X-Git-Url: http://ftp.safe.ca/?a=blobdiff_plain;f=kernel%2Fsched_rt.c;h=1bbd99014011894766334eee96da13d6fbc4a8de;hb=45ab6b0c76d0e4cce5bd608ccf97b0f6b20f18df;hp=1144bf55669d01c571d3d332df086efa39cc5d99;hpb=614ee1f61f667b02165c1ae0c1357048dc6d94a0;p=safe%2Fjmp%2Flinux-2.6 diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c index 1144bf5..1bbd990 100644 --- a/kernel/sched_rt.c +++ b/kernel/sched_rt.c @@ -12,7 +12,10 @@ static inline int rt_overloaded(struct rq *rq) static inline void rt_set_overload(struct rq *rq) { - cpu_set(rq->cpu, rq->rd->rto_mask); + if (!rq->online) + return; + + cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); /* * Make sure the mask is visible before we set * the overload count. That is checked to determine @@ -26,9 +29,12 @@ static inline void rt_set_overload(struct rq *rq) static inline void rt_clear_overload(struct rq *rq) { + if (!rq->online) + return; + /* the order here really doesn't matter */ atomic_dec(&rq->rd->rto_count); - cpu_clear(rq->cpu, rq->rd->rto_mask); + cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); } static void update_rt_migration(struct rq *rq) @@ -55,14 +61,19 @@ static inline int on_rt_rq(struct sched_rt_entity *rt_se) return !list_empty(&rt_se->run_list); } -#ifdef CONFIG_FAIR_GROUP_SCHED +#ifdef CONFIG_RT_GROUP_SCHED -static inline unsigned int sched_rt_ratio(struct rt_rq *rt_rq) +static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) { if (!rt_rq->tg) - return SCHED_RT_FRAC; + return RUNTIME_INF; + + return rt_rq->rt_runtime; +} - return rt_rq->tg->rt_ratio; +static inline u64 sched_rt_period(struct rt_rq *rt_rq) +{ + return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); } #define for_each_leaf_rt_rq(rt_rq, rq) \ @@ -89,17 +100,20 @@ static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) static void enqueue_rt_entity(struct sched_rt_entity *rt_se); static void dequeue_rt_entity(struct sched_rt_entity *rt_se); -static void sched_rt_ratio_enqueue(struct rt_rq *rt_rq) +static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) { + struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; struct sched_rt_entity *rt_se = rt_rq->rt_se; - if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) { - enqueue_rt_entity(rt_se); - resched_task(rq_of_rt_rq(rt_rq)->curr); + if (rt_rq->rt_nr_running) { + if (rt_se && !on_rt_rq(rt_se)) + enqueue_rt_entity(rt_se); + if (rt_rq->highest_prio < curr->prio) + resched_task(curr); } } -static void sched_rt_ratio_dequeue(struct rt_rq *rt_rq) +static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) { struct sched_rt_entity *rt_se = rt_rq->rt_se; @@ -107,11 +121,56 @@ static void sched_rt_ratio_dequeue(struct rt_rq *rt_rq) dequeue_rt_entity(rt_se); } +static inline int rt_rq_throttled(struct rt_rq *rt_rq) +{ + return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; +} + +static int rt_se_boosted(struct sched_rt_entity *rt_se) +{ + struct rt_rq *rt_rq = group_rt_rq(rt_se); + struct task_struct *p; + + if (rt_rq) + return !!rt_rq->rt_nr_boosted; + + p = rt_task_of(rt_se); + return p->prio != p->normal_prio; +} + +#ifdef CONFIG_SMP +static inline const struct cpumask *sched_rt_period_mask(void) +{ + return cpu_rq(smp_processor_id())->rd->span; +} #else +static inline const struct cpumask *sched_rt_period_mask(void) +{ + return cpu_online_mask; +} +#endif + +static inline +struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) +{ + return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; +} + +static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) +{ + return &rt_rq->tg->rt_bandwidth; +} -static inline unsigned int sched_rt_ratio(struct rt_rq *rt_rq) +#else /* !CONFIG_RT_GROUP_SCHED */ + +static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) { - return sysctl_sched_rt_ratio; + return rt_rq->rt_runtime; +} + +static inline u64 sched_rt_period(struct rt_rq *rt_rq) +{ + return ktime_to_ns(def_rt_bandwidth.rt_period); } #define