Linux-2.6.12-rc2
[safe/jmp/linux-2.6] / arch / arm / kernel / time.c
1 /*
2  *  linux/arch/arm/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
5  *  Modifications for ARM (C) 1994-2001 Russell King
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  *  This file contains the ARM-specific time handling details:
12  *  reading the RTC at bootup, etc...
13  *
14  *  1994-07-02  Alan Modra
15  *              fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
16  *  1998-12-20  Updated NTP code according to technical memorandum Jan '96
17  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
18  */
19 #include <linux/config.h>
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/interrupt.h>
23 #include <linux/time.h>
24 #include <linux/init.h>
25 #include <linux/smp.h>
26 #include <linux/timex.h>
27 #include <linux/errno.h>
28 #include <linux/profile.h>
29 #include <linux/sysdev.h>
30 #include <linux/timer.h>
31
32 #include <asm/hardware.h>
33 #include <asm/io.h>
34 #include <asm/irq.h>
35 #include <asm/leds.h>
36 #include <asm/thread_info.h>
37 #include <asm/mach/time.h>
38
39 u64 jiffies_64 = INITIAL_JIFFIES;
40
41 EXPORT_SYMBOL(jiffies_64);
42
43 /*
44  * Our system timer.
45  */
46 struct sys_timer *system_timer;
47
48 extern unsigned long wall_jiffies;
49
50 /* this needs a better home */
51 DEFINE_SPINLOCK(rtc_lock);
52
53 #ifdef CONFIG_SA1100_RTC_MODULE
54 EXPORT_SYMBOL(rtc_lock);
55 #endif
56
57 /* change this if you have some constant time drift */
58 #define USECS_PER_JIFFY (1000000/HZ)
59
60 #ifdef CONFIG_SMP
61 unsigned long profile_pc(struct pt_regs *regs)
62 {
63         unsigned long fp, pc = instruction_pointer(regs);
64
65         if (in_lock_functions(pc)) {
66                 fp = regs->ARM_fp;
67                 pc = pc_pointer(((unsigned long *)fp)[-1]);
68         }
69
70         return pc;
71 }
72 EXPORT_SYMBOL(profile_pc);
73 #endif
74
75 /*
76  * hook for setting the RTC's idea of the current time.
77  */
78 int (*set_rtc)(void);
79
80 static unsigned long dummy_gettimeoffset(void)
81 {
82         return 0;
83 }
84
85 /*
86  * Scheduler clock - returns current time in nanosec units.
87  * This is the default implementation.  Sub-architecture
88  * implementations can override this.
89  */
90 unsigned long long __attribute__((weak)) sched_clock(void)
91 {
92         return (unsigned long long)jiffies * (1000000000 / HZ);
93 }
94
95 static unsigned long next_rtc_update;
96
97 /*
98  * If we have an externally synchronized linux clock, then update
99  * CMOS clock accordingly every ~11 minutes.  set_rtc() has to be
100  * called as close as possible to 500 ms before the new second
101  * starts.
