include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[safe/jmp/linux-2.6] / arch / ia64 / sn / pci / tioce_provider.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2003-2006 Silicon Graphics, Inc.  All Rights Reserved.
7  */
8
9 #include <linux/types.h>
10 #include <linux/interrupt.h>
11 #include <linux/slab.h>
12 #include <linux/pci.h>
13 #include <asm/sn/sn_sal.h>
14 #include <asm/sn/addrs.h>
15 #include <asm/sn/io.h>
16 #include <asm/sn/pcidev.h>
17 #include <asm/sn/pcibus_provider_defs.h>
18 #include <asm/sn/tioce_provider.h>
19
20 /*
21  * 1/26/2006
22  *
23  * WAR for SGI PV 944642.  For revA TIOCE, need to use the following recipe
24  * (taken from the above PV) before and after accessing tioce internal MMR's
25  * to avoid tioce lockups.
26  *
27  * The recipe as taken from the PV:
28  *
29  *      if(mmr address < 0x45000) {
30  *              if(mmr address == 0 or 0x80)
31  *                      mmr wrt or read address 0xc0
32  *              else if(mmr address == 0x148 or 0x200)
33  *                      mmr wrt or read address 0x28
34  *              else
35  *                      mmr wrt or read address 0x158
36  *
37  *              do desired mmr access (rd or wrt)
38  *
39  *              if(mmr address == 0x100)
40  *                      mmr wrt or read address 0x38
41  *              mmr wrt or read address 0xb050
42  *      } else
43  *              do desired mmr access
44  *
45  * According to hw, we can use reads instead of writes to the above address
46  *
47  * Note this WAR can only to be used for accessing internal MMR's in the
48  * TIOCE Coretalk Address Range 0x0 - 0x07ff_ffff.  This includes the
49  * "Local CE Registers and Memories" and "PCI Compatible Config Space" address
50  * spaces from table 2-1 of the "CE Programmer's Reference Overview" document.
51  *
52  * All registers defined in struct tioce will meet that criteria.
53  */
54
55 static void inline
56 tioce_mmr_war_pre(struct tioce_kernel *kern, void __iomem *mmr_addr)
57 {
58         u64 mmr_base;
59         u64 mmr_offset;
60
61         if (kern->ce_common->ce_rev != TIOCE_REV_A)
62                 return;
63
64         mmr_base = kern->ce_common->ce_pcibus.bs_base;
65         mmr_offset = (unsigned long)mmr_addr - mmr_base;
66
67         if (mmr_offset < 0x45000) {
68                 u64 mmr_war_offset;
69
70                 if (mmr_offset == 0 || mmr_offset == 0x80)
71                         mmr_war_offset = 0xc0;
72                 else if (mmr_offset == 0x148 || mmr_offset == 0x200)
73                         mmr_war_offset = 0x28;
74                 else
75                         mmr_war_offset = 0x158;
76
77                 readq_relaxed((void __iomem *)(mmr_base + mmr_war_offset));
78         }
79 }
80
81 static void inline
82 tioce_mmr_war_post(struct tioce_kernel *kern, void __iomem *mmr_addr)
83 {
84         u64 mmr_base;
85         u64 mmr_offset;
86
87         if (kern->ce_common->ce_rev != TIOCE_REV_A)
88                 return;
89
90         mmr_base = kern->ce_common->ce_pcibus.bs_base;
91         mmr_offset = (unsigned long)mmr_addr - mmr_base;
92
93         if (mmr_offset < 0x45000) {
94                 if (mmr_offset == 0x100)
95                         readq_relaxed((void __iomem *)(mmr_base + 0x38));
96                 readq_relaxed((void __iomem *)(mmr_base + 0xb050));
97         }
98 }
99
100 /* load mmr contents into a variable */
101 #define tioce_mmr_load(kern, mmrp, varp) do {\
102         tioce_mmr_war_pre(kern, mmrp); \
103         *(varp) = readq_relaxed(mmrp); \
104         tioce_mmr_war_post(kern, mmrp); \
105 } while (0)
106
107 /* store variable contents into mmr */
108 #define tioce_mmr_store(kern, mmrp, varp) do {\
109         tioce_mmr_war_pre(kern, mmrp); \
110         writeq(*varp, mmrp); \
111         tioce_mmr_war_post(kern, mmrp); \
112 } while (0)
113
114 /* store immediate value into mmr */
115 #define tioce_mmr_storei(kern, mmrp, val) do {\
116         tioce_mmr_war_pre(kern, mmrp); \
117         writeq(val, mmrp); \
118         tioce_mmr_war_post(kern, mmrp); \
119 } while (0)
120
121 /* set bits (immediate value) into mmr */
122 #define tioce_mmr_seti(kern, mmrp, bits) do {\
123         u64 tmp; \
124         tioce_mmr_load(kern, mmrp, &tmp); \
125         tmp |= (bits); \
126         tioce_mmr_store(kern, mmrp, &tmp); \
127 } while (0)
128
129 /* clear bits (immediate value) into mmr */
130 #define tioce_mmr_clri(kern, mmrp, bits) do { \
131         u64 tmp; \
132         tioce_mmr_load(kern, mmrp, &tmp); \
133         tmp &= ~(bits); \
134         tioce_mmr_store(kern, mmrp, &tmp); \
135 } while (0)
136
137 /**
138  * Bus address ranges for the 5 flavors of TIOCE DMA
139  */
140
141 #define TIOCE_D64_MIN   0x8000000000000000UL
142 #define TIOCE_D64_MAX   0xffffffffffffffffUL
143 #define TIOCE_D64_ADDR(a)       ((a) >= TIOCE_D64_MIN)
144
145 #define TIOCE_D32_MIN   0x0000000080000000UL
146 #define TIOCE_D32_MAX   0x00000000ffffffffUL
147 #define TIOCE_D32_ADDR(a)       ((a) >= TIOCE_D32_MIN && (a) <= TIOCE_D32_MAX)
148
149 #define TIOCE_M32_MIN   0x0000000000000000UL
150 #define TIOCE_M32_MAX   0x000000007fffffffUL
151 #define TIOCE_M32_ADDR(a)       ((a) >= TIOCE_M32_MIN && (a) <= TIOCE_M32_MAX)
152
153 #define TIOCE_M40_MIN   0x0000004000000000UL
154 #define TIOCE_M40_MAX   0x0000007fffffffffUL
155 #define TIOCE_M40_ADDR(a)       ((a) >= TIOCE_M40_MIN && (a) <= TIOCE_M40_MAX)
156
157 #define TIOCE_M40S_MIN  0x0000008000000000UL
158 #define TIOCE_M40S_MAX  0x000000ffffffffffUL
159 #define TIOCE_M40S_ADDR(a)      ((a) >= TIOCE_M40S_MIN && (a) <= TIOCE_M40S_MAX)
160
161 /*
162  * ATE manipulation macros.
