * Some of the islands signal selection is based on 64 bit words.
328          * The debug bus words are 32 bits, the input words to the performance
329          * counters are defined as 32 bits.  Need to convert the 64 bit island
330          * specification to the appropriate 32 input bit and bus word for the
331          * performance counter event selection.  See the CELL Performance
332          * monitoring signals manual and the Perf cntr hardware descriptions
333          * for the details.
334          */
335         if (input_control == 0) {
336                 if (signal_bit > 31) {
337                         signal_bit -= 32;
338                         if (bus_word == 0x3)
339                                 bus_word = 0x2;
340                         else if (bus_word == 0xc)
341                                 bus_word = 0x8;
342                 }
343
344                 if ((bus_type == 0) && p->signal_group >= 60)
345                         bus_type = 2;
346                 if ((bus_type == 1) && p->signal_group >= 50)
347                         bus_type = 0;
348
349                 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_MUX(signal_bit);
350         } else {
351                 pm_regs.pm07_cntrl[ctr] = 0;
352                 p->bit = signal_bit;
353         }
354
355         for (i = 0; i < NUM_DEBUG_BUS_WORDS; i++) {
356                 if (bus_word & (1 << i)) {
357                         pm_regs.debug_bus_control |=
358                             (bus_type << (30 - (2 * i)));
359
360                         for (j = 0; j < NUM_INPUT_BUS_WORDS; j++) {
361                                 if (input_bus[j] == 0xff) {
362                                         input_bus[j] = i;
363                                         pm_regs.group_control |=
364                                             (i << (30 - (2 * j)));
365
366                                         break;
367                                 }
368                         }
369                 }
370         }
371 out:
372         ;
373 }
374
375 static void write_pm_cntrl(int cpu)
376 {
377         /*
378          * Oprofile will use 32 bit counters, set bits 7:10 to 0
379          * pmregs.pm_cntrl is a global
380          */
381
382         u32 val = 0;
383         if (pm_regs.pm_cntrl.enable == 1)
384                 val |= CBE_PM_ENABLE_PERF_MON;
385
386         if (pm_regs.pm_cntrl.stop_at_max == 1)
387                 val |= CBE_PM_STOP_AT_MAX;
388
389         if (pm_regs.pm_cntrl.trace_mode != 0)
390                 val |= CBE_PM_TRACE_MODE_SET(pm_regs.pm_cntrl.trace_mode);
391
392         if (pm_regs.pm_cntrl.trace_buf_ovflw == 1)
393                 val |= CBE_PM_TRACE_BUF_OVFLW(pm_regs.pm_cntrl.trace_buf_ovflw);
394         if (pm_regs.pm_cntrl.freeze == 1)
395                 val |= CBE_PM_FREEZE_ALL_CTRS;
396
397         val |= CBE_PM_SPU_ADDR_TRACE_SET(pm_regs.pm_cntrl.spu_addr_trace);
398
399         /*
400          * Routine set_count_mode must be called previously to set
401          * the count mode based on the user selection of user and kernel.
402          */
403         val |= CBE_PM_COUNT_MODE_SET(pm_regs.pm_cntrl.count_mode);
404         cbe_write_pm(cpu, pm_control, val);
405 }
406
407 static inline void
408 set_count_mode(u32 kernel, u32 user)
409 {
410         /*
411          * The user must specify user and kernel if they want them. If
412          *  neither is specified, OProfile will count in hypervisor mode.
413          *  pm_regs.pm_cntrl is a global
414          */
415         if (kernel) {
416                 if (user)
417                         pm_regs.pm_cntrl.count_mode = CBE_COUNT_ALL_MODES;
418                 else
419                         pm_regs.pm_cntrl.count_mode =
420                                 CBE_COUNT_SUPERVISOR_MODE;
421         } else {
422                 if (user)
423                         pm_regs.pm_cntrl.count_mode = CBE_COUNT_PROBLEM_MODE;
424                 else
425                         pm_regs.pm_cntrl.count_mode =
426                                 CBE_COUNT_HYPERVISOR_MODE;
427         }
428 }
429
430 static inline void enable_ctr(u32 cpu, u32 ctr, u32 *pm07_cntrl)
431 {
432
433         pm07_cntrl[ctr] |= CBE_PM_CTR_ENABLE;
434         cbe_write_pm07_control(cpu, ctr, pm07_cntrl[ctr]);
435 }
436
437 /*
438  * Oprofile is expected to collect data on all CPUs simultaneously.
439  * However, there is one set of performance counters per node.  There are
440  * two hardware threads or virtual CPUs on each node.  Hence, OProfile must
441  * multiplex in time the performance counter collection on the two virtual
442  * CPUs.  The multiplexing of the performance counters is done by this
443  * virtual counter routine.
444  *
445  * The pmc_values used below is defined as 'per-cpu' but its use is
446  * more akin to 'per-node'.  We need to store two sets of counter
447  * values per node -- one for the previous run and one for the next.
448  * The per-cpu[NR_PHYS_CTRS] gives us the storage we need.  Each odd/even
449  * pair of per-cpu arrays is used for storing the previous and next
450  * pmc values for a given node.
451  * NOTE: We use the per-cpu variable to improve cache performance.
452  *
453  * This routine will alternate loading the virtual counters for
454  * virtual CPUs
455  */
456 static void cell_virtual_cntr(unsigned long data)
457 {
458         int i, prev_hdw_thread, next_hdw_thread;
459         u32 cpu;
460         unsigned long flags;
461
462         /*
463          * Make sure that the interrupt_hander and the virt counter are
464          * not both playing with the counters on the same node.
465          */
466
467         spin_lock_irqsave(&cntr_lock, flags);
468
469         prev_hdw_thread = hdw_thread;
470
471         /* switch the cpu handling the interrupts */
472         hdw_thread = 1 ^ hdw_thread;
473         next_hdw_thread = hdw_thread;
474
475         pm_regs.group_control = 0;
476         pm_regs.debug_bus_control = 0;
477
478         for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
479                 input_bus[i] = 0xff;
480
481         /*
482          * There are some per thread events.  Must do the
483          * set event, for the thread that is being started
484          */
485         for (i = 0; i < num_counters; i++)
486                 set_pm_event(i,
487                         pmc_cntrl[next_hdw_thread][i].evnts,
488                         pmc_cntrl[next_hdw_thread][i].masks);
489
490         /*
491          * The following is done only once per each node, but
492          * we need cpu #, not node #, to pass to the cbe_xxx functions.