for_each_leaf_rt_rq(rt_rq, rq) \ @@ -138,75 +197,312 @@ static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) return NULL; } -static inline void sched_rt_ratio_enqueue(struct rt_rq *rt_rq) +static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) { + if (rt_rq->rt_nr_running) + resched_task(rq_of_rt_rq(rt_rq)->curr); } -static inline void sched_rt_ratio_dequeue(struct rt_rq *rt_rq) +static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) { } -#endif +static inline int rt_rq_throttled(struct rt_rq *rt_rq) +{ + return rt_rq->rt_throttled; +} -static inline int rt_se_prio(struct sched_rt_entity *rt_se) +static inline const struct cpumask *sched_rt_period_mask(void) { -#ifdef CONFIG_FAIR_GROUP_SCHED - struct rt_rq *rt_rq = group_rt_rq(rt_se); + return cpu_online_mask; +} - if (rt_rq) - return rt_rq->highest_prio; -#endif +static inline +struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) +{ + return &cpu_rq(cpu)->rt; +} - return rt_task_of(rt_se)->prio; +static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) +{ + return &def_rt_bandwidth; } -static int sched_rt_ratio_exceeded(struct rt_rq *rt_rq) +#endif /* CONFIG_RT_GROUP_SCHED */ + +#ifdef CONFIG_SMP +/* + * We ran out of runtime, see if we can borrow some from our neighbours. + */ +static int do_balance_runtime(struct rt_rq *rt_rq) { - unsigned int rt_ratio = sched_rt_ratio(rt_rq); - u64 period, ratio; + struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); + struct root_domain *rd = cpu_rq(smp_processor_id())->rd; + int i, weight, more = 0; + u64 rt_period; - if (rt_ratio == SCHED_RT_FRAC) - return 0; + weight = cpumask_weight(rd->span); - if (rt_rq->rt_throttled) - return 1; + spin_lock(&rt_b->rt_runtime_lock); + rt_period = ktime_to_ns(rt_b->rt_period); + for_each_cpu(i, rd->span) { + struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); + s64 diff; - period = (u64)sysctl_sched_rt_period * NSEC_PER_MSEC; - ratio = (period * rt_ratio) >> SCHED_RT_FRAC_SHIFT; + if (iter == rt_rq) + continue; - if (rt_rq->rt_time > ratio) { - rt_rq->rt_throttled = 1; - sched_rt_ratio_dequeue(rt_rq); - return 1; + spin_lock(&iter->rt_runtime_lock); + /* + * Either all rqs have inf runtime and there's nothing to steal + * or __disable_runtime() below sets a specific rq to inf to + * indicate its been disabled and disalow stealing. + */ + if (iter->rt_runtime == RUNTIME_INF) + goto next; + + /* + * From runqueues with spare time, take 1/n part of their + * spare time, but no more than our period. + */ + diff = iter->rt_runtime - iter->rt_time; + if (diff > 0) { + diff = div_u64((u64)diff, weight); + if (rt_rq->rt_runtime + diff > rt_period) + diff = rt_period - rt_rq->rt_runtime; + iter->rt_runtime -= diff; + rt_rq->rt_runtime += diff; + more = 1; + if (rt_rq->rt_runtime == rt_period) { + spin_unlock(&iter->rt_runtime_lock); + break; + } + } +next: + spin_unlock(&iter->rt_runtime_lock); } + spin_unlock(&rt_b->rt_runtime_lock); - return 0; + return more; } -static void __update_sched_rt_period(struct rt_rq *rt_rq, u64 period) +/* + * Ensure this RQ takes back all the runtime it lend to its neighbours. + */ +static void __disable_runtime(struct rq *rq) { - unsigned long rt_ratio = sched_rt_ratio(rt_rq); - u64 ratio = (period * rt_ratio) >> SCHED_RT_FRAC_SHIFT; + struct root_domain *rd = rq->rd; + struct rt_rq *rt_rq; - rt_rq->rt_time -= min(rt_rq->rt_time, ratio); - if (rt_rq->rt_throttled) { - rt_rq->rt_throttled = 0; - sched_rt_ratio_enqueue(rt_rq); + if (unlikely(!scheduler_running)) + return; + + for_each_leaf_rt_rq(rt_rq, rq) { + struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); + s64 want; + int i; + + spin_lock(&rt_b->rt_runtime_lock); + spin_lock(&rt_rq->rt_runtime_lock); + /* + * Either we're all inf and nobody needs to borrow, or we're + * already disabled and thus have nothing to do, or we have + * exactly the right amount of runtime to take out. + */ + if (rt_rq->rt_runtime == RUNTIME_INF || + rt_rq->rt_runtime == rt_b->rt_runtime) + goto balanced; + spin_unlock(&rt_rq->rt_runtime_lock); + + /* + * Calculate the difference between what we started out with + * and what we current have, that's the amount of runtime + * we lend and now have to reclaim. + */ + want = rt_b->rt_runtime - rt_rq->rt_runtime; + + /* + * Greedy reclaim, take back as much as we can. + */ + for_each_cpu(i, rd->span) { + struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); + s64 diff; + + /* + * Can't reclaim from ourselves or disabled runqueues. + */ + if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) + continue; + + spin_lock(&iter->rt_runtime_lock); + if (want > 0) { + diff = min_t(s64, iter->rt_runtime, want); + iter->rt_runtime -= diff; + want -= diff; + } else { + iter->rt_runtime -= want; + want -= want; + } + spin_unlock(&iter->rt_runtime_lock); + + if (!want) + break; + } + + spin_lock(&rt_rq->rt_runtime_lock); + /* + * We cannot be left wanting - that would mean some runtime + * leaked out of the system. + */ + BUG_ON(want); +balanced: + /* + * Disable all the borrow logic by pretending we have inf + * runtime - in which case borrowing doesn't make sense. + */ + rt_rq->rt_runtime = RUNTIME_INF; + spin_unlock(&rt_rq->rt_runtime_lock); + spin_unlock(&rt_b->rt_runtime_lock); } } -static void update_sched_rt_period(struct rq *rq) +static void disable_runtime(struct rq *rq) +{ + unsigned long flags; + + spin_lock_irqsave(&rq->lock, flags); + __disable_runtime(rq); + spin_unlock_irqrestore(&rq->lock, flags); +} + +static void __enable_runtime(struct rq *rq) { struct rt_rq *rt_rq; - u64 period; - while (rq->clock > rq->rt_period_expire) { - period = (u64)sysctl_sched_rt_period * NSEC_PER_MSEC; - rq->rt_period_expire += period; + if (unlikely(!scheduler_running)) + return; + + /* + * Reset each runqueue's bandwidth settings + */ + for_each_leaf_rt_rq(rt_rq, rq) { + struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); + + spin_lock(&rt_b->rt_runtime_lock); + spin_lock(&rt_rq->rt_runtime_lock); + rt_rq->rt_runtime = rt_b->rt_runtime; + rt_rq->rt_time = 0; + rt_rq->rt_throttled = 0; + spin_unlock(&rt_rq->rt_runtime_lock); + spin_unlock(&rt_b->rt_runtime_lock); + } +} + +static void enable_runtime(struct rq *rq) +{ + unsigned long flags; + + spin_lock_irqsave(&rq->lock, flags); + __enable_runtime(rq); + spin_unlock_irqrestore(&rq->lock, flags); +} + +static int balance_runtime(struct rt_rq *rt_rq) +{ + int more = 0; + + if (rt_rq->rt_time > rt_rq->rt_runtime) { + spin_unlock(&rt_rq->rt_runtime_lock); + more = do_balance_runtime(rt_rq); + spin_lock(&rt_rq->rt_runtime_lock); + } + + return more; +} +#else /* !CONFIG_SMP */ +static inline int balance_runtime(struct rt_rq *rt_rq) +{ + return 0; +} +#endif /* CONFIG_SMP */ + +static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) +{ + int i, idle = 1; + const struct cpumask *span; + + if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) + return 1; + + span = sched_rt_period_mask(); + for_each_cpu(i, span) { + int enqueue = 0; + struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); + struct rq *rq = rq_of_rt_rq(rt_rq); + + spin_lock(&rq->lock); + if (rt_rq->rt_time) { + u64 runtime; + + spin_lock(&rt_rq->rt_runtime_lock); + if (rt_rq->rt_throttled) + balance_runtime(rt_rq); + runtime = rt_rq->rt_runtime; + rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); + if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { + rt_rq->rt_throttled = 0; + enqueue = 1; + } + if (rt_rq->rt_time || rt_rq->rt_nr_running) + idle = 0; + spin_unlock(&rt_rq->rt_runtime_lock); + } else if (rt_rq->rt_nr_running) + idle = 0; + + if (enqueue) + sched_rt_rq_enqueue(rt_rq); + spin_unlock(&rq->lock); + } + + return idle; +} + +static inline int rt_se_prio(struct sched_rt_entity *rt_se) +{ +#ifdef CONFIG_RT_GROUP_SCHED + struct rt_rq *rt_rq = group_rt_rq(rt_se); + + if (rt_rq) + return