X-Git-Url: http://ftp.safe.ca/?a=blobdiff_plain;f=fs%2Fbio.c;h=3cba7ae34d758c860ecff09f2be059663d2de35b;hb=c055551e97e1ca00781bc41523f829e05a8afed7;hp=52de79c299424d9806dafe475b362246c14a5087;hpb=50be345560f1ffdcb15cc0e146416b80529a2ef2;p=safe%2Fjmp%2Flinux-2.6 diff --git a/fs/bio.c b/fs/bio.c index 52de79c..3cba7ae 100644 --- a/fs/bio.c +++ b/fs/bio.c @@ -1,5 +1,5 @@ /* - * Copyright (C) 2001 Jens Axboe + * Copyright (C) 2001 Jens Axboe * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as @@ -28,25 +28,10 @@ #include #include /* for struct sg_iovec */ -#define BIO_POOL_SIZE 256 +static struct kmem_cache *bio_slab __read_mostly; -static kmem_cache_t *bio_slab __read_mostly; - -#define BIOVEC_NR_POOLS 6 - -/* - * a small number of entries is fine, not going to be performance critical. - * basically we just need to survive - */ -#define BIO_SPLIT_ENTRIES 8 mempool_t *bio_split_pool __read_mostly; -struct biovec_slab { - int nr_vecs; - char *name; - kmem_cache_t *slab; -}; - /* * if you change this list, also change bvec_alloc or things will * break badly! cannot be bigger than what you can fit into an @@ -60,26 +45,19 @@ static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = { #undef BV /* - * bio_set is used to allow other portions of the IO system to - * allocate their own private memory pools for bio and iovec structures. - * These memory pools in turn all allocate from the bio_slab - * and the bvec_slabs[]. - */ -struct bio_set { - mempool_t *bio_pool; - mempool_t *bvec_pools[BIOVEC_NR_POOLS]; -}; - -/* * fs_bio_set is the bio_set containing bio and iovec memory pools used by * IO code that does not need private memory pools. */ -static struct bio_set *fs_bio_set; +struct bio_set *fs_bio_set; -static inline struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx, struct bio_set *bs) +unsigned int bvec_nr_vecs(unsigned short idx) +{ + return bvec_slabs[idx].nr_vecs; +} + +struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx, struct bio_set *bs) { struct bio_vec *bvl; - struct biovec_slab *bp; /* * see comment near bvec_array define! @@ -98,21 +76,26 @@ static inline struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned lon * idx now points to the pool we want to allocate from */ - bp = bvec_slabs + *idx; bvl = mempool_alloc(bs->bvec_pools[*idx], gfp_mask); if (bvl) - memset(bvl, 0, bp->nr_vecs * sizeof(struct bio_vec)); + memset(bvl, 0, bvec_nr_vecs(*idx) * sizeof(struct bio_vec)); return bvl; } void bio_free(struct bio *bio, struct bio_set *bio_set) { - const int pool_idx = BIO_POOL_IDX(bio); + if (bio->bi_io_vec) { + const int pool_idx = BIO_POOL_IDX(bio); - BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS); + BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS); + + mempool_free(bio->bi_io_vec, bio_set->bvec_pools[pool_idx]); + } + + if (bio_integrity(bio)) + bio_integrity_free(bio, bio_set); - mempool_free(bio->bi_io_vec, bio_set->bvec_pools[pool_idx]); mempool_free(bio, bio_set->bio_pool); } @@ -126,21 +109,9 @@ static void bio_fs_destructor(struct bio *bio) void bio_init(struct bio *bio) { - bio->bi_next = NULL; - bio->bi_bdev = NULL; + memset(bio, 0, sizeof(*bio)); bio->bi_flags = 1 << BIO_UPTODATE; - bio->bi_rw = 0; - bio->bi_vcnt = 0; - bio->bi_idx = 0; - bio->bi_phys_segments = 0; - bio->bi_hw_segments = 0; - bio->bi_hw_front_size = 0; - bio->bi_hw_back_size = 0; - bio->bi_size = 0; - bio->bi_max_vecs = 0; - bio->bi_end_io = NULL; atomic_set(&bio->bi_cnt, 1); - bio->bi_private = NULL; } /** @@ -166,7 +137,7 @@ struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs) bio_init(bio); if (likely(nr_iovecs)) { - unsigned long idx; + unsigned long uninitialized_var(idx); bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs); if (unlikely(!bvl)) { @@ -175,7 +146,7 @@ struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs) goto out; } bio->bi_flags |= idx << BIO_POOL_OFFSET; - bio->bi_max_vecs = bvec_slabs[idx].nr_vecs; + bio->bi_max_vecs = bvec_nr_vecs(idx); } bio->bi_io_vec = bvl; } @@ -229,7 +200,7 @@ void bio_put(struct bio *bio) } } -inline int bio_phys_segments(request_queue_t *q, struct bio *bio) +inline int bio_phys_segments(struct request_queue *q, struct bio *bio) { if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) blk_recount_segments(q, bio); @@ -237,7 +208,7 @@ inline int bio_phys_segments(request_queue_t *q, struct bio *bio) return bio->bi_phys_segments; } -inline int bio_hw_segments(request_queue_t *q, struct bio *bio) +inline int bio_hw_segments(struct request_queue *q, struct bio *bio) { if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) blk_recount_segments(q, bio); @@ -256,11 +227,13 @@ inline int bio_hw_segments(request_queue_t *q, struct bio *bio) */ void __bio_clone(struct bio *bio, struct bio *bio_src) { - request_queue_t *q = bdev_get_queue(bio_src->bi_bdev); - memcpy(bio->bi_io_vec, bio_src->bi_io_vec, bio_src->bi_max_vecs * sizeof(struct bio_vec)); + /* + * most users will be overriding ->bi_bdev with a new target, + * so we don't set nor calculate new physical/hw segment counts here + */ bio->bi_sector = bio_src->bi_sector; bio->bi_bdev = bio_src->bi_bdev; bio->bi_flags |= 1 << BIO_CLONED; @@ -268,8 +241,6 @@ void __bio_clone(struct bio *bio, struct bio *bio_src) bio->bi_vcnt = bio_src->bi_vcnt; bio->bi_size = bio_src->bi_size; bio->bi_idx = bio_src->bi_idx; - bio_phys_segments(q, bio); - bio_hw_segments(q, bio); } /** @@ -283,9 +254,19 @@ struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask) { struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set); - if (b) { - b->bi_destructor = bio_fs_destructor; - __bio_clone(b, bio); + if (!b) + return NULL; + + b->bi_destructor = bio_fs_destructor; + __bio_clone(b, bio); + + if (bio_integrity(bio)) { + int ret; + + ret = bio_integrity_clone(b, bio, fs_bio_set); + + if (ret < 0) + return NULL; } return b; @@ -302,7 +283,7 @@ struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask) */ int bio_get_nr_vecs(struct block_device *bdev) { - request_queue_t *q = bdev_get_queue(bdev); + struct request_queue *q = bdev_get_queue(bdev); int nr_pages; nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT; @@ -314,7 +295,7 @@ int bio_get_nr_vecs(struct block_device *bdev) return nr_pages; } -static int __bio_add_page(request_queue_t *q, struct bio *bio, struct page +static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page *page, unsigned int len, unsigned int offset, unsigned short max_sectors) { @@ -341,10 +322,19 @@ static int __bio_add_page(request_queue_t *q, struct bio *bio, struct page if (page == prev->bv_page && offset == prev->bv_offset + prev->bv_len) { prev->bv_len += len; - if (q->merge_bvec_fn && - q->merge_bvec_fn(q, bio, prev) < len) { - prev->bv_len -= len; - return 0; + + if (q->merge_bvec_fn) { + struct bvec_merge_data bvm = { + .bi_bdev = bio->bi_bdev, + .bi_sector = bio->bi_sector, + .bi_size = bio->bi_size, + .bi_rw = bio->bi_rw, + }; + + if (q->merge_bvec_fn(q, &bvm, prev) < len) { + prev->bv_len -= len; + return 0; + } } goto done; @@ -385,11 +375,18 @@ static int __bio_add_page(request_queue_t *q, struct bio *bio, struct page * queue to get further control */ if (q->merge_bvec_fn) { + struct bvec_merge_data bvm = { + .bi_bdev = bio->bi_bdev, + .bi_sector = bio->bi_sector, + .bi_size = bio->bi_size, + .bi_rw = bio->bi_rw, + }; + /* * merge_bvec_fn() returns number of bytes it can accept * at this offset */ - if (q->merge_bvec_fn(q, bio, bvec) < len) { + if (q->merge_bvec_fn(q, &bvm, bvec) < len) { bvec->bv_page = NULL; bvec->bv_len = 0; bvec->bv_offset = 0; @@ -424,7 +421,7 @@ static int __bio_add_page(request_queue_t *q, struct bio *bio, struct page * smaller than PAGE_SIZE, so it is always possible to add a single * page to an empty bio. This should only be used by REQ_PC bios. */ -int bio_add_pc_page(request_queue_t *q, struct bio *bio, struct page *page, +int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page, unsigned int len, unsigned int offset) { return __bio_add_page(q, bio, page, len, offset, q->max_hw_sectors); @@ -452,36 +449,100 @@ int bio_add_page(struct bio *bio, struct page *page, unsigned int len, struct bio_map_data { struct bio_vec *iovecs; - void __user *userptr; + int nr_sgvecs; + struct sg_iovec *sgvecs; }; -static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio) +static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio, + struct sg_iovec *iov, int iov_count) { memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt); + memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count); + bmd->nr_sgvecs = iov_count; bio->bi_private = bmd; } static void bio_free_map_data(struct bio_map_data *bmd) { kfree(bmd->iovecs); + kfree(bmd->sgvecs); kfree(bmd); } -static struct bio_map_data *bio_alloc_map_data(int nr_segs) +static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count, + gfp_t gfp_mask) { - struct bio_map_data *bmd = kmalloc(sizeof(*bmd), GFP_KERNEL); + struct bio_map_data *bmd = kmalloc(sizeof(*bmd), gfp_mask); if (!bmd) return NULL; - bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, GFP_KERNEL); - if (bmd->iovecs) + bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask); + if (!bmd->iovecs) { + kfree(bmd); + return NULL; + } + + bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask); + if (bmd->sgvecs) return bmd; + kfree(bmd->iovecs); kfree(bmd); return NULL; } +static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs, + struct sg_iovec *iov, int iov_count, int uncopy) +{ + int ret = 0, i; + struct bio_vec *bvec; + int iov_idx = 0; + unsigned int iov_off = 0; + int read = bio_data_dir(bio) == READ; + + __bio_for_each_segment(bvec, bio, i, 0) { + char *bv_addr = page_address(bvec->bv_page); + unsigned int bv_len = iovecs[i].bv_len; + + while (bv_len && iov_idx < iov_count) { + unsigned int bytes; + char *iov_addr; + + bytes = min_t(unsigned int, + iov[iov_idx].iov_len - iov_off, bv_len); + iov_addr = iov[iov_idx].iov_base + iov_off; + + if (!ret) { + if (!read && !uncopy) + ret = copy_from_user(bv_addr, iov_addr, + bytes); + if (read && uncopy) + ret = copy_to_user(iov_addr, bv_addr, + bytes); + + if (ret) + ret = -EFAULT; + } + + bv_len -= bytes; + bv_addr += bytes; + iov_addr += bytes; + iov_off += bytes; + + if (iov[iov_idx].iov_len == iov_off) { + iov_idx++; + iov_off = 0; + } + } + + if (uncopy) + __free_page(bvec->bv_page); + } + + return ret; +} + /** * bio_uncopy_user - finish previously mapped bio * @bio: bio being terminated @@ -492,55 +553,56 @@ static struct bio_map_data *bio_alloc_map_data(int nr_segs) int bio_uncopy_user(struct bio *bio) { struct bio_map_data *bmd = bio->bi_private; - const int read = bio_data_dir(bio) == READ; - struct bio_vec *bvec; - int i, ret = 0; + int ret; - __bio_for_each_segment(bvec, bio, i, 0) { - char *addr = page_address(bvec->bv_page); - unsigned int len = bmd->iovecs[i].bv_len; - - if (read && !ret && copy_to_user(bmd->userptr, addr, len)) - ret = -EFAULT; + ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs, bmd->nr_sgvecs, 1); - __free_page(bvec->bv_page); - bmd->userptr += len; - } bio_free_map_data(bmd); bio_put(bio); return ret; } /** - * bio_copy_user - copy user data to bio + * bio_copy_user_iov - copy user data to bio * @q: destination block queue - * @uaddr: start of user address - * @len: length in bytes + * @iov: the iovec. + * @iov_count: number of elements in the iovec * @write_to_vm: bool indicating writing to pages or not * * Prepares and returns a bio for indirect user io, bouncing data * to/from kernel pages as necessary. Must be paired with * call bio_uncopy_user() on io completion. */ -struct bio *bio_copy_user(request_queue_t *q, unsigned long uaddr, - unsigned int len, int write_to_vm) +struct bio *bio_copy_user_iov(struct request_queue *q, struct sg_iovec *iov, + int iov_count, int write_to_vm) { - unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; - unsigned long start = uaddr >> PAGE_SHIFT; struct bio_map_data *bmd; struct bio_vec *bvec; struct page *page; struct bio *bio; int i, ret; + int nr_pages = 0; + unsigned int len = 0; + + for (i = 0; i < iov_count; i++) { + unsigned long uaddr; + unsigned long end; + unsigned long start; + + uaddr = (unsigned long)iov[i].iov_base; + end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT; + start = uaddr >> PAGE_SHIFT; + + nr_pages += end - start; + len += iov[i].iov_len; + } - bmd = bio_alloc_map_data(end - start); + bmd = bio_alloc_map_data(nr_pages, iov_count, GFP_KERNEL); if (!bmd) return ERR_PTR(-ENOMEM); - bmd->userptr = (void __user *) uaddr; - ret = -ENOMEM; - bio = bio_alloc(GFP_KERNEL, end - start); + bio = bio_alloc(GFP_KERNEL, nr_pages); if (!bio) goto out_bmd; @@ -559,10 +621,8 @@ struct bio *bio_copy_user(request_queue_t *q, unsigned long uaddr, break; } - if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) { - ret = -EINVAL; + if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) break; - } len -= bytes; } @@ -574,22 +634,12 @@ struct bio *bio_copy_user(request_queue_t *q, unsigned long uaddr, * success */ if (!write_to_vm) { - char __user *p = (char __user *) uaddr; - - /* - * for a write, copy in data to kernel pages - */ - ret = -EFAULT; - bio_for_each_segment(bvec, bio, i) { - char *addr = page_address(bvec->bv_page); - - if (copy_from_user(addr, p, bvec->bv_len)) - goto cleanup; - p += bvec->bv_len; - } + ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0); + if (ret) + goto cleanup; } - bio_set_map_data(bmd, bio); + bio_set_map_data(bmd, bio, iov, iov_count); return bio; cleanup: bio_for_each_segment(bvec, bio, i) @@ -601,7 +651,29 @@ out_bmd: return ERR_PTR(ret); } -static struct bio *__bio_map_user_iov(request_queue_t *q, +/** + * bio_copy_user - copy user data to bio + * @q: destination block queue + * @uaddr: start of user address + * @len: length in bytes + * @write_to_vm: bool indicating writing to pages or not + * + * Prepares and returns a bio for indirect user io, bouncing data + * to/from kernel pages as necessary. Must be paired with + * call bio_uncopy_user() on io completion. + */ +struct bio *bio_copy_user(struct request_queue *q, unsigned long uaddr, + unsigned int len, int write_to_vm) +{ + struct sg_iovec iov; + + iov.iov_base = (void __user *)uaddr; + iov.iov_len = len; + + return bio_copy_user_iov(q, &iov, 1, write_to_vm); +} + +static struct bio *__bio_map_user_iov(struct request_queue *q, struct block_device *bdev, struct sg_iovec *iov, int iov_count, int write_to_vm) @@ -621,10 +693,9 @@ static struct bio *__bio_map_user_iov(request_queue_t *q, nr_pages += end - start; /* - * transfer and buffer must be aligned to at least hardsector - * size for now, in the future we can relax this restriction + * buffer must be aligned to at least hardsector size for now */ - if ((uaddr & queue_dma_alignment(q)) || (len & queue_dma_alignment(q))) + if (uaddr & queue_dma_alignment(q)) return ERR_PTR(-EINVAL); } @@ -648,12 +719,8 @@ static struct bio *__bio_map_user_iov(request_queue_t *q, const int local_nr_pages = end - start; const int page_limit = cur_page + local_nr_pages; - down_read(¤t->mm->mmap_sem); - ret = get_user_pages(current, current->mm, uaddr, - local_nr_pages, - write_to_vm, 0, &pages[cur_page], NULL); - up_read(¤t->mm->mmap_sem); - + ret = get_user_pages_fast(uaddr, local_nr_pages, + write_to_vm, &pages[cur_page]); if (ret < local_nr_pages) { ret = -EFAULT; goto out_unmap; @@ -714,7 +781,7 @@ static struct bio *__bio_map_user_iov(request_queue_t *q, /** * bio_map_user - map user address into bio - * @q: the request_queue_t for the bio + * @q: the struct request_queue for the bio * @bdev: destination block device * @uaddr: start of user address * @len: length in bytes @@ -723,7 +790,7 @@ static struct bio *__bio_map_user_iov(request_queue_t *q, * Map the user space address into a bio suitable for io to a block * device. Returns an error pointer in case of error. */ -struct bio *bio_map_user(request_queue_t *q, struct block_device *bdev, +struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev, unsigned long uaddr, unsigned int len, int write_to_vm) { struct sg_iovec iov; @@ -736,7 +803,7 @@ struct bio *bio_map_user(request_queue_t *q, struct block_device *bdev, /** * bio_map_user_iov - map user sg_iovec table into bio - * @q: the request_queue_t for the bio + * @q: the struct request_queue for the bio * @bdev: destination block device * @iov: the iovec. * @iov_count: number of elements in the iovec @@ -745,12 +812,11 @@ struct bio *bio_map_user(request_queue_t *q, struct block_device *bdev, * Map the user space address into a bio suitable for io to a block * device. Returns an error pointer in case of error. */ -struct bio *bio_map_user_iov(request_queue_t *q, struct block_device *bdev, +struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev, struct sg_iovec *iov, int iov_count, int write_to_vm) { struct bio *bio; - int len = 0, i; bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm); @@ -765,18 +831,7 @@ struct bio *bio_map_user_iov(request_queue_t *q, struct block_device *bdev, */ bio_get(bio); - for (i = 0; i < iov_count; i++) - len += iov[i].iov_len; - - if (bio->bi_size == len) - return