493          */
494         for_each_online_cpu(cpu) {
495                 if (cbe_get_hw_thread_id(cpu))
496                         continue;
497
498                 /*
499                  * stop counters, save counter values, restore counts
500                  * for previous thread
501                  */
502                 cbe_disable_pm(cpu);
503                 cbe_disable_pm_interrupts(cpu);
504                 for (i = 0; i < num_counters; i++) {
505                         per_cpu(pmc_values, cpu + prev_hdw_thread)[i]
506                             = cbe_read_ctr(cpu, i);
507
508                         if (per_cpu(pmc_values, cpu + next_hdw_thread)[i]
509                             == 0xFFFFFFFF)
510                                 /* If the cntr value is 0xffffffff, we must
511                                  * reset that to 0xfffffff0 when the current
512                                  * thread is restarted.  This will generate a
513                                  * new interrupt and make sure that we never
514                                  * restore the counters to the max value.  If
515                                  * the counters were restored to the max value,
516                                  * they do not increment and no interrupts are
517                                  * generated.  Hence no more samples will be
518                                  * collected on that cpu.
519                                  */
520                                 cbe_write_ctr(cpu, i, 0xFFFFFFF0);
521                         else
522                                 cbe_write_ctr(cpu, i,
523                                               per_cpu(pmc_values,
524                                                       cpu +
525                                                       next_hdw_thread)[i]);
526                 }
527
528                 /*
529                  * Switch to the other thread. Change the interrupt
530                  * and control regs to be scheduled on the CPU
531                  * corresponding to the thread to execute.
532                  */
533                 for (i = 0; i < num_counters; i++) {
534                         if (pmc_cntrl[next_hdw_thread][i].enabled) {
535                                 /*
536                                  * There are some per thread events.
537                                  * Must do the set event, enable_cntr
538                                  * for each cpu.
539                                  */
540                                 enable_ctr(cpu, i,
541                                            pm_regs.pm07_cntrl);
542                         } else {
543                                 cbe_write_pm07_control(cpu, i, 0);
544                         }
545                 }
546
547                 /* Enable interrupts on the CPU thread that is starting */
548                 cbe_enable_pm_interrupts(cpu, next_hdw_thread,
549                                          virt_cntr_inter_mask);
550                 cbe_enable_pm(cpu);
551         }
552
553         spin_unlock_irqrestore(&cntr_lock, flags);
554
555         mod_timer(&timer_virt_cntr, jiffies + HZ / 10);
556 }
557
558 static void start_virt_cntrs(void)
559 {
560         init_timer(&timer_virt_cntr);
561         timer_virt_cntr.function = cell_virtual_cntr;
562         timer_virt_cntr.data = 0UL;
563         timer_virt_cntr.expires = jiffies + HZ / 10;
564         add_timer(&timer_virt_cntr);
565 }
566
567 static int cell_reg_setup_spu_cycles(struct op_counter_config *ctr,
568                         struct op_system_config *sys, int num_ctrs)
569 {
570         spu_cycle_reset = ctr[0].count;
571
572         /*
573          * Each node will need to make the rtas call to start
574          * and stop SPU profiling.  Get the token once and store it.
575          */
576         spu_rtas_token = rtas_token("ibm,cbe-spu-perftools");
577
578         if (unlikely(spu_rtas_token == RTAS_UNKNOWN_SERVICE)) {
579                 printk(KERN_ERR
580                        "%s: rtas token ibm,cbe-spu-perftools unknown\n",
581                        __func__);
582                 return -EIO;
583         }
584         return 0;
585 }
586
587 /* Unfortunately, the hardware will only support event profiling
588  * on one SPU per node at a time.  Therefore, we must time slice
589  * the profiling across all SPUs in the node.  Note, we do this
590  * in parallel for each node.  The following routine is called
591  * periodically based on kernel timer to switch which SPU is
592  * being monitored in a round robbin fashion.
593  */
594 static void spu_evnt_swap(unsigned long data)
595 {
596         int node;
597         int cur_phys_spu, nxt_phys_spu, cur_spu_evnt_phys_spu_indx;
598         unsigned long flags;
599         int cpu;
600         int ret;
601         u32 interrupt_mask;
602
603
604         /* enable interrupts on cntr 0 */
605         interrupt_mask = CBE_PM_CTR_OVERFLOW_INTR(0);
606
607         hdw_thread = 0;
608
609         /* Make sure spu event interrupt handler and spu event swap
610          * don't access the counters simultaneously.
611          */
612         spin_lock_irqsave(&cntr_lock, flags);
613
614         cur_spu_evnt_phys_spu_indx = spu_evnt_phys_spu_indx;
615
616         if (++(spu_evnt_phys_spu_indx) == NUM_SPUS_PER_NODE)
617                 spu_evnt_phys_spu_indx = 0;
618
619         pm_signal[0].sub_unit = spu_evnt_phys_spu_indx;
620         pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
621         pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
622
623         /* switch the SPU being profiled on each node */
624         for_each_online_cpu(cpu) {
625                 if (cbe_get_hw_thread_id(cpu))
626                         continue;
627
628                 node = cbe_cpu_to_node(cpu);
629                 cur_phys_spu = (node * NUM_SPUS_PER_NODE)
630                         + cur_spu_evnt_phys_spu_indx;
631                 nxt_phys_spu = (node * NUM_SPUS_PER_NODE)
632                         + spu_evnt_phys_spu_indx;
633
634                 /*
635                  * stop counters, save counter values, restore counts
636                  * for previous physical SPU
637                  */
638                 cbe_disable_pm(cpu);
639                 cbe_disable_pm_interrupts(cpu);
640
641                 spu_pm_cnt[cur_phys_spu]
642                             = cbe_read_ctr(cpu, 0);
643
644                 /* restore previous count for the next spu to sample */
645                 /* NOTE, hardware issue, counter will not start if the
646                  * counter value is at max (0xFFFFFFFF).
647                  */
648                 if (spu_pm_cnt[nxt_phys_spu] >= 0xFFFFFFFF)
649                         cbe_write_ctr(cpu, 0, 0xFFFFFFF0);
650                  else
651                          cbe_write_ctr(cpu, 0, spu_pm_cnt[nxt_phys_spu]);
652
653                 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
654
655                 /* setup the debug bus measure the one event and
656                  * the two events to route the next SPU's PC on
657                  * the debug bus
658                  */
659                 ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu), 3);
660                 if (ret)
661                         printk(KERN_ERR
662                        "%s: pm_rtas_activate_signals failed, SPU event swap\n",
663                        __func__);
664
665                 /* clear the trace buffer, don't want to take PC for
666                  * previous SPU*/
667                 cbe_write_pm(cpu, trace_address, 0);
668
669                 enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
670
671                 /* Enable interrupts on the CPU thread that is starting */
672                 cbe_enable_pm_interrupts(cpu, hdw_thread,
673                                          interrupt_mask);
674                 cbe_enable_pm(cpu);
675         }
676
677         spin_unlock_irqrestore(&cntr_lock, flags);
678
679         /* swap approximately every 0.1 seconds */
680         mod_timer(&timer_spu_event_swap, jiffies + HZ / 25);
681 }
682
683 static void start_spu_event_swap(void)
684 {
685         init_timer(&timer_spu_event_swap);
686         timer_spu_event_swap.function = spu_evnt_swap;
687         timer_spu_event_swap.data = 0UL;
688         timer_spu_event_swap.expires = jiffies + HZ / 25;
689         add_timer(&timer_spu_event_swap);
690 }
691
692 static int cell_reg_setup_spu_events(struct op_counter_config *ctr,
693                         struct op_system_config *sys, int num_ctrs)
694 {
695         int i;
696
697         /* routine is called once for all nodes */
698
699         spu_evnt_phys_spu_indx = 0;
700         /*
701          * For all events except PPU CYCLEs, each node will need to make
702          * the rtas cbe-perftools call to setup and reset the debug bus.
