X-Git-Url: http://ftp.safe.ca/?a=blobdiff_plain;f=kernel%2Fsched.c;h=8e2558c2ba67be440ef7bcb2d95ff8138c806404;hb=0c2a498fa6d33d8ca9c8a0c29039c41e1734cb9e;hp=42929239830fead30c867760c49153b20997b119;hpb=be4d638c1597580ed2294d899d9f1a2cd10e462c;p=safe%2Fjmp%2Flinux-2.6 diff --git a/kernel/sched.c b/kernel/sched.c index 4292923..8e2558c 100644 --- a/kernel/sched.c +++ b/kernel/sched.c @@ -118,7 +118,16 @@ */ #define RUNTIME_INF ((u64)~0ULL) +DEFINE_TRACE(sched_wait_task); +DEFINE_TRACE(sched_wakeup); +DEFINE_TRACE(sched_wakeup_new); +DEFINE_TRACE(sched_switch); +DEFINE_TRACE(sched_migrate_task); + #ifdef CONFIG_SMP + +static void double_rq_lock(struct rq *rq1, struct rq *rq2); + /* * Divide a load by a sched group cpu_power : (load / sg->__cpu_power) * Since cpu_power is a 'constant', we can use a reciprocal divide. @@ -203,7 +212,6 @@ void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); rt_b->rt_period_timer.function = sched_rt_period_timer; - rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED; } static inline int rt_bandwidth_enabled(void) @@ -215,7 +223,7 @@ static void start_rt_bandwidth(struct rt_bandwidth *rt_b) { ktime_t now; - if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF) + if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) return; if (hrtimer_active(&rt_b->rt_period_timer)) @@ -261,6 +269,10 @@ struct task_group { struct cgroup_subsys_state css; #endif +#ifdef CONFIG_USER_SCHED + uid_t uid; +#endif + #ifdef CONFIG_FAIR_GROUP_SCHED /* schedulable entities of this group on each cpu */ struct sched_entity **se; @@ -286,6 +298,12 @@ struct task_group { #ifdef CONFIG_USER_SCHED +/* Helper function to pass uid information to create_sched_user() */ +void set_tg_uid(struct user_struct *user) +{ + user->tg->uid = user->uid; +} + /* * Root task group. * Every UID task group (including init_task_group aka UID-0) will @@ -345,7 +363,9 @@ static inline struct task_group *task_group(struct task_struct *p) struct task_group *tg; #ifdef CONFIG_USER_SCHED - tg = p->user->tg; + rcu_read_lock(); + tg = __task_cred(p)->user->tg; + rcu_read_unlock(); #elif defined(CONFIG_CGROUP_SCHED) tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id), struct task_group, css); @@ -481,18 +501,26 @@ struct rt_rq { */ struct root_domain { atomic_t refcount; - cpumask_t span; - cpumask_t online; + cpumask_var_t span; + cpumask_var_t online; /* * The "RT overload" flag: it gets set if a CPU has more than * one runnable RT task. */ - cpumask_t rto_mask; + cpumask_var_t rto_mask; atomic_t rto_count; #ifdef CONFIG_SMP struct cpupri cpupri; #endif +#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) + /* + * Preferred wake up cpu nominated by sched_mc balance that will be + * used when most cpus are idle in the system indicating overall very + * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2) + */ + unsigned int sched_mc_preferred_wakeup_cpu; +#endif }; /* @@ -586,6 +614,8 @@ struct rq { #ifdef CONFIG_SCHEDSTATS /* latency stats */ struct sched_info rq_sched_info; + unsigned long long rq_cpu_time; + /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ /* sys_sched_yield() stats */ unsigned int yld_exp_empty; @@ -703,45 +733,18 @@ static __read_mostly char *sched_feat_names[] = { #undef SCHED_FEAT -static int sched_feat_open(struct inode *inode, struct file *filp) -{ - filp->private_data = inode->i_private; - return 0; -} - -static ssize_t -sched_feat_read(struct file *filp, char __user *ubuf, - size_t cnt, loff_t *ppos) +static int sched_feat_show(struct seq_file *m, void *v) { - char *buf; - int r = 0; - int len = 0; int i; for (i = 0; sched_feat_names[i]; i++) { - len += strlen(sched_feat_names[i]); - len += 4; + if (!(sysctl_sched_features & (1UL << i))) + seq_puts(m, "NO_"); + seq_printf(m, "%s ", sched_feat_names[i]); } + seq_puts(m, "\n"); - buf = kmalloc(len + 2, GFP_KERNEL); - if (!buf) - return -ENOMEM; - - for (i = 0; sched_feat_names[i]; i++) { - if (sysctl_sched_features & (1UL << i)) - r += sprintf(buf + r, "%s ", sched_feat_names[i]); - else - r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]); - } - - r += sprintf(buf + r, "\n"); - WARN_ON(r >= len + 2); - - r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r); - - kfree(buf); - - return r; + return 0; } static ssize_t @@ -786,10 +789,17 @@ sched_feat_write(struct file *filp, const char __user *ubuf, return cnt; } +static int sched_feat_open(struct inode *inode, struct file *filp) +{ + return single_open(filp, sched_feat_show, NULL); +} + static struct file_operations sched_feat_fops = { - .open = sched_feat_open, - .read = sched_feat_read, - .write = sched_feat_write, + .open = sched_feat_open, + .write = sched_feat_write, + .read = seq_read, + .llseek = seq_lseek, + .release = single_release, }; static __init int sched_init_debug(void) @@ -1139,7 +1149,6 @@ static void init_rq_hrtick(struct rq *rq) hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); rq->hrtick_timer.function = hrtick; - rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU; } #else /* CONFIG_SCHED_HRTICK */ static inline void hrtick_clear(struct rq *rq) @@ -1314,8 +1323,8 @@ static inline void update_load_sub(struct load_weight *lw, unsigned long dec) * slice expiry etc. */ -#define WEIGHT_IDLEPRIO 2 -#define WMULT_IDLEPRIO (1 << 31) +#define WEIGHT_IDLEPRIO 3 +#define WMULT_IDLEPRIO 1431655765 /* * Nice levels are multiplicative, with a gentle 10% change for every @@ -1474,27 +1483,13 @@ static void update_group_shares_cpu(struct task_group *tg, int cpu, unsigned long sd_shares, unsigned long sd_rq_weight) { - int boost = 0; unsigned long shares; unsigned long rq_weight; if (!tg->se[cpu]) return; - rq_weight = tg->cfs_rq[cpu]->load.weight; - - /* - * If there are currently no tasks on the cpu pretend there is one of - * average load so that when a new task gets to run here it will not - * get delayed by group starvation. - */ - if (!rq_weight) { - boost = 1; - rq_weight = NICE_0_LOAD; - } - - if (unlikely(rq_weight > sd_rq_weight)) - rq_weight = sd_rq_weight; + rq_weight = tg->cfs_rq[cpu]->rq_weight; /* * \Sum shares * rq_weight @@ -1502,7 +1497,7 @@ update_group_shares_cpu(struct task_group *tg, int cpu, * \Sum rq_weight * */ - shares = (sd_shares * rq_weight) / (sd_rq_weight + 1); + shares = (sd_shares * rq_weight) / sd_rq_weight; shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES); if (abs(shares - tg->se[cpu]->load.weight) > @@ -1511,11 +1506,7 @@ update_group_shares_cpu(struct task_group *tg, int cpu, unsigned long flags; spin_lock_irqsave(&rq->lock, flags); - /* - * record the actual number of shares, not the boosted amount. - */ - tg->cfs_rq[cpu]->shares = boost ? 0 : shares; - tg->cfs_rq[cpu]->rq_weight = rq_weight; + tg->cfs_rq[cpu]->shares = shares; __set_se_shares(tg->se[cpu], shares); spin_unlock_irqrestore(&rq->lock, flags); @@ -1529,13 +1520,23 @@ update_group_shares_cpu(struct task_group *tg, int cpu, */ static int tg_shares_up(struct task_group *tg, void *data) { - unsigned long rq_weight = 0; + unsigned long weight, rq_weight = 0; unsigned long shares = 0; struct sched_domain *sd = data; int i; - for_each_cpu_mask(i, sd->span) { - rq_weight += tg->cfs_rq[i]->load.weight; + for_each_cpu(i, sched_domain_span(sd)) { + /* + * If there are currently no tasks on the cpu pretend there + * is one of average load so that when a new task gets to + * run here it will not get delayed by group starvation. + */ + weight = tg->cfs_rq[i]->load.weight; + if (!weight) + weight = NICE_0_LOAD; + + tg->cfs_rq[i]->rq_weight = weight; + rq_weight += weight; shares += tg->cfs_rq[i]->shares; } @@ -1545,10 +1546,7 @@ static int tg_shares_up(struct task_group *tg, void *data) if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE)) shares = tg->shares; - if (!rq_weight) - rq_weight = cpus_weight(sd->span) * NICE_0_LOAD; - - for_each_cpu_mask(i, sd->span) + for_each_cpu(i, sched_domain_span(sd)) update_group_shares_cpu(tg, i, shares, rq_weight); return 0; @@ -1612,6 +1610,39 @@ static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd) #endif +/* + * double_lock_balance - lock the busiest runqueue, this_rq is locked already. + */ +static int double_lock_balance(struct rq *this_rq, struct rq *busiest) + __releases(this_rq->lock) + __acquires(busiest->lock) + __acquires(this_rq->lock) +{ + int ret = 0; + + if (unlikely(!irqs_disabled())) { + /* printk() doesn't work good under rq->lock */ + spin_unlock(&this_rq->lock); + BUG_ON(1); + } + if (unlikely(!spin_trylock(&busiest->lock))) { + if (busiest < this_rq) { + spin_unlock(&this_rq->lock); + spin_lock(&busiest->lock); + spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING); + ret = 1; + } else + spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING); + } + return ret; +} + +static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) + __releases(busiest->lock) +{ + spin_unlock(&busiest->lock); + lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); +} #endif #ifdef CONFIG_FAIR_GROUP_SCHED @@ -1845,6 +1876,8 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu) clock_offset = old_rq->clock - new_rq->clock; + trace_sched_migrate_task(p, task_cpu(p), new_cpu); + #ifdef CONFIG_SCHEDSTATS if (p->se.wait_start) p->se.wait_start -= clock_offset; @@ -2079,15 +2112,17 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) int i; /* Skip over this group if it has no CPUs allowed */ - if (!cpus_intersects(group->cpumask, p->cpus_allowed)) + if (!cpumask_intersects(sched_group_cpus(group), + &p->cpus_allowed)) continue; - local_group = cpu_isset(this_cpu, group->cpumask); + local_group = cpumask_test_cpu(this_cpu, + sched_group_cpus(group)); /* Tally up the load of all CPUs in the group */ avg_load = 0; - for_each_cpu_mask_nr(i, group->cpumask) { + for_each_cpu(i, sched_group_cpus(group)) { /* Bias balancing toward cpus of our domain */ if (local_group) load = source_load(i, load_idx); @@ -2119,17 +2154,14 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) * find_idlest_cpu - find the idlest cpu among the cpus in group. */ static int -find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu, - cpumask_t *tmp) +find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) { unsigned long load, min_load = ULONG_MAX; int idlest = -1; int i; /* Traverse only the allowed CPUs */ - cpus_and(*tmp, group->cpumask, p->cpus_allowed); - - for_each_cpu_mask_nr(i, *tmp) { + for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) { load = weighted_cpuload(i); if (load < min_load || (load == min_load && i == this_cpu)) { @@ -2171,7 +2203,6 @@ static int sched_balance_self(int cpu, int flag) update_shares(sd); while (sd) { - cpumask_t span, tmpmask; struct sched_group *group; int new_cpu, weight; @@ -2180,14 +2211,13 @@ static int sched_balance_self(int cpu, int flag) continue; } - span = sd->span; group = find_idlest_group(sd, t, cpu); if (!group) { sd = sd->child; continue; } - new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask); + new_cpu = find_idlest_cpu(group, t, cpu); if (new_cpu == -1 || new_cpu == cpu) { /* Now try balancing at a lower domain level of cpu */ sd = sd->child; @@ -2196,10 +2226,10 @@ static int sched_balance_self(int cpu, int flag) /* Now try balancing at a lower domain level of new_cpu */ cpu = new_cpu; + weight = cpumask_weight(sched_domain_span(sd)); sd = NULL; - weight = cpus_weight(span); for_each_domain(cpu, tmp) { - if (weight <= cpus_weight(tmp->span)) + if (weight <= cpumask_weight(sched_domain_span(tmp))) break; if (tmp->flags & flag) sd = tmp; @@ -2244,7 +2274,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) cpu = task_cpu(p); for_each_domain(this_cpu, sd) { - if (cpu_isset(cpu, sd->span)) { + if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { update_shares(sd); break; } @@ -2254,6 +2284,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) smp_wmb(); rq = task_rq_lock(p, &flags); + update_rq_clock(rq); old_state = p->state; if (!