Linux-2.6.12-rc2
[safe/jmp/linux-2.6] / arch / arm / common / dmabounce.c
1 /*
2  *  arch/arm/common/dmabounce.c
3  *
4  *  Special dma_{map/unmap/dma_sync}_* routines for systems that have
5  *  limited DMA windows. These functions utilize bounce buffers to
6  *  copy data to/from buffers located outside the DMA region. This
7  *  only works for systems in which DMA memory is at the bottom of
8  *  RAM and the remainder of memory is at the top an the DMA memory
9  *  can be marked as ZONE_DMA. Anything beyond that such as discontigous
10  *  DMA windows will require custom implementations that reserve memory
11  *  areas at early bootup.
12  *
13  *  Original version by Brad Parker (brad@heeltoe.com)
14  *  Re-written by Christopher Hoover <ch@murgatroid.com>
15  *  Made generic by Deepak Saxena <dsaxena@plexity.net>
16  *
17  *  Copyright (C) 2002 Hewlett Packard Company.
18  *  Copyright (C) 2004 MontaVista Software, Inc.
19  *
20  *  This program is free software; you can redistribute it and/or
21  *  modify it under the terms of the GNU General Public License
22  *  version 2 as published by the Free Software Foundation.
23  */
24
25 #include <linux/module.h>
26 #include <linux/init.h>
27 #include <linux/slab.h>
28 #include <linux/device.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/dmapool.h>
31 #include <linux/list.h>
32
33 #undef DEBUG
34
35 #undef STATS
36 #ifdef STATS
37 #define DO_STATS(X) do { X ; } while (0)
38 #else
39 #define DO_STATS(X) do { } while (0)
40 #endif
41
42 /* ************************************************** */
43
44 struct safe_buffer {
45         struct list_head node;
46
47         /* original request */
48         void            *ptr;
49         size_t          size;
50         int             direction;
51
52         /* safe buffer info */
53         struct dma_pool *pool;
54         void            *safe;
55         dma_addr_t      safe_dma_addr;
56 };
57
58 struct dmabounce_device_info {
59         struct list_head node;
60
61         struct device *dev;
62         struct dma_pool *small_buffer_pool;
63         struct dma_pool *large_buffer_pool;
64         struct list_head safe_buffers;
65         unsigned long small_buffer_size, large_buffer_size;
66 #ifdef STATS
67         unsigned long sbp_allocs;
68         unsigned long lbp_allocs;
69         unsigned long total_allocs;
70         unsigned long map_op_count;
71         unsigned long bounce_count;
72 #endif
73 };
74
75 static LIST_HEAD(dmabounce_devs);
76
77 #ifdef STATS
78 static void print_alloc_stats(struct dmabounce_device_info *device_info)
79 {
80         printk(KERN_INFO
81                 "%s: dmabounce: sbp: %lu, lbp: %lu, other: %lu, total: %lu\n",
82                 device_info->dev->bus_id,
83                 device_info->sbp_allocs, device_info->lbp_allocs,
84                 device_info->total_allocs - device_info->sbp_allocs -
85                         device_info->lbp_allocs,
86                 device_info->total_allocs);
87 }
88 #endif
89
90 /* find the given device in the dmabounce device list */
91 static inline struct dmabounce_device_info *
92 find_dmabounce_dev(struct device *dev)
93 {
94         struct list_head *entry;
95
96         list_for_each(entry, &dmabounce_devs) {
97                 struct dmabounce_device_info *d =
98                         list_entry(entry, struct dmabounce_device_info, node);
99
100                 if (d->dev == dev)
101                         return d;
102         }
103         return NULL;
104 }
105
106
107 /* allocate a 'safe' buffer and keep track of it */
108 static inline struct safe_buffer *
109 alloc_safe_buffer(struct dmabounce_device_info *device_info, void *ptr,
110                         size_t size, enum dma_data_direction dir)
111 {
112         struct safe_buffer *buf;
113         struct dma_pool *pool;
114         struct device *dev = device_info->dev;
115         void *safe;
116         dma_addr_t safe_dma_addr;
117
118         dev_dbg(dev, "%s(ptr=%p, size=%d, dir=%d)\n",
119                 __func__, ptr, size, dir);
120
121         DO_STATS ( device_info->total_allocs++ );