703          * Make the token lookup call once and store it in the global
704          * variable pm_rtas_token.
705          */
706         pm_rtas_token = rtas_token("ibm,cbe-perftools");
707
708         if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
709                 printk(KERN_ERR
710                        "%s: rtas token ibm,cbe-perftools unknown\n",
711                        __func__);
712                 return -EIO;
713         }
714
715         /* setup the pm_control register settings,
716          * settings will be written per node by the
717          * cell_cpu_setup() function.
718          */
719         pm_regs.pm_cntrl.trace_buf_ovflw = 1;
720
721         /* Use the occurrence trace mode to have SPU PC saved
722          * to the trace buffer.  Occurrence data in trace buffer
723          * is not used.  Bit 2 must be set to store SPU addresses.
724          */
725         pm_regs.pm_cntrl.trace_mode = 2;
726
727         pm_regs.pm_cntrl.spu_addr_trace = 0x1;  /* using debug bus
728                                                    event 2 & 3 */
729
730         /* setup the debug bus event array with the SPU PC routing events.
731         *  Note, pm_signal[0] will be filled in by set_pm_event() call below.
732         */
733         pm_signal[1].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
734         pm_signal[1].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_A);
735         pm_signal[1].bit = SPU_PROFILE_EVENT_ADDR % 100;
736         pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
737
738         pm_signal[2].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
739         pm_signal[2].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_B);
740         pm_signal[2].bit = SPU_PROFILE_EVENT_ADDR % 100;
741         pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
742
743         /* Set the user selected spu event to profile on,
744          * note, only one SPU profiling event is supported
745          */
746         num_counters = 1;  /* Only support one SPU event at a time */
747         set_pm_event(0, ctr[0].event, ctr[0].unit_mask);
748
749         reset_value[0] = 0xFFFFFFFF - ctr[0].count;
750
751         /* global, used by cell_cpu_setup */
752         ctr_enabled |= 1;
753
754         /* Initialize the count for each SPU to the reset value */
755         for (i=0; i < MAX_NUMNODES * NUM_SPUS_PER_NODE; i++)
756                 spu_pm_cnt[i] = reset_value[0];
757
758         return 0;
759 }
760
761 static int cell_reg_setup_ppu(struct op_counter_config *ctr,
762                         struct op_system_config *sys, int num_ctrs)
763 {
764         /* routine is called once for all nodes */
765         int i, j, cpu;
766
767         num_counters = num_ctrs;
768
769         if (unlikely(num_ctrs > NR_PHYS_CTRS)) {
770                 printk(KERN_ERR
771                        "%s: Oprofile, number of specified events " \
772                        "exceeds number of physical counters\n",
773                        __func__);
774                 return -EIO;
775         }
776
777         set_count_mode(sys->enable_kernel, sys->enable_user);
778
779         /* Setup the thread 0 events */
780         for (i = 0; i < num_ctrs; ++i) {
781
782                 pmc_cntrl[0][i].evnts = ctr[i].event;
783                 pmc_cntrl[0][i].masks = ctr[i].unit_mask;
784                 pmc_cntrl[0][i].enabled = ctr[i].enabled;
785                 pmc_cntrl[0][i].vcntr = i;
786
787                 for_each_possible_cpu(j)
788                         per_cpu(pmc_values, j)[i] = 0;
789         }
790
791         /*
792          * Setup the thread 1 events, map the thread 0 event to the
793          * equivalent thread 1 event.
794          */
795         for (i = 0; i < num_ctrs; ++i) {
796                 if ((ctr[i].event >= 2100) && (ctr[i].event <= 2111))
797                         pmc_cntrl[1][i].evnts = ctr[i].event + 19;
798                 else if (ctr[i].event == 2203)
799                         pmc_cntrl[1][i].evnts = ctr[i].event;
800                 else if ((ctr[i].event >= 2200) && (ctr[i].event <= 2215))
801                         pmc_cntrl[1][i].evnts = ctr[i].event + 16;
802                 else
803                         pmc_cntrl[1][i].evnts = ctr[i].event;
804
805                 pmc_cntrl[1][i].masks = ctr[i].unit_mask;
806                 pmc_cntrl[1][i].enabled = ctr[i].enabled;
807                 pmc_cntrl[1][i].vcntr = i;
808         }
809
810         for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
811                 input_bus[i] = 0xff;
812
813         /*
814          * Our counters count up, and "count" refers to
815          * how much before the next interrupt, and we interrupt
816          * on overflow.  So we calculate the starting value
817          * which will give us "count" until overflow.
818          * Then we set the events on the enabled counters.
819          */
820         for (i = 0; i < num_counters; ++i) {
821                 /* start with virtual counter set 0 */
822                 if (pmc_cntrl[0][i].enabled) {
823                         /* Using 32bit counters, reset max - count */
824                         reset_value[i] = 0xFFFFFFFF - ctr[i].count;
825                         set_pm_event(i,
826                                      pmc_cntrl[0][i].evnts,
827                                      pmc_cntrl[0][i].masks);
828
829                         /* global, used by cell_cpu_setup */
830                         ctr_enabled |= (1 << i);
831                 }
832         }
833
834         /* initialize the previous counts for the virtual cntrs */
835         for_each_online_cpu(cpu)
836                 for (i = 0; i < num_counters; ++i) {
837                         per_cpu(pmc_values, cpu)[i] = reset_value[i];
838                 }
839
840         return 0;
841 }
842
843
844 /* This function is called once for all cpus combined */
845 static int cell_reg_setup(struct op_counter_config *ctr,
846                         struct op_system_config *sys, int num_ctrs)
847 {
848         int ret=0;
849         spu_cycle_reset = 0;
850
851         /* initialize the spu_arr_trace value, will be reset if
852          * doing spu event profiling.
853          */
854         pm_regs.group_control = 0;
855         pm_regs.debug_bus_control = 0;
856         pm_regs.pm_cntrl.stop_at_max = 1;
857         pm_regs.pm_cntrl.trace_mode = 0;
858         pm_regs.pm_cntrl.freeze = 1;
859         pm_regs.pm_cntrl.trace_buf_ovflw = 0;
860         pm_regs.pm_cntrl.spu_addr_trace = 0;
861
862         /*
863          * For all events except PPU CYCLEs, each node will need to make
864          * the rtas cbe-perftools call to setup and reset the debug bus.
865          * Make the token lookup call once and store it in the global
866          * variable pm_rtas_token.