rt_rq->highest_prio; +#endif + + return rt_task_of(rt_se)->prio; +} + +static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) +{ + u64 runtime = sched_rt_runtime(rt_rq); + + if (rt_rq->rt_throttled) + return rt_rq_throttled(rt_rq); + + if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq)) + return 0; + + balance_runtime(rt_rq); + runtime = sched_rt_runtime(rt_rq); + if (runtime == RUNTIME_INF) + return 0; - for_each_leaf_rt_rq(rt_rq, rq) - __update_sched_rt_period(rt_rq, period); + if (rt_rq->rt_time > runtime) { + rt_rq->rt_throttled = 1; + if (rt_rq_throttled(rt_rq)) { + sched_rt_rq_dequeue(rt_rq); + return 1; + } } + + return 0; } /* @@ -230,17 +526,25 @@ static void update_curr_rt(struct rq *rq) schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec)); curr->se.sum_exec_runtime += delta_exec; + account_group_exec_runtime(curr, delta_exec); + curr->se.exec_start = rq->clock; cpuacct_charge(curr, delta_exec); - rt_rq->rt_time += delta_exec; - /* - * might make it a tad more accurate: - * - * update_sched_rt_period(rq); - */ - if (sched_rt_ratio_exceeded(rt_rq)) - resched_task(curr); + if (!rt_bandwidth_enabled()) + return; + + for_each_sched_rt_entity(rt_se) { + rt_rq = rt_rq_of_se(rt_se); + + if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { + spin_lock(&rt_rq->rt_runtime_lock); + rt_rq->rt_time += delta_exec; + if (sched_rt_runtime_exceeded(rt_rq)) + resched_task(curr); + spin_unlock(&rt_rq->rt_runtime_lock); + } + } } static inline @@ -248,27 +552,51 @@ void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) { WARN_ON(!rt_prio(rt_se_prio(rt_se))); rt_rq->rt_nr_running++; -#if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED - if (rt_se_prio(rt_se) < rt_rq->highest_prio) +#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED + if (rt_se_prio(rt_se) < rt_rq->highest_prio) { +#ifdef CONFIG_SMP + struct rq *rq = rq_of_rt_rq(rt_rq); +#endif + rt_rq->highest_prio = rt_se_prio(rt_se); +#ifdef CONFIG_SMP + if (rq->online) + cpupri_set(&rq->rd->cpupri, rq->cpu, + rt_se_prio(rt_se)); +#endif + } #endif #ifdef CONFIG_SMP if (rt_se->nr_cpus_allowed > 1) { struct rq *rq = rq_of_rt_rq(rt_rq); + rq->rt.rt_nr_migratory++; } update_rt_migration(rq_of_rt_rq(rt_rq)); #endif +#ifdef CONFIG_RT_GROUP_SCHED + if (rt_se_boosted(rt_se)) + rt_rq->rt_nr_boosted++; + + if (rt_rq->tg) + start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); +#else + start_rt_bandwidth(&def_rt_bandwidth); +#endif } static inline void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) { +#ifdef CONFIG_SMP + int highest_prio = rt_rq->highest_prio; +#endif + WARN_ON(!rt_prio(rt_se_prio(rt_se))); WARN_ON(!rt_rq->rt_nr_running); rt_rq->rt_nr_running--; -#if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED +#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED if (rt_rq->rt_nr_running) { struct rt_prio_array *array; @@ -288,26 +616,47 @@ void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) rq->rt.rt_nr_migratory--; } + if (rt_rq->highest_prio != highest_prio) { + struct rq *rq = rq_of_rt_rq(rt_rq); + + if (rq->online) + cpupri_set(&rq->rd->cpupri, rq->cpu, + rt_rq->highest_prio); + } + update_rt_migration(rq_of_rt_rq(rt_rq)); #endif /* CONFIG_SMP */ +#ifdef CONFIG_RT_GROUP_SCHED + if (rt_se_boosted(rt_se)) + rt_rq->rt_nr_boosted--; + + WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); +#endif } -static void enqueue_rt_entity(struct sched_rt_entity *rt_se) +static void __enqueue_rt_entity(struct sched_rt_entity *rt_se) { struct rt_rq *rt_rq = rt_rq_of_se(rt_se); struct rt_prio_array *array = &rt_rq->active; struct rt_rq *group_rq = group_rt_rq(rt_se); + struct list_head *queue = array->queue + rt_se_prio(rt_se); - if (group_rq && group_rq->rt_throttled) + /* + * Don't enqueue the group if its throttled, or when empty. + * The latter is a consequence of the former when a child group + * get throttled and the current group doesn't have