163  */
164
165 #define ATE_PAGESHIFT(ps)       (__ffs(ps))
166 #define ATE_PAGEMASK(ps)        ((ps)-1)
167
168 #define ATE_PAGE(x, ps) ((x) >> ATE_PAGESHIFT(ps))
169 #define ATE_NPAGES(start, len, pagesize) \
170         (ATE_PAGE((start)+(len)-1, pagesize) - ATE_PAGE(start, pagesize) + 1)
171
172 #define ATE_VALID(ate)  ((ate) & (1UL << 63))
173 #define ATE_MAKE(addr, ps, msi) \
174         (((addr) & ~ATE_PAGEMASK(ps)) | (1UL << 63) | ((msi)?(1UL << 62):0))
175
176 /*
177  * Flavors of ate-based mapping supported by tioce_alloc_map()
178  */
179
180 #define TIOCE_ATE_M32   1
181 #define TIOCE_ATE_M40   2
182 #define TIOCE_ATE_M40S  3
183
184 #define KB(x)   ((u64)(x) << 10)
185 #define MB(x)   ((u64)(x) << 20)
186 #define GB(x)   ((u64)(x) << 30)
187
188 /**
189  * tioce_dma_d64 - create a DMA mapping using 64-bit direct mode
190  * @ct_addr: system coretalk address
191  *
192  * Map @ct_addr into 64-bit CE bus space.  No device context is necessary
193  * and no CE mapping are consumed.
194  *
195  * Bits 53:0 come from the coretalk address.  The remaining bits are set as
196  * follows:
197  *
198  * 63    - must be 1 to indicate d64 mode to CE hardware
199  * 62    - barrier bit ... controlled with tioce_dma_barrier()
200  * 61    - msi bit ... specified through dma_flags
201  * 60:54 - reserved, MBZ
202  */
203 static u64
204 tioce_dma_d64(unsigned long ct_addr, int dma_flags)
205 {
206         u64 bus_addr;
207
208         bus_addr = ct_addr | (1UL << 63);
209         if (dma_flags & SN_DMA_MSI)
210                 bus_addr |= (1UL << 61);
211
212         return bus_addr;
213 }
214
215 /**
216  * pcidev_to_tioce - return misc ce related pointers given a pci_dev
217  * @pci_dev: pci device context
218  * @base: ptr to store struct tioce_mmr * for the CE holding this device
219  * @kernel: ptr to store struct tioce_kernel * for the CE holding this device
220  * @port: ptr to store the CE port number that this device is on
221  *
222  * Return pointers to various CE-related structures for the CE upstream of
223  * @pci_dev.
224  */
225 static inline void
226 pcidev_to_tioce(struct pci_dev *pdev, struct tioce __iomem **base,
227                 struct tioce_kernel **kernel, int *port)
228 {
229         struct pcidev_info *pcidev_info;
230         struct tioce_common *ce_common;
231         struct tioce_kernel *ce_kernel;
232
233         pcidev_info = SN_PCIDEV_INFO(pdev);
234         ce_common = (struct tioce_common *)pcidev_info->pdi_pcibus_info;
235         ce_kernel = (struct tioce_kernel *)ce_common->ce_kernel_private;
236
237         if (base)
238                 *base = (struct tioce __iomem *)ce_common->ce_pcibus.bs_base;
239         if (kernel)
240                 *kernel = ce_kernel;
241
242         /*
243          * we use port as a zero-based value internally, even though the
244          * documentation is 1-based.
245          */
246         if (port)
247                 *port =
248                     (pdev->bus->number < ce_kernel->ce_port1_secondary) ? 0 : 1;
249 }
250
251 /**
252  * tioce_alloc_map - Given a coretalk address, map it to pcie bus address
253  * space using one of the various ATE-based address modes.