(old_state & state)) goto out; @@ -2292,7 +2323,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) else { struct sched_domain *sd; for_each_domain(this_cpu, sd) { - if (cpu_isset(cpu, sd->span)) { + if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { schedstat_inc(sd, ttwu_wake_remote); break; } @@ -2311,12 +2342,11 @@ out_activate: schedstat_inc(p, se.nr_wakeups_local); else schedstat_inc(p, se.nr_wakeups_remote); - update_rq_clock(rq); activate_task(rq, p, 1); success = 1; out_running: - trace_sched_wakeup(rq, p); + trace_sched_wakeup(rq, p, success); check_preempt_curr(rq, p, sync); p->state = TASK_RUNNING; @@ -2449,7 +2479,7 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) p->sched_class->task_new(rq, p); inc_nr_running(rq); } - trace_sched_wakeup_new(rq, p); + trace_sched_wakeup_new(rq, p, 1); check_preempt_curr(rq, p, 0); #ifdef CONFIG_SMP if (p->sched_class->task_wake_up) @@ -2812,40 +2842,6 @@ static void double_rq_unlock(struct rq *rq1, struct rq *rq2) } /* - * double_lock_balance - lock the busiest runqueue, this_rq is locked already. - */ -static int double_lock_balance(struct rq *this_rq, struct rq *busiest) - __releases(this_rq->lock) - __acquires(busiest->lock) - __acquires(this_rq->lock) -{ - int ret = 0; - - if (unlikely(!irqs_disabled())) { - /* printk() doesn't work good under rq->lock */ - spin_unlock(&this_rq->lock); - BUG_ON(1); - } - if (unlikely(!spin_trylock(&busiest->lock))) { - if (busiest < this_rq) { - spin_unlock(&this_rq->lock); - spin_lock(&busiest->lock); - spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING); - ret = 1; - } else - spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING); - } - return ret; -} - -static void double_unlock_balance(struct rq *this_rq, struct rq *busiest) - __releases(busiest->lock) -{ - spin_unlock(&busiest->lock); - lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); -} - -/* * If dest_cpu is allowed for this process, migrate the task to it. * This is accomplished by forcing the cpu_allowed mask to only * allow dest_cpu, which will force the cpu onto dest_cpu. Then @@ -2858,11 +2854,10 @@ static void sched_migrate_task(struct task_struct *p, int dest_cpu) struct rq *rq; rq = task_rq_lock(p, &flags); - if (!cpu_isset(dest_cpu, p->cpus_allowed) + if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed) || unlikely(!cpu_active(dest_cpu))) goto out; - trace_sched_migrate_task(rq, p, dest_cpu); /* force the process onto the specified CPU */ if (migrate_task(p, dest_cpu, &req)) { /* Need to wait for migration thread (might exit: take ref). */ @@ -2924,7 +2919,7 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, * 2) cannot be migrated to this CPU due to cpus_allowed, or * 3) are cache-hot on their current CPU. */ - if (!cpu_isset(this_cpu, p->cpus_allowed)) { + if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) { schedstat_inc(p, se.nr_failed_migrations_affine); return 0; } @@ -3099,7 +3094,7 @@ static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, static struct sched_group * find_busiest_group(struct sched_domain *sd, int this_cpu, unsigned long *imbalance, enum cpu_idle_type idle, - int *sd_idle, const cpumask_t *cpus, int *balance) + int *sd_idle, const struct cpumask *cpus, int *balance) { struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups; unsigned long max_load, avg_load, total_load, this_load, total_pwr; @@ -3135,10 +3130,11 @@ find_busiest_group(struct sched_domain *sd, int this_cpu, unsigned long sum_avg_load_per_task; unsigned long avg_load_per_task; - local_group = cpu_isset(this_cpu, group->cpumask); + local_group = cpumask_test_cpu(this_cpu, + sched_group_cpus(group)); if (local_group) - balance_cpu = first_cpu(group->cpumask); + balance_cpu = cpumask_first(sched_group_cpus(group)); /* Tally up the load of all CPUs in the group */ sum_weighted_load = sum_nr_running = avg_load = 0; @@ -3147,13 +3143,8 @@ find_busiest_group(struct sched_domain *sd, int this_cpu, max_cpu_load = 0; min_cpu_load = ~0UL; - for_each_cpu_mask_nr(i, group->cpumask) { - struct rq *rq; - - if (!cpu_isset(i, *cpus)) - continue; - - rq = cpu_rq(i); + for_each_cpu_and(i, sched_group_cpus(group), cpus) { + struct rq *rq = cpu_rq(i); if (*sd_idle && rq->nr_running) *sd_idle = 0; @@ -3264,8 +3255,8 @@ find_busiest_group(struct sched_domain *sd, int this_cpu, */ if ((sum_nr_running < min_nr_running) || (sum_nr_running == min_nr_running && - first_cpu(group->cpumask) < - first_cpu(group_min->cpumask))) { + cpumask_first(sched_group_cpus(group)) > + cpumask_first(sched_group_cpus(group_min)))) { group_min = group; min_nr_running = sum_nr_running; min_load_per_task = sum_weighted_load / @@ -3280,8 +3271,8 @@ find_busiest_group(struct sched_domain *sd, int this_cpu, if (sum_nr_running <= group_capacity - 1) { if (sum_nr_running > leader_nr_running || (sum_nr_running == leader_nr_running && - first_cpu(group->cpumask) > - first_cpu(group_leader->cpumask))) { + cpumask_first(sched_group_cpus(group)) < + cpumask_first(sched_group_cpus(group_leader)))) { group_leader = group; leader_nr_running = sum_nr_running; } @@ -3407,6 +3398,10 @@ out_balanced: if (this == group_leader && group_leader != group_min) { *imbalance = min_load_per_task; + if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) { + cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu = + cpumask_first(sched_group_cpus(group_leader)); + } return group_min; } #endif @@ -3420,16 +3415,16 @@ ret: */ static struct rq * find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle, - unsigned long imbalance, const cpumask_t *cpus) + unsigned long imbalance, const struct cpumask *cpus) { struct rq *busiest = NULL, *rq; unsigned long max_load = 0; int i; - for_each_cpu_mask_nr(i, group->cpumask) { + for_each_cpu(i, sched_group_cpus(group)) { unsigned long wl; - if (!cpu_isset(i, *cpus)) + if (!cpumask_test_cpu(i, cpus)) continue; rq = cpu_rq(i); @@ -3459,7 +3454,7 @@ find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle, */ static int load_balance(int this_cpu, struct rq *this_rq, struct sched_domain *sd, enum cpu_idle_type idle, - int *balance, cpumask_t *cpus) + int *balance, struct cpumask *cpus) { int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0; struct sched_group *group; @@ -3467,7 +3462,7 @@ static int load_balance(int this_cpu, struct rq *this_rq, struct rq *busiest; unsigned long flags; - cpus_setall(*cpus); + cpumask_setall(cpus); /* * When power savings policy is enabled for the parent domain, idle @@ -3527,8 +3522,8 @@ redo: /* All tasks on this runqueue were pinned by CPU affinity */ if (unlikely(all_pinned)) { - cpu_clear(cpu_of(busiest), *cpus); - if (!cpus_empty(*cpus)) + cpumask_clear_cpu(cpu_of(busiest), cpus); + if (!cpumask_empty(cpus)) goto redo; goto out_balanced; } @@ -3545,7 +3540,8 @@ redo: /* don't kick the migration_thread, if the curr * task on busiest cpu can't be moved to this_cpu */ - if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) { + if (!cpumask_test_cpu(this_cpu, + &busiest->curr->cpus_allowed)) { spin_unlock_irqrestore(&busiest->lock, flags); all_pinned = 1; goto out_one_pinned; @@ -3620,7 +3616,7 @@ out: */ static int load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd, - cpumask_t *cpus) + struct cpumask *cpus) { struct sched_group *group; struct rq *busiest = NULL; @@ -3629,7 +3625,7 @@ load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd, int sd_idle = 0; int all_pinned = 0; - cpus_setall(*cpus); + cpumask_setall(cpus); /* * When power savings policy is enabled for the parent domain, idle @@ -3673,17 +3669,76 @@ redo: double_unlock_balance(this_rq, busiest); if (unlikely(all_pinned)) { - cpu_clear(cpu_of(busiest), *cpus); - if (!cpus_empty(*cpus)) + cpumask_clear_cpu(cpu_of(busiest), cpus); + if (!cpumask_empty(cpus)) goto redo; } } if (!ld_moved) { + int active_balance = 0; + schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]); if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) return -1; + + if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP) + return -1; + + if (sd->nr_balance_failed++ < 2) + return -1; + + /* + * The only task running in a non-idle cpu can be moved to this + * cpu in an attempt to completely freeup the other CPU + * package. The same method used to move task in load_balance() + * have been extended for load_balance_newidle() to speedup + * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2) + * + * The package power saving logic comes from + * find_busiest_group(). If there are no imbalance, then + * f_b_g() will return NULL. However when sched_mc={1,2} then + * f_b_g() will select a group from which a running task may be + * pulled to this cpu in order to make the other package idle. + * If there is no opportunity to make a package idle and if + * there are no imbalance, then f_b_g() will return NULL and no + * action will be taken in load_balance_newidle(). + * + * Under normal task pull operation due to imbalance, there + * will be more than one task in the source run queue and + * move_tasks() will succeed. ld_moved will be true and this + * active balance code will not be triggered. + */ + + /* Lock busiest in correct order while this_rq is held */ + double_lock_balance(this_rq, busiest); + + /* + * don't kick the migration_thread, if the curr + * task on busiest cpu can't be moved to this_cpu + */ + if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { + double_unlock_balance(this_rq, busiest); + all_pinned = 1; + return ld_moved; + } + + if (!busiest->active_balance) { + busiest->active_balance = 1; + busiest->push_cpu = this_cpu; + active_balance = 1; + } + + double_unlock_balance(this_rq, busiest); + /* + * Should not call ttwu while holding a rq->lock + */ + spin_unlock(&this_rq->lock); + if (active_balance) + wake_up_process(busiest->migration_thread); + spin_lock(&this_rq->lock); + } else sd->nr_balance_failed = 0; @@ -3707,9 +3762,12 @@ out_balanced: static void idle_balance(int this_cpu, struct rq *this_rq) { struct sched_domain *sd; - int pulled_task = -1; + int pulled_task = 0; unsigned long next_balance = jiffies + HZ; - cpumask_t tmpmask; + cpumask_var_t tmpmask; + + if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC)) + return; for_each_domain(this_cpu, sd) { unsigned long interval; @@ -3720,7 +3778,7 @@ static void idle_balance(int this_cpu, struct rq *this_rq) if (sd->flags & SD_BALANCE_NEWIDLE) /* If we've pulled tasks over stop searching: */ pulled_task = load_balance_newidle(this_cpu, this_rq, - sd, &tmpmask); + sd, tmpmask); interval = msecs_to_jiffies(sd->balance_interval); if (time_after(next_balance, sd->last_balance + interval)) @@ -3735,6 +3793,7 @@ static void idle_balance(int this_cpu, struct rq *this_rq) */ this_rq->next_balance = next_balance; } + free_cpumask_var(tmpmask); } /* @@ -3772,7 +3831,7 @@ static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) /* Search for an sd spanning us and the target CPU. */ for_each_domain(target_cpu, sd) { if ((sd->flags & SD_LOAD_BALANCE) && - cpu_isset(busiest_cpu, sd->span)) + cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) break; } @@ -3791,10 +3850,9 @@ static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) #ifdef CONFIG_NO_HZ static struct { atomic_t load_balancer; - cpumask_t cpu_mask; + cpumask_var_t cpu_mask; } nohz ____cacheline_aligned = { .load_balancer = ATOMIC_INIT(-1), - .cpu_mask = CPU_MASK_NONE, }; /* @@ -3822,21 +3880,26 @@ int select_nohz_load_balancer(int stop_tick) int cpu = smp_processor_id(); if (stop_tick) { - cpu_set(cpu, nohz.cpu_mask); cpu_rq(cpu)->in_nohz_recently = 1; - /* - * If we are going offline and still the leader, give up! - */ - if (!cpu_active(cpu) && - atomic_read(&nohz.load_balancer) == cpu) { + if (!cpu_active(cpu)) { + if (atomic_read(&nohz.load_balancer) != cpu) + return 0; + + /* + * If we are going offline and still the leader, + * give up! + */ if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) BUG(); + return 0; } + cpumask_set_cpu(cpu, nohz.cpu_mask); + /* time for ilb owner also to sleep */ - if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) { + if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) { if (atomic_read(&nohz.load_balancer) == cpu) atomic_set(&nohz.load_balancer, -1); return 0; @@ -3849,10 +3912,10 @@ int select_nohz_load_balancer(int stop_tick) } else if (atomic_read(&nohz.load_balancer) == cpu) return 1; } else { - if (!cpu_isset(cpu, nohz.cpu_mask)) + if (!cpumask_test_cpu(cpu, nohz.cpu_mask)) return 0; - cpu_clear(cpu, nohz.cpu_mask); + cpumask_clear_cpu(cpu, nohz.cpu_mask); if (atomic_read(&nohz.load_balancer) == cpu) if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) @@ -3880,7 +3943,11 @@ static void rebalance_domains(int cpu, enum cpu_idle_type idle) unsigned long next_balance = jiffies + 60*HZ; int update_next_balance = 0; int need_serialize; - cpumask_t tmp; + cpumask_var_t tmp; + + /* Fails alloc? Rebalancing probably not a priority right now. */ + if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) + return; for_each_domain(cpu, sd) { if (!