any other + * active members. + */ + if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) return; - list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se)); + list_add_tail(&rt_se->run_list, queue); __set_bit(rt_se_prio(rt_se), array->bitmap); inc_rt_tasks(rt_se, rt_rq); } -static void dequeue_rt_entity(struct sched_rt_entity *rt_se) +static void __dequeue_rt_entity(struct sched_rt_entity *rt_se) { struct rt_rq *rt_rq = rt_rq_of_se(rt_se); struct rt_prio_array *array = &rt_rq->active; @@ -322,27 +671,39 @@ static void dequeue_rt_entity(struct sched_rt_entity *rt_se) /* * Because the prio of an upper entry depends on the lower * entries, we must remove entries top - down. - * - * XXX: O(1/2 h^2) because we can only walk up, not down the chain. - * doesn't matter much for now, as h=2 for GROUP_SCHED. */ -static void dequeue_rt_stack(struct task_struct *p) +static void dequeue_rt_stack(struct sched_rt_entity *rt_se) { - struct sched_rt_entity *rt_se, *top_se; + struct sched_rt_entity *back = NULL; - /* - * dequeue all, top - down. - */ - do { - rt_se = &p->rt; - top_se = NULL; - for_each_sched_rt_entity(rt_se) { - if (on_rt_rq(rt_se)) - top_se = rt_se; - } - if (top_se) - dequeue_rt_entity(top_se); - } while (top_se); + for_each_sched_rt_entity(rt_se) { + rt_se->back = back; + back = rt_se; + } + + for (rt_se = back; rt_se; rt_se = rt_se->back) { + if (on_rt_rq(rt_se)) + __dequeue_rt_entity(rt_se); + } +} + +static void enqueue_rt_entity(struct sched_rt_entity *rt_se) +{ + dequeue_rt_stack(rt_se); + for_each_sched_rt_entity(rt_se) + __enqueue_rt_entity(rt_se); +} + +static void dequeue_rt_entity(struct sched_rt_entity *rt_se) +{ + dequeue_rt_stack(rt_se); + + for_each_sched_rt_entity(rt_se) { + struct rt_rq *rt_rq = group_rt_rq(rt_se); + + if (rt_rq && rt_rq->rt_nr_running) + __enqueue_rt_entity(rt_se); + } } /* @@ -355,13 +716,7 @@ static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup) if (wakeup) rt_se->timeout = 0; - dequeue_rt_stack(p); - - /* - * enqueue everybody, bottom - up. - */ - for_each_sched_rt_entity(rt_se) - enqueue_rt_entity(rt_se); + enqueue_rt_entity(rt_se); inc_cpu_load(rq, p->se.load.weight); } @@ -369,20 +724,9 @@ static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup) static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) { struct sched_rt_entity *rt_se = &p->rt; - struct rt_rq *rt_rq; update_curr_rt(rq); - - dequeue_rt_stack(p); - - /* - * re-enqueue all non-empty rt_rq entities. - */ - for_each_sched_rt_entity(rt_se) { - rt_rq = group_rt_rq(rt_se); - if (rt_rq && rt_rq->rt_nr_running) - enqueue_rt_entity(rt_se); - } + dequeue_rt_entity(rt_se); dec_cpu_load(rq, p->se.load.weight); } @@ -391,28 +735,34 @@ static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) * Put task to the end of the run list without the overhead of dequeue * followed by enqueue. */ -static -void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) +static void +requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) { - struct rt_prio_array *array = &rt_rq->active; - - list_move_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se)); + if (on_rt_rq(rt_se)) { + struct rt_prio_array *array = &rt_rq->active; + struct list_head *queue = array->queue + rt_se_prio(rt_se); + + if (head) + list_move(&rt_se->run_list, queue); + else + list_move_tail(&rt_se->run_list, queue); + } } -static void requeue_task_rt(struct rq *rq, struct task_struct *p) +static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) { struct sched_rt_entity *rt_se = &p->rt; struct rt_rq *rt_rq; for_each_sched_rt_entity(rt_se) { rt_rq = rt_rq_of_se(rt_se); - requeue_rt_entity(rt_rq, rt_se); + requeue_rt_entity(rt_rq, rt_se, head); } } static void yield_task_rt(struct rq *rq) { - requeue_task_rt(rq, rq->curr); + requeue_task_rt(rq, rq->curr, 0); } #ifdef CONFIG_SMP @@ -452,15 +802,63 @@ static int select_task_rq_rt(struct task_struct *p, int sync) */ return