254  * @ce_kern: tioce context
255  * @type: map mode to use
256  * @port: 0-based port that the requesting device is downstream of
257  * @ct_addr: the coretalk address to map
258  * @len: number of bytes to map
259  *
260  * Given the addressing type, set up various parameters that define the
261  * ATE pool to use.  Search for a contiguous block of entries to cover the
262  * length, and if enough resources exist, fill in the ATEs and construct a
263  * tioce_dmamap struct to track the mapping.
264  */
265 static u64
266 tioce_alloc_map(struct tioce_kernel *ce_kern, int type, int port,
267                 u64 ct_addr, int len, int dma_flags)
268 {
269         int i;
270         int j;
271         int first;
272         int last;
273         int entries;
274         int nates;
275         u64 pagesize;
276         int msi_capable, msi_wanted;
277         u64 *ate_shadow;
278         u64 __iomem *ate_reg;
279         u64 addr;
280         struct tioce __iomem *ce_mmr;
281         u64 bus_base;
282         struct tioce_dmamap *map;
283
284         ce_mmr = (struct tioce __iomem *)ce_kern->ce_common->ce_pcibus.bs_base;
285
286         switch (type) {
287         case TIOCE_ATE_M32:
288                 /*
289                  * The first 64 entries of the ate3240 pool are dedicated to
290                  * super-page (TIOCE_ATE_M40S) mode.
291                  */
292                 first = 64;
293                 entries = TIOCE_NUM_M3240_ATES - 64;
294                 ate_shadow = ce_kern->ce_ate3240_shadow;
295                 ate_reg = ce_mmr->ce_ure_ate3240;
296                 pagesize = ce_kern->ce_ate3240_pagesize;
297                 bus_base = TIOCE_M32_MIN;
298                 msi_capable = 1;
299                 break;
300         case TIOCE_ATE_M40:
301                 first = 0;
302                 entries = TIOCE_NUM_M40_ATES;
303                 ate_shadow = ce_kern->ce_ate40_shadow;
304                 ate_reg = ce_mmr->ce_ure_ate40;
305                 pagesize = MB(64);
306                 bus_base = TIOCE_M40_MIN;
307                 msi_capable = 0;
308                 break;
309         case TIOCE_ATE_M40S:
310                 /*
311                  * ate3240 entries 0-31 are dedicated to port1 super-page
312                  * mappings.  ate3240 entries 32-63 are dedicated to port2.
313                  */
314                 first = port * 32;
315                 entries = 32;
316                 ate_shadow = ce_kern->ce_ate3240_shadow;
317                 ate_reg = ce_mmr->ce_ure_ate3240;
318                 pagesize = GB(16);
319                 bus_base = TIOCE_M40S_MIN;
320                 msi_capable = 0;
321                 break;
322         default:
323                 return 0;
324         }
325
326         msi_wanted = dma_flags & SN_DMA_MSI;
327         if (msi_wanted && !msi_capable)
328                 return 0;
329
330         nates = ATE_NPAGES(ct_addr, len, pagesize);
331         if (nates > entries)
332                 return 0;
333
334         last = first + entries - nates;
335         for (i = first; i <= last; i++) {
336                 if (ATE_VALID(ate_shadow[i]))
337                         continue;
338
339                 for (j = i; j < i + nates; j++)
340                         if (ATE_VALID(ate_shadow[j]))
341                                 break;
342
343                 if (j >= i + nates)
344                         break;
345         }
346
347         if (i > last)
348                 return 0;
349
350         map = kzalloc(sizeof(struct tioce_dmamap), GFP_ATOMIC);
351         if (!map)
352                 return 0;
353
354         addr = ct_addr;
355         for (j = 0; j < nates; j++) {
356                 u64 ate;
357
358                 ate = ATE_MAKE(addr, pagesize, msi_wanted);
359                 ate_shadow[i + j] = ate;
360                 tioce_mmr_storei(ce_kern, &ate_reg[i + j], ate);
361                 addr += pagesize;
362         }
363
364         map->refcnt = 1;
365         map->nbytes = nates * pagesize;
366         map->ct_start = ct_addr & ~ATE_PAGEMASK(pagesize);
367         map->pci_start = bus_base + (i * pagesize);
368         map->ate_hw = &ate_reg[i];
369         map->ate_shadow = &ate_shadow[i];
370         map->ate_count = nates;
371
372         list_add(&map->ce_dmamap_list, &ce_kern->ce_dmamap_list);
373
374         return (map->pci_start + (ct_addr - map->ct_start));
375 }
376
377 /**
378  * tioce_dma_d32 - create a DMA mapping using 32-bit direct mode
379  * @pdev: linux pci_dev representing the function
380  * @paddr: system physical address
381  *
382  * Map @paddr into 32-bit bus space of the CE associated with @pcidev_info.