(sd->flags & SD_LOAD_BALANCE)) @@ -3905,7 +3972,7 @@ static void rebalance_domains(int cpu, enum cpu_idle_type idle) } if (time_after_eq(jiffies, sd->last_balance + interval)) { - if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) { + if (load_balance(cpu, rq, sd, idle, &balance, tmp)) { /* * We've pulled tasks over so either we're no * longer idle, or one of our SMT siblings is @@ -3939,6 +4006,8 @@ out: */ if (likely(update_next_balance)) rq->next_balance = next_balance; + + free_cpumask_var(tmp); } /* @@ -3963,12 +4032,13 @@ static void run_rebalance_domains(struct softirq_action *h) */ if (this_rq->idle_at_tick && atomic_read(&nohz.load_balancer) == this_cpu) { - cpumask_t cpus = nohz.cpu_mask; struct rq *rq; int balance_cpu; - cpu_clear(this_cpu, cpus); - for_each_cpu_mask_nr(balance_cpu, cpus) { + for_each_cpu(balance_cpu, nohz.cpu_mask) { + if (balance_cpu == this_cpu) + continue; + /* * If this cpu gets work to do, stop the load balancing * work being done for other cpus. Next load @@ -4006,7 +4076,7 @@ static inline void trigger_load_balance(struct rq *rq, int cpu) rq->in_nohz_recently = 0; if (atomic_read(&nohz.load_balancer) == cpu) { - cpu_clear(cpu, nohz.cpu_mask); + cpumask_clear_cpu(cpu, nohz.cpu_mask); atomic_set(&nohz.load_balancer, -1); } @@ -4019,7 +4089,7 @@ static inline void trigger_load_balance(struct rq *rq, int cpu) * TBD: Traverse the sched domains and nominate * the nearest cpu in the nohz.cpu_mask. */ - int ilb = first_cpu(nohz.cpu_mask); + int ilb = cpumask_first(nohz.cpu_mask); if (ilb < nr_cpu_ids) resched_cpu(ilb); @@ -4031,7 +4101,7 @@ static inline void trigger_load_balance(struct rq *rq, int cpu) * cpus with ticks stopped, is it time for that to stop? */ if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu && - cpus_weight(nohz.cpu_mask) == num_online_cpus()) { + cpumask_weight(nohz.cpu_mask) == num_online_cpus()) { resched_cpu(cpu); return; } @@ -4041,7 +4111,7 @@ static inline void trigger_load_balance(struct rq *rq, int cpu) * someone else, then no need raise the SCHED_SOFTIRQ */ if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu && - cpu_isset(cpu, nohz.cpu_mask)) + cpumask_test_cpu(cpu, nohz.cpu_mask)) return; #endif if (time_after_eq(jiffies, rq->next_balance)) @@ -4093,13 +4163,17 @@ unsigned long long task_delta_exec(struct task_struct *p) * Account user cpu time to a process. * @p: the process that the cpu time gets accounted to * @cputime: the cpu time spent in user space since the last update + * @cputime_scaled: cputime scaled by cpu frequency */ -void account_user_time(struct task_struct *p, cputime_t cputime) +void account_user_time(struct task_struct *p, cputime_t cputime, + cputime_t cputime_scaled) { struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; cputime64_t tmp; + /* Add user time to process. */ p->utime = cputime_add(p->utime, cputime); + p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); account_group_user_time(p, cputime); /* Add user time to cpustat. */ @@ -4116,51 +4190,48 @@ void account_user_time(struct task_struct *p, cputime_t cputime) * Account guest cpu time to a process. * @p: the process that the cpu time gets accounted to * @cputime: the cpu time spent in virtual machine since the last update + * @cputime_scaled: cputime scaled by cpu frequency */ -static void account_guest_time(struct task_struct *p, cputime_t cputime) +static void account_guest_time(struct task_struct *p, cputime_t cputime, + cputime_t cputime_scaled) { cputime64_t tmp; struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; tmp = cputime_to_cputime64(cputime); + /* Add guest time to process. */ p->utime = cputime_add(p->utime, cputime); + p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); account_group_user_time(p, cputime); p->gtime = cputime_add(p->gtime, cputime); + /* Add guest time to cpustat. */ cpustat->user = cputime64_add(cpustat->user, tmp); cpustat->guest = cputime64_add(cpustat->guest, tmp); } /* - * Account scaled user cpu time to a process. - * @p: the process that the cpu time gets accounted to - * @cputime: the cpu time spent in user space since the last update - */ -void account_user_time_scaled(struct task_struct *p, cputime_t cputime) -{ - p->utimescaled = cputime_add(p->utimescaled, cputime); -} - -/* * Account system cpu time to a process. * @p: the process that the cpu time gets accounted to * @hardirq_offset: the offset to subtract from hardirq_count() * @cputime: the cpu time spent in kernel space since the last update + * @cputime_scaled: cputime scaled by cpu frequency */ void account_system_time(struct task_struct *p, int hardirq_offset, - cputime_t cputime) + cputime_t cputime, cputime_t cputime_scaled) { struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; - struct rq *rq = this_rq(); cputime64_t tmp; if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { - account_guest_time(p, cputime); + account_guest_time(p, cputime, cputime_scaled); return; } + /* Add system time to process. */ p->stime = cputime_add(p->stime, cputime); + p->stimescaled = cputime_add(p->stimescaled, cputime_scaled); account_group_system_time(p, cputime); /* Add system time to cpustat. */ @@ -4169,50 +4240,85 @@ void account_system_time(struct task_struct *p, int hardirq_offset, cpustat->irq = cputime64_add(cpustat->irq, tmp); else if (softirq_count()) cpustat->softirq = cputime64_add(cpustat->softirq, tmp); - else if (p != rq->idle) - cpustat->system = cputime64_add(cpustat->system, tmp); - else if (atomic_read(&rq->nr_iowait) > 0) - cpustat->iowait = cputime64_add(cpustat->iowait, tmp); else - cpustat->idle = cputime64_add(cpustat->idle, tmp); + cpustat->system = cputime64_add(cpustat->system, tmp); + /* Account for system time used */ acct_update_integrals(p); } /* - * Account scaled system cpu time to a process. - * @p: the process that the cpu time gets accounted to - * @hardirq_offset: the offset to subtract from hardirq_count() - * @cputime: the cpu time spent in kernel space since the last update + * Account for involuntary wait time. + * @steal: the cpu time spent in involuntary wait */ -void account_system_time_scaled(struct task_struct *p, cputime_t cputime) +void account_steal_time(cputime_t cputime) { - p->stimescaled = cputime_add(p->stimescaled, cputime); + struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; + cputime64_t cputime64 = cputime_to_cputime64(cputime); + + cpustat->steal = cputime64_add(cpustat->steal, cputime64); } /* - * Account for involuntary wait time. - * @p: the process from which the cpu time has been stolen - * @steal: the cpu time spent in involuntary wait + * Account for idle time. + * @cputime: the cpu time spent in idle wait */ -void account_steal_time(struct task_struct *p, cputime_t steal) +void account_idle_time(cputime_t cputime) { struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; - cputime64_t tmp = cputime_to_cputime64(steal); + cputime64_t cputime64 = cputime_to_cputime64(cputime); struct rq *rq = this_rq(); - if (p == rq->idle) { - p->stime = cputime_add(p->stime, steal); - account_group_system_time(p, steal); - if (atomic_read(&rq->nr_iowait) > 0) - cpustat->iowait = cputime64_add(cpustat->iowait, tmp); - else - cpustat->idle = cputime64_add(cpustat->idle, tmp); - } else - cpustat->steal = cputime64_add(cpustat->steal, tmp); + if (atomic_read(&rq->nr_iowait) > 0) + cpustat->iowait = cputime64_add(cpustat->iowait, cputime64); + else + cpustat->idle = cputime64_add(cpustat->idle, cputime64); +} + +#ifndef CONFIG_VIRT_CPU_ACCOUNTING + +/* + * Account a single tick of cpu time. + * @p: the process that the cpu time gets accounted to + * @user_tick: indicates if the tick is a user or a system tick + */ +void account_process_tick(struct task_struct *p, int user_tick) +{ + cputime_t one_jiffy = jiffies_to_cputime(1); + cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy); + struct rq *rq = this_rq(); + + if (user_tick) + account_user_time(p, one_jiffy, one_jiffy_scaled); + else if (p != rq->idle) + account_system_time(p, HARDIRQ_OFFSET, one_jiffy, + one_jiffy_scaled); + else + account_idle_time(one_jiffy); +} + +/* + * Account multiple ticks of steal time. + * @p: the process from which the cpu time has been stolen + * @ticks: number of stolen ticks + */ +void account_steal_ticks(unsigned long ticks) +{ + account_steal_time(jiffies_to_cputime(ticks)); } /* + * Account multiple ticks of idle time. + * @ticks: number of stolen ticks + */ +void account_idle_ticks(unsigned long ticks) +{ + account_idle_time(jiffies_to_cputime(ticks)); +} + +#endif + +/* * Use precise platform statistics if available: */ #ifdef CONFIG_VIRT_CPU_ACCOUNTING @@ -4586,8 +4692,8 @@ EXPORT_SYMBOL(default_wake_function); * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns * zero in this (rare) case, and we handle it by continuing to scan the queue. */ -static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, - int nr_exclusive, int sync, void *key) +void __wake_up_common(wait_queue_head_t *q, unsigned int mode, + int nr_exclusive, int sync, void *key) { wait_queue_t *curr, *next; @@ -5025,7 +5131,7 @@ int can_nice(const struct task_struct *p, const int nice) * sys_setpriority is a more generic, but much slower function that * does similar things. */ -asmlinkage long sys_nice(int increment) +SYSCALL_DEFINE1(nice, int, increment) { long nice, retval; @@ -5134,6 +5240,22 @@ __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) set_load_weight(p); } +/* + * check the target process has a UID that matches the current process's + */ +static bool check_same_owner(struct task_struct *p) +{ + const struct cred *cred = current_cred(), *pcred; + bool match; + + rcu_read_lock(); + pcred = __task_cred(p); + match = (cred->euid == pcred->euid || + cred->euid == pcred->uid); + rcu_read_unlock(); + return match; +} + static int __sched_setscheduler(struct task_struct *p, int policy, struct sched_param *param, bool user) { @@ -5193,8 +5315,7 @@ recheck: return -EPERM; /* can't change other user's priorities */ - if ((current->euid != p->euid) && - (current->euid != p->uid)) + if (!check_same_owner(p)) return -EPERM; } @@ -5317,8 +5438,8 @@ do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) * @policy: new policy. * @param: structure containing the new RT priority. */ -asmlinkage long -sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) +SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, + struct sched_param __user *, param) { /* negative values for policy are not valid */ if (policy < 0) @@ -5332,7 +5453,7 @@ sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) * @pid: the pid in question. * @param: structure containing the new RT priority. */ -asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param) +SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) { return do_sched_setscheduler(pid, -1, param); } @@ -5341,7 +5462,7 @@ asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param) * sys_sched_getscheduler - get the policy (scheduling class) of a thread * @pid: the pid in question. */ -asmlinkage long sys_sched_getscheduler(pid_t pid) +SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) { struct task_struct *p; int retval; @@ -5366,7 +5487,7 @@ asmlinkage long sys_sched_getscheduler(pid_t pid) * @pid: the pid in question. * @param: structure containing the RT priority. */ -asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param) +SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) { struct sched_param lp; struct task_struct *p; @@ -5400,10 +5521,9 @@ out_unlock: return retval; } -long sched_setaffinity(pid_t pid, const cpumask_t *in_mask) +long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) { - cpumask_t cpus_allowed; - cpumask_t new_mask = *in_mask; + cpumask_var_t cpus_allowed, new_mask; struct task_struct *p; int retval; @@ -5425,46 +5545,57 @@ long sched_setaffinity(pid_t pid, const cpumask_t *in_mask) get_task_struct(p); read_unlock(&tasklist_lock); + if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { + retval = -ENOMEM; + goto out_put_task; + } + if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { + retval = -ENOMEM; + goto out_free_cpus_allowed; + } retval = -EPERM; - if ((current->euid != p->euid) && (current->euid != p->uid) && - !capable(CAP_SYS_NICE)) + if (!check_same_owner(p) && !capable(CAP_SYS_NICE)) goto out_unlock; retval = security_task_setscheduler(p, 0, NULL); if (retval) goto out_unlock; - cpuset_cpus_allowed(p, &cpus_allowed); - cpus_and(new_mask, new_mask, cpus_allowed); + cpuset_cpus_allowed(p, cpus_allowed); + cpumask_and(new_mask, in_mask, cpus_allowed); again: - retval = set_cpus_allowed_ptr(p, &new_mask); + retval = set_cpus_allowed_ptr(p, new_mask); if (!retval) { - cpuset_cpus_allowed(p, &cpus_allowed); - if (!cpus_subset(new_mask, cpus_allowed)) { + cpuset_cpus_allowed(p, cpus_allowed); + if (!cpumask_subset(new_mask, cpus_allowed)) { /* * We must have raced with a concurrent cpuset * update. Just reset the cpus_allowed to the * cpuset's cpus_allowed */ - new_mask = cpus_allowed; + cpumask_copy(new_mask, cpus_allowed); goto again; } } out_unlock: + free_cpumask_var(new_mask); +out_free_cpus_allowed: + free_cpumask_var(cpus_allowed); +out_put_task: put_task_struct(p); put_online_cpus(); return retval; } static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, - cpumask_t *new_mask) + struct cpumask *new_mask) { - if (len < sizeof(cpumask_t)) { - memset(new_mask, 0, sizeof(cpumask_t)); - } else if (len > sizeof(cpumask_t)) { - len = sizeof(cpumask_t); - } + if (len < cpumask_size()) + cpumask_clear(new_mask); + else if (len > cpumask_size()) + len = cpumask_size(); + return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; } @@ -5474,20 +5605,23 @@ static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, * @len: length in bytes of the bitmask pointed to by user_mask_ptr * @user_mask_ptr: user-space pointer to the new cpu mask */ -asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len, - unsigned long __user *user_mask_ptr) +SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, + unsigned long __user *, user_mask_ptr) { - cpumask_t new_mask; + cpumask_var_t new_mask; int retval; - retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask); - if (retval) - return retval; + if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) + return -ENOMEM; - return sched_setaffinity(pid, &new_mask); + retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); + if (retval == 0) + retval = sched_setaffinity(pid, new_mask); + free_cpumask_var(new_mask); + return retval; } -long sched_getaffinity(pid_t pid, cpumask_t *mask) +long sched_getaffinity(pid_t pid, struct cpumask *mask) { struct task_struct *p; int retval; @@ -5504,7 +5638,7 @@ long sched_getaffinity(pid_t pid, cpumask_t *mask) if (retval) goto out_unlock; - cpus_and(*mask, p->cpus_allowed, cpu_online_map); + cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); out_unlock: read_unlock(&tasklist_lock); @@ -5519,23 +5653,28 @@ out_unlock: * @len: length in bytes of the bitmask pointed to by user_mask_ptr * @user_mask_ptr: user-space pointer to hold the current cpu mask */ -asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len, - unsigned long __user *user_mask_ptr) +SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, + unsigned long __user *, user_mask_ptr) { int ret; - cpumask_t mask; + cpumask_var_t mask; - if (len < sizeof(cpumask_t)) + if (len < cpumask_size()) return -EINVAL; - ret = sched_getaffinity(pid, &mask); - if (ret < 0) - return ret; + if (!alloc_cpumask_var(&mask, GFP_KERNEL)) + return -ENOMEM; - if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t))) - return -EFAULT; + ret = sched_getaffinity(pid, mask); + if (ret == 0) { + if (copy_to_user(user_mask_ptr, mask, cpumask_size())) + ret = -EFAULT; + else + ret = cpumask_size(); + } + free_cpumask_var(mask); - return sizeof(cpumask_t); + return ret; } /** @@ -5544,7 +5683,7 @@ asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len, * This function yields the current CPU to other tasks. If there are no * other threads running on this CPU then this function will return. */ -asmlinkage long sys_sched_yield(void) +SYSCALL_DEFINE0(sched_yield) { struct rq *rq = this_rq_lock(); @@ -5685,7 +5824,7 @@ long __sched io_schedule_timeout(long timeout) * this syscall returns the maximum rt_priority that can be used * by a given scheduling class. */ -asmlinkage long sys_sched_get_priority_max(int policy) +SYSCALL_DEFINE1(sched_get_priority_max, int, policy) { int ret = -EINVAL; @@ -5710,7 +5849,7 @@ asmlinkage long sys_sched_get_priority_max(int policy) * this syscall returns the minimum rt_priority that can be used * by a given scheduling class. */ -asmlinkage long sys_sched_get_priority_min(int policy) +SYSCALL_DEFINE1(sched_get_priority_min, int, policy) { int ret = -EINVAL; @@ -5735,8 +5874,8 @@ asmlinkage long sys_sched_get_priority_min(int policy) * this syscall writes the default timeslice value of a given process * into the user-space timespec buffer. A value of '0' means infinity. */ -asmlinkage -long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval) +SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, + struct timespec __user *, interval) { struct task_struct *p; unsigned int time_slice; @@ -5877,7 +6016,7 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu) idle->se.exec_start = sched_clock(); idle->prio = idle->normal_prio = MAX_PRIO; - idle->cpus_allowed = cpumask_of_cpu(cpu); + cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu)); __set_task_cpu(idle, cpu); rq->curr = rq->idle = idle; @@ -5896,6 +6035,7 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu) * The idle tasks have their own, simple scheduling class: */ idle->sched_class = &idle_sched_class; + ftrace_graph_init_task(idle); } /* @@ -5903,9 +6043,9 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu) * indicates which cpus entered this state. This is used * in the rcu update to wait only for active cpus. For system * which do not switch off the HZ timer nohz_cpu_mask should - * always be CPU_MASK_NONE. + * always be CPU_BITS_NONE. */ -cpumask_t nohz_cpu_mask = CPU_MASK_NONE; +cpumask_var_t nohz_cpu_mask; /* * Increase the granularity value when there are more CPUs, @@ -5960,7 +6100,7 @@ static inline void sched_init_granularity(void) * task must not exit() & deallocate itself prematurely. The * call is not atomic; no spinlocks may be held. */ -int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask) +int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) { struct migration_req req; unsigned long flags; @@ -5968,13 +6108,13 @@ int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask) int ret = 0; rq = task_rq_lock(p, &flags); - if (!cpus_intersects(*new_mask, cpu_online_map)) { + if (!cpumask_intersects(new_mask, cpu_online_mask)) { ret = -EINVAL; goto out; } if (unlikely((p->flags & PF_THREAD_BOUND) && p != current && - !cpus_equal(p->cpus_allowed, *new_mask))) { + !cpumask_equal(&p->cpus_allowed, new_mask))) { ret = -EINVAL; goto out; } @@ -5982,15 +6122,15 @@ int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask) if (p->sched_class->set_cpus_allowed) p->sched_class->set_cpus_allowed(p, new_mask); else { - p->cpus_allowed = *new_mask; - p->rt.nr_cpus_allowed = cpus_weight(*new_mask); + cpumask_copy(&p->cpus_allowed, new_mask); + p->rt.nr_cpus_allowed = cpumask_weight(new_mask); } /* Can the task run on the task's current CPU? If so, we're done */ - if (cpu_isset(task_cpu(p), *new_mask)) + if (cpumask_test_cpu(task_cpu(p), new_mask)) goto out; - if (migrate_task(p, any_online_cpu(*new_mask), &req)) { + if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) { /* Need help from migration thread: drop lock and wait. */ task_rq_unlock(rq, &flags); wake_up_process(rq->migration_thread); @@ -6032,7 +6172,7 @@ static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) if (task_cpu(p) != src_cpu) goto done; /* Affinity changed (again). */ - if (!cpu_isset(dest_cpu, p->cpus_allowed)) + if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) goto fail; on_rq = p->se.on_rq; @@ -6126,54 +6266,44 @@ static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu) /* * Figure out where task on dead CPU should go, use force if necessary. - * NOTE: interrupts should be disabled by the caller */ static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) { - unsigned long flags; - cpumask_t mask; - struct rq *rq; int dest_cpu; + const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu)); - do { - /* On same node? */ - mask = node_to_cpumask(cpu_to_node(dead_cpu)); - cpus_and(mask, mask, p->cpus_allowed); - dest_cpu = any_online_cpu(mask); - - /* On any allowed CPU? */ - if (dest_cpu >= nr_cpu_ids) - dest_cpu = any_online_cpu(p->cpus_allowed); +again: + /* Look for allowed, online CPU in same node. */ + for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask) + if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) + goto move; - /* No more Mr. Nice Guy. */ - if (dest_cpu >= nr_cpu_ids) { - cpumask_t cpus_allowed; + /* Any allowed, online CPU? */ + dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask); + if (dest_cpu < nr_cpu_ids) + goto move; - cpuset_cpus_allowed_locked(p, &cpus_allowed); - /* - * Try to stay on the same cpuset, where the - * current cpuset may be a subset of all cpus. - * The cpuset_cpus_allowed_locked() variant of - * cpuset_cpus_allowed() will not block. It must be - * called within calls to cpuset_lock/cpuset_unlock. - */ - rq = task_rq_lock(p, &flags); - p->cpus_allowed = cpus_allowed; - dest_cpu = any_online_cpu(p->cpus_allowed); - task_rq_unlock(rq, &flags); + /* No more Mr. Nice Guy. */ + if (dest_cpu >= nr_cpu_ids) { + cpuset_cpus_allowed_locked(p, &p->cpus_allowed); + dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed); - /* - * Don't tell them about moving exiting tasks or - * kernel threads (both mm NULL), since they never - * leave kernel. - */ - if (p->mm && printk_ratelimit()) { - printk(KERN_INFO "process %d (%s) no " - "longer affine to cpu%d\n", - task_pid_nr(p), p->comm, dead_cpu); - } + /* + * Don't tell them about moving exiting tasks or + * kernel threads (both mm NULL), since they never + * leave kernel. + */ + if (p->mm && printk_ratelimit()) { + printk(KERN_INFO "process %d (%s) no " + "longer affine to cpu%d\n", + task_pid_nr(p), p->comm, dead_cpu); } - } while (!