X-Git-Url: http://ftp.safe.ca/?a=blobdiff_plain;f=net%2FKconfig;h=041c35edb763dd96b266f89b8080cb694a87bbf4;hb=d300a41ef1c39cc5e6b90fd8834ea7ab16b5c48f;hp=f46fc326c00b83191e330963f0bbab6c20b4df89;hpb=d5950b4355049092739bea97d1bdc14433126cc5;p=safe%2Fjmp%2Flinux-2.6 diff --git a/net/Kconfig b/net/Kconfig index f46fc32..041c35e 100644 --- a/net/Kconfig +++ b/net/Kconfig @@ -2,10 +2,9 @@ # Network configuration # -menu "Networking" - -config NET +menuconfig NET bool "Networking support" + select NLATTR ---help--- Unless you really know what you are doing, you should say Y here. The reason is that some programs need kernel networking support even @@ -22,64 +21,41 @@ config NET recommended to read the NET-HOWTO, available from . -menu "Networking options" - depends on NET - -config PACKET - tristate "Packet socket" - ---help--- - The Packet protocol is used by applications which communicate - directly with network devices without an intermediate network - protocol implemented in the kernel, e.g. tcpdump. If you want them - to work, choose Y. +if NET - To compile this driver as a module, choose M here: the module will - be called af_packet. - - If unsure, say Y. +config WANT_COMPAT_NETLINK_MESSAGES + bool + help + This option can be selected by other options that need compat + netlink messages. -config PACKET_MMAP - bool "Packet socket: mmapped IO" - depends on PACKET +config COMPAT_NETLINK_MESSAGES + def_bool y + depends on COMPAT + depends on WIRELESS_EXT || WANT_COMPAT_NETLINK_MESSAGES help - If you say Y here, the Packet protocol driver will use an IO - mechanism that results in faster communication. + This option makes it possible to send different netlink messages + to tasks depending on whether the task is a compat task or not. To + achieve this, you need to set skb_shinfo(skb)->frag_list to the + compat skb before sending the skb, the netlink code will sort out + which message to actually pass to the task. - If unsure, say N. + Newly written code should NEVER need this option but do + compat-independent messages instead! -config UNIX - tristate "Unix domain sockets" - ---help--- - If you say Y here, you will include support for Unix domain sockets; - sockets are the standard Unix mechanism for establishing and - accessing network connections. Many commonly used programs such as - the X Window system and syslog use these sockets even if your - machine is not connected to any network. Unless you are working on - an embedded system or something similar, you therefore definitely - want to say Y here. - - To compile this driver as a module, choose M here: the module will be - called unix. Note that several important services won't work - correctly if you say M here and then neglect to load the module. - - Say Y unless you know what you are doing. - -config NET_KEY - tristate "PF_KEY sockets" - select XFRM - ---help--- - PF_KEYv2 socket family, compatible to KAME ones. - They are required if you are going to use IPsec tools ported - from KAME. +menu "Networking options" - Say Y unless you know what you are doing. +source "net/packet/Kconfig" +source "net/unix/Kconfig" +source "net/xfrm/Kconfig" +source "net/iucv/Kconfig" config INET bool "TCP/IP networking" ---help--- These are the protocols used on the Internet and on most local Ethernets. It is highly recommended to say Y here (this will enlarge - your kernel by about 144 KB), since some programs (e.g. the X window + your kernel by about 400 KB), since some programs (e.g. the X window system) use TCP/IP even if your machine is not connected to any other computer. You will get the so-called loopback device which allows you to ping yourself (great fun, that!). @@ -96,32 +72,22 @@ config INET Short answer: say Y. +if INET source "net/ipv4/Kconfig" +source "net/ipv6/Kconfig" +source "net/netlabel/Kconfig" -# IPv6 as module will cause a CRASH if you try to unload it -config IPV6 - tristate "The IPv6 protocol" - depends on INET - default m - select CRYPTO if IPV6_PRIVACY - select CRYPTO_MD5 if IPV6_PRIVACY - ---help--- - This is complemental support for the IP version 6. - You will still be able to do traditional IPv4 networking as well. - - For general information about IPv6, see - . - For Linux IPv6 development information, see . - For specific information about IPv6 under Linux, read the HOWTO at - . - - To compile this protocol support as a module, choose M here: the - module will be called ipv6. +endif # if INET -source "net/ipv6/Kconfig" +config NETWORK_SECMARK + bool "Security Marking" + help + This enables security marking of network packets, similar + to nfmark, but designated for security purposes. + If you are unsure how to answer this question, answer N. menuconfig NETFILTER - bool "Network