383  */
384 static u64
385 tioce_dma_d32(struct pci_dev *pdev, u64 ct_addr, int dma_flags)
386 {
387         int dma_ok;
388         int port;
389         struct tioce __iomem *ce_mmr;
390         struct tioce_kernel *ce_kern;
391         u64 ct_upper;
392         u64 ct_lower;
393         dma_addr_t bus_addr;
394
395         if (dma_flags & SN_DMA_MSI)
396                 return 0;
397
398         ct_upper = ct_addr & ~0x3fffffffUL;
399         ct_lower = ct_addr & 0x3fffffffUL;
400
401         pcidev_to_tioce(pdev, &ce_mmr, &ce_kern, &port);
402
403         if (ce_kern->ce_port[port].dirmap_refcnt == 0) {
404                 u64 tmp;
405
406                 ce_kern->ce_port[port].dirmap_shadow = ct_upper;
407                 tioce_mmr_storei(ce_kern, &ce_mmr->ce_ure_dir_map[port],
408                                  ct_upper);
409                 tmp = ce_mmr->ce_ure_dir_map[port];
410                 dma_ok = 1;
411         } else
412                 dma_ok = (ce_kern->ce_port[port].dirmap_shadow == ct_upper);
413
414         if (dma_ok) {
415                 ce_kern->ce_port[port].dirmap_refcnt++;
416                 bus_addr = TIOCE_D32_MIN + ct_lower;
417         } else
418                 bus_addr = 0;
419
420         return bus_addr;
421 }
422
423 /**
424  * tioce_dma_barrier - swizzle a TIOCE bus address to include or exclude
425  * the barrier bit.
426  * @bus_addr:  bus address to swizzle
427  *
428  * Given a TIOCE bus address, set the appropriate bit to indicate barrier
429  * attributes.
430  */
431 static u64
432 tioce_dma_barrier(u64 bus_addr, int on)
433 {
434         u64 barrier_bit;
435
436         /* barrier not supported in M40/M40S mode */
437         if (TIOCE_M40_ADDR(bus_addr) || TIOCE_M40S_ADDR(bus_addr))
438                 return bus_addr;
439
440         if (TIOCE_D64_ADDR(bus_addr))
441                 barrier_bit = (1UL << 62);
442         else                    /* must be m32 or d32 */
443                 barrier_bit = (1UL << 30);
444
445         return (on) ? (bus_addr | barrier_bit) : (bus_addr & ~barrier_bit);
446 }
447
448 /**
449  * tioce_dma_unmap - release CE mapping resources
450  * @pdev: linux pci_dev representing the function
451  * @bus_addr: bus address returned by an earlier tioce_dma_map
452  * @dir: mapping direction (unused)
453  *
454  * Locate mapping resources associated with @bus_addr and release them.
455  * For mappings created using the direct modes there are no resources
456  * to release.
457  */
458 void
459 tioce_dma_unmap(struct pci_dev *pdev, dma_addr_t bus_addr, int dir)
460 {
461         int i;
462         int port;
463         struct tioce_kernel *ce_kern;
464         struct tioce __iomem *ce_mmr;
465         unsigned long flags;
466
467         bus_addr = tioce_dma_barrier(bus_addr, 0);
468         pcidev_to_tioce(pdev, &ce_mmr, &ce_kern, &port);
469
470         /* nothing to do for D64 */
471
472         if (TIOCE_D64_ADDR(bus_addr))
473                 return;
474
475         spin_lock_irqsave(&ce_kern->ce_lock, flags);
476
477         if (TIOCE_D32_ADDR(bus_addr)) {
478                 if (--ce_kern->ce_port[port].dirmap_refcnt == 0) {
479                         ce_kern->ce_port[port].dirmap_shadow = 0;
480                         tioce_mmr_storei(ce_kern, &ce_mmr->ce_ure_dir_map[port],
481                                          0);
482                 }
483         } else {
484                 struct tioce_dmamap *map;
485
486                 list_for_each_entry(map, &ce_kern->ce_dmamap_list,
487                                     ce_dmamap_list) {
488                         u64 last;
489
490                         last = map->pci_start + map->nbytes - 1;
491                         if (bus_addr >= map->pci_start && bus_addr <= last)
492                                 break;
493                 }
494
495                 if (&map->ce_dmamap_list == &ce_kern->ce_dmamap_list) {
496                         printk(KERN_WARNING
497                                "%s:  %s - no map found for bus_addr 0x%llx\n",
498                                __func__, pci_name(pdev), bus_addr);
499                 } else if (--map->refcnt == 0) {
500                         for (i = 0; i < map->ate_count; i++) {
501                                 map->ate_shadow[i] = 0;
502                                 tioce_mmr_storei(ce_kern, &map->ate_hw[i], 0);
503                         }
504
505                         list_del(&map->ce_dmamap_list);
506                         kfree(map);
507                 }
508         }
509
510         spin_unlock_irqrestore(&ce_kern->ce_lock, flags);
511 }
512
513 /**
514  * tioce_do_dma_map - map pages for PCI DMA
515  * @pdev: linux pci_dev representing the function
516  * @paddr: host physical address to map
517  * @byte_count: bytes to map
518  *
519  * This is the main wrapper for mapping host physical pages to CE PCI space.
520  * The mapping mode used is based on the device's dma_mask.
521  */
522 static u64
523 tioce_do_dma_map(struct pci_dev *pdev, u64 paddr, size_t byte_count,
524                  int barrier, int dma_flags)
525 {
526         unsigned long flags;
527         u64 ct_addr;
528         u64 mapaddr = 0;
529         struct tioce_kernel *ce_kern;
530         struct tioce_dmamap *map;
531         int port;
532         u64 dma_mask;
533
534         dma_mask = (barrier) ? pdev->dev.coherent_dma_mask : pdev->dma_mask;
535
536         /* cards must be able to address at least 31 bits */
537         if (dma_mask < 0x7fffffffUL)
538                 return 0;
539
540         if (SN_DMA_ADDRTYPE(dma_flags) == SN_DMA_ADDR_PHYS)
541                 ct_addr = PHYS_TO_TIODMA(paddr);
542         else
543                 ct_addr = paddr;
544
545         /*
546          * If the device can generate 64 bit addresses, create a D64 map.