__migrate_task_irq(p, dead_cpu, dest_cpu)); + } + +move: + /* It can have affinity changed while we were choosing. */ + if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu))) + goto again; } /* @@ -6185,7 +6315,7 @@ static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) */ static void migrate_nr_uninterruptible(struct rq *rq_src) { - struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR)); + struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask)); unsigned long flags; local_irq_save(flags); @@ -6475,7 +6605,7 @@ static void set_rq_online(struct rq *rq) if (!rq->online) { const struct sched_class *class; - cpu_set(rq->cpu, rq->rd->online); + cpumask_set_cpu(rq->cpu, rq->rd->online); rq->online = 1; for_each_class(class) { @@ -6495,7 +6625,7 @@ static void set_rq_offline(struct rq *rq) class->rq_offline(rq); } - cpu_clear(rq->cpu, rq->rd->online); + cpumask_clear_cpu(rq->cpu, rq->rd->online); rq->online = 0; } } @@ -6536,7 +6666,7 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) rq = cpu_rq(cpu); spin_lock_irqsave(&rq->lock, flags); if (rq->rd) { - BUG_ON(!cpu_isset(cpu, rq->rd->span)); + BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); set_rq_online(rq); } @@ -6550,7 +6680,7 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) break; /* Unbind it from offline cpu so it can run. Fall thru. */ kthread_bind(cpu_rq(cpu)->migration_thread, - any_online_cpu(cpu_online_map)); + cpumask_any(cpu_online_mask)); kthread_stop(cpu_rq(cpu)->migration_thread); cpu_rq(cpu)->migration_thread = NULL; break; @@ -6600,7 +6730,7 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) rq = cpu_rq(cpu); spin_lock_irqsave(&rq->lock, flags); if (rq->rd) { - BUG_ON(!cpu_isset(cpu, rq->rd->span)); + BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); set_rq_offline(rq); } spin_unlock_irqrestore(&rq->lock, flags); @@ -6638,36 +6768,14 @@ early_initcall(migration_init); #ifdef CONFIG_SCHED_DEBUG -static inline const char *sd_level_to_string(enum sched_domain_level lvl) -{ - switch (lvl) { - case SD_LV_NONE: - return "NONE"; - case SD_LV_SIBLING: - return "SIBLING"; - case SD_LV_MC: - return "MC"; - case SD_LV_CPU: - return "CPU"; - case SD_LV_NODE: - return "NODE"; - case SD_LV_ALLNODES: - return "ALLNODES"; - case SD_LV_MAX: - return "MAX"; - - } - return "MAX"; -} - static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, - cpumask_t *groupmask) + struct cpumask *groupmask) { struct sched_group *group = sd->groups; char str[256]; - cpulist_scnprintf(str, sizeof(str), &sd->span); - cpus_clear(*groupmask); + cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); + cpumask_clear(groupmask); printk(KERN_DEBUG "%*s domain %d: ", level, "", level); @@ -6679,14 +6787,13 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, return -1; } - printk(KERN_CONT "span %s level %s\n", - str, sd_level_to_string(sd->level)); + printk(KERN_CONT "span %s level %s\n", str, sd->name); - if (!cpu_isset(cpu, sd->span)) { + if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { printk(KERN_ERR "ERROR: domain->span does not contain " "CPU%d\n", cpu); } - if (!cpu_isset(cpu, group->cpumask)) { + if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { printk(KERN_ERR "ERROR: domain->groups does not contain" " CPU%d\n", cpu); } @@ -6706,31 +6813,32 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, break; } - if (!cpus_weight(group->cpumask)) { + if (!cpumask_weight(sched_group_cpus(group))) { printk(KERN_CONT "\n"); printk(KERN_ERR "ERROR: empty group\n"); break; } - if (cpus_intersects(*groupmask, group->cpumask)) { + if (cpumask_intersects(groupmask, sched_group_cpus(group))) { printk(KERN_CONT "\n"); printk(KERN_ERR "ERROR: repeated CPUs\n"); break; } - cpus_or(*groupmask, *groupmask, group->cpumask); + cpumask_or(groupmask, groupmask, sched_group_cpus(group)); - cpulist_scnprintf(str, sizeof(str), &group->cpumask); + cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); printk(KERN_CONT " %s", str); group = group->next; } while (group != sd->groups); printk(KERN_CONT "\n"); - if (!cpus_equal(sd->span, *groupmask)) + if (!cpumask_equal(sched_domain_span(sd), groupmask)) printk(KERN_ERR "ERROR: groups don't span domain->span\n"); - if (sd->parent && !cpus_subset(*groupmask, sd->parent->span)) + if (sd->parent && + !cpumask_subset(groupmask, sched_domain_span(sd->parent))) printk(KERN_ERR "ERROR: parent span is not a superset " "of domain->span\n"); return 0; @@ -6738,7 +6846,7 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, static void sched_domain_debug(struct sched_domain *sd, int cpu) { - cpumask_t *groupmask; + cpumask_var_t groupmask; int level = 0; if (!sd) { @@ -6748,8 +6856,7 @@ static void sched_domain_debug(struct sched_domain *sd, int cpu) printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); - groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL); - if (!groupmask) { + if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) { printk(KERN_DEBUG "Cannot load-balance (out of memory)\n"); return; } @@ -6762,7 +6869,7 @@ static void sched_domain_debug(struct sched_domain *sd, int cpu) if (!sd) break; } - kfree(groupmask); + free_cpumask_var(groupmask); } #else /* !CONFIG_SCHED_DEBUG */ # define sched_domain_debug(sd, cpu) do { } while (0) @@ -6770,7 +6877,7 @@ static void sched_domain_debug(struct sched_domain *sd, int cpu) static int sd_degenerate(struct sched_domain *sd) { - if (cpus_weight(sd->span) == 1) + if (cpumask_weight(sched_domain_span(sd)) == 1) return 1; /* Following flags need at least 2 groups */ @@ -6801,7 +6908,7 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) if (sd_degenerate(parent)) return 1; - if (!cpus_equal(sd->span, parent->span)) + if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) return 0; /* Does parent contain flags not in child? */ @@ -6816,6 +6923,8 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) SD_BALANCE_EXEC | SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES); + if (nr_node_ids == 1) + pflags &= ~SD_SERIALIZE; } if (~cflags & pflags) return 0; @@ -6823,47 +6932,90 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) return 1; } +static void free_rootdomain(struct root_domain *rd) +{ + cpupri_cleanup(&rd->cpupri); + + free_cpumask_var(rd->rto_mask); + free_cpumask_var(rd->online); + free_cpumask_var(rd->span); + kfree(rd); +} + static void rq_attach_root(struct rq *rq, struct root_domain *rd) { + struct root_domain *old_rd = NULL; unsigned long flags; spin_lock_irqsave(&rq->lock, flags); if (rq->rd) { - struct root_domain *old_rd = rq->rd; + old_rd = rq->rd; - if (cpu_isset(rq->cpu, old_rd->online)) + if (cpumask_test_cpu(rq->cpu, old_rd->online)) set_rq_offline(rq); - cpu_clear(rq->cpu, old_rd->span); + cpumask_clear_cpu(rq->cpu, old_rd->span); - if (atomic_dec_and_test(&old_rd->refcount)) - kfree(old_rd); + /* + * If we dont want to free the old_rt yet then + * set old_rd to NULL to skip the freeing later + * in this function: + */ + if (!atomic_dec_and_test(&old_rd->refcount)) + old_rd = NULL; } atomic_inc(&rd->refcount); rq->rd = rd; - cpu_set(rq->cpu, rd->span); - if (cpu_isset(rq->cpu, cpu_online_map)) + cpumask_set_cpu(rq->cpu, rd->span); + if (cpumask_test_cpu(rq->cpu, cpu_online_mask)) set_rq_online(rq); spin_unlock_irqrestore(&rq->lock, flags); + + if (old_rd) + free_rootdomain(old_rd); } -static void init_rootdomain(struct root_domain *rd) +static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem) { memset(rd, 0, sizeof(*rd)); - cpus_clear(rd->span); - cpus_clear(rd->online); + if (bootmem) { + alloc_bootmem_cpumask_var(&def_root_domain.span); + alloc_bootmem_cpumask_var(&def_root_domain.online); + alloc_bootmem_cpumask_var(&def_root_domain.rto_mask); + cpupri_init(&rd->cpupri, true); + return 0; + } - cpupri_init(&rd->cpupri); + if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) + goto out; + if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) + goto free_span; + if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) + goto free_online; + + if (cpupri_init(&rd->cpupri, false) != 0) + goto free_rto_mask; + return 0; + +free_rto_mask: + free_cpumask_var(rd->rto_mask); +free_online: + free_cpumask_var(rd->online); +free_span: + free_cpumask_var(rd->span); +out: + return -ENOMEM; } static void init_defrootdomain(void) { - init_rootdomain(&def_root_domain); + init_rootdomain(&def_root_domain, true); + atomic_set(&def_root_domain.refcount, 1); } @@ -6875,7 +7027,10 @@ static struct root_domain *alloc_rootdomain(void) if (!rd) return NULL; - init_rootdomain(rd); + if (init_rootdomain(rd, false) != 0) { + kfree(rd); + return NULL; + } return rd; } @@ -6917,19 +7072,12 @@ cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) } /* cpus with isolated domains */ -static cpumask_t cpu_isolated_map = CPU_MASK_NONE; +static cpumask_var_t cpu_isolated_map; /* Setup the mask of cpus configured for isolated domains */ static int __init isolated_cpu_setup(char *str) { - static int __initdata ints[NR_CPUS]; - int i; - - str = get_options(str, ARRAY_SIZE(ints), ints); - cpus_clear(cpu_isolated_map); - for (i = 1; i <= ints[0]; i++) - if (ints[i] < NR_CPUS) - cpu_set(ints[i], cpu_isolated_map); + cpulist_parse(str, cpu_isolated_map); return 1; } @@ -6938,42 +7086,43 @@ __setup("isolcpus=", isolated_cpu_setup); /* * init_sched_build_groups takes the cpumask we wish to span, and a pointer * to a function which identifies what group(along with sched group) a CPU - * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS - * (due to the fact that we keep track of groups covered with a cpumask_t). + * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids + * (due to the fact that we keep track of groups covered with a struct cpumask). * * init_sched_build_groups will build a circular linked list of the groups * covered by the given span, and will set each group's ->cpumask correctly, * and ->cpu_power to 0. */ static void -init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map, - int (*group_fn)(int cpu, const cpumask_t *cpu_map, +init_sched_build_groups(const struct cpumask *span, + const struct cpumask *cpu_map, + int (*group_fn)(int cpu, const struct cpumask *cpu_map, struct sched_group **sg, - cpumask_t *tmpmask), - cpumask_t *covered, cpumask_t *tmpmask) + struct cpumask *tmpmask), + struct cpumask *covered, struct cpumask *tmpmask) { struct sched_group *first = NULL, *last = NULL; int i; - cpus_clear(*covered); + cpumask_clear(covered); - for_each_cpu_mask_nr(i, *span) { + for_each_cpu(i, span) { struct sched_group *sg; int group = group_fn(i, cpu_map, &sg, tmpmask); int j; - if (cpu_isset(i, *covered)) + if (cpumask_test_cpu(i, covered)) continue; - cpus_clear(sg->cpumask); + cpumask_clear(sched_group_cpus(sg)); sg->__cpu_power = 0; - for_each_cpu_mask_nr(j, *span) { + for_each_cpu(j, span) { if (group_fn(j, cpu_map, NULL, tmpmask) != group) continue; - cpu_set(j, *covered); - cpu_set(j, sg->cpumask); + cpumask_set_cpu(j, covered); + cpumask_set_cpu(j, sched_group_cpus(sg)); } if (!first) first = sg; @@ -7037,23 +7186,21 @@ static int find_next_best_node(int node, nodemask_t *used_nodes) * should be one that prevents unnecessary balancing, but also spreads tasks * out optimally. */ -static void sched_domain_node_span(int node, cpumask_t *span) +static void sched_domain_node_span(int node, struct cpumask *span) { nodemask_t used_nodes; - node_to_cpumask_ptr(nodemask, node); int i; - cpus_clear(*span); + cpumask_clear(span); nodes_clear(used_nodes); - cpus_or(*span, *span, *nodemask); + cpumask_or(span, span, cpumask_of_node(node)); node_set(node, used_nodes); for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { int next_node = find_next_best_node(node, &used_nodes); - node_to_cpumask_ptr_next(nodemask, next_node); - cpus_or(*span, *span, *nodemask); + cpumask_or(span, span, cpumask_of_node(next_node)); } } #endif /* CONFIG_NUMA */ @@ -7061,18 +7208,33 @@ static void sched_domain_node_span(int node, cpumask_t *span) int sched_smt_power_savings = 0, sched_mc_power_savings = 0; /* + * The cpus mask in sched_group and sched_domain hangs off the end. + * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space + * for nr_cpu_ids < CONFIG_NR_CPUS. + */ +struct static_sched_group { + struct sched_group sg; + DECLARE_BITMAP(cpus, CONFIG_NR_CPUS); +}; + +struct static_sched_domain { + struct sched_domain sd; + DECLARE_BITMAP(span, CONFIG_NR_CPUS); +}; + +/* * SMT sched-domains: */ #ifdef CONFIG_SCHED_SMT -static DEFINE_PER_CPU(struct sched_domain, cpu_domains); -static DEFINE_PER_CPU(struct sched_group, sched_group_cpus); +static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains); +static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus); static int -cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, - cpumask_t *unused) +cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map, + struct sched_group **sg, struct cpumask *unused) { if (sg) - *sg = &per_cpu(sched_group_cpus, cpu); + *sg = &per_cpu(sched_group_cpus, cpu).sg; return cpu; } #endif /* CONFIG_SCHED_SMT */ @@ -7081,56 +7243,53 @@ cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, * multi-core sched-domains: */ #ifdef CONFIG_SCHED_MC -static DEFINE_PER_CPU(struct sched_domain, core_domains); -static DEFINE_PER_CPU(struct sched_group, sched_group_core); +static DEFINE_PER_CPU(struct static_sched_domain, core_domains); +static DEFINE_PER_CPU(struct static_sched_group, sched_group_core); #endif /* CONFIG_SCHED_MC */ #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT) static int -cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, - cpumask_t *mask) +cpu_to_core_group(int cpu, const struct cpumask *cpu_map, + struct sched_group **sg, struct cpumask *mask) { int group; - *mask = per_cpu(cpu_sibling_map, cpu); - cpus_and(*mask, *mask, *cpu_map); - group = first_cpu(*mask); + cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map); + group = cpumask_first(mask); if (sg) - *sg = &per_cpu(sched_group_core, group); + *sg = &per_cpu(sched_group_core, group).sg; return group; } #elif defined(CONFIG_SCHED_MC) static int -cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, - cpumask_t *unused) +cpu_to_core_group(int cpu, const struct cpumask *cpu_map, + struct sched_group **sg, struct cpumask *unused) { if (sg) - *sg = &per_cpu(sched_group_core, cpu); + *sg = &per_cpu(sched_group_core, cpu).sg; return cpu; } #endif -static DEFINE_PER_CPU(struct sched_domain, phys_domains); -static DEFINE_PER_CPU(struct sched_group, sched_group_phys); +static DEFINE_PER_CPU(struct static_sched_domain, phys_domains); +static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys); static int -cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, - cpumask_t *mask) +cpu_to_phys_group(int cpu, const struct cpumask *cpu_map, + struct sched_group **sg, struct cpumask *mask) { int group; #ifdef CONFIG_SCHED_MC - *mask = *cpu_coregroup_mask(cpu); - cpus_and(*mask, *mask, *cpu_map); - group = first_cpu(*mask); + cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map); + group = cpumask_first(mask); #elif defined(CONFIG_SCHED_SMT) - *mask = per_cpu(cpu_sibling_map, cpu); - cpus_and(*mask, *mask, *cpu_map); - group = first_cpu(*mask); + cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map); + group = cpumask_first(mask); #else group = cpu; #endif if (sg) - *sg = &per_cpu(sched_group_phys, group); + *sg = &per_cpu(sched_group_phys, group).sg; return group; } @@ -7140,23 +7299,23 @@ cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, * groups, so roll our own. Now each node has its own list of groups which * gets dynamically allocated. */ -static DEFINE_PER_CPU(struct sched_domain, node_domains); +static DEFINE_PER_CPU(struct static_sched_domain, node_domains); static struct sched_group ***sched_group_nodes_bycpu; -static DEFINE_PER_CPU(struct sched_domain, allnodes_domains); -static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes); +static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains); +static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes); -static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map, - struct sched_group **sg, cpumask_t *nodemask) +static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map, + struct sched_group **sg, + struct cpumask *nodemask) { int group; - *nodemask = node_to_cpumask(cpu_to_node(cpu)); - cpus_and(*nodemask, *nodemask, *cpu_map); - group = first_cpu(*nodemask); + cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map); + group = cpumask_first(nodemask); if (sg) - *sg = &per_cpu(sched_group_allnodes, group); + *sg = &per_cpu(sched_group_allnodes, group).sg; return group; } @@ -7168,11 +7327,11 @@ static void init_numa_sched_groups_power(struct sched_group *group_head) if (!sg) return; do { - for_each_cpu_mask_nr(j, sg->cpumask) { + for_each_cpu(j, sched_group_cpus(sg)) { struct sched_domain *sd; - sd = &per_cpu(phys_domains, j); - if (j != first_cpu(sd->groups->cpumask)) { + sd = &per_cpu(phys_domains, j).sd; + if (j != cpumask_first(sched_group_cpus(sd->groups))) { /* * Only add "power" once for each * physical package. @@ -7189,11 +7348,12 @@ static void init_numa_sched_groups_power(struct sched_group *group_head) #ifdef CONFIG_NUMA /* Free memory allocated for various sched_group structures */ -static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask) +static void free_sched_groups(const struct cpumask *cpu_map, + struct cpumask *nodemask) { int cpu, i; - for_each_cpu_mask_nr(cpu, *cpu_map) { + for_each_cpu(cpu, cpu_map) { struct sched_group **sched_group_nodes = sched_group_nodes_bycpu[cpu]; @@ -7203,9 +7363,8 @@ static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask) for (i = 0; i < nr_node_ids; i++) { struct sched_group *oldsg, *sg = sched_group_nodes[i]; - *nodemask = node_to_cpumask(i); - cpus_and(*nodemask, *nodemask, *cpu_map); - if (cpus_empty(*nodemask)) + cpumask_and(nodemask, cpumask_of_node(i), cpu_map); + if (cpumask_empty(nodemask)) continue; if (sg == NULL) @@ -7223,7 +7382,8 @@ next_sg: } } #else /* !CONFIG_NUMA */ -static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask) +static void free_sched_groups(const struct cpumask *cpu_map, + struct cpumask *nodemask) { } #endif /* CONFIG_NUMA */ @@ -7249,7 +7409,7 @@ static void init_sched_groups_power(int cpu, struct sched_domain *sd) WARN_ON(!sd || !sd->groups); - if (cpu != first_cpu(sd->groups->cpumask)) + if (cpu != cpumask_first(sched_group_cpus(sd->groups))) return; child = sd->child; @@ -7314,40 +7474,6 @@ SD_INIT_FUNC(CPU) SD_INIT_FUNC(MC) #endif -/* - * To minimize stack usage kmalloc room for cpumasks and share the - * space as the usage in build_sched_domains() dictates. Used only - * if the amount of space is significant. - */ -struct allmasks { - cpumask_t tmpmask; /* make this one first */ - union { - cpumask_t nodemask; - cpumask_t this_sibling_map; - cpumask_t this_core_map; - }; - cpumask_t send_covered; - -#ifdef CONFIG_NUMA - cpumask_t domainspan; - cpumask_t covered; - cpumask_t notcovered; -#endif -}; - -#if NR_CPUS > 128 -#define SCHED_CPUMASK_ALLOC 1 -#define SCHED_CPUMASK_FREE(v) kfree(v) -#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v -#else -#define SCHED_CPUMASK_ALLOC 0 -#define SCHED_CPUMASK_FREE(v) -#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v -#endif - -#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \ - ((unsigned long)(a) + offsetof(struct allmasks, v)) - static int default_relax_domain_level = -1; static int __init setup_relax_domain_level(char *str) @@ -7387,17 +7513,38 @@ static void set_domain_attribute(struct sched_domain *sd, * Build sched domains for a given set of cpus and attach the sched domains * to the individual cpus */ -static int __build_sched_domains(const cpumask_t *cpu_map, +static int __build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) { - int i; + int i, err = -ENOMEM; struct root_domain *rd; - SCHED_CPUMASK_DECLARE(allmasks); - cpumask_t *tmpmask; + cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered, + tmpmask; #ifdef CONFIG_NUMA + cpumask_var_t domainspan, covered, notcovered; struct sched_group **sched_group_nodes = NULL; int sd_allnodes = 0; + if (!alloc_cpumask_var(&domainspan, GFP_KERNEL)) + goto out; + if (!alloc_cpumask_var(&covered, GFP_KERNEL)) + goto free_domainspan; + if (!alloc_cpumask_var(¬covered, GFP_KERNEL)) + goto free_covered; +#endif + + if (!alloc_cpumask_var(&nodemask, GFP_KERNEL)) + goto free_notcovered; + if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL)) + goto free_nodemask; + if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL)) + goto free_this_sibling_map; + if (!alloc_cpumask_var(&send_covered, GFP_KERNEL)) + goto free_this_core_map; + if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL)) + goto free_send_covered; + +#ifdef CONFIG_NUMA /* * Allocate the per-node list of sched groups */ @@ -7405,76 +7552,57 @@ static int __build_sched_domains(const cpumask_t *cpu_map, GFP_KERNEL); if (!sched_group_nodes) { printk(KERN_WARNING "Can not alloc sched group node list\n"); - return -ENOMEM; + goto free_tmpmask; } #endif rd = alloc_rootdomain(); if (!rd) { printk(KERN_WARNING "Cannot alloc root domain\n"); -#ifdef CONFIG_NUMA - kfree(sched_group_nodes); -#endif - return -ENOMEM; + goto free_sched_groups; } -#if SCHED_CPUMASK_ALLOC - /* get space for all scratch cpumask variables */ - allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL); - if (!allmasks) { - printk(KERN_WARNING "Cannot alloc cpumask array\n"); - kfree(rd); #ifdef CONFIG_NUMA - kfree(sched_group_nodes); -#endif - return -ENOMEM; - } -#endif - tmpmask = (cpumask_t *)allmasks; - - -#ifdef CONFIG_NUMA - sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes; + sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes; #endif /* * Set up domains for cpus specified by the cpu_map. */ - for_each_cpu_mask_nr(i, *cpu_map) { + for_each_cpu(i, cpu_map) { struct sched_domain *sd = NULL, *p; - SCHED_CPUMASK_VAR(nodemask, allmasks); - *nodemask = node_to_cpumask(cpu_to_node(i)); - cpus_and(*nodemask, *nodemask, *cpu_map); + cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map); #ifdef CONFIG_NUMA - if (cpus_weight(*cpu_map) > - SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) { - sd = &per_cpu(allnodes_domains, i); + if (cpumask_weight(cpu_map) > + SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) { + sd = &per_cpu(allnodes_domains, i).sd; SD_INIT(sd, ALLNODES); set_domain_attribute(sd, attr); - sd->span = *cpu_map; + cpumask_copy(sched_domain_span(sd), cpu_map); cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask); p = sd; sd_allnodes = 1; } else p = NULL; - sd = &per_cpu(node_domains, i); + sd = &per_cpu(node_domains, i).sd; SD_INIT(sd, NODE); set_domain_attribute(sd, attr); - sched_domain_node_span(cpu_to_node(i), &sd->span); + sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd)); sd->parent = p; if (p) p->child = sd; - cpus_and(sd->span, sd->span, *cpu_map); + cpumask_and(sched_domain_span(sd), + sched_domain_span(sd), cpu_map); #endif p = sd; - sd = &per_cpu(phys_domains, i); + sd = &per_cpu(phys_domains, i).sd; SD_INIT(sd, CPU); set_domain_attribute(sd, attr); - sd->span = *nodemask; + cpumask_copy(sched_domain_span(sd), nodemask); sd->parent = p; if (p) p->child = sd; @@ -7482,11 +7610,11 @@ static int __build_sched_domains(const cpumask_t *cpu_map, #ifdef CONFIG_SCHED_MC p = sd; - sd = &per_cpu(core_domains, i); + sd = &per_cpu(core_domains, i).sd; SD_INIT(sd, MC); set_domain_attribute(sd, attr); - sd->span = *cpu_coregroup_mask(i); - cpus_and(sd->span, sd->span, *cpu_map); + cpumask_and(sched_domain_span(sd), cpu_map, + cpu_coregroup_mask(i)); sd->parent = p; p->child = sd; cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask); @@ -7494,11 +7622,11 @@ static int __build_sched_domains(const cpumask_t *cpu_map, #ifdef CONFIG_SCHED_SMT p = sd; - sd = &per_cpu(cpu_domains, i); + sd = &per_cpu(cpu_domains, i).sd; SD_INIT(sd, SIBLING); set_domain_attribute(sd, attr); - sd->span = per_cpu(cpu_sibling_map, i); - cpus_and(sd->span, sd->span, *cpu_map); + cpumask_and(sched_domain_span(sd), + &per_cpu(cpu_sibling_map, i), cpu_map); sd->parent = p; p->child = sd; cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask); @@ -7507,13 +7635,10 @@ static int __build_sched_domains(const cpumask_t *cpu_map, #ifdef CONFIG_SCHED_SMT /* Set up CPU (sibling) groups */ - for_each_cpu_mask_nr(i, *cpu_map) { - SCHED_CPUMASK_VAR(this_sibling_map, allmasks); - SCHED_CPUMASK_VAR(send_covered, allmasks); - - *this_sibling_map = per_cpu(cpu_sibling_map, i); - cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map); - if (i != first_cpu(*this_sibling_map)) + for_each_cpu(i, cpu_map) { + cpumask_and(this_sibling_map, + &per_cpu(cpu_sibling_map, i), cpu_map); + if (i != cpumask_first(this_sibling_map)) continue; init_sched_build_groups(this_sibling_map, cpu_map, @@ -7524,13 +7649,9 @@ static int __build_sched_domains(const cpumask_t *cpu_map, #ifdef CONFIG_SCHED_MC /* Set up multi-core groups */ - for_each_cpu_mask_nr(i, *cpu_map) { - SCHED_CPUMASK_VAR(this_core_map, allmasks); - SCHED_CPUMASK_VAR(send_covered, allmasks); - - *this_core_map = *cpu_coregroup_mask(i); - cpus_and(*this_core_map, *this_core_map, *cpu_map); - if (i != first_cpu(*this_core_map)) + for_each_cpu(i, cpu_map) { + cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map); + if (i != cpumask_first(this_core_map)) continue; init_sched_build_groups(this_core_map, cpu_map, @@ -7541,12 +7662,8 @@ static int __build_sched_domains(const cpumask_t *cpu_map, /* Set up physical groups */ for (i = 0; i < nr_node_ids; i++) { - SCHED_CPUMASK_VAR(nodemask, allmasks); - SCHED_CPUMASK_VAR(send_covered, allmasks); - - *nodemask = node_to_cpumask(i); - cpus_and(*nodemask, *nodemask, *cpu_map); - if (cpus_empty(*nodemask)) + cpumask_and(nodemask, cpumask_of_node(i), cpu_map); + if (cpumask_empty(nodemask)) continue; init_sched_build_groups(nodemask, cpu_map, @@ -7557,8 +7674,6 @@ static int __build_sched_domains(const cpumask_t *cpu_map, #ifdef CONFIG_NUMA /* Set up node groups */ if (sd_allnodes) { - SCHED_CPUMASK_VAR(send_covered, allmasks); - init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group, send_covered, tmpmask); @@ -7567,58 +7682,53 @@ static int __build_sched_domains(const cpumask_t *cpu_map, for (i = 0; i < nr_node_ids; i++) { /* Set up node groups */ struct sched_group *sg, *prev; - SCHED_CPUMASK_VAR(nodemask, allmasks); - SCHED_CPUMASK_VAR(domainspan, allmasks); - SCHED_CPUMASK_VAR(covered, allmasks); int j; - *nodemask = node_to_cpumask(i); - cpus_clear(*covered); - - cpus_and(*nodemask, *nodemask, *cpu_map); - if (cpus_empty(*nodemask)) { + cpumask_clear(covered); + cpumask_and(nodemask, cpumask_of_node(i), cpu_map); + if (cpumask_empty(nodemask)) { sched_group_nodes[i] = NULL; continue; } sched_domain_node_span(i, domainspan); - cpus_and(*domainspan, *domainspan, *cpu_map); + cpumask_and(domainspan, domainspan, cpu_map); - sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i); + sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), + GFP_KERNEL, i); if (!sg) { printk(KERN_WARNING "Can not alloc domain group for " "node %d\n", i); goto error; } sched_group_nodes[i] = sg; - for_each_cpu_mask_nr(j, *nodemask) { + for_each_cpu(j, nodemask) { struct sched_domain *sd; - sd = &per_cpu(node_domains, j); + sd = &per_cpu(node_domains, j).sd; sd->groups = sg; } sg->__cpu_power = 0; - sg->cpumask = *nodemask; + cpumask_copy(sched_group_cpus(sg), nodemask); sg->next = sg; - cpus_or(*covered, *covered, *nodemask); + cpumask_or(covered, covered, nodemask); prev = sg; for (j = 0; j < nr_node_ids; j++) { - SCHED_CPUMASK_VAR(notcovered, allmasks); int n = (i + j) % nr_node_ids; - node_to_cpumask_ptr(pnodemask, n); - cpus_complement(*notcovered, *covered); - cpus_and(*tmpmask, *notcovered, *cpu_map); - cpus_and(*tmpmask, *tmpmask, *domainspan); - if (cpus_empty(*tmpmask)) + cpumask_complement(notcovered, covered); + cpumask_and(tmpmask, notcovered, cpu_map); + cpumask_and(tmpmask, tmpmask, domainspan); + if (cpumask_empty(tmpmask)) break; - cpus_and(*tmpmask, *tmpmask, *pnodemask); - if (cpus_empty(*tmpmask)) + cpumask_and(tmpmask, tmpmask, cpumask_of_node(n)); + if (cpumask_empty(tmpmask)) continue; - sg = kmalloc_node(sizeof(struct sched_group), + sg = kmalloc_node(sizeof(struct sched_group) + + cpumask_size(), GFP_KERNEL, i); if (!sg) { printk(KERN_WARNING @@ -7626,9 +7736,9 @@ static int __build_sched_domains(const cpumask_t *cpu_map, goto error; } sg->__cpu_power = 0; - sg->cpumask = *tmpmask; + cpumask_copy(sched_group_cpus(sg), tmpmask); sg->next = prev->next; - cpus_or(*covered, *covered, *tmpmask); + cpumask_or(covered, covered, tmpmask); prev->next = sg; prev = sg; } @@ -7637,22 +7747,22 @@ static int __build_sched_domains(const cpumask_t *cpu_map, /* Calculate CPU power for physical packages and nodes */ #ifdef CONFIG_SCHED_SMT - for_each_cpu_mask_nr(i, *cpu_map) { - struct sched_domain *sd = &per_cpu(cpu_domains, i); + for_each_cpu(i, cpu_map) { + struct sched_domain *sd = &per_cpu(cpu_domains, i).sd; init_sched_groups_power(i, sd); } #endif #ifdef CONFIG_SCHED_MC - for_each_cpu_mask_nr(i, *cpu_map) { - struct sched_domain *sd = &per_cpu(core_domains, i); + for_each_cpu(i, cpu_map) { + struct sched_domain *sd = &per_cpu(core_domains, i).sd; init_sched_groups_power(i, sd); } #endif - for_each_cpu_mask_nr(i, *cpu_map) { - struct sched_domain *sd = &per_cpu(phys_domains, i); + for_each_cpu(i, cpu_map) { + struct sched_domain *sd = &per_cpu(phys_domains, i).sd; init_sched_groups_power(i, sd); } @@ -7664,56 +7774,87 @@ static int __build_sched_domains(const cpumask_t *cpu_map, if (sd_allnodes) { struct sched_group *sg; - cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg, + cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg, tmpmask); init_numa_sched_groups_power(sg); } #endif /* Attach the domains */ - for_each_cpu_mask_nr(i, *cpu_map) { + for_each_cpu(i, cpu_map) { struct sched_domain *sd; #ifdef CONFIG_SCHED_SMT - sd = &per_cpu(cpu_domains, i); + sd = &per_cpu(cpu_domains, i).sd; #elif defined(CONFIG_SCHED_MC) - sd = &per_cpu(core_domains, i); + sd = &per_cpu(core_domains, i).sd; #else - sd = &per_cpu(phys_domains, i); + sd = &per_cpu(phys_domains, i).sd; #endif cpu_attach_domain(sd, rd, i); } - SCHED_CPUMASK_FREE((void *)allmasks); - return 0; + err = 0; + +free_tmpmask: + free_cpumask_var(tmpmask); +free_send_covered: + free_cpumask_var(send_covered); +free_this_core_map: + free_cpumask_var(this_core_map); +free_this_sibling_map: + free_cpumask_var(this_sibling_map); +free_nodemask: + free_cpumask_var(nodemask); +free_notcovered: +#ifdef CONFIG_NUMA + free_cpumask_var(notcovered); +free_covered: + free_cpumask_var(covered); +free_domainspan: + free_cpumask_var(domainspan); +out: +#endif + return err; + +free_sched_groups: +#ifdef CONFIG_NUMA + kfree(sched_group_nodes); +#endif + goto free_tmpmask; #ifdef CONFIG_NUMA error: free_sched_groups(cpu_map, tmpmask); - SCHED_CPUMASK_FREE((void *)allmasks); - kfree(rd); - return -ENOMEM; + free_rootdomain(rd); + goto free_tmpmask; #endif } -static int build_sched_domains(const cpumask_t *cpu_map) +static int build_sched_domains(const struct cpumask *cpu_map) { return __build_sched_domains(cpu_map, NULL); } -static cpumask_t *doms_cur; /* current sched domains */ +static struct cpumask *doms_cur; /* current sched domains */ static int ndoms_cur; /* number of sched domains in 'doms_cur' */ static struct sched_domain_attr *dattr_cur; /* attribues of custom domains in 'doms_cur' */ /* * Special case: If a kmalloc of a doms_cur partition (array of - * cpumask_t) fails, then fallback to a single sched domain, - * as determined by the single cpumask_t fallback_doms. + * cpumask) fails, then fallback to a single sched domain, + * as determined by the single cpumask fallback_doms. */ -static cpumask_t fallback_doms; +static cpumask_var_t fallback_doms; -void __attribute__((weak)) arch_update_cpu_topology(void) +/* + * arch_update_cpu_topology lets virtualized architectures update the + * cpu core maps. It is supposed to return 1 if the topology changed + * or 0 if it stayed the same. + */ +int __attribute__((weak)) arch_update_cpu_topology(void) { + return 0; } /* @@ -7721,16 +7862,16 @@ void __attribute__((weak)) arch_update_cpu_topology(void) * For now this just excludes isolated cpus, but could be used to * exclude other special cases in the future. */ -static int arch_init_sched_domains(const cpumask_t *cpu_map) +static int arch_init_sched_domains(const struct cpumask *cpu_map) { int err; arch_update_cpu_topology(); ndoms_cur = 1; - doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL); + doms_cur = kmalloc(cpumask_size(), GFP_KERNEL); if (!doms_cur) - doms_cur = &fallback_doms; - cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map); + doms_cur = fallback_doms; + cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map); dattr_cur = NULL; err = build_sched_domains(doms_cur); register_sched_domain_sysctl(); @@ -7738,8 +7879,8 @@ static int arch_init_sched_domains(const cpumask_t *cpu_map) return err; } -static void arch_destroy_sched_domains(const cpumask_t *cpu_map, - cpumask_t *tmpmask) +static void arch_destroy_sched_domains(const struct cpumask *cpu_map, + struct cpumask *tmpmask) { free_sched_groups(cpu_map, tmpmask); } @@ -7748,17 +7889,16 @@ static void arch_destroy_sched_domains(const cpumask_t *cpu_map, * Detach sched domains from a group of cpus specified in cpu_map * These cpus will now be attached to the NULL domain */ -static void detach_destroy_domains(const cpumask_t *cpu_map) +static void detach_destroy_domains(const struct cpumask *cpu_map) { - cpumask_t tmpmask; + /* Save because hotplug lock held. */ + static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS); int i; - unregister_sched_domain_sysctl(); - - for_each_cpu_mask_nr(i, *cpu_map) + for_each_cpu(i, cpu_map) cpu_attach_domain(NULL, &def_root_domain, i); synchronize_sched(); - arch_destroy_sched_domains(cpu_map, &tmpmask); + arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask)); } /* handle null as "default" */ @@ -7783,7 +7923,7 @@ static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, * doms_new[] to the current sched domain partitioning, doms_cur[]. * It destroys each deleted domain and builds each new