122
123         buf = kmalloc(sizeof(struct safe_buffer), GFP_ATOMIC);
124         if (buf == NULL) {
125                 dev_warn(dev, "%s: kmalloc failed\n", __func__);
126                 return NULL;
127         }
128
129         if (size <= device_info->small_buffer_size) {
130                 pool = device_info->small_buffer_pool;
131                 safe = dma_pool_alloc(pool, GFP_ATOMIC, &safe_dma_addr);
132
133                 DO_STATS ( device_info->sbp_allocs++ );
134         } else if (size <= device_info->large_buffer_size) {
135                 pool = device_info->large_buffer_pool;
136                 safe = dma_pool_alloc(pool, GFP_ATOMIC, &safe_dma_addr);
137
138                 DO_STATS ( device_info->lbp_allocs++ );
139         } else {
140                 pool = NULL;
141                 safe = dma_alloc_coherent(dev, size, &safe_dma_addr, GFP_ATOMIC);
142         }
143
144         if (safe == NULL) {
145                 dev_warn(device_info->dev,
146                         "%s: could not alloc dma memory (size=%d)\n",
147                        __func__, size);
148                 kfree(buf);
149                 return NULL;
150         }
151
152 #ifdef STATS
153         if (device_info->total_allocs % 1000 == 0)
154                 print_alloc_stats(device_info);
155 #endif
156
157         buf->ptr = ptr;
158         buf->size = size;
159         buf->direction = dir;
160         buf->pool = pool;
161         buf->safe = safe;
162         buf->safe_dma_addr = safe_dma_addr;
163
164         list_add(&buf->node, &device_info->safe_buffers);
165
166         return buf;
167 }
168
169 /* determine if a buffer is from our "safe" pool */
170 static inline struct safe_buffer *
171 find_safe_buffer(struct dmabounce_device_info *device_info, dma_addr_t safe_dma_addr)
172 {
173         struct list_head *entry;
174
175         list_for_each(entry, &device_info->safe_buffers) {
176                 struct safe_buffer *b =
177                         list_entry(entry, struct safe_buffer, node);
178
179                 if (b->safe_dma_addr == safe_dma_addr)
180                         return b;
181         }
182
183         return NULL;
184 }
185
186 static inline void
187 free_safe_buffer(struct dmabounce_device_info *device_info, struct safe_buffer *buf)
188 {
189         dev_dbg(device_info->dev, "%s(buf=%p)\n", __func__, buf);
190
191         list_del(&buf->node);
192
193         if (buf->pool)
194                 dma_pool_free(buf->pool, buf->safe, buf->safe_dma_addr);
195         else
196                 dma_free_coherent(device_info->dev, buf->size, buf->safe,
197                                     buf->safe_dma_addr);
198
199         kfree(buf);
200 }
201
202 /* ************************************************** */
203
204 #ifdef STATS
205
206 static void print_map_stats(struct dmabounce_device_info *device_info)
207 {
208         printk(KERN_INFO
209                 "%s: dmabounce: map_op_count=%lu, bounce_count=%lu\n",
210                 device_info->dev->bus_id,
211                 device_info->map_op_count, device_info->bounce_count);
212 }
213 #endif
214
215 static inline dma_addr_t
216 map_single(struct device *dev, void *ptr, size_t size,
217                 enum dma_data_direction dir)
218 {
219         struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
220         dma_addr_t dma_addr;
221         int needs_bounce = 0;
222
223         if (device_info)
224                 DO_STATS ( device_info->map_op_count++ );
225
226         dma_addr = virt_to_dma(dev, ptr);
227
228         if (dev->dma_mask) {
229                 unsigned long mask = *dev->dma_mask;
230                 unsigned long limit;
231
232                 limit = (mask + 1) & ~mask;
233                 if (limit && size > limit) {
234                         dev_err(dev, "DMA mapping too big (requested %#x "
235                                 "mask %#Lx)\n", size, *dev->dma_mask);
236                         return ~0;
237                 }
238
239                 /*
240                  * Figure out if we need to bounce from the DMA mask.