547          */
548         if (dma_mask == ~0UL) {
549                 mapaddr = tioce_dma_d64(ct_addr, dma_flags);
550                 if (mapaddr)
551                         goto dma_map_done;
552         }
553
554         pcidev_to_tioce(pdev, NULL, &ce_kern, &port);
555
556         spin_lock_irqsave(&ce_kern->ce_lock, flags);
557
558         /*
559          * D64 didn't work ... See if we have an existing map that covers
560          * this address range.  Must account for devices dma_mask here since
561          * an existing map might have been done in a mode using more pci
562          * address bits than this device can support.
563          */
564         list_for_each_entry(map, &ce_kern->ce_dmamap_list, ce_dmamap_list) {
565                 u64 last;
566
567                 last = map->ct_start + map->nbytes - 1;
568                 if (ct_addr >= map->ct_start &&
569                     ct_addr + byte_count - 1 <= last &&
570                     map->pci_start <= dma_mask) {
571                         map->refcnt++;
572                         mapaddr = map->pci_start + (ct_addr - map->ct_start);
573                         break;
574                 }
575         }
576
577         /*
578          * If we don't have a map yet, and the card can generate 40
579          * bit addresses, try the M40/M40S modes.  Note these modes do not
580          * support a barrier bit, so if we need a consistent map these
581          * won't work.
582          */
583         if (!mapaddr && !barrier && dma_mask >= 0xffffffffffUL) {
584                 /*
585                  * We have two options for 40-bit mappings:  16GB "super" ATEs
586                  * and 64MB "regular" ATEs.  We'll try both if needed for a
587                  * given mapping but which one we try first depends on the
588                  * size.  For requests >64MB, prefer to use a super page with
589                  * regular as the fallback. Otherwise, try in the reverse order.
590                  */
591
592                 if (byte_count > MB(64)) {
593                         mapaddr = tioce_alloc_map(ce_kern, TIOCE_ATE_M40S,
594                                                   port, ct_addr, byte_count,
595                                                   dma_flags);
596                         if (!mapaddr)
597                                 mapaddr =
598                                     tioce_alloc_map(ce_kern, TIOCE_ATE_M40, -1,
599                                                     ct_addr, byte_count,
600                                                     dma_flags);
601                 } else {
602                         mapaddr = tioce_alloc_map(ce_kern, TIOCE_ATE_M40, -1,
603                                                   ct_addr, byte_count,
604                                                   dma_flags);
605                         if (!mapaddr)
606                                 mapaddr =
607                                     tioce_alloc_map(ce_kern, TIOCE_ATE_M40S,
608                                                     port, ct_addr, byte_count,
609                                                     dma_flags);
610                 }
611         }
612
613         /*
614          * 32-bit direct is the next mode to try
615          */
616         if (!mapaddr && dma_mask >= 0xffffffffUL)
617                 mapaddr = tioce_dma_d32(pdev, ct_addr, dma_flags);
618
619         /*
620          * Last resort, try 32-bit ATE-based map.
621          */
622         if (!mapaddr)
623                 mapaddr =
624                     tioce_alloc_map(ce_kern, TIOCE_ATE_M32, -1, ct_addr,
625                                     byte_count, dma_flags);
626
627         spin_unlock_irqrestore(&ce_kern->ce_lock, flags);
628
629 dma_map_done:
630         if (mapaddr && barrier)
631                 mapaddr = tioce_dma_barrier(mapaddr, 1);
632
633         return mapaddr;
634 }
635
636 /**
637  * tioce_dma - standard pci dma map interface
638  * @pdev: pci device requesting the map
639  * @paddr: system physical address to map into pci space
640  * @byte_count: # bytes to map
641  *
642  * Simply call tioce_do_dma_map() to create a map with the barrier bit clear
643  * in the address.
644  */
645 static u64
646 tioce_dma(struct pci_dev *pdev, unsigned long  paddr, size_t byte_count, int dma_flags)
647 {
648         return tioce_do_dma_map(pdev, paddr, byte_count, 0, dma_flags);
649 }
650
651 /**
652  * tioce_dma_consistent - consistent pci dma map interface
653  * @pdev: pci device requesting the map
654  * @paddr: system physical address to map into pci space
655  * @byte_count: # bytes to map
656  *
657  * Simply call tioce_do_dma_map() to create a map with the barrier bit set
658  * in the address.
659  */
660 static u64
661 tioce_dma_consistent(struct pci_dev *pdev, unsigned long  paddr, size_t byte_count, int dma_flags)
662 {
663         return tioce_do_dma_map(pdev, paddr, byte_count, 1, dma_flags);
664 }
665
666 /**
667  * tioce_error_intr_handler - SGI TIO CE error interrupt handler
668  * @irq: unused
669  * @arg: pointer to tioce_common struct for the given CE
670  *
671  * Handle a CE error interrupt.  Simply a wrapper around a SAL call which
672  * defers processing to the SGI prom.