domain. * - * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'. + * 'doms_new' is an array of cpumask's of length 'ndoms_new'. * The masks don't intersect (don't overlap.) We should setup one * sched domain for each mask. CPUs not in any of the cpumasks will * not be load balanced. If the same cpumask appears both in the @@ -7797,28 +7937,33 @@ static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, * the single partition 'fallback_doms', it also forces the domains * to be rebuilt. * - * If doms_new == NULL it will be replaced with cpu_online_map. + * If doms_new == NULL it will be replaced with cpu_online_mask. * ndoms_new == 0 is a special case for destroying existing domains, * and it will not create the default domain. * * Call with hotplug lock held */ -void partition_sched_domains(int ndoms_new, cpumask_t *doms_new, +/* FIXME: Change to struct cpumask *doms_new[] */ +void partition_sched_domains(int ndoms_new, struct cpumask *doms_new, struct sched_domain_attr *dattr_new) { int i, j, n; + int new_topology; mutex_lock(&sched_domains_mutex); /* always unregister in case we don't destroy any domains */ unregister_sched_domain_sysctl(); + /* Let architecture update cpu core mappings. */ + new_topology = arch_update_cpu_topology(); + n = doms_new ? ndoms_new : 0; /* Destroy deleted domains */ for (i = 0; i < ndoms_cur; i++) { - for (j = 0; j < n; j++) { - if (cpus_equal(doms_cur[i], doms_new[j]) + for (j = 0; j < n && !new_topology; j++) { + if (cpumask_equal(&doms_cur[i], &doms_new[j]) && dattrs_equal(dattr_cur, i, dattr_new, j)) goto match1; } @@ -7830,15 +7975,15 @@ match1: if (doms_new == NULL) { ndoms_cur = 0; - doms_new = &fallback_doms; - cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map); - dattr_new = NULL; + doms_new = fallback_doms; + cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map); + WARN_ON_ONCE(dattr_new); } /* Build new domains */ for (i = 0; i < ndoms_new; i++) { - for (j = 0; j < ndoms_cur; j++) { - if (cpus_equal(doms_new[i], doms_cur[j]) + for (j = 0; j < ndoms_cur && !new_topology; j++) { + if (cpumask_equal(&doms_new[i], &doms_cur[j]) && dattrs_equal(dattr_new, i, dattr_cur, j)) goto match2; } @@ -7850,7 +7995,7 @@ match2: } /* Remember the new sched domains */ - if (doms_cur != &fallback_doms) + if (doms_cur != fallback_doms) kfree(doms_cur); kfree(dattr_cur); /* kfree(NULL) is safe */ doms_cur = doms_new; @@ -7863,7 +8008,7 @@ match2: } #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) -int arch_reinit_sched_domains(void) +static void arch_reinit_sched_domains(void) { get_online_cpus(); @@ -7872,25 +8017,33 @@ int arch_reinit_sched_domains(void) rebuild_sched_domains(); put_online_cpus(); - - return 0; } static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) { - int ret; + unsigned int level = 0; - if (buf[0] != '0' && buf[0] != '1') + if (sscanf(buf, "%u", &level) != 1) + return -EINVAL; + + /* + * level is always be positive so don't check for + * level < POWERSAVINGS_BALANCE_NONE which is 0 + * What happens on 0 or 1 byte write, + * need to check for count as well? + */ + + if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS) return -EINVAL; if (smt) - sched_smt_power_savings = (buf[0] == '1'); + sched_smt_power_savings = level; else - sched_mc_power_savings = (buf[0] == '1'); + sched_mc_power_savings = level; - ret = arch_reinit_sched_domains(); + arch_reinit_sched_domains(); - return ret ? ret : count; + return count; } #ifdef CONFIG_SCHED_MC @@ -7925,7 +8078,7 @@ static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_store); #endif -int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) +int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) { int err = 0; @@ -7990,7 +8143,9 @@ static int update_runtime(struct notifier_block *nfb, void __init sched_init_smp(void) { - cpumask_t non_isolated_cpus; + cpumask_var_t non_isolated_cpus; + + alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); #if defined(CONFIG_NUMA) sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), @@ -7999,10 +8154,10 @@ void __init sched_init_smp(void) #endif get_online_cpus(); mutex_lock(&sched_domains_mutex); - arch_init_sched_domains(&cpu_online_map); - cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map); - if (cpus_empty(non_isolated_cpus)) - cpu_set(smp_processor_id(), non_isolated_cpus); + arch_init_sched_domains(cpu_online_mask); + cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); + if (cpumask_empty(non_isolated_cpus)) + cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); mutex_unlock(&sched_domains_mutex); put_online_cpus(); @@ -8017,9 +8172,13 @@ void __init sched_init_smp(void) init_hrtick(); /* Move init over to a non-isolated CPU */ - if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0) + if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) BUG(); sched_init_granularity(); + free_cpumask_var(non_isolated_cpus); + + alloc_cpumask_var(&fallback_doms, GFP_KERNEL); + init_sched_rt_class(); } #else void __init sched_init_smp(void) @@ -8334,6 +8493,15 @@ void __init sched_init(void) */ current->sched_class = &fair_sched_class; + /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */ + alloc_bootmem_cpumask_var(&nohz_cpu_mask); +#ifdef CONFIG_SMP +#ifdef CONFIG_NO_HZ + alloc_bootmem_cpumask_var(&nohz.cpu_mask); +#endif + alloc_bootmem_cpumask_var(&cpu_isolated_map); +#endif /* SMP */ + scheduler_running = 1; } @@ -8492,7 +8660,7 @@ static int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) { struct cfs_rq *cfs_rq; - struct sched_entity *se, *parent_se; + struct sched_entity *se; struct rq *rq; int i; @@ -8508,18 +8676,17 @@ int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) for_each_possible_cpu(i) { rq = cpu_rq(i); - cfs_rq = kmalloc_node(sizeof(struct cfs_rq), - GFP_KERNEL|__GFP_ZERO, cpu_to_node(i)); + cfs_rq = kzalloc_node(sizeof(struct cfs_rq), + GFP_KERNEL, cpu_to_node(i)); if (!cfs_rq) goto err; - se = kmalloc_node(sizeof(struct sched_entity), - GFP_KERNEL|__GFP_ZERO, cpu_to_node(i)); + se = kzalloc_node(sizeof(struct sched_entity), + GFP_KERNEL, cpu_to_node(i)); if (!se) goto err; - parent_se = parent ? parent->se[i] : NULL; - init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se); + init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]); } return 1; @@ -8580,7 +8747,7 @@ static int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) { struct rt_rq *rt_rq; - struct sched_rt_entity *rt_se, *parent_se; + struct sched_rt_entity *rt_se; struct rq *rq; int i; @@ -8597,18 +8764,17 @@ int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) for_each_possible_cpu(i) { rq = cpu_rq(i); - rt_rq = kmalloc_node(sizeof(struct rt_rq), - GFP_KERNEL|__GFP_ZERO, cpu_to_node(i)); + rt_rq = kzalloc_node(sizeof(struct rt_rq), + GFP_KERNEL, cpu_to_node(i)); if (!rt_rq) goto err; - rt_se = kmalloc_node(sizeof(struct sched_rt_entity), - GFP_KERNEL|__GFP_ZERO, cpu_to_node(i)); + rt_se = kzalloc_node(sizeof(struct sched_rt_entity), + GFP_KERNEL, cpu_to_node(i)); if (!rt_se) goto err; - parent_se = parent ? parent->rt_se[i] : NULL; - init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se); + init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]); } return 1; @@ -8898,6 +9064,13 @@ static int tg_schedulable(struct task_group *tg, void *data) runtime = d->rt_runtime; } +#ifdef CONFIG_USER_SCHED + if (tg == &root_task_group) { + period = global_rt_period(); + runtime = global_rt_runtime(); + } +#endif + /* * Cannot have more runtime than the period. */ @@ -9051,6 +9224,16 @@ static int sched_rt_global_constraints(void) return ret; } + +int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) +{ + /* Don't accept realtime tasks when there is no way for them to run */ + if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) + return 0; + + return 1; +} + #else /* !CONFIG_RT_GROUP_SCHED */ static int sched_rt_global_constraints(void) { @@ -9144,8 +9327,7 @@ cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, struct task_struct *tsk) { #ifdef CONFIG_RT_GROUP_SCHED - /* Don't accept realtime tasks when there is no way for them to run */ - if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0) + if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk)) return -EINVAL; #else /* We don't support RT-tasks being in separate groups */ @@ -9251,11 +9433,12 @@ struct cgroup_subsys cpu_cgroup_subsys = { * (balbir@in.ibm.com). */ -/* track cpu usage of a group of tasks */ +/* track cpu usage of a group of tasks and its child groups */ struct cpuacct { struct cgroup_subsys_state css; /* cpuusage holds pointer to a u64-type object on every cpu */ u64 *cpuusage; + struct cpuacct *parent; }; struct cgroup_subsys cpuacct_subsys; @@ -9289,6 +9472,9 @@ static struct cgroup_subsys_state *cpuacct_create( return ERR_PTR(-ENOMEM); } + if (cgrp->parent) + ca->parent = cgroup_ca(cgrp->parent); + return &ca->css; } @@ -9302,6 +9488,41 @@ cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) kfree(ca); } +static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) +{ + u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu); + u64 data; + +#ifndef CONFIG_64BIT + /* + * Take rq->lock to make 64-bit read safe on 32-bit platforms. + */ + spin_lock_irq(&cpu_rq(cpu)->lock); + data = *cpuusage; + spin_unlock_irq(&cpu_rq(cpu)->lock); +#else + data = *cpuusage; +#endif + + return data; +} + +static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) +{ + u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu); + +#ifndef CONFIG_64BIT + /* + * Take rq->lock to make 64-bit write safe on 32-bit platforms. + */ + spin_lock_irq(&cpu_rq(cpu)->lock); + *cpuusage = val; + spin_unlock_irq(&cpu_rq(cpu)->lock); +#else + *cpuusage = val; +#endif +} + /* return total cpu usage (in nanoseconds) of a group */ static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) { @@ -9309,17 +9530,8 @@ static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) u64 totalcpuusage = 0; int i; - for_each_possible_cpu(i) { - u64 *cpuusage = percpu_ptr(ca->cpuusage, i); - - /* - * Take rq->lock to make 64-bit addition safe on 32-bit - * platforms. - */ - spin_lock_irq(&cpu_rq(i)->lock); - totalcpuusage += *cpuusage; - spin_unlock_irq(&cpu_rq(i)->lock); - } + for_each_present_cpu(i) + totalcpuusage += cpuacct_cpuusage_read(ca, i); return totalcpuusage; } @@ -9336,23 +9548,39 @@ static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, goto out; } - for_each_possible_cpu(i) { - u64 *cpuusage = percpu_ptr(ca->cpuusage, i); + for_each_present_cpu(i) + cpuacct_cpuusage_write(ca, i, 0); - spin_lock_irq(&cpu_rq(i)->lock); - *cpuusage = 0; - spin_unlock_irq(&cpu_rq(i)->lock); - } out: return err; } +static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft, + struct seq_file *m) +{ + struct cpuacct *ca = cgroup_ca(cgroup); + u64 percpu; + int i; + + for_each_present_cpu(i) { + percpu = cpuacct_cpuusage_read(ca, i); + seq_printf(m, "%llu ", (unsigned long long) percpu); + } + seq_printf(m, "\n"); + return 0; +} + static struct cftype files[] = { { .name = "usage", .read_u64 = cpuusage_read, .write_u64 = cpuusage_write, }, + { + .name = "usage_percpu", + .read_seq_string = cpuacct_percpu_seq_read, + }, + }; static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp) @@ -9368,14 +9596,16 @@ static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp) static void cpuacct_charge(struct task_struct *tsk, u64 cputime) { struct cpuacct *ca; + int cpu; if (!cpuacct_subsys.active) return; + cpu = task_cpu(tsk); ca = task_ca(tsk); - if (ca) { - u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk)); + for (; ca; ca = ca->parent) { + u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu); *cpuusage += cputime; } }