867          */
868         pm_rtas_token = rtas_token("ibm,cbe-perftools");
869
870         if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
871                 printk(KERN_ERR
872                        "%s: rtas token ibm,cbe-perftools unknown\n",
873                        __func__);
874                 return -EIO;
875         }
876
877         if (ctr[0].event == SPU_CYCLES_EVENT_NUM) {
878                 profiling_mode = SPU_PROFILING_CYCLES;
879                 ret = cell_reg_setup_spu_cycles(ctr, sys, num_ctrs);
880         } else if ((ctr[0].event >= SPU_EVENT_NUM_START) &&
881                    (ctr[0].event <= SPU_EVENT_NUM_STOP)) {
882                 profiling_mode = SPU_PROFILING_EVENTS;
883                 spu_cycle_reset = ctr[0].count;
884
885                 /* for SPU event profiling, need to setup the
886                  * pm_signal array with the events to route the
887                  * SPU PC before making the FW call.  Note, only
888                  * one SPU event for profiling can be specified
889                  * at a time.
890                  */
891                 cell_reg_setup_spu_events(ctr, sys, num_ctrs);
892         } else {
893                 profiling_mode = PPU_PROFILING;
894                 ret = cell_reg_setup_ppu(ctr, sys, num_ctrs);
895         }
896
897         return ret;
898 }
899
900
901
902 /* This function is called once for each cpu */
903 static int cell_cpu_setup(struct op_counter_config *cntr)
904 {
905         u32 cpu = smp_processor_id();
906         u32 num_enabled = 0;
907         int i;
908         int ret;
909
910         /* Cycle based SPU profiling does not use the performance
911          * counters.  The trace array is configured to collect
912          * the data.
913          */
914         if (profiling_mode == SPU_PROFILING_CYCLES)
915                 return 0;
916
917         /* There is one performance monitor per processor chip (i.e. node),
918          * so we only need to perform this function once per node.
919          */
920         if (cbe_get_hw_thread_id(cpu))
921                 return 0;
922
923         /* Stop all counters */
924         cbe_disable_pm(cpu);
925         cbe_disable_pm_interrupts(cpu);
926
927         cbe_write_pm(cpu, pm_start_stop, 0);
928         cbe_write_pm(cpu, group_control, pm_regs.group_control);
929         cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control);
930         write_pm_cntrl(cpu);
931
932         for (i = 0; i < num_counters; ++i) {
933                 if (ctr_enabled & (1 << i)) {
934                         pm_signal[num_enabled].cpu = cbe_cpu_to_node(cpu);
935                         num_enabled++;
936                 }
937         }
938
939         /*
940          * The pm_rtas_activate_signals will return -EIO if the FW
941          * call failed.
942          */
943         if (profiling_mode == SPU_PROFILING_EVENTS) {
944                 /* For SPU event profiling also need to setup the
945                  * pm interval timer
946                  */
947                 ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
948                                                num_enabled+2);
949                 /* store PC from debug bus to Trace buffer as often
950                  * as possible (every 10 cycles)
951                  */
952                 cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
953                 return ret;
954         } else
955                 return pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
956                                                 num_enabled);
957 }
958
959 #define ENTRIES  303
960 #define MAXLFSR  0xFFFFFF
961
962 /* precomputed table of 24 bit LFSR values */
963 static int initial_lfsr[] = {
964  8221349, 12579195, 5379618, 10097839, 7512963, 7519310, 3955098, 10753424,
965  15507573, 7458917, 285419, 2641121, 9780088, 3915503, 6668768, 1548716,
966  4885000, 8774424, 9650099, 2044357, 2304411, 9326253, 10332526, 4421547,
967  3440748, 10179459, 13332843, 10375561, 1313462, 8375100, 5198480, 6071392,
968  9341783, 1526887, 3985002, 1439429, 13923762, 7010104, 11969769, 4547026,
969  2040072, 4025602, 3437678, 7939992, 11444177, 4496094, 9803157, 10745556,
970  3671780, 4257846, 5662259, 13196905, 3237343, 12077182, 16222879, 7587769,
971  14706824, 2184640, 12591135, 10420257, 7406075, 3648978, 11042541, 15906893,
972  11914928, 4732944, 10695697, 12928164, 11980531, 4430912, 11939291, 2917017,
973  6119256, 4172004, 9373765, 8410071, 14788383, 5047459, 5474428, 1737756,
974  15967514, 13351758, 6691285, 8034329, 2856544, 14394753, 11310160, 12149558,
975  7487528, 7542781, 15668898, 12525138, 12790975, 3707933, 9106617, 1965401,
976  16219109, 12801644, 2443203, 4909502, 8762329, 3120803, 6360315, 9309720,
977  15164599, 10844842, 4456529, 6667610, 14924259, 884312, 6234963, 3326042,
978  15973422, 13919464, 5272099, 6414643, 3909029, 2764324, 5237926, 4774955,
979  10445906, 4955302, 5203726, 10798229, 11443419, 2303395, 333836, 9646934,
980  3464726, 4159182, 568492, 995747, 10318756, 13299332, 4836017, 8237783,
981  3878992, 2581665, 11394667, 5672745, 14412947, 3159169, 9094251, 16467278,
982  8671392, 15230076, 4843545, 7009238, 15504095, 1494895, 9627886, 14485051,
983  8304291, 252817, 12421642, 16085736, 4774072, 2456177, 4160695, 15409741,
984  4902868, 5793091, 13162925, 16039714, 782255, 11347835, 14884586, 366972,
985  16308990, 11913488, 13390465, 2958444, 10340278, 1177858, 1319431, 10426302,
986  2868597, 126119, 5784857, 5245324, 10903900, 16436004, 3389013, 1742384,
987  14674502, 10279218, 8536112, 10364279, 6877778, 14051163, 1025130, 6072469,
988  1988305, 8354440, 8216060, 16342977, 13112639, 3976679, 5913576, 8816697,
989  6879995, 14043764, 3339515, 9364420, 15808858, 12261651, 2141560, 5636398,
990  10345425, 10414756, 781725, 6155650, 4746914, 5078683, 7469001, 6799140,
991  10156444, 9667150, 10116470, 4133858, 2121972, 1124204, 1003577, 1611214,
992  14304602, 16221850, 13878465, 13577744, 3629235, 8772583, 10881308, 2410386,
993  7300044, 5378855, 9301235, 12755149, 4977682, 8083074, 10327581, 6395087,
994  9155434, 15501696, 7514362, 14520507, 15808945, 3244584, 4741962, 9658130,
995  14336147, 8654727, 7969093, 15759799, 14029445, 5038459, 9894848, 8659300,
996  13699287, 8834306, 10712885, 14753895, 10410465, 3373251, 309501, 9561475,
997  5526688, 14647426, 14209836, 5339224, 207299, 14069911, 8722990, 2290950,
998  3258216, 12505185, 6007317, 9218111, 14661019, 10537428, 11731949, 9027003,
999  6641507, 9490160, 200241, 9720425, 16277895, 10816638, 1554761, 10431375,
1000  7467528, 6790302, 3429078, 14633753, 14428997, 11463204, 3576212, 2003426,
1001  6123687, 820520, 9992513, 15784513, 5778891, 6428165, 8388607
1002 };
1003
1004 /*
1005  * The hardware uses an LFSR counting sequence to determine when to capture
1006  * the SPU PCs.  An LFSR sequence is like a puesdo random number sequence
1007  * where each number occurs once in the sequence but the sequence is not in
1008  * numerical order. The SPU PC capture is done when the LFSR sequence reaches
1009  * the last value in the sequence.  Hence the user specified value N
1010  * corresponds to the LFSR number that is N from the end of the sequence.