673  */
674 static irqreturn_t
675 tioce_error_intr_handler(int irq, void *arg)
676 {
677         struct tioce_common *soft = arg;
678         struct ia64_sal_retval ret_stuff;
679         ret_stuff.status = 0;
680         ret_stuff.v0 = 0;
681
682         SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_ERROR_INTERRUPT,
683                         soft->ce_pcibus.bs_persist_segment,
684                         soft->ce_pcibus.bs_persist_busnum, 0, 0, 0, 0, 0);
685
686         if (ret_stuff.v0)
687                 panic("tioce_error_intr_handler:  Fatal TIOCE error");
688
689         return IRQ_HANDLED;
690 }
691
692 /**
693  * tioce_reserve_m32 - reserve M32 ATEs for the indicated address range
694  * @tioce_kernel: TIOCE context to reserve ATEs for
695  * @base: starting bus address to reserve
696  * @limit: last bus address to reserve
697  *
698  * If base/limit falls within the range of bus space mapped through the
699  * M32 space, reserve the resources corresponding to the range.
700  */
701 static void
702 tioce_reserve_m32(struct tioce_kernel *ce_kern, u64 base, u64 limit)
703 {
704         int ate_index, last_ate, ps;
705         struct tioce __iomem *ce_mmr;
706
707         ce_mmr = (struct tioce __iomem *)ce_kern->ce_common->ce_pcibus.bs_base;
708         ps = ce_kern->ce_ate3240_pagesize;
709         ate_index = ATE_PAGE(base, ps);
710         last_ate = ate_index + ATE_NPAGES(base, limit-base+1, ps) - 1;
711
712         if (ate_index < 64)
713                 ate_index = 64;
714
715         if (last_ate >= TIOCE_NUM_M3240_ATES)
716                 last_ate = TIOCE_NUM_M3240_ATES - 1;
717
718         while (ate_index <= last_ate) {
719                 u64 ate;
720
721                 ate = ATE_MAKE(0xdeadbeef, ps, 0);
722                 ce_kern->ce_ate3240_shadow[ate_index] = ate;
723                 tioce_mmr_storei(ce_kern, &ce_mmr->ce_ure_ate3240[ate_index],
724                                  ate);
725                 ate_index++;
726         }
727 }
728
729 /**
730  * tioce_kern_init - init kernel structures related to a given TIOCE
731  * @tioce_common: ptr to a cached tioce_common struct that originated in prom
732  */
733 static struct tioce_kernel *
734 tioce_kern_init(struct tioce_common *tioce_common)
735 {
736         int i;
737         int ps;
738         int dev;
739         u32 tmp;
740         unsigned int seg, bus;
741         struct tioce __iomem *tioce_mmr;
742         struct tioce_kernel *tioce_kern;
743
744         tioce_kern = kzalloc(sizeof(struct tioce_kernel), GFP_KERNEL);
745         if (!tioce_kern) {
746                 return NULL;
747         }
748
749         tioce_kern->ce_common = tioce_common;
750         spin_lock_init(&tioce_kern->ce_lock);
751         INIT_LIST_HEAD(&tioce_kern->ce_dmamap_list);
752         tioce_common->ce_kernel_private = (u64) tioce_kern;
753
754         /*
755          * Determine the secondary bus number of the port2 logical PPB.
756          * This is used to decide whether a given pci device resides on
757          * port1 or port2.  Note:  We don't have enough plumbing set up
758          * here to use pci_read_config_xxx() so use raw_pci_read().
759          */
760
761         seg = tioce_common->ce_pcibus.bs_persist_segment;
762         bus = tioce_common->ce_pcibus.bs_persist_busnum;
763
764         raw_pci_read(seg, bus, PCI_DEVFN(2, 0), PCI_SECONDARY_BUS, 1,&tmp);
765         tioce_kern->ce_port1_secondary = (u8) tmp;
766
767         /*
768          * Set PMU pagesize to the largest size available, and zero out
769          * the ATEs.
770          */
771
772         tioce_mmr = (struct tioce __iomem *)tioce_common->ce_pcibus.bs_base;
773         tioce_mmr_clri(tioce_kern, &tioce_mmr->ce_ure_page_map,
774                        CE_URE_PAGESIZE_MASK);
775         tioce_mmr_seti(tioce_kern, &tioce_mmr->ce_ure_page_map,
776                        CE_URE_256K_PAGESIZE);
777         ps = tioce_kern->ce_ate3240_pagesize = KB(256);
778
779         for (i = 0; i < TIOCE_NUM_M40_ATES; i++) {
780                 tioce_kern->ce_ate40_shadow[i] = 0;
781                 tioce_mmr_storei(tioce_kern, &tioce_mmr->ce_ure_ate40[i], 0);
782         }
783
784         for (i = 0; i < TIOCE_NUM_M3240_ATES; i++) {
785                 tioce_kern->ce_ate3240_shadow[i] = 0;
786                 tioce_mmr_storei(tioce_kern, &tioce_mmr->ce_ure_ate3240[i], 0);
787         }
788
789         /*
790          * Reserve ATEs corresponding to reserved address ranges.  These
791          * include:
792          *
793          *      Memory space covered by each PPB mem base/limit register
794          *      Memory space covered by each PPB prefetch base/limit register
795          *
796          * These bus ranges are for pio (downstream) traffic only, and so
797          * cannot be used for DMA.