task_cpu(p); } + +static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) +{ + cpumask_var_t mask; + + if (rq->curr->rt.nr_cpus_allowed == 1) + return; + + if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) + return; + + if (p->rt.nr_cpus_allowed != 1 + && cpupri_find(&rq->rd->cpupri, p, mask)) + goto free; + + if (!cpupri_find(&rq->rd->cpupri, rq->curr, mask)) + goto free; + + /* + * There appears to be other cpus that can accept + * current and none to run 'p', so lets reschedule + * to try and push current away: + */ + requeue_task_rt(rq, p, 1); + resched_task(rq->curr); +free: + free_cpumask_var(mask); +} + #endif /* CONFIG_SMP */ /* * Preempt the current task with a newly woken task if needed: */ -static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p) +static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync) { - if (p->prio < rq->curr->prio) + if (p->prio < rq->curr->prio) { resched_task(rq->curr); + return; + } + +#ifdef CONFIG_SMP + /* + * If: + * + * - the newly woken task is of equal priority to the current task + * - the newly woken task is non-migratable while current is migratable + * - current will be preempted on the next reschedule + * + * we should check to see if current can readily move to a different + * cpu. If so, we will reschedule to allow the push logic to try + * to move current somewhere else, making room for our non-migratable + * task. + */ + if (p->prio == rq->curr->prio && !need_resched()) + check_preempt_equal_prio(rq, p); +#endif } static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, @@ -471,15 +869,12 @@ static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, struct list_head *queue; int idx; - if (sched_rt_ratio_exceeded(rt_rq)) - goto out; - idx = sched_find_first_bit(array->bitmap); BUG_ON(idx >= MAX_RT_PRIO); queue = array->queue + idx; next = list_entry(queue->next, struct sched_rt_entity, run_list); - out: + return next; } @@ -489,19 +884,17 @@ static struct task_struct *pick_next_task_rt(struct rq *rq) struct task_struct *p; struct rt_rq *rt_rq; - retry: rt_rq = &rq->rt; if (unlikely(!rt_rq->rt_nr_running)) return NULL; - if (sched_rt_ratio_exceeded(rt_rq)) + if (rt_rq_throttled(rt_rq)) return NULL; do { rt_se = pick_next_rt_entity(rq, rt_rq); - if (unlikely(!rt_se)) - goto retry; + BUG_ON(!rt_se); rt_rq = group_rt_rq(rt_se); } while (rt_rq); @@ -521,13 +914,12 @@ static void put_prev_task_rt(struct rq *rq, struct task_struct *p) /* Only try algorithms three times */ #define RT_MAX_TRIES 3 -static int double_lock_balance(struct rq *this_rq, struct rq *busiest); static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep); static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) { if (!task_running(rq, p) && - (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) && + (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) && (p->rt.nr_cpus_allowed > 1)) return 1; return 0; @@ -566,74 +958,7 @@ static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu) return next; } -static DEFINE_PER_CPU(cpumask_t, local_cpu_mask); - -static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask) -{ - int lowest_prio = -1; - int lowest_cpu = -1; - int count = 0; - int cpu; - - cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed); - - /* - * Scan each rq for the lowest prio. - */ - for_each_cpu_mask(cpu, *lowest_mask) { - struct rq *rq = cpu_rq(cpu); - - /* We look for lowest RT prio or non-rt CPU */ - if (rq->rt.highest_prio >= MAX_RT_PRIO) { - /* - * if we already found a low RT queue - * and now we found this non-rt queue - * clear the mask and set our bit. - * Otherwise just return the queue as is - * and the count==1 will cause the algorithm - * to use the first bit found. - */ - if (lowest_cpu != -1) { - cpus_clear(*lowest_mask); - cpu_set(rq->cpu, *lowest_mask); - } - return 1; - } - - /* no locking for now */ - if ((rq->rt.highest_prio > task->prio) - && (rq->rt.highest_prio >= lowest_prio)) { - if (rq->rt.highest_prio > lowest_prio) { - /* new low - clear old data */ - lowest_prio = rq->rt.highest_prio; - lowest_cpu = cpu; - count = 0; - } - count++; - } else - cpu_clear(cpu, *lowest_mask); - } - - /* - * Clear out all the set bits that represent - * runqueues that were of higher prio than - * the lowest_prio. - */ - if (lowest_cpu > 0) { - /* - * Perhaps we could add another cpumask op to - * zero out bits. Like cpu_zero_bits(cpumask, nrbits); - * Then that could be optimized to use memset and such. - */ - for_each_cpu_mask(cpu, *lowest_mask) { - if (cpu >= lowest_cpu) - break; - cpu_clear(cpu, *lowest_mask); - } - } - - return count; -} +static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask) { @@ -653,20 +978,22 @@ static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask) static int find_lowest_rq(struct task_struct *task) { struct sched_domain *sd; - cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask); + struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask); int this_cpu = smp_processor_id(); int cpu = task_cpu(task); - int count = find_lowest_cpus(task, lowest_mask); - if (!count) + if (task->rt.nr_cpus_allowed == 1) + return -1; /* No other targets possible */ + + if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) return -1; /* No targets found */ /* - * There is no sense in performing an optimal search if only one - * target is found. + * Only consider CPUs that are usable for migration. + * I guess we might want to change cpupri_find() to ignore those + * in the first place. */ - if (count == 1) - return first_cpu(*lowest_mask); + cpumask_and(lowest_mask, lowest_mask, cpu_active_mask); /* * At this point we have built a mask of cpus representing the @@ -676,7 +1003,7 @@ static int find_lowest_rq(struct task_struct *task) * We prioritize the last cpu that the task executed on since * it is most likely cache-hot in that location. */ - if (cpu_isset(cpu, *lowest_mask)) + if (cpumask_test_cpu(cpu, lowest_mask)) return cpu; /* @@ -691,7 +1018,8 @@ static int find_lowest_rq(struct task_struct *task) cpumask_t domain_mask; int best_cpu; - cpus_and(domain_mask, sd->span, *lowest_mask); + cpumask_and(&domain_mask, sched_domain_span(sd), + lowest_mask); best_cpu = pick_optimal_cpu(this_cpu, &domain_mask); @@ -732,8 +1060,8 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) * Also make sure that it wasn't scheduled on its rq. */ if (unlikely(task_rq(task) != rq || - !cpu_isset(lowest_rq->cpu, - task->cpus_allowed) || + !cpumask_test_cpu(lowest_rq->cpu, + &task->cpus_allowed) || task_running(rq, task) || !task->se.on_rq)) { @@ -748,7 +1076,7 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) break; /* try again */ - spin_unlock(&lowest_rq->lock); + double_unlock_balance(rq, lowest_rq); lowest_rq = NULL; } @@ -817,7 +1145,7 @@ static int push_rt_task(struct rq *rq) resched_task(lowest_rq->curr); - spin_unlock(&lowest_rq->lock); + double_unlock_balance(rq, lowest_rq); ret = 1; out: @@ -854,7 +1182,7 @@ static int pull_rt_task(struct rq *this_rq) next = pick_next_task_rt(this_rq); - for_each_cpu_mask(cpu, this_rq->rd->rto_mask) { + for_each_cpu(cpu, this_rq->rd->rto_mask) { if (this_cpu == cpu) continue; @@ -923,7 +1251,7 @@ static int pull_rt_task(struct rq *this_rq) } skip: - spin_unlock(&src_rq->lock); + double_unlock_balance(this_rq, src_rq); } return ret; @@ -952,11 +1280,14 @@ static void post_schedule_rt(struct rq *rq) } } - +/* + * If we are not running and we are not going to reschedule soon, we should + * try to push tasks away now + */ static void task_wake_up_rt(struct rq *rq, struct task_struct *p) { if (!task_running(rq, p) && - (p->prio >= rq->rt.highest_prio) && + !test_tsk_need_resched(rq->curr) && rq->rt.overloaded) push_rt_tasks(rq); } @@ -979,9 +1310,10 @@ move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest, return 0; } -static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask) +static