X-Git-Url: http://ftp.safe.ca/?a=blobdiff_plain;f=drivers%2Fpci%2Fsearch.c;h=ec415352d9ba5cbf0d5572adfad37618ea88d773;hb=445f798555e218a5601222ca5849e8553ddd866a;hp=05fa91a31c620b0dd9de57a59066ed6adae71062;hpb=e07d01e0aeba905aeca6e0ae612943417d396a0f;p=safe%2Fjmp%2Flinux-2.6 diff --git a/drivers/pci/search.c b/drivers/pci/search.c index 05fa91a..ec41535 100644 --- a/drivers/pci/search.c +++ b/drivers/pci/search.c @@ -13,10 +13,43 @@ #include #include "pci.h" -DEFINE_SPINLOCK(pci_bus_lock); +DECLARE_RWSEM(pci_bus_sem); +/* + * find the upstream PCIE-to-PCI bridge of a PCI device + * if the device is PCIE, return NULL + * if the device isn't connected to a PCIE bridge (that is its parent is a + * legacy PCI bridge and the bridge is directly connected to bus 0), return its + * parent + */ +struct pci_dev * +pci_find_upstream_pcie_bridge(struct pci_dev *pdev) +{ + struct pci_dev *tmp = NULL; + + if (pdev->is_pcie) + return NULL; + while (1) { + if (pci_is_root_bus(pdev->bus)) + break; + pdev = pdev->bus->self; + /* a p2p bridge */ + if (!pdev->is_pcie) { + tmp = pdev; + continue; + } + /* PCI device should connect to a PCIE bridge */ + if (pdev->pcie_type != PCI_EXP_TYPE_PCI_BRIDGE) { + /* Busted hardware? */ + WARN_ON_ONCE(1); + return NULL; + } + return pdev; + } + + return tmp; +} -static struct pci_bus * __devinit -pci_do_find_bus(struct pci_bus* bus, unsigned char busnr) +static struct pci_bus *pci_do_find_bus(struct pci_bus *bus, unsigned char busnr) { struct pci_bus* child; struct list_head *tmp; @@ -41,7 +74,7 @@ pci_do_find_bus(struct pci_bus* bus, unsigned char busnr) * in the global list of PCI buses. If the bus is found, a pointer to its * data structure is returned. If no bus is found, %NULL is returned. */ -struct pci_bus * __devinit pci_find_bus(int domain, int busnr) +struct pci_bus * pci_find_bus(int domain, int busnr) { struct pci_bus *bus = NULL; struct pci_bus *tmp_bus; @@ -61,7 +94,7 @@ struct pci_bus * __devinit pci_find_bus(int domain, int busnr) * @from: Previous PCI bus found, or %NULL for new search. * * Iterates through the list of known PCI busses. A new search is - * initiated by passing %NULL to the @from argument. Otherwise if + * initiated by passing %NULL as the @from argument. Otherwise if * @from is not %NULL, searches continue from next device on the * global list. */ @@ -72,39 +105,15 @@ pci_find_next_bus(const struct pci_bus *from) struct pci_bus *b = NULL; WARN_ON(in_interrupt()); - spin_lock(&pci_bus_lock); + down_read(&pci_bus_sem); n = from ? from->node.next : pci_root_buses.next; if (n != &pci_root_buses) b = pci_bus_b(n); - spin_unlock(&pci_bus_lock); + up_read(&pci_bus_sem); return b; } /** - * pci_find_slot - locate PCI device from a given PCI slot - * @bus: number of PCI bus on which desired PCI device resides - * @devfn: encodes number of PCI slot in which the desired PCI - * device resides and the logical device number within that slot - * in case of multi-function devices. - * - * Given a PCI bus and slot/function number, the desired PCI device - * is located in system global list of PCI devices. If the device - * is found, a pointer to its data structure is returned. If no - * device is found, %NULL is returned. - */ -struct pci_dev * -pci_find_slot(unsigned int bus, unsigned int devfn) -{ - struct pci_dev *dev = NULL; - - while ((dev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) { - if (dev->bus->number == bus && dev->devfn == devfn) - return dev; - } - return NULL; -} - -/** * pci_get_slot - locate PCI device for a given PCI slot * @bus: PCI bus on which desired PCI device resides * @devfn: encodes number of PCI slot in which the desired PCI @@ -124,7 +133,7 @@ struct pci_dev * pci_get_slot(struct pci_bus *bus, unsigned int devfn) struct pci_dev *dev; WARN_ON(in_interrupt()); - spin_lock(&pci_bus_lock); + down_read(&pci_bus_sem); list_for_each(tmp, &bus->devices) { dev = pci_dev_b(tmp); @@ -135,76 +144,81 @@ struct pci_dev * pci_get_slot(struct pci_bus *bus, unsigned int devfn) dev = NULL; out: pci_dev_get(dev); - spin_unlock(&pci_bus_lock); + up_read(&pci_bus_sem); return dev; } /** - * pci_find_subsys - begin or continue searching for a PCI device by vendor/subvendor/device/subdevice id - * @vendor: PCI vendor id to match, or %PCI_ANY_ID to match all vendor ids - * @device: PCI device id to match, or %PCI_ANY_ID to match