1011  *
1012  * To avoid the time to compute the LFSR, a lookup table is used.  The 24 bit
1013  * LFSR sequence is broken into four ranges.  The spacing of the precomputed
1014  * values is adjusted in each range so the error between the user specifed
1015  * number (N) of events between samples and the actual number of events based
1016  * on the precomputed value will be les then about 6.2%.  Note, if the user
1017  * specifies N < 2^16, the LFSR value that is 2^16 from the end will be used.
1018  * This is to prevent the loss of samples because the trace buffer is full.
1019  *
1020  *         User specified N                  Step between          Index in
1021  *                                       precomputed values      precomputed
1022  *                                                                  table
1023  * 0                to  2^16-1                  ----                  0
1024  * 2^16     to  2^16+2^19-1             2^12                1 to 128
1025  * 2^16+2^19        to  2^16+2^19+2^22-1        2^15              129 to 256
1026  * 2^16+2^19+2^22  to   2^24-1                  2^18              257 to 302
1027  *
1028  *
1029  * For example, the LFSR values in the second range are computed for 2^16,
1030  * 2^16+2^12, ... , 2^19-2^16, 2^19 and stored in the table at indicies
1031  * 1, 2,..., 127, 128.
1032  *
1033  * The 24 bit LFSR value for the nth number in the sequence can be
1034  * calculated using the following code:
1035  *
1036  * #define size 24
1037  * int calculate_lfsr(int n)
1038  * {
1039  *      int i;
1040  *      unsigned int newlfsr0;
1041  *      unsigned int lfsr = 0xFFFFFF;
1042  *      unsigned int howmany = n;
1043  *
1044  *      for (i = 2; i < howmany + 2; i++) {
1045  *              newlfsr0 = (((lfsr >> (size - 1 - 0)) & 1) ^
1046  *              ((lfsr >> (size - 1 - 1)) & 1) ^
1047  *              (((lfsr >> (size - 1 - 6)) & 1) ^
1048  *              ((lfsr >> (size - 1 - 23)) & 1)));
1049  *
1050  *              lfsr >>= 1;
1051  *              lfsr = lfsr | (newlfsr0 << (size - 1));
1052  *      }
1053  *      return lfsr;
1054  * }
1055  */
1056
1057 #define V2_16  (0x1 << 16)
1058 #define V2_19  (0x1 << 19)
1059 #define V2_22  (0x1 << 22)
1060
1061 static int calculate_lfsr(int n)
1062 {
1063         /*
1064          * The ranges and steps are in powers of 2 so the calculations
1065          * can be done using shifts rather then divide.
1066          */
1067         int index;
1068
1069         if ((n >> 16) == 0)
1070                 index = 0;
1071         else if (((n - V2_16) >> 19) == 0)
1072                 index = ((n - V2_16) >> 12) + 1;
1073         else if (((n - V2_16 - V2_19) >> 22) == 0)
1074                 index = ((n - V2_16 - V2_19) >> 15 ) + 1 + 128;
1075         else if (((n - V2_16 - V2_19 - V2_22) >> 24) == 0)
1076                 index = ((n - V2_16 - V2_19 - V2_22) >> 18 ) + 1 + 256;
1077         else
1078                 index = ENTRIES-1;
1079
1080         /* make sure index is valid */
1081         if ((index > ENTRIES) || (index < 0))
1082                 index = ENTRIES-1;
1083
1084         return initial_lfsr[index];
1085 }
1086
1087 static int pm_rtas_activate_spu_profiling(u32 node)
1088 {
1089         int ret, i;
1090         struct pm_signal pm_signal_local[NUM_SPUS_PER_NODE];
1091
1092         /*
1093          * Set up the rtas call to configure the debug bus to
1094          * route the SPU PCs.  Setup the pm_signal for each SPU
1095          */
1096         for (i = 0; i < ARRAY_SIZE(pm_signal_local); i++) {
1097                 pm_signal_local[i].cpu = node;
1098                 pm_signal_local[i].signal_group = 41;
1099                 /* spu i on word (i/2) */
1100                 pm_signal_local[i].bus_word = 1 << i / 2;
1101                 /* spu i */
1102                 pm_signal_local[i].sub_unit = i;
1103                 pm_signal_local[i].bit = 63;
1104         }
1105
1106         ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE,
1107                                      PASSTHRU_ENABLE, pm_signal_local,
1108                                      (ARRAY_SIZE(pm_signal_local)
1109                                       * sizeof(struct pm_signal)));
1110
1111         if (unlikely(ret)) {
1112                 printk(KERN_WARNING "%s: rtas returned: %d\n",
1113                        __func__, ret);
1114                 return -EIO;
1115         }
1116
1117         return 0;
1118 }
1119
1120 #ifdef CONFIG_CPU_FREQ
1121 static int
1122 oprof_cpufreq_notify(struct notifier_block *nb, unsigned long val, void *data)
1123 {
1124         int ret = 0;
1125         struct cpufreq_freqs *frq = data;
1126         if ((val == CPUFREQ_PRECHANGE && frq->old < frq->new) ||
1127             (val == CPUFREQ_POSTCHANGE && frq->old > frq->new) ||
1128             (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE))
1129                 set_spu_profiling_frequency(frq->new, spu_cycle_reset);
1130         return ret;
1131 }
1132
1133 static struct notifier_block cpu_freq_notifier_block = {
1134         .notifier_call  = oprof_cpufreq_notify
1135 };
1136 #endif
1137
1138 /*
1139  * Note the generic OProfile stop calls do not support returning
1140  * an error on stop.  Hence, will not return an error if the FW
1141  * calls fail on stop.  Failure to reset the debug bus is not an issue.
1142  * Failure to disable the SPU profiling is not an issue.  The FW calls
1143  * to enable the performance counters and debug bus will work even if
1144  * the hardware was not cleanly reset.