packet filtering (replaces ipchains)" + bool "Network packet filtering framework (Netfilter)" ---help--- Netfilter is a framework for filtering and mangling network packets that pass through your Linux box. @@ -173,12 +139,6 @@ menuconfig NETFILTER under "iptables" for the location of these packages. - Make sure to say N to "Fast switching" below if you intend to say Y - here, as Fast switching currently bypasses netfilter. - - Chances are that you should say Y here if you compile a kernel which - will run as a router and N for regular hosts. If unsure, say N. - if NETFILTER config NETFILTER_DEBUG @@ -188,9 +148,21 @@ config NETFILTER_DEBUG You can say Y here if you want to get additional messages useful in debugging the netfilter code. +config NETFILTER_ADVANCED + bool "Advanced netfilter configuration" + depends on NETFILTER + default y + help + If you say Y here you can select between all the netfilter modules. + If you say N the more unusual ones will not be shown and the + basic ones needed by most people will default to 'M'. + + If unsure, say Y. + config BRIDGE_NETFILTER bool "Bridged IP/ARP packets filtering" depends on BRIDGE && NETFILTER && INET + depends on NETFILTER_ADVANCED default y ---help--- Enabling this option will let arptables resp. iptables see bridged @@ -201,6 +173,7 @@ config BRIDGE_NETFILTER If unsure, say N. +source "net/netfilter/Kconfig" source "net/ipv4/netfilter/Kconfig" source "net/ipv6/netfilter/Kconfig" source "net/decnet/netfilter/Kconfig" @@ -208,396 +181,27 @@ source "net/bridge/netfilter/Kconfig" endif -config XFRM - bool - depends on NET - -source "net/xfrm/Kconfig" - +source "net/dccp/Kconfig" source "net/sctp/Kconfig" - -config ATM - tristate "Asynchronous Transfer Mode (ATM) (EXPERIMENTAL)" - depends on EXPERIMENTAL - ---help--- - ATM is a high-speed networking technology for Local Area Networks - and Wide Area Networks. It uses a fixed packet size and is - connection oriented, allowing for the negotiation of minimum - bandwidth requirements. - - In order to participate in an ATM network, your Linux box needs an - ATM networking card. If you have that, say Y here and to the driver - of your ATM card below. - - Note that you need a set of user-space programs to actually make use - of ATM. See the file for - further details. - -config ATM_CLIP - tristate "Classical IP over ATM (EXPERIMENTAL)" - depends on ATM && INET - help - Classical IP over ATM for PVCs and SVCs, supporting InARP and - ATMARP. If you want to communication with other IP hosts on your ATM - network, you will typically either say Y here or to "LAN Emulation - (LANE)" below. - -config ATM_CLIP_NO_ICMP - bool "Do NOT send ICMP if no neighbour (EXPERIMENTAL)" - depends on ATM_CLIP - help - Normally, an "ICMP host unreachable" message is sent if a neighbour - cannot be reached because there is no VC to it in the kernel's - ATMARP table. This may cause problems when ATMARP table entries are - briefly removed during revalidation. If you say Y here, packets to - such neighbours are silently discarded instead. - -config ATM_LANE - tristate "LAN Emulation (LANE) support (EXPERIMENTAL)" - depends on ATM - help - LAN Emulation emulates services of existing LANs across an ATM - network. Besides operating as a normal ATM end station client, Linux - LANE client can also act as an proxy client bridging packets between - ELAN and Ethernet segments. You need LANE if you want to try MPOA. - -config ATM_MPOA - tristate "Multi-Protocol Over ATM (MPOA) support (EXPERIMENTAL)" - depends on ATM && INET && ATM_LANE!=n - help - Multi-Protocol Over ATM allows ATM edge devices such as routers, - bridges and ATM attached hosts establish direct ATM VCs across - subnetwork boundaries. These shortcut connections bypass routers - enhancing overall network performance. - -config ATM_BR2684 - tristate "RFC1483/2684 Bridged protocols" - depends on ATM && INET - help - ATM PVCs can carry ethernet PDUs according to RFC2684 (formerly 1483) - This device will act like an ethernet from the kernels point of view, - with the traffic being carried by ATM PVCs (currently 1 PVC/device). - This is sometimes used over DSL lines. If in doubt, say N. - -config ATM_BR2684_IPFILTER - bool "Per-VC IP filter kludge" - depends on ATM_BR2684 - help - This is an experimental mechanism for users who need to terminate a - large number of IP-only vcc's. Do not enable this unless you are sure - you know what you are doing. - -config BRIDGE - tristate "802.1d Ethernet Bridging" - ---help--- - If you say Y here, then your Linux box will be able to act as an - Ethernet bridge, which means that the different Ethernet segments it - is connected to will appear as one Ethernet to the participants. - Several