X-Git-Url: http://ftp.safe.ca/?a=blobdiff_plain;f=kernel%2Fsched_rt.c;h=bac1061cea2f4ab67f7c6d5b81300d02b717d5ba;hb=f30d5b307c694e03368ab55f2f96b0ca4131e775;hp=52d88f193afcc044a2e14c4bc27c4901c45aa3c6;hpb=06f90dbd7610d51549004ea9c2ada337831eb292;p=safe%2Fjmp%2Flinux-2.6 diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c index 52d88f1..bac1061 100644 --- a/kernel/sched_rt.c +++ b/kernel/sched_rt.c @@ -4,20 +4,18 @@ */ #ifdef CONFIG_SMP -static cpumask_t rt_overload_mask; -static atomic_t rto_count; -static inline int rt_overloaded(void) -{ - return atomic_read(&rto_count); -} -static inline cpumask_t *rt_overload(void) + +static inline int rt_overloaded(struct rq *rq) { - return &rt_overload_mask; + return atomic_read(&rq->rd->rto_count); } + static inline void rt_set_overload(struct rq *rq) { - rq->rt.overloaded = 1; - cpu_set(rq->cpu, rt_overload_mask); + if (!rq->online) + return; + + cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); /* * Make sure the mask is visible before we set * the overload count. That is checked to determine @@ -26,25 +24,487 @@ static inline void rt_set_overload(struct rq *rq) * updated yet. */ wmb(); - atomic_inc(&rto_count); + atomic_inc(&rq->rd->rto_count); } + static inline void rt_clear_overload(struct rq *rq) { + if (!rq->online) + return; + /* the order here really doesn't matter */ - atomic_dec(&rto_count); - cpu_clear(rq->cpu, rt_overload_mask); - rq->rt.overloaded = 0; + atomic_dec(&rq->rd->rto_count); + cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); } static void update_rt_migration(struct rq *rq) { - if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) - rt_set_overload(rq); - else + if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) { + if (!rq->rt.overloaded) { + rt_set_overload(rq); + rq->rt.overloaded = 1; + } + } else if (rq->rt.overloaded) { rt_clear_overload(rq); + rq->rt.overloaded = 0; + } +} +#endif /* CONFIG_SMP */ + +static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) +{ + return container_of(rt_se, struct task_struct, rt); +} + +static inline int on_rt_rq(struct sched_rt_entity *rt_se) +{ + return !list_empty(&rt_se->run_list); +} + +#ifdef CONFIG_RT_GROUP_SCHED + +static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) +{ + if (!rt_rq->tg) + return RUNTIME_INF; + + return rt_rq->rt_runtime; +} + +static inline u64 sched_rt_period(struct rt_rq *rt_rq) +{ + return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); +} + +#define for_each_leaf_rt_rq(rt_rq, rq) \ + list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list) + +static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) +{ + return rt_rq->rq; +} + +static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) +{ + return rt_se->rt_rq; +} + +#define for_each_sched_rt_entity(rt_se) \ + for (; rt_se; rt_se = rt_se->parent) + +static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) +{ + return rt_se->my_q; +} + +static void enqueue_rt_entity(struct sched_rt_entity *rt_se); +static void dequeue_rt_entity(struct sched_rt_entity *rt_se); + +static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) +{ + struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; + struct sched_rt_entity *rt_se = rt_rq->rt_se; + + if (rt_rq->rt_nr_running) { + if (rt_se && !on_rt_rq(rt_se)) + enqueue_rt_entity(rt_se); + if (rt_rq->highest_prio < curr->prio) + resched_task(curr); + } +} + +static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) +{ + struct sched_rt_entity *rt_se = rt_rq->rt_se; + + if (rt_se && on_rt_rq(rt_se)) + dequeue_rt_entity(rt_se); +} + +static inline int rt_rq_throttled(struct rt_rq *rt_rq) +{ + return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; +} + +static int rt_se_boosted(struct sched_rt_entity *rt_se) +{ + struct rt_rq *rt_rq = group_rt_rq(rt_se); + struct task_struct *p; + + if (rt_rq) + return !!rt_rq->rt_nr_boosted; + + p = rt_task_of(rt_se); + return p->prio != p->normal_prio; +} + +#ifdef CONFIG_SMP +static inline const struct cpumask *sched_rt_period_mask(void) +{ + return cpu_rq(smp_processor_id())->rd->span; +} +#else +static inline const struct cpumask *sched_rt_period_mask(void) +{ + return cpu_online_mask; +} +#endif + +static inline +struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) +{ + return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; +} + +static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) +{ + return &rt_rq->tg->rt_bandwidth; +} + +#else /* !CONFIG_RT_GROUP_SCHED */ + +static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) +{ + return rt_rq->rt_runtime; +} + +static inline u64 sched_rt_period(struct rt_rq *rt_rq) +{ + return ktime_to_ns(def_rt_bandwidth.rt_period); +} + +#define for_each_leaf_rt_rq(rt_rq, rq) \ + for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL) + +static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) +{ + return container_of(rt_rq, struct rq, rt); +} + +static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) +{ + struct task_struct *p = rt_task_of(rt_se); + struct rq *rq = task_rq(p); + + return &rq->rt; +} + +#define for_each_sched_rt_entity(rt_se) \ + for (; rt_se; rt_se = NULL) + +static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) +{ + return NULL; +} + +static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) +{ + if (rt_rq->rt_nr_running) + resched_task(rq_of_rt_rq(rt_rq)->curr); +} + +static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) +{ +} + +static inline int rt_rq_throttled(struct rt_rq *rt_rq) +{ + return rt_rq->rt_throttled; +} + +static inline const struct cpumask *sched_rt_period_mask(void) +{ + return cpu_online_mask; +} + +static inline +struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) +{ + return &cpu_rq(cpu)->rt; +} + +static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) +{ + return &def_rt_bandwidth; +} + +#endif /* CONFIG_RT_GROUP_SCHED */ + +#ifdef CONFIG_SMP +/* + * We ran out of runtime, see if we can borrow some from our neighbours. + */ +static int do_balance_runtime(struct rt_rq *rt_rq) +{ + struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); + struct root_domain *rd = cpu_rq(smp_processor_id())->rd; + int i, weight, more = 0; + u64 rt_period; + + weight = cpumask_weight(rd->span); + + spin_lock(&rt_b->rt_runtime_lock); + rt_period = ktime_to_ns(rt_b->rt_period); + for_each_cpu(i, rd->span) { + struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); + s64 diff; + + if (iter == rt_rq) + continue; + + spin_lock(&iter->rt_runtime_lock); + /* + * Either all rqs have inf runtime and there's nothing to steal + * or __disable_runtime() below sets a specific rq to inf to + * indicate its been disabled and disalow stealing. + */ + if (iter->rt_runtime == RUNTIME_INF) + goto next; + + /* + * From runqueues with spare time, take 1/n part of their + * spare time, but no more than our period. + */ + diff = iter->rt_runtime - iter->rt_time; + if (diff > 0) { + diff = div_u64((u64)diff, weight); + if (rt_rq->rt_runtime + diff > rt_period) + diff = rt_period - rt_rq->rt_runtime; + iter->rt_runtime -= diff; + rt_rq->rt_runtime += diff; + more = 1; + if (rt_rq->rt_runtime == rt_period) { + spin_unlock(&iter->rt_runtime_lock); + break; + } + } +next: + spin_unlock(&iter->rt_runtime_lock); + } + spin_unlock(&rt_b->rt_runtime_lock); + + return more; +} + +/* + * Ensure this RQ takes back all the runtime it lend to its neighbours. + */ +static void __disable_runtime(struct rq *rq) +{ + struct root_domain *rd = rq->rd; + struct rt_rq *rt_rq; + + if (unlikely(!scheduler_running)) + return; + + for_each_leaf_rt_rq(rt_rq, rq) { + struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); + s64 want; + int i; + + spin_lock(&rt_b->rt_runtime_lock); + spin_lock(&rt_rq->rt_runtime_lock); + /* + * Either we're all inf and nobody needs to borrow, or we're + * already disabled and thus have nothing to do, or we have + * exactly the right amount of runtime to take out. + */ + if (rt_rq->rt_runtime == RUNTIME_INF || + rt_rq->rt_runtime == rt_b->rt_runtime) + goto balanced; + spin_unlock(&rt_rq->rt_runtime_lock); + + /* + * Calculate the difference between what we started out with + * and what we current have, that's the amount of runtime + * we lend and now have to reclaim. + */ + want = rt_b->rt_runtime - rt_rq->rt_runtime; + + /* + * Greedy reclaim, take back as much as we can. + */ + for_each_cpu(i, rd->span) { + struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); + s64 diff; + + /* + * Can't reclaim from ourselves or disabled runqueues. + */ + if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) + continue; + + spin_lock(&iter->rt_runtime_lock); + if (want > 0) { + diff = min_t(s64, iter->rt_runtime, want); + iter->rt_runtime -= diff; + want -= diff; + } else { + iter->rt_runtime -= want; + want -= want; + } + spin_unlock(&iter->rt_runtime_lock); + + if (!want) + break; + } + + spin_lock(&rt_rq->rt_runtime_lock); + /* + * We cannot be left wanting - that would mean some runtime + * leaked out of the system. + */ + BUG_ON(want); +balanced: + /* + * Disable all the borrow logic by pretending we have inf + * runtime - in which case borrowing doesn't make sense. + */ + rt_rq->rt_runtime = RUNTIME_INF; + spin_unlock(&rt_rq->rt_runtime_lock); + spin_unlock(&rt_b->rt_runtime_lock); + } +} + +static void disable_runtime(struct rq *rq) +{ + unsigned long flags; + + spin_lock_irqsave(&rq->lock, flags); + __disable_runtime(rq); + spin_unlock_irqrestore(&rq->lock, flags); +} + +static void __enable_runtime(struct rq *rq) +{ + struct rt_rq *rt_rq; + + if (unlikely(!scheduler_running)) + return; + + /* + * Reset each runqueue's bandwidth settings + */ + for_each_leaf_rt_rq(rt_rq, rq) { + struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); + + spin_lock(&rt_b->rt_runtime_lock); + spin_lock(&rt_rq->rt_runtime_lock); + rt_rq->rt_runtime = rt_b->rt_runtime; + rt_rq->rt_time = 0; + rt_rq->rt_throttled = 0; + spin_unlock(&rt_rq->rt_runtime_lock); + spin_unlock(&rt_b->rt_runtime_lock); + } +} + +static void enable_runtime(struct rq *rq) +{ + unsigned long flags; + + spin_lock_irqsave(&rq->lock, flags); + __enable_runtime(rq); + spin_unlock_irqrestore(&rq->lock, flags); +} + +static int balance_runtime(struct rt_rq *rt_rq) +{ + int more = 0; + + if (rt_rq->rt_time > rt_rq->rt_runtime) { + spin_unlock(&rt_rq->rt_runtime_lock); + more = do_balance_runtime(rt_rq); + spin_lock(&rt_rq->rt_runtime_lock); + } + + return more; +} +#else /* !CONFIG_SMP */ +static inline int balance_runtime(struct rt_rq *rt_rq) +{ + return 0; } #endif /* CONFIG_SMP */ +static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) +{ + int i, idle = 1; + const struct cpumask *span; + + if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) + return 1; + + span = sched_rt_period_mask(); + for_each_cpu(i, span) { + int enqueue = 0; + struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); + struct rq *rq = rq_of_rt_rq(rt_rq); + + spin_lock(&rq->lock); + if (rt_rq->rt_time) { + u64 runtime; + + spin_lock(&rt_rq->rt_runtime_lock); + if (rt_rq->rt_throttled) + balance_runtime(rt_rq); + runtime = rt_rq->rt_runtime; + rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); + if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { + rt_rq->rt_throttled = 0; + enqueue = 1; + } + if (rt_rq->rt_time || rt_rq->rt_nr_running) + idle = 0; + spin_unlock(&rt_rq->rt_runtime_lock); + } else if (rt_rq->rt_nr_running) + idle = 0; + + if (enqueue) + sched_rt_rq_enqueue(rt_rq); + spin_unlock(&rq->lock); + } + + return idle; +} + +static inline int rt_se_prio(struct sched_rt_entity *rt_se) +{ +#ifdef CONFIG_RT_GROUP_SCHED + struct rt_rq *rt_rq = group_rt_rq(rt_se); + + if (rt_rq) + return rt_rq->highest_prio; +#endif + + return rt_task_of(rt_se)->prio; +} + +static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) +{ + u64 runtime = sched_rt_runtime(rt_rq); + + if (rt_rq->rt_throttled) + return rt_rq_throttled(rt_rq); + + if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq)) + return 0; + + balance_runtime(rt_rq); + runtime = sched_rt_runtime(rt_rq); + if (runtime == RUNTIME_INF) + return 0; + + if (rt_rq->rt_time > runtime) { + rt_rq->rt_throttled = 1; + if (rt_rq_throttled(rt_rq)) { + sched_rt_rq_dequeue(rt_rq); + return 1; + } + } + + return 0; +} + /* * Update the current task's runtime statistics. Skip current tasks that * are not in our scheduling class. @@ -52,6 +512,8 @@ static void update_rt_migration(struct rq *rq) static void update_curr_rt(struct rq *rq) { struct task_struct *curr = rq->curr; + struct sched_rt_entity *rt_se = &curr->rt; + struct rt_rq *rt_rq = rt_rq_of_se(rt_se); u64 delta_exec; if (!task_has_rt_policy(curr)) @@ -64,92 +526,243 @@ static void update_curr_rt(struct rq *rq) schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec)); curr->se.sum_exec_runtime += delta_exec; + account_group_exec_runtime(curr, delta_exec); + curr->se.exec_start = rq->clock; cpuacct_charge(curr, delta_exec); + + if (!rt_bandwidth_enabled()) + return; + + for_each_sched_rt_entity(rt_se) { + rt_rq = rt_rq_of_se(rt_se); + + if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { + spin_lock(&rt_rq->rt_runtime_lock); + rt_rq->rt_time += delta_exec; + if (sched_rt_runtime_exceeded(rt_rq)) + resched_task(curr); + spin_unlock(&rt_rq->rt_runtime_lock); + } + } } -static inline void inc_rt_tasks(struct task_struct *p, struct rq *rq) +static inline +void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) { - WARN_ON(!rt_task(p)); - rq->rt.rt_nr_running++; + WARN_ON(!rt_prio(rt_se_prio(rt_se))); + rt_rq->rt_nr_running++; +#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED + if (rt_se_prio(rt_se) < rt_rq->highest_prio) { +#ifdef CONFIG_SMP + struct rq *rq = rq_of_rt_rq(rt_rq); +#endif + + rt_rq->highest_prio = rt_se_prio(rt_se); +#ifdef CONFIG_SMP + if (rq->online) + cpupri_set(&rq->rd->cpupri, rq->cpu, + rt_se_prio(rt_se)); +#endif + } +#endif #ifdef CONFIG_SMP - if (p->prio < rq->rt.highest_prio) - rq->rt.highest_prio = p->prio; - if (p->nr_cpus_allowed > 1) + if (rt_se->nr_cpus_allowed > 1) { + struct rq *rq = rq_of_rt_rq(rt_rq); + rq->rt.rt_nr_migratory++; + } - update_rt_migration(rq); -#endif /* CONFIG_SMP */ + update_rt_migration(rq_of_rt_rq(rt_rq)); +#endif +#ifdef CONFIG_RT_GROUP_SCHED + if (rt_se_boosted(rt_se)) + rt_rq->rt_nr_boosted++; + + if (rt_rq->tg) + start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); +#else + start_rt_bandwidth(&def_rt_bandwidth); +#endif } -static inline void dec_rt_tasks(struct task_struct *p, struct rq *rq) +static inline +void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) { - WARN_ON(!rt_task(p)); - WARN_ON(!rq->rt.rt_nr_running); - rq->rt.rt_nr_running--; #ifdef CONFIG_SMP - if (rq->rt.rt_nr_running) { + int highest_prio = rt_rq->highest_prio; +#endif + + WARN_ON(!rt_prio(rt_se_prio(rt_se))); + WARN_ON(!rt_rq->rt_nr_running); + rt_rq->rt_nr_running--; +#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED + if (rt_rq->rt_nr_running) { struct rt_prio_array *array; - WARN_ON(p->prio < rq->rt.highest_prio); - if (p->prio == rq->rt.highest_prio) { + WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio); + if (rt_se_prio(rt_se) == rt_rq->highest_prio) { /* recalculate */ - array = &rq->rt.active; - rq->rt.highest_prio = + array = &rt_rq->active; + rt_rq->highest_prio = sched_find_first_bit(array->bitmap); } /* otherwise