all device ids - * @ss_vendor: PCI subsystem vendor id to match, or %PCI_ANY_ID to match all vendor ids - * @ss_device: PCI subsystem device id to match, or %PCI_ANY_ID to match all device ids - * @from: Previous PCI device found in search, or %NULL for new search. + * pci_get_bus_and_slot - locate PCI device from a given PCI bus & slot + * @bus: number of PCI bus on which desired PCI device resides + * @devfn: encodes number of PCI slot in which the desired PCI + * device resides and the logical device number within that slot + * in case of multi-function devices. * - * Iterates through the list of known PCI devices. If a PCI device is - * found with a matching @vendor, @device, @ss_vendor and @ss_device, a pointer to its - * device structure is returned. Otherwise, %NULL is returned. - * A new search is initiated by passing %NULL to the @from argument. - * Otherwise if @from is not %NULL, searches continue from next device on the global list. + * Note: the bus/slot search is limited to PCI domain (segment) 0. * - * NOTE: Do not use this function anymore, use pci_get_subsys() instead, as - * the pci device returned by this function can disappear at any moment in - * time. + * Given a PCI bus and slot/function number, the desired PCI device + * is located in system global list of PCI devices. If the device + * is found, a pointer to its data structure is returned. If no + * device is found, %NULL is returned. The returned device has its + * reference count bumped by one. */ -static struct pci_dev * pci_find_subsys(unsigned int vendor, - unsigned int device, - unsigned int ss_vendor, - unsigned int ss_device, - const struct pci_dev *from) + +struct pci_dev * pci_get_bus_and_slot(unsigned int bus, unsigned int devfn) { - struct list_head *n; - struct pci_dev *dev; + struct pci_dev *dev = NULL; - WARN_ON(in_interrupt()); - spin_lock(&pci_bus_lock); - n = from ? from->global_list.next : pci_devices.next; - - while (n && (n != &pci_devices)) { - dev = pci_dev_g(n); - if ((vendor == PCI_ANY_ID || dev->vendor == vendor) && - (device == PCI_ANY_ID || dev->device == device) && - (ss_vendor == PCI_ANY_ID || dev->subsystem_vendor == ss_vendor) && - (ss_device == PCI_ANY_ID || dev->subsystem_device == ss_device)) - goto exit; - n = n->next; + while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) { + if (pci_domain_nr(dev->bus) == 0 && + (dev->bus->number == bus && dev->devfn == devfn)) + return dev; } - dev = NULL; -exit: - spin_unlock(&pci_bus_lock); - return dev; + return NULL; } -/** - * pci_find_device - begin or continue searching for a PCI device by vendor/device id - * @vendor: PCI vendor id to match, or %PCI_ANY_ID to match all vendor ids - * @device: PCI device id to match, or %PCI_ANY_ID to match all device ids +static int match_pci_dev_by_id(struct device *dev, void *data) +{ + struct pci_dev *pdev = to_pci_dev(dev); + struct pci_device_id *id = data; + + if (pci_match_one_device(id, pdev)) + return 1; + return 0; +} + +/* + * pci_get_dev_by_id - begin or continue searching for a PCI device by id + * @id: pointer to struct pci_device_id to match for the device * @from: Previous PCI device found in search, or %NULL for new search. * - * Iterates through the list of known PCI devices. If a PCI device is - * found with a matching @vendor and @device, a pointer to its device structure is - * returned. Otherwise, %NULL is returned. - * A new search is initiated by passing %NULL to the @from argument. - * Otherwise if @from is not %NULL, searches continue from next device on the global list. - * - * NOTE: Do not use this function anymore, use pci_get_device() instead, as - * the pci device returned by this function can disappear at any moment in - * time. + * Iterates through the list of known PCI devices. If a PCI device is found + * with a matching id a pointer to its device structure is returned, and the + * reference count to the device is incremented. Otherwise, %NULL is returned. + * A new search is initiated by passing %NULL as the @from argument. Otherwise + * if @from is not %NULL, searches continue from next device on the global + * list. The reference count for @from is always decremented if it is not + * %NULL. + * + * This is an internal function for use by the other search functions in + * this file. */ -struct pci_dev * -pci_find_device(unsigned int vendor, unsigned int