241                  */
242                 needs_bounce = (dma_addr | (dma_addr + size - 1)) & ~mask;
243         }
244
245         if (device_info && (needs_bounce || dma_needs_bounce(dev, dma_addr, size))) {
246                 struct safe_buffer *buf;
247
248                 buf = alloc_safe_buffer(device_info, ptr, size, dir);
249                 if (buf == 0) {
250                         dev_err(dev, "%s: unable to map unsafe buffer %p!\n",
251                                __func__, ptr);
252                         return 0;
253                 }
254
255                 dev_dbg(dev,
256                         "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
257                         __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
258                         buf->safe, (void *) buf->safe_dma_addr);
259
260                 if ((dir == DMA_TO_DEVICE) ||
261                     (dir == DMA_BIDIRECTIONAL)) {
262                         dev_dbg(dev, "%s: copy unsafe %p to safe %p, size %d\n",
263                                 __func__, ptr, buf->safe, size);
264                         memcpy(buf->safe, ptr, size);
265                 }
266                 consistent_sync(buf->safe, size, dir);
267
268                 dma_addr = buf->safe_dma_addr;
269         } else {
270                 consistent_sync(ptr, size, dir);
271         }
272
273         return dma_addr;
274 }
275
276 static inline void
277 unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
278                 enum dma_data_direction dir)
279 {
280         struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
281         struct safe_buffer *buf = NULL;
282
283         /*
284          * Trying to unmap an invalid mapping
285          */
286         if (dma_addr == ~0) {
287                 dev_err(dev, "Trying to unmap invalid mapping\n");
288                 return;
289         }
290
291         if (device_info)
292                 buf = find_safe_buffer(device_info, dma_addr);
293
294         if (buf) {
295                 BUG_ON(buf->size != size);
296
297                 dev_dbg(dev,
298                         "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
299                         __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
300                         buf->safe, (void *) buf->safe_dma_addr);
301
302
303                 DO_STATS ( device_info->bounce_count++ );
304
305                 if ((dir == DMA_FROM_DEVICE) ||
306                     (dir == DMA_BIDIRECTIONAL)) {
307                         dev_dbg(dev,
308                                 "%s: copy back safe %p to unsafe %p size %d\n",
309                                 __func__, buf->safe, buf->ptr, size);
310                         memcpy(buf->ptr, buf->safe, size);
311                 }
312                 free_safe_buffer(device_info, buf);
313         }
314 }
315
316 static inline void
317 sync_single(struct device *dev, dma_addr_t dma_addr, size_t size,
318                 enum dma_data_direction dir)
319 {
320         struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
321         struct safe_buffer *buf = NULL;
322
323         if (device_info)
324                 buf = find_safe_buffer(device_info, dma_addr);
325
326         if (buf) {
327                 /*
328                  * Both of these checks from original code need to be
329                  * commented out b/c some drivers rely on the following:
330                  *
331                  * 1) Drivers may map a large chunk of memory into DMA space
332                  *    but only sync a small portion of it. Good example is
333                  *    allocating a large buffer, mapping it, and then
334                  *    breaking it up into small descriptors. No point
335                  *    in syncing the whole buffer if you only have to
336                  *    touch one descriptor.
337                  *
338                  * 2) Buffers that are mapped as DMA_BIDIRECTIONAL are
339                  *    usually only synced in one dir at a time.
340                  *
341                  * See drivers/net/eepro100.c for examples of both cases.
342                  *
343                  * -ds
344                  *
345                  * BUG_ON(buf->size != size);
346                  * BUG_ON(buf->direction != dir);
347                  */
348
349                 dev_dbg(dev,
350                         "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
351                         __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
352                         buf->safe, (void *) buf->safe_dma_addr);
353
354                 DO_STATS ( device_info->bounce_count++ );
355
356                 switch (dir) {
357                 case DMA_FROM_DEVICE:
358                         dev_dbg(dev,
359                                 "%s: copy back safe %p to unsafe %p size %d\n",
360                                 __func__, buf->safe, buf->ptr, size);
361                         memcpy(buf->ptr, buf->safe, size);
362                         break;
363                 case DMA_TO_DEVICE:
364                         dev_dbg(dev,
365                                 "%s: copy out unsafe %p to safe %p, size %d\n",
366                                 __func__,buf->ptr, buf->safe, size);
367                         memcpy(buf->safe, buf->ptr, size);
368                         break;
369                 case DMA_BIDIRECTIONAL:
370                         BUG();  /* is this allowed?  what does it mean? */
371                 default:
372                         BUG();
373                 }
374                 consistent_sync(buf->safe, size, dir);
375         } else {
376                 consistent_sync(dma_to_virt(dev, dma_addr), size, dir);
377         }
378 }
379
380 /* ************************************************** */
381
382 /*
383  * see if a buffer address is in an 'unsafe' range.  if it is
384  * allocate a 'safe' buffer and copy the unsafe buffer into it.