leave rq->highest prio alone */ } else - rq->rt.highest_prio = MAX_RT_PRIO; - if (p->nr_cpus_allowed > 1) + rt_rq->highest_prio = MAX_RT_PRIO; +#endif +#ifdef CONFIG_SMP + if (rt_se->nr_cpus_allowed > 1) { + struct rq *rq = rq_of_rt_rq(rt_rq); rq->rt.rt_nr_migratory--; + } - update_rt_migration(rq); + if (rt_rq->highest_prio != highest_prio) { + struct rq *rq = rq_of_rt_rq(rt_rq); + + if (rq->online) + cpupri_set(&rq->rd->cpupri, rq->cpu, + rt_rq->highest_prio); + } + + update_rt_migration(rq_of_rt_rq(rt_rq)); #endif /* CONFIG_SMP */ +#ifdef CONFIG_RT_GROUP_SCHED + if (rt_se_boosted(rt_se)) + rt_rq->rt_nr_boosted--; + + WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); +#endif } -static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup) +static void __enqueue_rt_entity(struct sched_rt_entity *rt_se) { - struct rt_prio_array *array = &rq->rt.active; + struct rt_rq *rt_rq = rt_rq_of_se(rt_se); + struct rt_prio_array *array = &rt_rq->active; + struct rt_rq *group_rq = group_rt_rq(rt_se); + struct list_head *queue = array->queue + rt_se_prio(rt_se); - list_add_tail(&p->run_list, array->queue + p->prio); - __set_bit(p->prio, array->bitmap); - inc_cpu_load(rq, p->se.load.weight); + /* + * Don't enqueue the group if its throttled, or when empty. + * The latter is a consequence of the former when a child group + * get throttled and the current group doesn't have any other + * active members. + */ + if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) + return; + + list_add_tail(&rt_se->run_list, queue); + __set_bit(rt_se_prio(rt_se), array->bitmap); - inc_rt_tasks(p, rq); + inc_rt_tasks(rt_se, rt_rq); +} + +static void __dequeue_rt_entity(struct sched_rt_entity *rt_se) +{ + struct rt_rq *rt_rq = rt_rq_of_se(rt_se); + struct rt_prio_array *array = &rt_rq->active; + + list_del_init(&rt_se->run_list); + if (list_empty(array->queue + rt_se_prio(rt_se))) + __clear_bit(rt_se_prio(rt_se), array->bitmap); + + dec_rt_tasks(rt_se, rt_rq); +} + +/* + * Because the prio of an upper entry depends on the lower + * entries, we must remove entries top - down. + */ +static void dequeue_rt_stack(struct sched_rt_entity *rt_se) +{ + struct sched_rt_entity *back = NULL; + + for_each_sched_rt_entity(rt_se) { + rt_se->back = back; + back = rt_se; + } + + for (rt_se = back; rt_se; rt_se = rt_se->back) { + if (on_rt_rq(rt_se)) + __dequeue_rt_entity(rt_se); + } +} + +static void enqueue_rt_entity(struct sched_rt_entity *rt_se) +{ + dequeue_rt_stack(rt_se); + for_each_sched_rt_entity(rt_se) + __enqueue_rt_entity(rt_se); +} + +static void dequeue_rt_entity(struct sched_rt_entity *rt_se) +{ + dequeue_rt_stack(rt_se); + + for_each_sched_rt_entity(rt_se) { + struct rt_rq *rt_rq = group_rt_rq(rt_se); + + if (rt_rq && rt_rq->rt_nr_running) + __enqueue_rt_entity(rt_se); + } } /* * Adding/removing a task to/from a priority array: */ +static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup) +{ + struct sched_rt_entity *rt_se = &p->rt; + + if (wakeup) + rt_se->timeout = 0; + + enqueue_rt_entity(rt_se); + + inc_cpu_load(rq, p->se.load.weight); +} + static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) { - struct rt_prio_array *array = &rq->rt.active; + struct sched_rt_entity *rt_se = &p->rt; update_curr_rt(rq); + dequeue_rt_entity(rt_se); - list_del(&p->run_list); - if (list_empty(array->queue + p->prio)) - __clear_bit(p->prio, array->bitmap); dec_cpu_load(rq, p->se.load.weight); - - dec_rt_tasks(p, rq); } /* * Put task to the end of the run list without the overhead of dequeue * followed by enqueue. */ -static void requeue_task_rt(struct rq *rq, struct task_struct *p) +static void +requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) +{ + if (on_rt_rq(rt_se)) { + struct rt_prio_array *array = &rt_rq->active; + struct list_head *queue = array->queue + rt_se_prio(rt_se); + + if (head) + list_move(&rt_se->run_list, queue); + else + list_move_tail(&rt_se->run_list, queue); + } +} + +static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) { - struct rt_prio_array *array = &rq->rt.active; + struct sched_rt_entity *rt_se = &p->rt; + struct rt_rq *rt_rq; - list_move_tail(&p->run_list, array->queue + p->prio); + for_each_sched_rt_entity(rt_se) { + rt_rq = rt_rq_of_se(rt_se); + requeue_rt_entity(rt_rq, rt_se, head); + } } -static void -yield_task_rt(struct rq *rq) +static void yield_task_rt(struct rq *rq) { - requeue_task_rt(rq, rq->curr); + requeue_task_rt(rq, rq->curr, 0); } #ifdef CONFIG_SMP @@ -177,7 +790,7 @@ static int select_task_rq_rt(struct task_struct *p, int sync) * cold cache anyway. */ if (unlikely(rt_task(rq->curr)) && - (p->nr_cpus_allowed > 1)) { + (p->rt.nr_cpus_allowed > 1)) { int cpu = find_lowest_rq(p); return (cpu == -1) ? task_cpu(p) : cpu; @@ -189,36 +802,107 @@ static int select_task_rq_rt(struct task_struct *p, int sync) */ return task_cpu(p); } + +static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) +{ + cpumask_var_t mask; + + if (rq->curr->rt.nr_cpus_allowed == 1) + return; + + if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) + return; + + if (p->rt.nr_cpus_allowed != 1 + && cpupri_find(&rq->rd->cpupri, p, mask)) + goto