void set_cpus_allowed_rt(struct task_struct *p, + const struct cpumask *new_mask) { - int weight = cpus_weight(*new_mask); + int weight = cpumask_weight(new_mask); BUG_ON(!rt_task(p)); @@ -1002,22 +1334,30 @@ static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask) update_rt_migration(rq); } - p->cpus_allowed = *new_mask; + cpumask_copy(&p->cpus_allowed, new_mask); p->rt.nr_cpus_allowed = weight; } /* Assumes rq->lock is held */ -static void join_domain_rt(struct rq *rq) +static void rq_online_rt(struct rq *rq) { if (rq->rt.overloaded) rt_set_overload(rq); + + __enable_runtime(rq); + + cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio); } /* Assumes rq->lock is held */ -static void leave_domain_rt(struct rq *rq) +static void rq_offline_rt(struct rq *rq) { if (rq->rt.overloaded) rt_clear_overload(rq); + + __disable_runtime(rq); + + cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); } /* @@ -1037,6 +1377,14 @@ static void switched_from_rt(struct rq *rq, struct task_struct *p, if (!rq->rt.rt_nr_running) pull_rt_task(rq); } + +static inline void init_sched_rt_class(void) +{ + unsigned int i; + + for_each_possible_cpu(i) + alloc_cpumask_var(&per_cpu(local_cpu_mask, i), GFP_KERNEL); +} #endif /* CONFIG_SMP */ /* @@ -1085,9 +1433,11 @@ static void prio_changed_rt(struct rq *rq, struct task_struct *p, pull_rt_task(rq); /* * If there's a higher priority task waiting to run - * then reschedule. + * then reschedule. Note, the above pull_rt_task + * can release the rq lock and p could migrate. + * Only reschedule if p is still on the same runqueue. */ - if (p->prio > rq->rt.highest_prio) + if (p->prio > rq->rt.highest_prio && rq->curr == p) resched_task(p); #else /* For UP simply resched on drop of prio */ @@ -1120,14 +1470,8 @@ static void watchdog(struct rq *rq, struct task_struct *p) p->rt.timeout++; next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); - if (next > p->rt.timeout) { - u64 next_time = p->se.sum_exec_runtime; - - next_time += next * (NSEC_PER_SEC/HZ); - if (p->it_sched_expires > next_time) - p->it_sched_expires = next_time; - } else - p->it_sched_expires = p->se.sum_exec_runtime; + if (p->rt.timeout > next) + p->cputime_expires.sched_exp = p->se.sum_exec_runtime; } } @@ -1154,7 +1498,7 @@ static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) * on the queue: */ if (p->rt.run_list.prev != p->rt.run_list.next) { - requeue_task_rt(rq, p); + requeue_task_rt(rq, p, 0); set_tsk_need_resched(p); } } @@ -1166,14 +1510,11 @@ static void set_curr_task_rt(struct rq *rq) p->se.exec_start = rq->clock; } -const struct sched_class rt_sched_class = { +static const struct sched_class rt_sched_class = { .next = &fair_sched_class, .enqueue_task = enqueue_task_rt, .dequeue_task = dequeue_task_rt, .yield_task = yield_task_rt, -#ifdef CONFIG_SMP - .select_task_rq = select_task_rq_rt, -#endif /* CONFIG_SMP */ .check_preempt_curr = check_preempt_curr_rt, @@ -1181,11 +1522,13 @@ const struct sched_class rt_sched_class = { .put_prev_task = put_prev_task_rt, #ifdef CONFIG_SMP + .select_task_rq = select_task_rq_rt, + .load_balance = load_balance_rt, .move_one_task = move_one_task_rt, .set_cpus_allowed = set_cpus_allowed_rt, - .join_domain = join_domain_rt, - .leave_domain = leave_domain_rt, + .rq_online = rq_online_rt, + .rq_offline = rq_offline_rt, .pre_schedule = pre_schedule_rt, .post_schedule = post_schedule_rt, .task_wake_up = task_wake_up_rt, @@ -1198,3 +1541,18 @@ const struct sched_class rt_sched_class = { .prio_changed = prio_changed_rt, .switched_to = switched_to_rt, }; + +#ifdef CONFIG_SCHED_DEBUG +extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); + +static void print_rt_stats(struct seq_file *m, int cpu) +{ + struct rt_rq *rt_rq; + + rcu_read_lock(); + for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu)) + print_rt_rq(m, cpu, rt_rq); + rcu_read_unlock(); +} +#endif /* CONFIG_SCHED_DEBUG */ +