1145  */
1146 static void cell_global_stop_spu_cycles(void)
1147 {
1148         int subfunc, rtn_value;
1149         unsigned int lfsr_value;
1150         int cpu;
1151
1152         oprofile_running = 0;
1153         smp_wmb();
1154
1155 #ifdef CONFIG_CPU_FREQ
1156         cpufreq_unregister_notifier(&cpu_freq_notifier_block,
1157                                     CPUFREQ_TRANSITION_NOTIFIER);
1158 #endif
1159
1160         for_each_online_cpu(cpu) {
1161                 if (cbe_get_hw_thread_id(cpu))
1162                         continue;
1163
1164                 subfunc = 3;    /*
1165                                  * 2 - activate SPU tracing,
1166                                  * 3 - deactivate
1167                                  */
1168                 lfsr_value = 0x8f100000;
1169
1170                 rtn_value = rtas_call(spu_rtas_token, 3, 1, NULL,
1171                                       subfunc, cbe_cpu_to_node(cpu),
1172                                       lfsr_value);
1173
1174                 if (unlikely(rtn_value != 0)) {
1175                         printk(KERN_ERR
1176                                "%s: rtas call ibm,cbe-spu-perftools " \
1177                                "failed, return = %d\n",
1178                                __func__, rtn_value);
1179                 }
1180
1181                 /* Deactivate the signals */
1182                 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1183         }
1184
1185         stop_spu_profiling_cycles();
1186 }
1187
1188 static void cell_global_stop_spu_events(void)
1189 {
1190         int cpu;
1191         oprofile_running = 0;
1192
1193         stop_spu_profiling_events();
1194         smp_wmb();
1195
1196         for_each_online_cpu(cpu) {
1197                 if (cbe_get_hw_thread_id(cpu))
1198                         continue;
1199
1200                 cbe_sync_irq(cbe_cpu_to_node(cpu));
1201                 /* Stop the counters */
1202                 cbe_disable_pm(cpu);
1203                 cbe_write_pm07_control(cpu, 0, 0);
1204
1205                 /* Deactivate the signals */
1206                 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1207
1208                 /* Deactivate interrupts */
1209                 cbe_disable_pm_interrupts(cpu);
1210         }
1211         del_timer_sync(&timer_spu_event_swap);
1212 }
1213
1214 static void cell_global_stop_ppu(void)
1215 {
1216         int cpu;
1217
1218         /*
1219          * This routine will be called once for the system.
1220          * There is one performance monitor per node, so we
1221          * only need to perform this function once per node.
1222          */
1223         del_timer_sync(&timer_virt_cntr);
1224         oprofile_running = 0;
1225         smp_wmb();
1226
1227         for_each_online_cpu(cpu) {
1228                 if (cbe_get_hw_thread_id(cpu))
1229                         continue;
1230
1231                 cbe_sync_irq(cbe_cpu_to_node(cpu));
1232                 /* Stop the counters */
1233                 cbe_disable_pm(cpu);
1234
1235                 /* Deactivate the signals */
1236                 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1237
1238                 /* Deactivate interrupts */
1239                 cbe_disable_pm_interrupts(cpu);
1240         }
1241 }
1242
1243 static void cell_global_stop(void)
1244 {
1245         if (profiling_mode == PPU_PROFILING)
1246                 cell_global_stop_ppu();
1247         else if (profiling_mode == SPU_PROFILING_EVENTS)
1248                 cell_global_stop_spu_events();
1249         else
1250                 cell_global_stop_spu_cycles();
1251 }
1252
1253 static int cell_global_start_spu_cycles(struct op_counter_config *ctr)
1254 {
1255         int subfunc;
1256         unsigned int lfsr_value;
1257         int cpu;
1258         int ret;
1259         int rtas_error;
1260         unsigned int cpu_khzfreq = 0;
1261
1262         /* The SPU profiling uses time-based profiling based on
1263          * cpu frequency, so if configured with the CPU_FREQ
1264          * option, we should detect frequency changes and react
1265          * accordingly.
1266          */
1267 #ifdef CONFIG_CPU_FREQ
1268         ret = cpufreq_register_notifier(&cpu_freq_notifier_block,
1269                                         CPUFREQ_TRANSITION_NOTIFIER);
1270         if (ret < 0)
1271                 /* this is not a fatal error */
1272                 printk(KERN_ERR "CPU freq change registration failed: %d\n",
1273                        ret);
1274
1275         else
1276                 cpu_khzfreq = cpufreq_quick_get(smp_processor_id());
1277 #endif
1278
1279         set_spu_profiling_frequency(cpu_khzfreq, spu_cycle_reset);
1280
1281         for_each_online_cpu(cpu) {
1282                 if (cbe_get_hw_thread_id(cpu))
1283                         continue;
1284
1285                 /*
1286                  * Setup SPU cycle-based profiling.
1287                  * Set perf_mon_control bit 0 to a zero before
1288                  * enabling spu collection hardware.
1289                  */
1290                 cbe_write_pm(cpu, pm_control, 0);
1291
1292                 if (spu_cycle_reset > MAX_SPU_COUNT)
1293                         /* use largest possible value */
1294                         lfsr_value = calculate_lfsr(MAX_SPU_COUNT-1);
1295                 else
1296                         lfsr_value = calculate_lfsr(spu_cycle_reset);
1297
1298                 /* must use a non zero value. Zero disables data collection. */
1299                 if (lfsr_value == 0)
1300                         lfsr_value = calculate_lfsr(1);
1301
1302                 lfsr_value = lfsr_value << 8; /* shift lfsr to correct
1303                                                 * register location
1304                                                 */
1305
1306                 /* debug bus setup */
1307                 ret = pm_rtas_activate_spu_profiling(cbe_cpu_to_node(cpu));
1308
1309                 if (unlikely(ret)) {
1310                         rtas_error = ret;
1311                         goto out;
1312                 }
1313
1314
1315                 subfunc = 2;    /* 2 - activate SPU tracing, 3 - deactivate */
1316
1317                 /* start profiling */
1318                 ret = rtas_call(spu_rtas_token, 3, 1, NULL, subfunc,
1319                   cbe_cpu_to_node(cpu), lfsr_value);
1320
1321                 if (unlikely(ret != 0)) {
1322                         printk(KERN_ERR
1323                                "%s: rtas call ibm,cbe-spu-perftools failed, " \
1324                                "return = %d\n", __func__, ret);
1325                         rtas_error = -EIO;
1326                         goto out;
1327                 }
1328         }
1329
1330         rtas_error = start_spu_profiling_cycles(spu_cycle_reset);
1331         if (rtas_error)
1332                 goto out_stop;
1333
1334         oprofile_running = 1;
1335         return 0;
1336
1337 out_stop:
1338         cell_global_stop_spu_cycles();  /* clean up the PMU/debug bus */
1339 out:
1340         return rtas_error;
1341 }
1342
1343 static int cell_global_start_spu_events(struct op_counter_config *ctr)
1344 {
1345         int cpu;
1346         u32 interrupt_mask = 0;
1347         int rtn = 0;
1348
1349         hdw_thread = 0;
1350
1351         /* spu event profiling, uses the performance counters to generate
1352          * an interrupt.  The hardware is setup to store the SPU program
1353          * counter into the trace array.  The occurrence mode is used to
1354          * enable storing data to the trace buffer.  The bits are set
1355          * to send/store the SPU address in the trace buffer.  The debug
1356          * bus must be setup to route the SPU program counter onto the
1357          * debug bus.  The occurrence data in the trace buffer is not used.
1358          */
1359
1360         /* This routine gets called once for the system.