free; + + if (!cpupri_find(&rq->rd->cpupri, rq->curr, mask)) + goto free; + + /* + * There appears to be other cpus that can accept + * current and none to run 'p', so lets reschedule + * to try and push current away: + */ + requeue_task_rt(rq, p, 1); + resched_task(rq->curr); +free: + free_cpumask_var(mask); +} + #endif /* CONFIG_SMP */ /* * Preempt the current task with a newly woken task if needed: */ -static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p) +static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync) { - if (p->prio < rq->curr->prio) + if (p->prio < rq->curr->prio) { resched_task(rq->curr); + return; + } + +#ifdef CONFIG_SMP + /* + * If: + * + * - the newly woken task is of equal priority to the current task + * - the newly woken task is non-migratable while current is migratable + * - current will be preempted on the next reschedule + * + * we should check to see if current can readily move to a different + * cpu. If so, we will reschedule to allow the push logic to try + * to move current somewhere else, making room for our non-migratable + * task. + */ + if (p->prio == rq->curr->prio && !need_resched()) + check_preempt_equal_prio(rq, p); +#endif } -static struct task_struct *pick_next_task_rt(struct rq *rq) +static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, + struct rt_rq *rt_rq) { - struct rt_prio_array *array = &rq->rt.active; - struct task_struct *next; + struct rt_prio_array *array = &rt_rq->active; + struct sched_rt_entity *next = NULL; struct list_head *queue; int idx; idx = sched_find_first_bit(array->bitmap); - if (idx >= MAX_RT_PRIO) - return NULL; + BUG_ON(idx >= MAX_RT_PRIO); queue = array->queue + idx; - next = list_entry(queue->next, struct task_struct, run_list); - - next->se.exec_start = rq->clock; + next = list_entry(queue->next, struct sched_rt_entity, run_list); return next; } +static struct task_struct *pick_next_task_rt(struct rq *rq) +{ + struct sched_rt_entity *rt_se; + struct task_struct *p; + struct rt_rq *rt_rq; + + rt_rq = &rq->rt; + + if (unlikely(!rt_rq->rt_nr_running)) + return NULL; + + if (rt_rq_throttled(rt_rq)) + return NULL; + + do { + rt_se = pick_next_rt_entity(rq, rt_rq); + BUG_ON(!rt_se); + rt_rq = group_rt_rq(rt_se); + } while (rt_rq); + + p = rt_task_of(rt_se); + p->se.exec_start = rq->clock; + return p; +} + static void put_prev_task_rt(struct rq *rq, struct task_struct *p) { update_curr_rt(rq); @@ -226,121 +910,56 @@ static void put_prev_task_rt(struct rq *rq, struct task_struct *p) } #ifdef CONFIG_SMP + /* Only try algorithms three times */ #define RT_MAX_TRIES 3 -static int double_lock_balance(struct rq *this_rq, struct rq *busiest); static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep); static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) { if (!task_running(rq, p) && - (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) && - (p->nr_cpus_allowed > 1)) + (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) && + (p->rt.nr_cpus_allowed > 1)) return 1; return 0; } /* Return the second highest RT task, NULL otherwise */ -static struct task_struct *pick_next_highest_task_rt(struct rq *rq, - int cpu) +static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu) { - struct rt_prio_array *array = &rq->rt.active; - struct task_struct *next; - struct list_head *queue; + struct task_struct *next = NULL; + struct sched_rt_entity *rt_se; + struct rt_prio_array *array; + struct rt_rq *rt_rq; int idx; - assert_spin_locked(&rq->lock); - - if (likely(rq->rt.rt_nr_running < 2)) - return NULL; - - idx = sched_find_first_bit(array->bitmap); - if (unlikely(idx >= MAX_RT_PRIO)) { - WARN_ON(1); /* rt_nr_running is bad */ - return NULL; - } - - queue = array->queue + idx; - BUG_ON(list_empty(queue)); - - next = list_entry(queue->next, struct task_struct, run_list); - if (unlikely(pick_rt_task(rq, next, cpu))) - goto out; - - if (queue->next->next != queue) { - /* same prio task */ - next = list_entry(queue->next->next, struct task_struct, run_list); - if (pick_rt_task(rq, next, cpu)) - goto out; - } - - retry: - /* slower, but more flexible */ - idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1); - if (unlikely(idx >= MAX_RT_PRIO)) - return NULL; - - queue = array->queue + idx; - BUG_ON(list_empty(queue)); - - list_for_each_entry(next, queue, run_list) { - if (pick_rt_task(rq, next, cpu)) - goto out; - } - - goto retry; - - out: - return next; -} - -static DEFINE_PER_CPU(cpumask_t, local_cpu_mask); -static DEFINE_PER_CPU(cpumask_t, valid_cpu_mask); - -static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask) -{ - int cpu; - cpumask_t *valid_mask = &__get_cpu_var(valid_cpu_mask); - int lowest_prio = -1; - int count = 0; - - cpus_clear(*lowest_mask); - cpus_and(*valid_mask, cpu_online_map, task->cpus_allowed); - - /* - * Scan each rq for the lowest prio. - */ - for_each_cpu_mask(cpu, *valid_mask) { - struct rq *rq = cpu_rq(cpu); - - /* We look for lowest RT prio or non-rt CPU */ - if (rq->rt.highest_prio >= MAX_RT_PRIO) { - if (count) - cpus_clear(*lowest_mask); - cpu_set(rq->cpu, *lowest_mask); - return 