385  * substitute the safe buffer for the unsafe one.
386  * (basically move the buffer from an unsafe area to a safe one)
387  */
388 dma_addr_t
389 dma_map_single(struct device *dev, void *ptr, size_t size,
390                 enum dma_data_direction dir)
391 {
392         unsigned long flags;
393         dma_addr_t dma_addr;
394
395         dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
396                 __func__, ptr, size, dir);
397
398         BUG_ON(dir == DMA_NONE);
399
400         local_irq_save(flags);
401
402         dma_addr = map_single(dev, ptr, size, dir);
403
404         local_irq_restore(flags);
405
406         return dma_addr;
407 }
408
409 /*
410  * see if a mapped address was really a "safe" buffer and if so, copy
411  * the data from the safe buffer back to the unsafe buffer and free up
412  * the safe buffer.  (basically return things back to the way they
413  * should be)
414  */
415
416 void
417 dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
418                         enum dma_data_direction dir)
419 {
420         unsigned long flags;
421
422         dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
423                 __func__, (void *) dma_addr, size, dir);
424
425         BUG_ON(dir == DMA_NONE);
426
427         local_irq_save(flags);
428
429         unmap_single(dev, dma_addr, size, dir);
430
431         local_irq_restore(flags);
432 }
433
434 int
435 dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
436                 enum dma_data_direction dir)
437 {
438         unsigned long flags;
439         int i;
440
441         dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
442                 __func__, sg, nents, dir);
443
444         BUG_ON(dir == DMA_NONE);
445
446         local_irq_save(flags);
447
448         for (i = 0; i < nents; i++, sg++) {
449                 struct page *page = sg->page;
450                 unsigned int offset = sg->offset;
451                 unsigned int length = sg->length;
452                 void *ptr = page_address(page) + offset;
453
454                 sg->dma_address =
455                         map_single(dev, ptr, length, dir);
456         }
457
458         local_irq_restore(flags);
459
460         return nents;
461 }
462
463 void
464 dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
465                 enum dma_data_direction dir)
466 {
467         unsigned long flags;
468         int i;
469
470         dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
471                 __func__, sg, nents, dir);
472
473         BUG_ON(dir == DMA_NONE);
474
475         local_irq_save(flags);
476
477         for (i = 0; i < nents; i++, sg++) {
478                 dma_addr_t dma_addr = sg->dma_address;
479                 unsigned int length = sg->length;
480
481                 unmap_single(dev, dma_addr, length, dir);
482         }
483
484         local_irq_restore(flags);
485 }
486
487 void
488 dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr, size_t size,
489                                 enum dma_data_direction dir)
490 {
491         unsigned long flags;
492
493         dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
494                 __func__, (void *) dma_addr, size, dir);
495
496         local_irq_save(flags);
497
498         sync_single(dev, dma_addr, size, dir);
499
500         local_irq_restore(flags);
501 }
502
503 void
504 dma_sync_single_for_device(struct device *dev, dma_addr_t dma_addr, size_t size,
505                                 enum dma_data_direction dir)
506 {
507         unsigned long flags;
508
509         dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
510                 __func__, (void *) dma_addr, size, dir);
511
512         local_irq_save(flags);
513
514         sync_single(dev, dma_addr, size, dir);
515
516         local_irq_restore(flags);
517 }
518
519 void
520 dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nents,
521                         enum dma_data_direction dir)
522 {
523         unsigned long flags;
524         int i;
525
526         dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
527                 __func__, sg, nents, dir);
528
529         BUG_ON(dir == DMA_NONE);
530
531         local_irq_save(flags);
532
533         for (i = 0; i < nents; i++, sg++) {
534                 dma_addr_t dma_addr = sg->dma_address;
535                 unsigned int length = sg->length;
536
537                 sync_single(dev, dma_addr, length, dir);
538         }
539
540         local_irq_restore(flags);
541 }
542
543 void
544 dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nents,
545                         enum dma_data_direction dir)
546 {
547         unsigned long flags;
548         int i;
549
550         dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
551                 __func__, sg, nents, dir);