such bridges can work together to create even larger - networks of Ethernets using the IEEE 802.1 spanning tree algorithm. - As this is a standard, Linux bridges will cooperate properly with - other third party bridge products. - - In order to use the Ethernet bridge, you'll need the bridge - configuration tools; see - for location. Please read the Bridge mini-HOWTO for more - information. - - If you enable iptables support along with the bridge support then you - turn your bridge into a bridging IP firewall. - iptables will then see the IP packets being bridged, so you need to - take this into account when setting up your firewall rules. - Enabling arptables support when bridging will let arptables see - bridged ARP traffic in the arptables FORWARD chain. - - To compile this code as a module, choose M here: the module - will be called bridge. - - If unsure, say N. - -config VLAN_8021Q - tristate "802.1Q VLAN Support" - ---help--- - Select this and you will be able to create 802.1Q VLAN interfaces - on your ethernet interfaces. 802.1Q VLAN supports almost - everything a regular ethernet interface does, including - firewalling, bridging, and of course IP traffic. You will need - the 'vconfig' tool from the VLAN project in order to effectively - use VLANs. See the VLAN web page for more information: - - - To compile this code as a module, choose M here: the module - will be called 8021q. - - If unsure, say N. - -config DECNET - tristate "DECnet Support" - ---help--- - The DECnet networking protocol was used in many products made by - Digital (now Compaq). It provides reliable stream and sequenced - packet communications over which run a variety of services similar - to those which run over TCP/IP. - - To find some tools to use with the kernel layer support, please - look at Patrick Caulfield's web site: - . - - More detailed documentation is available in - . - - Be sure to say Y to "/proc file system support" and "Sysctl support" - below when using DECnet, since you will need sysctl support to aid - in configuration at run time. - - The DECnet code is also available as a module ( = code which can be - inserted in and removed from the running kernel whenever you want). - The module is called decnet. - +source "net/rds/Kconfig" +source "net/tipc/Kconfig" +source "net/atm/Kconfig" +source "net/802/Kconfig" +source "net/bridge/Kconfig" +source "net/dsa/Kconfig" +source "net/8021q/Kconfig" source "net/decnet/Kconfig" - source "net/llc/Kconfig" - -config IPX - tristate "The IPX protocol" - select LLC - ---help--- - This is support for the Novell networking protocol, IPX, commonly - used for local networks of Windows machines. You need it if you - want to access Novell NetWare file or print servers using the Linux - Novell client ncpfs (available from - ) or from - within the Linux DOS emulator DOSEMU (read the DOSEMU-HOWTO, - available from ). In order - to do the former, you'll also have to say Y to "NCP file system - support", below. - - IPX is similar in scope to IP, while SPX, which runs on top of IPX, - is similar to TCP. There is also experimental support for SPX in - Linux (see "SPX networking", below). - - To turn your Linux box into a fully featured NetWare file server and - IPX router, say Y here and fetch either lwared from - or - mars_nwe from . For more - information, read the IPX-HOWTO available from - . - - General information about how to connect Linux, Windows machines and - Macs is on the WWW at . - - The IPX driver would enlarge your kernel by about 16 KB. To compile - this driver as a module, choose M here: the module will be called ipx. - Unless you want to integrate your Linux box with a local Novell - network, say N. - source "net/ipx/Kconfig" - -config ATALK - tristate "Appletalk protocol support" - select LLC - ---help--- - AppleTalk is the protocol that Apple computers can use to communicate - on a network. If your Linux box is connected to such a network and you - wish to connect to it, say Y. You will need to use the netatalk package - so that your Linux box can act as a print and file server for Macs as - well as access AppleTalk printers. Check out - on the WWW for details. - EtherTalk is the name used for AppleTalk over Ethernet and the - cheaper and slower LocalTalk is AppleTalk over a proprietary Apple - network using serial links. EtherTalk and LocalTalk are fully - supported by Linux. - - General information about how to connect Linux, Windows machines and - Macs is on the WWW at . The - NET-3-HOWTO, available from - , contains valuable - information as well. - - To compile this driver as a module, choose M here: the module will be - called appletalk. You almost certainly want to compile it as a - module so you