1; - } - - /* no locking for now */ - if ((rq->rt.highest_prio > task->prio) - && (rq->rt.highest_prio >= lowest_prio)) { - if (rq->rt.highest_prio > lowest_prio) { - /* new low - clear old data */ - lowest_prio = rq->rt.highest_prio; - if (count) { - cpus_clear(*lowest_mask); - count = 0; - } + for_each_leaf_rt_rq(rt_rq, rq) { + array = &rt_rq->active; + idx = sched_find_first_bit(array->bitmap); + next_idx: + if (idx >= MAX_RT_PRIO) + continue; + if (next && next->prio < idx) + continue; + list_for_each_entry(rt_se, array->queue + idx, run_list) { + struct task_struct *p = rt_task_of(rt_se); + if (pick_rt_task(rq, p, cpu)) { + next = p; + break; } - cpu_set(rq->cpu, *lowest_mask); - count++; + } + if (!next) { + idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1); + goto next_idx; } } - return count; + return next; } +static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); + static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask) { int first; @@ -349,8 +968,8 @@ static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask) if ((this_cpu != -1) && cpu_isset(this_cpu, *mask)) return this_cpu; - first = first_cpu(*mask); - if (first != NR_CPUS) + first = cpumask_first(mask); + if (first < nr_cpu_ids) return first; return -1; @@ -359,20 +978,22 @@ static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask) static int find_lowest_rq(struct task_struct *task) { struct sched_domain *sd; - cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask); + struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask); int this_cpu = smp_processor_id(); int cpu = task_cpu(task); - int count = find_lowest_cpus(task, lowest_mask); - if (!count) + if (task->rt.nr_cpus_allowed == 1) + return -1; /* No other targets possible */ + + if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) return -1; /* No targets found */ /* - * There is no sense in performing an optimal search if only one - * target is found. + * Only consider CPUs that are usable for migration. + * I guess we might want to change cpupri_find() to ignore those + * in the first place. */ - if (count == 1) - return first_cpu(*lowest_mask); + cpumask_and(lowest_mask, lowest_mask, cpu_active_mask); /* * At this point we have built a mask of cpus representing the @@ -382,7 +1003,7 @@ static int find_lowest_rq(struct task_struct *task) * We prioritize the last cpu that the task executed on since * it is most likely cache-hot in that location. */ - if (cpu_isset(cpu, *lowest_mask)) + if (cpumask_test_cpu(cpu, lowest_mask)) return cpu; /* @@ -397,7 +1018,8 @@ static int find_lowest_rq(struct task_struct *task) cpumask_t domain_mask; int best_cpu; - cpus_and(domain_mask, sd->span, *lowest_mask); + cpumask_and(&domain_mask, sched_domain_span(sd), + lowest_mask); best_cpu = pick_optimal_cpu(this_cpu, &domain_mask); @@ -415,12 +1037,11 @@ static int find_lowest_rq(struct task_struct *task) } /* Will lock the rq it finds */ -static struct rq *find_lock_lowest_rq(struct task_struct *task, - struct rq *rq) +static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) { struct rq *lowest_rq = NULL; - int cpu; int tries; + int cpu; for (tries = 0; tries < RT_MAX_TRIES; tries++) { cpu = find_lowest_rq(task); @@ -439,9 +1060,11 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, * Also make sure that it wasn't scheduled on its rq. */ if (unlikely(task_rq(task) != rq || - !cpu_isset(lowest_rq->cpu, task->cpus_allowed) || + !cpumask_test_cpu(lowest_rq->cpu, + &task->cpus_allowed) || task_running(rq, task) || !task->se.on_rq)) { + spin_unlock(&lowest_rq->lock); lowest_rq = NULL; break; @@ -453,7 +1076,7 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, break; /* try again */ - spin_unlock(&lowest_rq->lock); + double_unlock_balance(rq, lowest_rq); lowest_rq = NULL; } @@ -472,8 +1095,6 @@ static int push_rt_task(struct rq *rq) int ret = 0; int paranoid = RT_MAX_TRIES; - assert_spin_locked(&rq->lock); - if (!rq->rt.overloaded) return 0; @@ -518,15 +1139,13 @@ static int push_rt_task(struct rq *rq) goto out; } - assert_spin_locked(&lowest_rq->lock); - deactivate_task(rq, next_task, 0); set_task_cpu(next_task, lowest_rq->cpu); activate_task(lowest_rq, next_task, 0); resched_task(lowest_rq->curr); - spin_unlock(&lowest_rq->lock); + double_unlock_balance(rq, lowest_rq); ret = 1; out: @@ -554,64 +1173,20 @@ static void push_rt_tasks(struct rq *rq) static int pull_rt_task(struct rq *this_rq) { - struct task_struct *next; - struct task_struct *p; + int this_cpu = this_rq->cpu, ret = 0, cpu; + struct task_struct *p, *next; struct rq *src_rq; - cpumask_t *rto_cpumask; - int this_cpu = this_rq->cpu; - int cpu; - int ret = 0; - assert_spin_locked(&this_rq->lock); - - /* - * If cpusets are used, and we have overlapping - * run queue cpusets, then this algorithm may not catch all. - * This is just the price you pay on trying to keep - * dirtying caches down on large SMP machines. - */ - if (likely(!rt_overloaded())) + if (likely(!rt_overloaded(this_rq))) return 0; next = pick_next_task_rt(this_rq); - rto_cpumask = rt_overload(); - - for_each_cpu_mask(cpu, *rto_cpumask) { + for_each_cpu(cpu, this_rq->rd->rto_mask) { if (this_cpu == cpu) continue; src_rq = cpu_rq(cpu); - if (unlikely(src_rq->rt.rt_nr_running <= 1)) { - /* - * It is possible that overlapping cpusets - * will miss clearing a non overloaded runqueue. - * Clear it now. - */ - if (double_lock_balance(this_rq, src_rq)) { - /* unlocked our runqueue lock */ - struct task_struct *old_next = next; - next = pick_next_task_rt(this_rq); - if (next != old_next) - ret = 1; - } - if (likely(src_rq->rt.rt_nr_running <= 1)) - /* - * Small chance that this_rq->curr changed - * but it's really harmless here. - */ - rt_clear_overload(this_rq); - else - /* - * Heh, the src_rq is now overloaded, since - * we already have the src_rq lock, go straight - * to pulling tasks from it. - */ - goto try_pulling; - spin_unlock(&src_rq->lock); - continue; - } - /* * We can potentially drop this_rq's lock in * double_lock_balance, and another CPU could @@ -621,6 +1196,7 @@ static int pull_rt_task(struct rq *this_rq) */ if (double_lock_balance(this_rq, src_rq)) { struct task_struct *old_next = next; + next = pick_next_task_rt(this_rq); if (next != old_next) ret = 1; @@ -629,12 +1205,9 @@ static int pull_rt_task(struct rq *this_rq) /* * Are there still pullable RT tasks? */ - if (src_rq->rt.rt_nr_running <= 1) { - spin_unlock(&src_rq->lock); - continue; - } + if (src_rq->rt.rt_nr_running <= 1) + goto skip; - try_pulling: p = pick_next_highest_task_rt(src_rq, this_cpu); /* @@ -657,7 +1230,7 @@ static int pull_rt_task(struct rq *this_rq) */ if (p->prio < src_rq->curr->prio || (next && next->prio < src_rq->curr->prio)) - goto bail; + goto skip; ret = 1; @@ -669,9 +1242,7 @@ static int pull_rt_task(struct rq *this_rq) * case there's an even higher prio task * in another runqueue. (low likelyhood * but possible) - */ - - /* + * * Update next so that we won't pick a task * on another cpu with a priority lower (or equal) * than the one we just picked. @@ -679,23 +1250,21 @@ static int pull_rt_task(struct rq *this_rq) next = p; } - bail: - spin_unlock(&src_rq->lock); + skip: + double_unlock_balance(this_rq, src_rq); } return ret; } -static void schedule_balance_rt(struct rq *rq, - struct task_struct *prev) +static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) { /* Try to pull RT tasks here if we lower this rq's prio */ - if (unlikely(rt_task(prev)) && - rq->rt.highest_prio > prev->prio) + if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio) pull_rt_task(rq); } -static void schedule_tail_balance_rt(struct rq *rq) +static void post_schedule_rt(struct rq *rq) { /* * If we have more than one rt_task queued, then @@ -711,12 +1280,14 @@ static void schedule_tail_balance_rt(struct rq *rq) } } - -static void wakeup_balance_rt(struct rq *rq, struct task_struct *p) +/* + * If we are not running and we are not going to reschedule soon, we should + * try to push tasks away now + */ +static void task_wake_up_rt(struct rq *rq, struct task_struct *p) { - if (unlikely(rt_task(p)) && - !task_running(rq, p) && - (p->prio >= rq->rt.highest_prio) && + if (!task_running(rq, p) && + !test_tsk_need_resched(rq->curr) && rq->rt.overloaded) push_rt_tasks(rq); } @@ -738,9 +1309,11 @@ move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest, /* don't touch RT tasks */ return 0; } -static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask) + +static void set_cpus_allowed_rt(struct task_struct *p, + const struct cpumask *new_mask) { - int weight = cpus_weight(*new_mask); + int weight = cpumask_weight(new_mask); BUG_ON(!rt_task(p)); @@ -748,12 +1321,12 @@ static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask) * Update the migration status of the RQ if we have an RT task * which is running AND changing its weight value. */ - if (p->se.on_rq && (weight != p->nr_cpus_allowed)) { + if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) { struct rq *rq = task_rq(p); - if ((p->nr_cpus_allowed <= 1) && (weight > 1)) + if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) { rq->rt.rt_nr_migratory++; - else if((p->nr_cpus_allowed > 1) && (weight <= 1)) { + } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) { BUG_ON(!rq->rt.rt_nr_migratory); rq->rt.rt_nr_migratory--; } @@ -761,19 +1334,154 @@ static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask) update_rt_migration(rq); } - p->cpus_allowed = *new_mask; - p->nr_cpus_allowed = weight; + cpumask_copy(&p->cpus_allowed, new_mask); + p->rt.nr_cpus_allowed = weight; +} + +/* Assumes rq->lock is held */ +static void rq_online_rt(struct rq *rq) +{ + if (rq->rt.overloaded) + rt_set_overload(rq); + + __enable_runtime(rq); + + cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio); } -#else /* CONFIG_SMP */ -# define schedule_tail_balance_rt(rq) do { } while (0) -# define schedule_balance_rt(rq, prev) do { } while (0) -# define wakeup_balance_rt(rq, p) do { } while (0) + +/* Assumes rq->lock is held */ +static void rq_offline_rt(struct rq *rq) +{ + if (rq->rt.overloaded) + rt_clear_overload(rq); + + __disable_runtime(rq); + + cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); +} + +/* + * When switch from the rt queue, we bring ourselves