798          */
799
800         for (dev = 1; dev <= 2; dev++) {
801                 u64 base, limit;
802
803                 /* mem base/limit */
804
805                 raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
806                                   PCI_MEMORY_BASE, 2, &tmp);
807                 base = (u64)tmp << 16;
808
809                 raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
810                                   PCI_MEMORY_LIMIT, 2, &tmp);
811                 limit = (u64)tmp << 16;
812                 limit |= 0xfffffUL;
813
814                 if (base < limit)
815                         tioce_reserve_m32(tioce_kern, base, limit);
816
817                 /*
818                  * prefetch mem base/limit.  The tioce ppb's have 64-bit
819                  * decoders, so read the upper portions w/o checking the
820                  * attributes.
821                  */
822
823                 raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
824                                   PCI_PREF_MEMORY_BASE, 2, &tmp);
825                 base = ((u64)tmp & PCI_PREF_RANGE_MASK) << 16;
826
827                 raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
828                                   PCI_PREF_BASE_UPPER32, 4, &tmp);
829                 base |= (u64)tmp << 32;
830
831                 raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
832                                   PCI_PREF_MEMORY_LIMIT, 2, &tmp);
833
834                 limit = ((u64)tmp & PCI_PREF_RANGE_MASK) << 16;
835                 limit |= 0xfffffUL;
836
837                 raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
838                                   PCI_PREF_LIMIT_UPPER32, 4, &tmp);
839                 limit |= (u64)tmp << 32;
840
841                 if ((base < limit) && TIOCE_M32_ADDR(base))
842                         tioce_reserve_m32(tioce_kern, base, limit);
843         }
844
845         return tioce_kern;
846 }
847
848 /**
849  * tioce_force_interrupt - implement altix force_interrupt() backend for CE
850  * @sn_irq_info: sn asic irq that we need an interrupt generated for
851  *
852  * Given an sn_irq_info struct, set the proper bit in ce_adm_force_int to
853  * force a secondary interrupt to be generated.  This is to work around an
854  * asic issue where there is a small window of opportunity for a legacy device
855  * interrupt to be lost.
856  */
857 static void
858 tioce_force_interrupt(struct sn_irq_info *sn_irq_info)
859 {
860         struct pcidev_info *pcidev_info;
861         struct tioce_common *ce_common;
862         struct tioce_kernel *ce_kern;
863         struct tioce __iomem *ce_mmr;
864         u64 force_int_val;
865
866         if (!sn_irq_info->irq_bridge)
867                 return;
868
869         if (sn_irq_info->irq_bridge_type != PCIIO_ASIC_TYPE_TIOCE)
870                 return;
871
872         pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
873         if (!pcidev_info)
874                 return;
875
876         ce_common = (struct tioce_common *)pcidev_info->pdi_pcibus_info;
877         ce_mmr = (struct tioce __iomem *)ce_common->ce_pcibus.bs_base;
878         ce_kern = (struct tioce_kernel *)ce_common->ce_kernel_private;
879
880         /*
881          * TIOCE Rev A workaround (PV 945826), force an interrupt by writing
882          * the TIO_INTx register directly (1/26/2006)
883          */
884         if (ce_common->ce_rev == TIOCE_REV_A) {
885                 u64 int_bit_mask = (1ULL << sn_irq_info->irq_int_bit);
886                 u64 status;
887
888                 tioce_mmr_load(ce_kern, &ce_mmr->ce_adm_int_status, &status);
889                 if (status & int_bit_mask) {
890                         u64 force_irq = (1 << 8) | sn_irq_info->irq_irq;
891                         u64 ctalk = sn_irq_info->irq_xtalkaddr;
892                         u64 nasid, offset;
893
894                         nasid = (ctalk & CTALK_NASID_MASK) >> CTALK_NASID_SHFT;
895                         offset = (ctalk & CTALK_NODE_OFFSET);
896                         HUB_S(TIO_IOSPACE_ADDR(nasid, offset), force_irq);
897                 }
898
899                 return;
900         }
901
902         /*
903          * irq_int_bit is originally set up by prom, and holds the interrupt
904          * bit shift (not mask) as defined by the bit definitions in the
905          * ce_adm_int mmr.  These shifts are not the same for the
906          * ce_adm_force_int register, so do an explicit mapping here to make
907          * things clearer.
908          */
909
910         switch (sn_irq_info->irq_int_bit) {
911         case CE_ADM_INT_PCIE_PORT1_DEV_A_SHFT:
912                 force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_A_SHFT;
913                 break;
914         case CE_ADM_INT_PCIE_PORT1_DEV_B_SHFT:
915                 force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_B_SHFT;
916                 break;
917         case CE_ADM_INT_PCIE_PORT1_DEV_C_SHFT:
918                 force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_C_SHFT;
919                 break;
920         case CE_ADM_INT_PCIE_PORT1_DEV_D_SHFT:
921                 force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_D_SHFT;
922                 break;
923         case CE_ADM_INT_PCIE_PORT2_DEV_A_SHFT:
924                 force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_A_SHFT;
925                 break;
926         case CE_ADM_INT_PCIE_PORT2_DEV_B_SHFT:
927                 force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_B_SHFT;
928                 break;
929         case CE_ADM_INT_PCIE_PORT2_DEV_C_SHFT:
930                 force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_C_SHFT;
931                 break;
932         case CE_ADM_INT_PCIE_PORT2_DEV_D_SHFT:
933                 force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_D_SHFT;
934                 break;
935         default:
936                 return;
937         }
938         tioce_mmr_storei(ce_kern, &ce_mmr->ce_adm_force_int, force_int_val);
939 }
940
941 /**
942  * tioce_target_interrupt - implement set_irq_affinity for tioce resident
943  * functions.  Note:  only applies to line interrupts, not MSI's.