102  */
103 static inline void do_set_rtc(void)
104 {
105         if (time_status & STA_UNSYNC || set_rtc == NULL)
106                 return;
107
108         if (next_rtc_update &&
109             time_before((unsigned long)xtime.tv_sec, next_rtc_update))
110                 return;
111
112         if (xtime.tv_nsec < 500000000 - ((unsigned) tick_nsec >> 1) &&
113             xtime.tv_nsec >= 500000000 + ((unsigned) tick_nsec >> 1))
114                 return;
115
116         if (set_rtc())
117                 /*
118                  * rtc update failed.  Try again in 60s
119                  */
120                 next_rtc_update = xtime.tv_sec + 60;
121         else
122                 next_rtc_update = xtime.tv_sec + 660;
123 }
124
125 #ifdef CONFIG_LEDS
126
127 static void dummy_leds_event(led_event_t evt)
128 {
129 }
130
131 void (*leds_event)(led_event_t) = dummy_leds_event;
132
133 struct leds_evt_name {
134         const char      name[8];
135         int             on;
136         int             off;
137 };
138
139 static const struct leds_evt_name evt_names[] = {
140         { "amber", led_amber_on, led_amber_off },
141         { "blue",  led_blue_on,  led_blue_off  },
142         { "green", led_green_on, led_green_off },
143         { "red",   led_red_on,   led_red_off   },
144 };
145
146 static ssize_t leds_store(struct sys_device *dev, const char *buf, size_t size)
147 {
148         int ret = -EINVAL, len = strcspn(buf, " ");
149
150         if (len > 0 && buf[len] == '\0')
151                 len--;
152
153         if (strncmp(buf, "claim", len) == 0) {
154                 leds_event(led_claim);
155                 ret = size;
156         } else if (strncmp(buf, "release", len) == 0) {
157                 leds_event(led_release);
158                 ret = size;
159         } else {
160                 int i;
161
162                 for (i = 0; i < ARRAY_SIZE(evt_names); i++) {
163                         if (strlen(evt_names[i].name) != len ||
164                             strncmp(buf, evt_names[i].name, len) != 0)
165                                 continue;
166                         if (strncmp(buf+len, " on", 3) == 0) {
167                                 leds_event(evt_names[i].on);
168                                 ret = size;
169                         } else if (strncmp(buf+len, " off", 4) == 0) {
170                                 leds_event(evt_names[i].off);
171                                 ret = size;
172                         }
173                         break;
174                 }
175         }
176         return ret;
177 }
178
179 static SYSDEV_ATTR(event, 0200, NULL, leds_store);
180
181 static int leds_suspend(struct sys_device *dev, pm_message_t state)
182 {
183         leds_event(led_stop);
184         return 0;
185 }
186
187 static int leds_resume(struct sys_device *dev)
188 {
189         leds_event(led_start);
190         return 0;
191 }
192
193 static int leds_shutdown(struct sys_device *dev)
194 {
195         leds_event(led_halted);
196         return 0;
197 }
198
199 static struct sysdev_class leds_sysclass = {
200         set_kset_name("leds"),
201         .shutdown       = leds_shutdown,
202         .suspend        = leds_suspend,
203         .resume         = leds_resume,
204 };
205
206 static struct sys_device leds_device = {
207         .id             = 0,
208         .cls            = &leds_sysclass,
209 };
210
211 static int __init leds_init(void)
212 {
213         int ret;
214         ret = sysdev_class_register(&leds_sysclass);
215         if (ret == 0)
216                 ret = sysdev_register(&leds_device);
217         if (ret == 0)
218                 ret = sysdev_create_file(&leds_device, &attr_event);
219         return ret;
220 }
221
222 device_initcall(leds_init);
223
224 EXPORT_SYMBOL(leds_event);
225 #endif
226
227 #ifdef CONFIG_LEDS_TIMER
228 static inline void do_leds(void)
229 {
230         static unsigned int count = 50;
231
232         if (--count == 0) {
233                 count = 50;
234                 leds_event(led_timer);
235         }
236 }
237 #else
238 #define do_leds()
239 #endif
240
241 void do_gettimeofday(struct timeval *tv)
242 {
243         unsigned long flags;
244         unsigned long seq;
245         unsigned long usec, sec, lost;
246
247         do {
248                 seq = read_seqbegin_irqsave(&xtime_lock, flags);
249                 usec = system_timer->offset();
250
251                 lost = jiffies - wall_jiffies;
252                 if (lost)
253                         usec += lost * USECS_PER_JIFFY;
254
255                 sec = xtime.tv_sec;
256                 usec += xtime.tv_nsec / 1000;
257         } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
258
259         /* usec may have gone up a lot: be safe */
260         while (usec >= 1000000) {
261                 usec -= 1000000;
262                 sec++;
263         }
264
265         tv->tv_sec = sec;
266         tv->tv_usec = usec;
267 }
268
269 EXPORT_SYMBOL(do_gettimeofday);
270
271 int do_settimeofday(struct timespec *tv)
272 {
273         time_t wtm_sec, sec = tv->tv_sec;
274         long wtm_nsec, nsec = tv->tv_nsec;
275
276         if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
277                 return -EINVAL;
278
279         write_seqlock_irq(&xtime_lock);
280         /*
281          * This is revolting. We need to set "xtime" correctly. However, the
282          * value in this location is the value at the most recent update of
283          * wall time.  Discover what correction gettimeofday() would have
284          * done, and then undo it!