to a position + * that we might want to pull RT tasks from other runqueues. + */ +static void switched_from_rt(struct rq *rq, struct task_struct *p, + int running) +{ + /* + * If there are other RT tasks then we will reschedule + * and the scheduling of the other RT tasks will handle + * the balancing. But if we are the last RT task + * we may need to handle the pulling of RT tasks + * now. + */ + if (!rq->rt.rt_nr_running) + pull_rt_task(rq); +} + +static inline void init_sched_rt_class(void) +{ + unsigned int i; + + for_each_possible_cpu(i) + alloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), + GFP_KERNEL, cpu_to_node(i)); +} +#endif /* CONFIG_SMP */ + +/* + * When switching a task to RT, we may overload the runqueue + * with RT tasks. In this case we try to push them off to + * other runqueues. + */ +static void switched_to_rt(struct rq *rq, struct task_struct *p, + int running) +{ + int check_resched = 1; + + /* + * If we are already running, then there's nothing + * that needs to be done. But if we are not running + * we may need to preempt the current running task. + * If that current running task is also an RT task + * then see if we can move to another run queue. + */ + if (!running) { +#ifdef CONFIG_SMP + if (rq->rt.overloaded && push_rt_task(rq) && + /* Don't resched if we changed runqueues */ + rq != task_rq(p)) + check_resched = 0; +#endif /* CONFIG_SMP */ + if (check_resched && p->prio < rq->curr->prio) + resched_task(rq->curr); + } +} + +/* + * Priority of the task has changed. This may cause + * us to initiate a push or pull. + */ +static void prio_changed_rt(struct rq *rq, struct task_struct *p, + int oldprio, int running) +{ + if (running) { +#ifdef CONFIG_SMP + /* + * If our priority decreases while running, we + * may need to pull tasks to this runqueue. + */ + if (oldprio < p->prio) + pull_rt_task(rq); + /* + * If there's a higher priority task waiting to run + * then reschedule. Note, the above pull_rt_task + * can release the rq lock and p could migrate. + * Only reschedule if p is still on the same runqueue. + */ + if (p->prio > rq->rt.highest_prio && rq->curr == p) + resched_task(p); +#else + /* For UP simply resched on drop of prio */ + if (oldprio < p->prio) + resched_task(p); #endif /* CONFIG_SMP */ + } else { + /* + * This task is not running, but if it is + * greater than the current running task + * then reschedule. + */ + if (p->prio < rq->curr->prio) + resched_task(rq->curr); + } +} -static void task_tick_rt(struct rq *rq, struct task_struct *p) +static void watchdog(struct rq *rq, struct task_struct *p) +{ + unsigned long soft, hard; + + if (!p->signal) + return; + + soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur; + hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max; + + if (soft != RLIM_INFINITY) { + unsigned long next; + + p->rt.timeout++; + next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); + if (p->rt.timeout > next) + p->cputime_expires.sched_exp = p->se.sum_exec_runtime; + } +} + +static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) { update_curr_rt(rq); + watchdog(rq, p); + /* * RR tasks need a special form of timeslice management. * FIFO tasks have no timeslices. @@ -781,17 +1489,17 @@ static void task_tick_rt(struct rq *rq, struct task_struct *p) if (p->policy != SCHED_RR) return; - if (--p->time_slice) + if (--p->rt.time_slice) return; - p->time_slice = DEF_TIMESLICE; + p->rt.time_slice = DEF_TIMESLICE; /* * Requeue to the end of queue if we are not the only element * on the queue: */ - if (p->run_list.prev != p->run_list.next) { - requeue_task_rt(rq, p); + if (p->rt.run_list.prev != p->rt.run_list.next) { + requeue_task_rt(rq, p, 0); set_tsk_need_resched(p); } } @@ -803,14 +1511,11 @@ static void set_curr_task_rt(struct rq *rq) p->se.exec_start = rq->clock; } -const struct sched_class rt_sched_class = { +static const struct sched_class rt_sched_class = { .next = &fair_sched_class, .enqueue_task = enqueue_task_rt, .dequeue_task = dequeue_task_rt, .yield_task = yield_task_rt, -#ifdef CONFIG_SMP - .select_task_rq = select_task_rq_rt, -#endif /* CONFIG_SMP */ .check_preempt_curr = check_preempt_curr_rt, @@ -818,11 +1523,37 @@ const struct sched_class rt_sched_class = { .put_prev_task = put_prev_task_rt, #ifdef CONFIG_SMP + .select_task_rq = select_task_rq_rt, + .load_balance = load_balance_rt, .move_one_task = move_one_task_rt, .set_cpus_allowed = set_cpus_allowed_rt, + .rq_online = rq_online_rt, + .rq_offline = rq_offline_rt, + .pre_schedule = pre_schedule_rt, + .post_schedule = post_schedule_rt, + .task_wake_up = task_wake_up_rt, + .switched_from = switched_from_rt, #endif .set_curr_task = set_curr_task_rt, .task_tick = task_tick_rt, + + .prio_changed = prio_changed_rt, + .switched_to = switched_to_rt, }; + +#ifdef CONFIG_SCHED_DEBUG +extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); + +static void print_rt_stats(struct seq_file *m, int cpu) +{ + struct rt_rq *rt_rq; + + rcu_read_lock(); + for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu)) + print_rt_rq(m, cpu, rt_rq); + rcu_read_unlock(); +} +#endif /* CONFIG_SCHED_DEBUG */ +