1361          * There is one performance monitor per node, so we
1362          * only need to perform this function once per node.
1363          */
1364
1365         for_each_online_cpu(cpu) {
1366                 if (cbe_get_hw_thread_id(cpu))
1367                         continue;
1368
1369                 /*
1370                  * Setup SPU event-based profiling.
1371                  * Set perf_mon_control bit 0 to a zero before
1372                  * enabling spu collection hardware.
1373                  *
1374                  * Only support one SPU event on one SPU per node.
1375                  */
1376                 if (ctr_enabled & 1) {
1377                         cbe_write_ctr(cpu, 0, reset_value[0]);
1378                         enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
1379                         interrupt_mask |=
1380                                 CBE_PM_CTR_OVERFLOW_INTR(0);
1381                 } else {
1382                         /* Disable counter */
1383                         cbe_write_pm07_control(cpu, 0, 0);
1384                 }
1385
1386                 cbe_get_and_clear_pm_interrupts(cpu);
1387                 cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1388                 cbe_enable_pm(cpu);
1389
1390                 /* clear the trace buffer */
1391                 cbe_write_pm(cpu, trace_address, 0);
1392         }
1393
1394         /* Start the timer to time slice collecting the event profile
1395          * on each of the SPUs.  Note, can collect profile on one SPU
1396          * per node at a time.
1397          */
1398         start_spu_event_swap();
1399         start_spu_profiling_events();
1400         oprofile_running = 1;
1401         smp_wmb();
1402
1403         return rtn;
1404 }
1405
1406 static int cell_global_start_ppu(struct op_counter_config *ctr)
1407 {
1408         u32 cpu, i;
1409         u32 interrupt_mask = 0;
1410
1411         /* This routine gets called once for the system.
1412          * There is one performance monitor per node, so we
1413          * only need to perform this function once per node.
1414          */
1415         for_each_online_cpu(cpu) {
1416                 if (cbe_get_hw_thread_id(cpu))
1417                         continue;
1418
1419                 interrupt_mask = 0;
1420
1421                 for (i = 0; i < num_counters; ++i) {
1422                         if (ctr_enabled & (1 << i)) {
1423                                 cbe_write_ctr(cpu, i, reset_value[i]);
1424                                 enable_ctr(cpu, i, pm_regs.pm07_cntrl);
1425                                 interrupt_mask |=
1426                                     CBE_PM_CTR_OVERFLOW_INTR(i);
1427                         } else {
1428                                 /* Disable counter */
1429                                 cbe_write_pm07_control(cpu, i, 0);
1430                         }
1431                 }
1432
1433                 cbe_get_and_clear_pm_interrupts(cpu);
1434                 cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1435                 cbe_enable_pm(cpu);
1436         }
1437
1438         virt_cntr_inter_mask = interrupt_mask;
1439         oprofile_running = 1;
1440         smp_wmb();
1441
1442         /*
1443          * NOTE: start_virt_cntrs will result in cell_virtual_cntr() being
1444          * executed which manipulates the PMU.  We start the "virtual counter"
1445          * here so that we do not need to synchronize access to the PMU in
1446          * the above for-loop.
1447          */
1448         start_virt_cntrs();
1449
1450         return 0;
1451 }
1452
1453 static int cell_global_start(struct op_counter_config *ctr)
1454 {
1455         if (profiling_mode == SPU_PROFILING_CYCLES)
1456                 return cell_global_start_spu_cycles(ctr);
1457         else if (profiling_mode == SPU_PROFILING_EVENTS)
1458                 return cell_global_start_spu_events(ctr);
1459         else
1460                 return cell_global_start_ppu(ctr);
1461 }
1462
1463
1464 /* The SPU interrupt handler
1465  *
1466  * SPU event profiling works as follows:
1467  * The pm_signal[0] holds the one SPU event to be measured.  It is routed on
1468  * the debug bus using word 0 or 1.  The value of pm_signal[1] and
1469  * pm_signal[2] contain the necessary events to route the SPU program
1470  * counter for the selected SPU onto the debug bus using words 2 and 3.
1471  * The pm_interval register is setup to write the SPU PC value into the
1472  * trace buffer at the maximum rate possible.  The trace buffer is configured
1473  * to store the PCs, wrapping when it is full.  The performance counter is
1474  * intialized to the max hardware count minus the number of events, N, between
1475  * samples.  Once the N events have occured, a HW counter overflow occurs
1476  * causing the generation of a HW counter interrupt which also stops the
1477  * writing of the SPU PC values to the trace buffer.  Hence the last PC
1478  * written to the trace buffer is the SPU PC that we want.  Unfortunately,
1479  * we have to read from the beginning of the trace buffer to get to the
1480  * last value written.  We just hope the PPU has nothing better to do then
1481  * service this interrupt. The PC for the specific SPU being profiled is
1482  * extracted from the trace buffer processed and stored.  The trace buffer
1483  * is cleared, interrupts are cleared, the counter is reset to max - N.
1484  * A kernel timer is used to periodically call the routine spu_evnt_swap()
1485  * to switch to the next physical SPU in the node to profile in round robbin
1486  * order.  This way data is collected for all SPUs on the node. It does mean
1487  * that we need to use a relatively small value of N to ensure enough samples
1488  * on each SPU are collected each SPU is being profiled 1/8 of the time.
1489  * It may also be necessary to use a longer sample collection period.
1490  */
1491 static void cell_handle_interrupt_spu(struct pt_regs *regs,
1492                                       struct op_counter_config *ctr)
1493 {
1494         u32 cpu, cpu_tmp;
1495         u64 trace_entry;
1496         u32 interrupt_mask;
1497         u64 trace_buffer[2];
1498         u64 last_trace_buffer;
1499         u32 sample;
1500         u32 trace_addr;
1501         unsigned long sample_array_lock_flags;
1502         int spu_num;
1503         unsigned long flags;
1504
1505         /* Make sure spu event interrupt handler and spu event swap
1506          * don't access the counters simultaneously.
1507          */
1508         cpu = smp_processor_id();
1509         spin_lock_irqsave(&cntr_lock, flags);
1510
1511         cpu_tmp = cpu;
1512         cbe_disable_pm(cpu);
1513
1514         interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1515
1516         sample = 0xABCDEF;
1517         trace_entry = 0xfedcba;
1518         last_trace_buffer = 0xdeadbeaf;
1519
1520         if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1521                 /* disable writes to trace buff */
1522                 cbe_write_pm(cpu, pm_interval, 0);
1523
1524                 /* only have one perf cntr being used, cntr 0 */
1525                 if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(0))
1526                             && ctr[0].enabled)
1527                         /* The SPU PC values will be read
1528                          * from the trace buffer, reset counter
1529                          */
1530
1531                         cbe_write_ctr(cpu, 0, reset_value[0]);
1532
1533                 trace_addr = cbe_read_pm(cpu, trace_address);
1534
1535                 while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
1536                         /* There is data in the trace buffer to process
1537                          * Read the buffer until you get to the last
1538                          * entry.  This is the value we want.