bio; - - /* - * don't support partial mappings - */ - bio_endio(bio, bio->bi_size, 0); - bio_unmap_user(bio); - return ERR_PTR(-EINVAL); + return bio; } static void __bio_unmap_user(struct bio *bio) @@ -812,17 +867,13 @@ void bio_unmap_user(struct bio *bio) bio_put(bio); } -static int bio_map_kern_endio(struct bio *bio, unsigned int bytes_done, int err) +static void bio_map_kern_endio(struct bio *bio, int err) { - if (bio->bi_size) - return 1; - bio_put(bio); - return 0; } -static struct bio *__bio_map_kern(request_queue_t *q, void *data, +static struct bio *__bio_map_kern(struct request_queue *q, void *data, unsigned int len, gfp_t gfp_mask) { unsigned long kaddr = (unsigned long)data; @@ -861,7 +912,7 @@ static struct bio *__bio_map_kern(request_queue_t *q, void *data, /** * bio_map_kern - map kernel address into bio - * @q: the request_queue_t for the bio + * @q: the struct request_queue for the bio * @data: pointer to buffer to map * @len: length in bytes * @gfp_mask: allocation flags for bio allocation @@ -869,7 +920,7 @@ static struct bio *__bio_map_kern(request_queue_t *q, void *data, * Map the kernel address into a bio suitable for io to a block * device. Returns an error pointer in case of error. */ -struct bio *bio_map_kern(request_queue_t *q, void *data, unsigned int len, +struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, gfp_t gfp_mask) { struct bio *bio; @@ -888,6 +939,113 @@ struct bio *bio_map_kern(request_queue_t *q, void *data, unsigned int len, return ERR_PTR(-EINVAL); } +static void bio_copy_kern_endio(struct bio *bio, int err) +{ + struct bio_vec *bvec; + const int read = bio_data_dir(bio) == READ; + struct bio_map_data *bmd = bio->bi_private; + int i; + char *p = bmd->sgvecs[0].iov_base; + + __bio_for_each_segment(bvec, bio, i, 0) { + char *addr = page_address(bvec->bv_page); + int len = bmd->iovecs[i].bv_len; + + if (read && !err) + memcpy(p, addr, len); + + __free_page(bvec->bv_page); + p += len; + } + + bio_free_map_data(bmd); + bio_put(bio); +} + +/** + * bio_copy_kern - copy kernel address into bio + * @q: the struct request_queue for the bio + * @data: pointer to buffer to copy + * @len: length in bytes + * @gfp_mask: allocation flags for bio and page allocation + * @reading: data direction is READ + * + * copy the kernel address into a bio suitable for io to a block + * device. Returns an error pointer in case of error. + */ +struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, + gfp_t gfp_mask, int reading) +{ + unsigned long kaddr = (unsigned long)data; + unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; + unsigned long start = kaddr >> PAGE_SHIFT; + const int nr_pages = end - start; + struct bio *bio; + struct bio_vec *bvec; + struct bio_map_data *bmd; + int i, ret; + struct sg_iovec iov; + + iov.iov_base = data; + iov.iov_len = len; + + bmd = bio_alloc_map_data(nr_pages, 1, gfp_mask); + if (!bmd) + return ERR_PTR(-ENOMEM); + + ret = -ENOMEM; + bio = bio_alloc(gfp_mask, nr_pages); + if (!bio) + goto out_bmd; + + while (len) { + struct page *page; + unsigned int bytes = PAGE_SIZE; + + if (bytes > len) + bytes = len; + + page = alloc_page(q->bounce_gfp | gfp_mask); + if (!page) { + ret = -ENOMEM; + goto cleanup; + } + + if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) { + ret = -EINVAL; + goto cleanup; + } + + len -= bytes; + } + + if (!reading) { + void *p = data; + + bio_for_each_segment(bvec, bio, i) { + char *addr = page_address(bvec->bv_page); + + memcpy(addr, p, bvec->bv_len); + p += bvec->bv_len; + } + } + + bio->bi_private = bmd; + bio->bi_end_io = bio_copy_kern_endio; + + bio_set_map_data(bmd, bio, &iov, 1); + return bio; +cleanup: + bio_for_each_segment(bvec, bio, i) + __free_page(bvec->bv_page); + + bio_put(bio); +out_bmd: + bio_free_map_data(bmd); + + return ERR_PTR(ret); +} + /* * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions * for performing direct-IO in BIOs. @@ -954,16 +1112,16 @@ static void bio_release_pages(struct bio *bio) * run one bio_put() against the BIO. */ -static void bio_dirty_fn(void *data); +static void bio_dirty_fn(struct work_struct *work); -static DECLARE_WORK(bio_dirty_work, bio_dirty_fn, NULL); +static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); static DEFINE_SPINLOCK(bio_dirty_lock); static struct bio *bio_dirty_list; /* * This runs in process context */ -static void bio_dirty_fn(void *data) +static void bio_dirty_fn(struct work_struct *work) { unsigned long flags; struct bio *bio; @@ -1016,34 +1174,26 @@ void bio_check_pages_dirty(struct bio *bio) /** * bio_endio - end I/O on a bio * @bio: bio - * @bytes_done: number of bytes completed * @error: error, if any * * Description: - * bio_endio() will end I/O on @bytes_done number of bytes. This may be - * just a partial part of the bio, or it may be the whole bio. bio_endio() - * is the preferred way to end I/O on a bio, it takes care of decrementing - * bi_size and clearing BIO_UPTODATE on error. @error is 0 on success, and - * and one of the established -Exxxx (-EIO, for instance) error values in - * case something went wrong. Noone should call bi_end_io() directly on - * a bio unless they own it and thus know that it has an end_io function. + * bio_endio() will end I/O on the whole bio. bio_endio() is the + * preferred way to end I/O on a bio, it takes care of clearing + * BIO_UPTODATE on error. @error is 0 on success, and and one of the + * established -Exxxx (-EIO, for instance) error values in case + * something went wrong. Noone should call bi_end_io() directly on a + * bio unless they own it and thus know that it has an end_io + * function. **/ -void bio_endio(struct bio *bio, unsigned int bytes_done, int error) +void bio_endio(struct bio *bio, int error) { if (error) clear_bit(BIO_UPTODATE, &bio->bi_flags); - - if (unlikely(bytes_done > bio->bi_size)) { - printk("%s: want %u bytes done, only %u left\n", __FUNCTION__, - bytes_done, bio->bi_size); - bytes_done = bio->bi_size; - } - - bio->bi_size -= bytes_done; - bio->bi_sector += (bytes_done >> 9); + else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) + error = -EIO; if (bio->bi_end_io) - bio->bi_end_io(bio, bytes_done, error); + bio->bi_end_io(bio, error); } void bio_pair_release(struct bio_pair *bp) @@ -1051,37 +1201,29 @@ void bio_pair_release(struct bio_pair *bp) if (atomic_dec_and_test(&bp->cnt)) { struct bio *master = bp->bio1.bi_private; - bio_endio(master, master->bi_size, bp->error); + bio_endio(master, bp->error); mempool_free(bp, bp->bio2.bi_private); } } -static int bio_pair_end_1(struct bio * bi, unsigned int done, int err) +static void bio_pair_end_1(struct bio *bi, int err) { struct bio_pair *bp = container_of(bi, struct bio_pair, bio1); if (err) bp->error = err; - if (bi->bi_size) - return 1; - bio_pair_release(bp); - return 0; } -static int bio_pair_end_2(struct bio * bi, unsigned int done, int