can restart your AppleTalk stack without rebooting - your machine. I hear that the GNU boycott of Apple is over, so - even politically correct people are allowed to say Y here. - source "drivers/net/appletalk/Kconfig" - -config X25 - tristate "CCITT X.25 Packet Layer (EXPERIMENTAL)" - depends on EXPERIMENTAL - ---help--- - X.25 is a set of standardized network protocols, similar in scope to - frame relay; the one physical line from your box to the X.25 network - entry point can carry several logical point-to-point connections - (called "virtual circuits") to other computers connected to the X.25 - network. Governments, banks, and other organizations tend to use it - to connect to each other or to form Wide Area Networks (WANs). Many - countries have public X.25 networks. X.25 consists of two - protocols: the higher level Packet Layer Protocol (PLP) (say Y here - if you want that) and the lower level data link layer protocol LAPB - (say Y to "LAPB Data Link Driver" below if you want that). - - You can read more about X.25 at and - . - Information about X.25 for Linux is contained in the files - and - . - - One connects to an X.25 network either with a dedicated network card - using the X.21 protocol (not yet supported by Linux) or one can do - X.25 over a standard telephone line using an ordinary modem (say Y - to "X.25 async driver" below) or over Ethernet using an ordinary - Ethernet card and the LAPB over Ethernet (say Y to "LAPB Data Link - Driver" and "LAPB over Ethernet driver" below). - - To compile this driver as a module, choose M here: the module - will be called x25. If unsure, say N. - -config LAPB - tristate "LAPB Data Link Driver (EXPERIMENTAL)" - depends on EXPERIMENTAL - ---help--- - Link Access Procedure, Balanced (LAPB) is the data link layer (i.e. - the lower) part of the X.25 protocol. It offers a reliable - connection service to exchange data frames with one other host, and - it is used to transport higher level protocols (mostly X.25 Packet - Layer, the higher part of X.25, but others are possible as well). - Usually, LAPB is used with specialized X.21 network cards, but Linux - currently supports LAPB only over Ethernet connections. If you want - to use LAPB connections over Ethernet, say Y here and to "LAPB over - Ethernet driver" below. Read - for technical - details. - - To compile this driver as a module, choose M here: the - module will be called lapb. If unsure, say N. - -config NET_DIVERT - bool "Frame Diverter (EXPERIMENTAL)" - depends on EXPERIMENTAL - ---help--- - The Frame Diverter allows you to divert packets from the - network, that are not aimed at the interface receiving it (in - promisc. mode). Typically, a Linux box setup as an Ethernet bridge - with the Frames Diverter on, can do some *really* transparent www - caching using a Squid proxy for example. - - This is very useful when you don't want to change your router's - config (or if you simply don't have access to it). - - The other possible usages of diverting Ethernet Frames are - numberous: - - reroute smtp traffic to another interface - - traffic-shape certain network streams - - transparently proxy smtp connections - - etc... - - For more informations, please refer to: - - - - If unsure, say N. - -config ECONET - tristate "Acorn Econet/AUN protocols (EXPERIMENTAL)" - depends on EXPERIMENTAL && INET - ---help--- - Econet is a fairly old and slow networking protocol mainly used by - Acorn computers to access file and print servers. It uses native - Econet network cards. AUN is an implementation of the higher level - parts of Econet that runs over ordinary Ethernet connections, on - top of the UDP packet protocol, which in turn runs on top of the - Internet protocol IP. - - If you say Y here, you can choose with the next two options whether - to send Econet/AUN traffic over a UDP Ethernet connection or over - a native Econet network card. - - To compile this driver as a module, choose M here: the module - will be called econet. - -config ECONET_AUNUDP - bool "AUN over UDP" - depends on ECONET - help - Say Y here if you want to send Econet/AUN traffic over a UDP - connection (UDP is a packet based protocol that runs on top of the - Internet protocol IP) using an ordinary Ethernet network card. - -config ECONET_NATIVE - bool "Native Econet" - depends on ECONET - help - Say Y here if you have a native Econet network card installed in - your computer. - -config WAN_ROUTER - tristate "WAN router" - depends on EXPERIMENTAL - ---help--- - Wide Area Networks (WANs), such as X.25, frame relay and leased - lines, are used to interconnect Local Area Networks (LANs) over vast - distances with data transfer rates significantly higher than those - achievable with