285          */
286         nsec -= system_timer->offset() * NSEC_PER_USEC;
287         nsec -= (jiffies - wall_jiffies) * TICK_NSEC;
288
289         wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
290         wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
291
292         set_normalized_timespec(&xtime, sec, nsec);
293         set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
294
295         time_adjust = 0;                /* stop active adjtime() */
296         time_status |= STA_UNSYNC;
297         time_maxerror = NTP_PHASE_LIMIT;
298         time_esterror = NTP_PHASE_LIMIT;
299         write_sequnlock_irq(&xtime_lock);
300         clock_was_set();
301         return 0;
302 }
303
304 EXPORT_SYMBOL(do_settimeofday);
305
306 /**
307  * save_time_delta - Save the offset between system time and RTC time
308  * @delta: pointer to timespec to store delta
309  * @rtc: pointer to timespec for current RTC time
310  *
311  * Return a delta between the system time and the RTC time, such
312  * that system time can be restored later with restore_time_delta()
313  */
314 void save_time_delta(struct timespec *delta, struct timespec *rtc)
315 {
316         set_normalized_timespec(delta,
317                                 xtime.tv_sec - rtc->tv_sec,
318                                 xtime.tv_nsec - rtc->tv_nsec);
319 }
320 EXPORT_SYMBOL(save_time_delta);
321
322 /**
323  * restore_time_delta - Restore the current system time
324  * @delta: delta returned by save_time_delta()
325  * @rtc: pointer to timespec for current RTC time
326  */
327 void restore_time_delta(struct timespec *delta, struct timespec *rtc)
328 {
329         struct timespec ts;
330
331         set_normalized_timespec(&ts,
332                                 delta->tv_sec + rtc->tv_sec,
333                                 delta->tv_nsec + rtc->tv_nsec);
334
335         do_settimeofday(&ts);
336 }
337 EXPORT_SYMBOL(restore_time_delta);
338
339 /*
340  * Kernel system timer support.
341  */
342 void timer_tick(struct pt_regs *regs)
343 {
344         profile_tick(CPU_PROFILING, regs);
345         do_leds();
346         do_set_rtc();
347         do_timer(regs);
348 #ifndef CONFIG_SMP
349         update_process_times(user_mode(regs));
350 #endif
351 }
352
353 #ifdef CONFIG_PM
354 static int timer_suspend(struct sys_device *dev, pm_message_t state)
355 {
356         struct sys_timer *timer = container_of(dev, struct sys_timer, dev);
357
358         if (timer->suspend != NULL)
359                 timer->suspend();
360
361         return 0;
362 }
363
364 static int timer_resume(struct sys_device *dev)
365 {
366         struct sys_timer *timer = container_of(dev, struct sys_timer, dev);
367
368         if (timer->resume != NULL)
369                 timer->resume();
370
371         return 0;
372 }
373 #else
374 #define timer_suspend NULL
375 #define timer_resume NULL
376 #endif
377
378 static struct sysdev_class timer_sysclass = {
379         set_kset_name("timer"),
380         .suspend        = timer_suspend,
381         .resume         = timer_resume,
382 };
383
384 static int __init timer_init_sysfs(void)
385 {
386         int ret = sysdev_class_register(&timer_sysclass);
387         if (ret == 0) {
388                 system_timer->dev.cls = &timer_sysclass;
389                 ret = sysdev_register(&system_timer->dev);
390         }
391         return ret;
392 }
393
394 device_initcall(timer_init_sysfs);
395
396 void __init time_init(void)
397 {
398         if (system_timer->offset == NULL)
399                 system_timer->offset = dummy_gettimeoffset;
400         system_timer->init();
401 }
402