552
553         BUG_ON(dir == DMA_NONE);
554
555         local_irq_save(flags);
556
557         for (i = 0; i < nents; i++, sg++) {
558                 dma_addr_t dma_addr = sg->dma_address;
559                 unsigned int length = sg->length;
560
561                 sync_single(dev, dma_addr, length, dir);
562         }
563
564         local_irq_restore(flags);
565 }
566
567 int
568 dmabounce_register_dev(struct device *dev, unsigned long small_buffer_size,
569                         unsigned long large_buffer_size)
570 {
571         struct dmabounce_device_info *device_info;
572
573         device_info = kmalloc(sizeof(struct dmabounce_device_info), GFP_ATOMIC);
574         if (!device_info) {
575                 printk(KERN_ERR
576                         "Could not allocated dmabounce_device_info for %s",
577                         dev->bus_id);
578                 return -ENOMEM;
579         }
580
581         device_info->small_buffer_pool =
582                 dma_pool_create("small_dmabounce_pool",
583                                 dev,
584                                 small_buffer_size,
585                                 0 /* byte alignment */,
586                                 0 /* no page-crossing issues */);
587         if (!device_info->small_buffer_pool) {
588                 printk(KERN_ERR
589                         "dmabounce: could not allocate small DMA pool for %s\n",
590                         dev->bus_id);
591                 kfree(device_info);
592                 return -ENOMEM;
593         }
594
595         if (large_buffer_size) {
596                 device_info->large_buffer_pool =
597                         dma_pool_create("large_dmabounce_pool",
598                                         dev,
599                                         large_buffer_size,
600                                         0 /* byte alignment */,
601                                         0 /* no page-crossing issues */);
602                 if (!device_info->large_buffer_pool) {
603                 printk(KERN_ERR
604                         "dmabounce: could not allocate large DMA pool for %s\n",
605                         dev->bus_id);
606                         dma_pool_destroy(device_info->small_buffer_pool);
607
608                         return -ENOMEM;
609                 }
610         }
611
612         device_info->dev = dev;
613         device_info->small_buffer_size = small_buffer_size;
614         device_info->large_buffer_size = large_buffer_size;
615         INIT_LIST_HEAD(&device_info->safe_buffers);
616
617 #ifdef STATS
618         device_info->sbp_allocs = 0;
619         device_info->lbp_allocs = 0;
620         device_info->total_allocs = 0;
621         device_info->map_op_count = 0;
622         device_info->bounce_count = 0;
623 #endif
624
625         list_add(&device_info->node, &dmabounce_devs);
626
627         printk(KERN_INFO "dmabounce: registered device %s on %s bus\n",
628                 dev->bus_id, dev->bus->name);
629
630         return 0;
631 }
632
633 void
634 dmabounce_unregister_dev(struct device *dev)
635 {
636         struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
637
638         if (!device_info) {
639                 printk(KERN_WARNING
640                         "%s: Never registered with dmabounce but attempting" \
641                         "to unregister!\n", dev->bus_id);
642                 return;
643         }
644
645         if (!list_empty(&device_info->safe_buffers)) {
646                 printk(KERN_ERR
647                         "%s: Removing from dmabounce with pending buffers!\n",
648                         dev->bus_id);
649                 BUG();
650         }
651
652         if (device_info->small_buffer_pool)
653                 dma_pool_destroy(device_info->small_buffer_pool);
654         if (device_info->large_buffer_pool)
655                 dma_pool_destroy(device_info->large_buffer_pool);
656
657 #ifdef STATS
658         print_alloc_stats(device_info);
659         print_map_stats(device_info);
660 #endif
661
662         list_del(&device_info->node);
663
664         kfree(device_info);
665
666         printk(KERN_INFO "dmabounce: device %s on %s bus unregistered\n",
667                 dev->bus_id, dev->bus->name);
668 }
669
670
671 EXPORT_SYMBOL(dma_map_single);
672 EXPORT_SYMBOL(dma_unmap_single);
673 EXPORT_SYMBOL(dma_map_sg);
674 EXPORT_SYMBOL(dma_unmap_sg);
675 EXPORT_SYMBOL(dma_sync_single);
676 EXPORT_SYMBOL(dma_sync_sg);
677 EXPORT_SYMBOL(dmabounce_register_dev);
678 EXPORT_SYMBOL(dmabounce_unregister_dev);
679
680 MODULE_AUTHOR("Christopher Hoover <ch@hpl.hp.com>, Deepak Saxena <dsaxena@plexity.net>");
681 MODULE_DESCRIPTION("Special dma_{map/unmap/dma_sync}_* routines for systems with limited DMA windows");
682 MODULE_LICENSE("GPL");