944  *
945  * @sn_irq_info: SN IRQ context
946  *
947  * Given an sn_irq_info, set the associated CE device's interrupt destination
948  * register.  Since the interrupt destination registers are on a per-ce-slot
949  * basis, this will retarget line interrupts for all functions downstream of
950  * the slot.
951  */
952 static void
953 tioce_target_interrupt(struct sn_irq_info *sn_irq_info)
954 {
955         struct pcidev_info *pcidev_info;
956         struct tioce_common *ce_common;
957         struct tioce_kernel *ce_kern;
958         struct tioce __iomem *ce_mmr;
959         int bit;
960         u64 vector;
961
962         pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
963         if (!pcidev_info)
964                 return;
965
966         ce_common = (struct tioce_common *)pcidev_info->pdi_pcibus_info;
967         ce_mmr = (struct tioce __iomem *)ce_common->ce_pcibus.bs_base;
968         ce_kern = (struct tioce_kernel *)ce_common->ce_kernel_private;
969
970         bit = sn_irq_info->irq_int_bit;
971
972         tioce_mmr_seti(ce_kern, &ce_mmr->ce_adm_int_mask, (1UL << bit));
973         vector = (u64)sn_irq_info->irq_irq << INTR_VECTOR_SHFT;
974         vector |= sn_irq_info->irq_xtalkaddr;
975         tioce_mmr_storei(ce_kern, &ce_mmr->ce_adm_int_dest[bit], vector);
976         tioce_mmr_clri(ce_kern, &ce_mmr->ce_adm_int_mask, (1UL << bit));
977
978         tioce_force_interrupt(sn_irq_info);
979 }
980
981 /**
982  * tioce_bus_fixup - perform final PCI fixup for a TIO CE bus
983  * @prom_bussoft: Common prom/kernel struct representing the bus
984  *
985  * Replicates the tioce_common pointed to by @prom_bussoft in kernel
986  * space.  Allocates and initializes a kernel-only area for a given CE,
987  * and sets up an irq for handling CE error interrupts.
988  *
989  * On successful setup, returns the kernel version of tioce_common back to
990  * the caller.
991  */
992 static void *
993 tioce_bus_fixup(struct pcibus_bussoft *prom_bussoft, struct pci_controller *controller)
994 {
995         struct tioce_common *tioce_common;
996         struct tioce_kernel *tioce_kern;
997         struct tioce __iomem *tioce_mmr;
998
999         /*
1000          * Allocate kernel bus soft and copy from prom.
1001          */
1002
1003         tioce_common = kzalloc(sizeof(struct tioce_common), GFP_KERNEL);
1004         if (!tioce_common)
1005                 return NULL;
1006
1007         memcpy(tioce_common, prom_bussoft, sizeof(struct tioce_common));
1008         tioce_common->ce_pcibus.bs_base = (unsigned long)
1009                 ioremap(REGION_OFFSET(tioce_common->ce_pcibus.bs_base),
1010                         sizeof(struct tioce_common));
1011
1012         tioce_kern = tioce_kern_init(tioce_common);
1013         if (tioce_kern == NULL) {
1014                 kfree(tioce_common);
1015                 return NULL;
1016         }
1017
1018         /*
1019          * Clear out any transient errors before registering the error
1020          * interrupt handler.
1021          */
1022
1023         tioce_mmr = (struct tioce __iomem *)tioce_common->ce_pcibus.bs_base;
1024         tioce_mmr_seti(tioce_kern, &tioce_mmr->ce_adm_int_status_alias, ~0ULL);
1025         tioce_mmr_seti(tioce_kern, &tioce_mmr->ce_adm_error_summary_alias,
1026                        ~0ULL);
1027         tioce_mmr_seti(tioce_kern, &tioce_mmr->ce_dre_comp_err_addr, 0ULL);
1028
1029         if (request_irq(SGI_PCIASIC_ERROR,
1030                         tioce_error_intr_handler,
1031                         IRQF_SHARED, "TIOCE error", (void *)tioce_common))
1032                 printk(KERN_WARNING
1033                        "%s:  Unable to get irq %d.  "
1034                        "Error interrupts won't be routed for "
1035                        "TIOCE bus %04x:%02x\n",
1036                        __func__, SGI_PCIASIC_ERROR,
1037                        tioce_common->ce_pcibus.bs_persist_segment,
1038                        tioce_common->ce_pcibus.bs_persist_busnum);
1039
1040         sn_set_err_irq_affinity(SGI_PCIASIC_ERROR);
1041         return tioce_common;
1042 }
1043
1044 static struct sn_pcibus_provider tioce_pci_interfaces = {
1045         .dma_map = tioce_dma,
1046         .dma_map_consistent = tioce_dma_consistent,
1047         .dma_unmap = tioce_dma_unmap,
1048         .bus_fixup = tioce_bus_fixup,
1049         .force_interrupt = tioce_force_interrupt,
1050         .target_interrupt = tioce_target_interrupt
1051 };
1052
1053 /**
1054  * tioce_init_provider - init SN PCI provider ops for TIO CE
1055  */
1056 int
1057 tioce_init_provider(void)
1058 {
1059         sn_pci_provider[PCIIO_ASIC_TYPE_TIOCE] = &tioce_pci_interfaces;
1060         return 0;
1061 }