commonly used asynchronous modem connections. - Usually, a quite expensive external device called a `WAN router' is - needed to connect to a WAN. - - As an alternative, WAN routing can be built into the Linux kernel. - With relatively inexpensive WAN interface cards available on the - market, a perfectly usable router can be built for less than half - the price of an external router. If you have one of those cards and - wish to use your Linux box as a WAN router, say Y here and also to - the WAN driver for your card, below. You will then need the - wan-tools package which is available from . - Read for more - information. - - To compile WAN routing support as a module, choose M here: the - module will be called wanrouter. - - If unsure, say N. - -menu "QoS and/or fair queueing" - -config NET_SCHED - bool "QoS and/or fair queueing" - ---help--- - When the kernel has several packets to send out over a network - device, it has to decide which ones to send first, which ones to - delay, and which ones to drop. This is the job of the packet - scheduler, and several different algorithms for how to do this - "fairly" have been proposed. - - If you say N here, you will get the standard packet scheduler, which - is a FIFO (first come, first served). If you say Y here, you will be - able to choose from among several alternative algorithms which can - then be attached to different network devices. This is useful for - example if some of your network devices are real time devices that - need a certain minimum data flow rate, or if you need to limit the - maximum data flow rate for traffic which matches specified criteria. - This code is considered to be experimental. - - To administer these schedulers, you'll need the user-level utilities - from the package iproute2+tc at . - That package also contains some documentation; for more, check out - . - - This Quality of Service (QoS) support will enable you to use - Differentiated Services (diffserv) and Resource Reservation Protocol - (RSVP) on your Linux router if you also say Y to "QoS support", - "Packet classifier API" and to some classifiers below. Documentation - and software is at . - - If you say Y here and to "/proc file system" below, you will be able - to read status information about packet schedulers from the file - /proc/net/psched. - - The available schedulers are listed in the following questions; you - can say Y to as many as you like. If unsure, say N now. - +source "net/x25/Kconfig" +source "net/lapb/Kconfig" +source "net/econet/Kconfig" +source "net/wanrouter/Kconfig" +source "net/phonet/Kconfig" +source "net/ieee802154/Kconfig" source "net/sched/Kconfig" - -endmenu +source "net/dcb/Kconfig" menu "Network testing" @@ -616,31 +220,60 @@ config NET_PKTGEN To compile this code as a module, choose M here: the module will be called pktgen. +config NET_TCPPROBE + tristate "TCP connection probing" + depends on INET && EXPERIMENTAL && PROC_FS && KPROBES + ---help--- + This module allows for capturing the changes to TCP connection + state in response to incoming packets. It is used for debugging + TCP congestion avoidance modules. If you don't understand + what was just said, you don't need it: say N. + + Documentation on how to use TCP connection probing can be found + at http://linux-net.osdl.org/index.php/TcpProbe + + To compile this code as a module, choose M here: the + module will be called tcp_probe. + +config NET_DROP_MONITOR + boolean "Network packet drop alerting service" + depends on INET && EXPERIMENTAL && TRACEPOINTS + ---help--- + This feature provides an alerting service to userspace in the + event that packets are discarded in the network stack. Alerts + are broadcast via netlink socket to any listening user space + process. If you don't need network drop alerts, or if you are ok + just checking the various proc files and other utilities for + drop statistics, say N here. + endmenu endmenu -config NETPOLL - def_bool NETCONSOLE +source "net/ax25/Kconfig" +source "net/can/Kconfig" +source "net/irda/Kconfig" +source "net/bluetooth/Kconfig" +source "net/rxrpc/Kconfig" -config NETPOLL_RX - bool "Netpoll support for trapping incoming packets" - default n - depends on NETPOLL +config FIB_RULES + bool -config NETPOLL_TRAP - bool "Netpoll traffic trapping" - default n - depends on NETPOLL +menuconfig WIRELESS + bool "Wireless" + depends on !S390 + default y -config NET_POLL_CONTROLLER - def_bool NETPOLL +if WIRELESS -source "net/ax25/Kconfig" +source "net/wireless/Kconfig" +source "net/mac80211/Kconfig" -source "net/irda/Kconfig" +endif # WIRELESS -source "net/bluetooth/Kconfig" +source "net/wimax/Kconfig" -endmenu # Networking +source "net/rfkill/Kconfig" +source "net/9p/Kconfig" +endif # if NET