err) +static void bio_pair_end_2(struct bio *bi, int err) { struct bio_pair *bp = container_of(bi, struct bio_pair, bio2); if (err) bp->error = err; - if (bi->bi_size) - return 1; - bio_pair_release(bp); - return 0; } /* @@ -1126,6 +1268,9 @@ struct bio_pair *bio_split(struct bio *bi, mempool_t *pool, int first_sectors) bp->bio1.bi_private = bi; bp->bio2.bi_private = pool; + if (bio_integrity(bi)) + bio_integrity_split(bi, bp, first_sectors); + return bp; } @@ -1134,7 +1279,7 @@ struct bio_pair *bio_split(struct bio *bi, mempool_t *pool, int first_sectors) * create memory pools for biovec's in a bio_set. * use the global biovec slabs created for general use. */ -static int biovec_create_pools(struct bio_set *bs, int pool_entries, int scale) +static int biovec_create_pools(struct bio_set *bs, int pool_entries) { int i; @@ -1142,9 +1287,6 @@ static int biovec_create_pools(struct bio_set *bs, int pool_entries, int scale) struct biovec_slab *bp = bvec_slabs + i; mempool_t **bvp = bs->bvec_pools + i; - if (pool_entries > 1 && i >= scale) - pool_entries >>= 1; - *bvp = mempool_create_slab_pool(pool_entries, bp->slab); if (!*bvp) return -ENOMEM; @@ -1170,12 +1312,13 @@ void bioset_free(struct bio_set *bs) if (bs->bio_pool) mempool_destroy(bs->bio_pool); + bioset_integrity_free(bs); biovec_free_pools(bs); kfree(bs); } -struct bio_set *bioset_create(int bio_pool_size, int bvec_pool_size, int scale) +struct bio_set *bioset_create(int bio_pool_size, int bvec_pool_size) { struct bio_set *bs = kzalloc(sizeof(*bs), GFP_KERNEL); @@ -1186,7 +1329,10 @@ struct bio_set *bioset_create(int bio_pool_size, int bvec_pool_size, int scale) if (!bs->bio_pool) goto bad; - if (!biovec_create_pools(bs, bvec_pool_size, scale)) + if (bioset_integrity_create(bs, bio_pool_size)) + goto bad; + + if (!biovec_create_pools(bs, bvec_pool_size)) return bs; bad: @@ -1204,44 +1350,18 @@ static void __init biovec_init_slabs(void) size = bvs->nr_vecs * sizeof(struct bio_vec); bvs->slab = kmem_cache_create(bvs->name, size, 0, - SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); + SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); } } static int __init init_bio(void) { - int megabytes, bvec_pool_entries; - int scale = BIOVEC_NR_POOLS; - - bio_slab = kmem_cache_create("bio", sizeof(struct bio), 0, - SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); + bio_slab = KMEM_CACHE(bio, SLAB_HWCACHE_ALIGN|SLAB_PANIC); + bio_integrity_init_slab(); biovec_init_slabs(); - megabytes = nr_free_pages() >> (20 - PAGE_SHIFT); - - /* - * find out where to start scaling - */ - if (megabytes <= 16) - scale = 0; - else if (megabytes <= 32) - scale = 1; - else if (megabytes <= 64) - scale = 2; - else if (megabytes <= 96) - scale = 3; - else if (megabytes <= 128) - scale = 4; - - /* - * Limit number of entries reserved -- mempools are only used when - * the system is completely unable to allocate memory, so we only - * need enough to make progress. - */ - bvec_pool_entries = 1 + scale; - - fs_bio_set = bioset_create(BIO_POOL_SIZE, bvec_pool_entries, scale); + fs_bio_set = bioset_create(BIO_POOL_SIZE, 2); if (!fs_bio_set) panic("bio: can't allocate bios\n"); @@ -1270,6 +1390,7 @@ EXPORT_SYMBOL(bio_get_nr_vecs); EXPORT_SYMBOL(bio_map_user); EXPORT_SYMBOL(bio_unmap_user); EXPORT_SYMBOL(bio_map_kern); +EXPORT_SYMBOL(bio_copy_kern); EXPORT_SYMBOL(bio_pair_release); EXPORT_SYMBOL(bio_split); EXPORT_SYMBOL(bio_split_pool);