1539                          */
1540
1541                         cbe_read_trace_buffer(cpu, trace_buffer);
1542                         trace_addr = cbe_read_pm(cpu, trace_address);
1543                 }
1544
1545                 /* SPU Address 16 bit count format for 128 bit
1546                  * HW trace buffer is used for the SPU PC storage
1547                  *    HDR bits          0:15
1548                  *    SPU Addr 0 bits   16:31
1549                  *    SPU Addr 1 bits   32:47
1550                  *    unused bits       48:127
1551                  *
1552                  * HDR: bit4 = 1 SPU Address 0 valid
1553                  * HDR: bit5 = 1 SPU Address 1 valid
1554                  *  - unfortunately, the valid bits don't seem to work
1555                  *
1556                  * Note trace_buffer[0] holds bits 0:63 of the HW
1557                  * trace buffer, trace_buffer[1] holds bits 64:127
1558                  */
1559
1560                 trace_entry = trace_buffer[0]
1561                         & 0x00000000FFFF0000;
1562
1563                 /* only top 16 of the 18 bit SPU PC address
1564                  * is stored in trace buffer, hence shift right
1565                  * by 16 -2 bits */
1566                 sample = trace_entry >> 14;
1567                 last_trace_buffer = trace_buffer[0];
1568
1569                 spu_num = spu_evnt_phys_spu_indx
1570                         + (cbe_cpu_to_node(cpu) * NUM_SPUS_PER_NODE);
1571
1572                 /* make sure only one process at a time is calling
1573                  * spu_sync_buffer()
1574                  */
1575                 spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
1576                                   sample_array_lock_flags);
1577                 spu_sync_buffer(spu_num, &sample, 1);
1578                 spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
1579                                        sample_array_lock_flags);
1580
1581                 smp_wmb();    /* insure spu event buffer updates are written
1582                                * don't want events intermingled... */
1583
1584                 /* The counters were frozen by the interrupt.
1585                  * Reenable the interrupt and restart the counters.
1586                  */
1587                 cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1588                 cbe_enable_pm_interrupts(cpu, hdw_thread,
1589                                          virt_cntr_inter_mask);
1590
1591                 /* clear the trace buffer, re-enable writes to trace buff */
1592                 cbe_write_pm(cpu, trace_address, 0);
1593                 cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1594
1595                 /* The writes to the various performance counters only writes
1596                  * to a latch.  The new values (interrupt setting bits, reset
1597                  * counter value etc.) are not copied to the actual registers
1598                  * until the performance monitor is enabled.  In order to get
1599                  * this to work as desired, the permormance monitor needs to
1600                  * be disabled while writing to the latches.  This is a
1601                  * HW design issue.
1602                  */
1603                 write_pm_cntrl(cpu);
1604                 cbe_enable_pm(cpu);
1605         }
1606         spin_unlock_irqrestore(&cntr_lock, flags);
1607 }
1608
1609 static void cell_handle_interrupt_ppu(struct pt_regs *regs,
1610                                       struct op_counter_config *ctr)
1611 {
1612         u32 cpu;
1613         u64 pc;
1614         int is_kernel;
1615         unsigned long flags = 0;
1616         u32 interrupt_mask;
1617         int i;
1618
1619         cpu = smp_processor_id();
1620
1621         /*
1622          * Need to make sure the interrupt handler and the virt counter
1623          * routine are not running at the same time. See the
1624          * cell_virtual_cntr() routine for additional comments.
1625          */
1626         spin_lock_irqsave(&cntr_lock, flags);
1627
1628         /*
1629          * Need to disable and reenable the performance counters
1630          * to get the desired behavior from the hardware.  This
1631          * is hardware specific.
1632          */
1633
1634         cbe_disable_pm(cpu);
1635
1636         interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1637
1638         /*
1639          * If the interrupt mask has been cleared, then the virt cntr
1640          * has cleared the interrupt.  When the thread that generated
1641          * the interrupt is restored, the data count will be restored to
1642          * 0xffffff0 to cause the interrupt to be regenerated.
1643          */
1644
1645         if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1646                 pc = regs->nip;
1647                 is_kernel = is_kernel_addr(pc);
1648
1649                 for (i = 0; i < num_counters; ++i) {
1650                         if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(i))
1651                             && ctr[i].enabled) {
1652                                 oprofile_add_ext_sample(pc, regs, i, is_kernel);
1653                                 cbe_write_ctr(cpu, i, reset_value[i]);
1654                         }
1655                 }
1656
1657                 /*
1658                  * The counters were frozen by the interrupt.
1659                  * Reenable the interrupt and restart the counters.
1660                  * If there was a race between the interrupt handler and
1661                  * the virtual counter routine.  The virutal counter
1662                  * routine may have cleared the interrupts.  Hence must
1663                  * use the virt_cntr_inter_mask to re-enable the interrupts.
1664                  */
1665                 cbe_enable_pm_interrupts(cpu, hdw_thread,
1666                                          virt_cntr_inter_mask);
1667
1668                 /*
1669                  * The writes to the various performance counters only writes
1670                  * to a latch.  The new values (interrupt setting bits, reset
1671                  * counter value etc.) are not copied to the actual registers
1672                  * until the performance monitor is enabled.  In order to get
1673                  * this to work as desired, the permormance monitor needs to
1674                  * be disabled while writing to the latches.  This is a
1675                  * HW design issue.
1676                  */
1677                 cbe_enable_pm(cpu);
1678         }
1679         spin_unlock_irqrestore(&cntr_lock, flags);
1680 }
1681
1682 static void cell_handle_interrupt(struct pt_regs *regs,
1683                                   struct op_counter_config *ctr)
1684 {
1685         if (profiling_mode == PPU_PROFILING)
1686                 cell_handle_interrupt_ppu(regs, ctr);
1687         else
1688                 cell_handle_interrupt_spu(regs, ctr);
1689 }
1690
1691 /*
1692  * This function is called from the generic OProfile
1693  * driver.  When profiling PPUs, we need to do the
1694  * generic sync start; otherwise, do spu_sync_start.
1695  */
1696 static int cell_sync_start(void)
1697 {
1698         if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1699             (profiling_mode == SPU_PROFILING_EVENTS))
1700                 return spu_sync_start();
1701         else
1702                 return DO_GENERIC_SYNC;
1703 }
1704
1705 static int cell_sync_stop(void)
1706 {
1707         if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1708             (profiling_mode == SPU_PROFILING_EVENTS))
1709                 return spu_sync_stop();
1710         else
1711                 return 1;
1712 }
1713
1714 struct op_powerpc_model op_model_cell = {
1715         .reg_setup = cell_reg_setup,
1716         .cpu_setup = cell_cpu_setup,
1717         .global_start = cell_global_start,
1718         .global_stop = cell_global_stop,
1719         .sync_start = cell_sync_start,
1720         .sync_stop = cell_sync_stop,
1721         .handle_interrupt = cell_handle_interrupt,
1722 };