device, const struct pci_dev *from) +static struct pci_dev *pci_get_dev_by_id(const struct pci_device_id *id, + struct pci_dev *from) { - return pci_find_subsys(vendor, device, PCI_ANY_ID, PCI_ANY_ID, from); + struct device *dev; + struct device *dev_start = NULL; + struct pci_dev *pdev = NULL; + + WARN_ON(in_interrupt()); + if (from) + dev_start = &from->dev; + dev = bus_find_device(&pci_bus_type, dev_start, (void *)id, + match_pci_dev_by_id); + if (dev) + pdev = to_pci_dev(dev); + if (from) + pci_dev_put(from); + return pdev; } /** @@ -215,41 +229,42 @@ pci_find_device(unsigned int vendor, unsigned int device, const struct pci_dev * * @ss_device: PCI subsystem device id to match, or %PCI_ANY_ID to match all device ids * @from: Previous PCI device found in search, or %NULL for new search. * - * Iterates through the list of known PCI devices. If a PCI device is - * found with a matching @vendor, @device, @ss_vendor and @ss_device, a pointer to its + * Iterates through the list of known PCI devices. If a PCI device is found + * with a matching @vendor, @device, @ss_vendor and @ss_device, a pointer to its * device structure is returned, and the reference count to the device is * incremented. Otherwise, %NULL is returned. A new search is initiated by - * passing %NULL to the @from argument. Otherwise if @from is not %NULL, + * passing %NULL as the @from argument. Otherwise if @from is not %NULL, * searches continue from next device on the global list. * The reference count for @from is always decremented if it is not %NULL. */ -struct pci_dev * -pci_get_subsys(unsigned int vendor, unsigned int device, - unsigned int ss_vendor, unsigned int ss_device, - struct pci_dev *from) +struct pci_dev *pci_get_subsys(unsigned int vendor, unsigned int device, + unsigned int ss_vendor, unsigned int ss_device, + struct pci_dev *from) { - struct list_head *n; - struct pci_dev *dev; - - WARN_ON(in_interrupt()); - spin_lock(&pci_bus_lock); - n = from ? from->global_list.next : pci_devices.next; - - while (n && (n != &pci_devices)) { - dev = pci_dev_g(n); - if ((vendor == PCI_ANY_ID || dev->vendor == vendor) && - (device == PCI_ANY_ID || dev->device == device) && - (ss_vendor == PCI_ANY_ID || dev->subsystem_vendor == ss_vendor) && - (ss_device == PCI_ANY_ID || dev->subsystem_device == ss_device)) - goto exit; - n = n->next; - } - dev = NULL; -exit: - pci_dev_put(from); - dev = pci_dev_get(dev); - spin_unlock(&pci_bus_lock); - return dev; + struct pci_dev *pdev; + struct pci_device_id *id; + + /* + * pci_find_subsys() can be called on the ide_setup() path, + * super-early in boot. But the down_read() will enable local + * interrupts, which can cause some machines to crash. So here we + * detect and flag that situation and bail out early. + */ + if (unlikely(no_pci_devices())) + return NULL; + + id = kzalloc(sizeof(*id), GFP_KERNEL); + if (!id) + return NULL; + id->vendor = vendor; + id->device = device; + id->subvendor = ss_vendor; + id->subdevice = ss_device; + + pdev = pci_get_dev_by_id(id, from); + kfree(id); + + return pdev; } /** @@ -262,7 +277,7 @@ exit: * found with a matching @vendor and @device, the reference count to the * device is incremented and a pointer to its device structure is returned. * Otherwise, %NULL is returned. A new search is initiated by passing %NULL - * to the @from argument. Otherwise if @from is not %NULL, searches continue + * as the @from argument. Otherwise if @from is not %NULL, searches continue * from next device on the global list. The reference count for @from is * always decremented if it is not %NULL. */ @@ -272,42 +287,6 @@ pci_get_device(unsigned int vendor, unsigned int device, struct pci_dev *from) return pci_get_subsys(vendor, device, PCI_ANY_ID, PCI_ANY_ID, from); } - -/** - * pci_find_device_reverse - begin or continue searching for a PCI device by vendor/device id - * @vendor: PCI vendor id to match, or %PCI_ANY_ID to match all vendor ids - * @device: PCI device id to match, or %PCI_ANY_ID to match all device ids - * @from: Previous PCI device found in search, or %NULL for new search. - * - * Iterates through the list of known PCI devices in the reverse order of pci_find_device(). - * If a PCI device is found with a matching @vendor and @device, a pointer to - * its device structure is returned. Otherwise, %NULL is returned. - * A new search is initiated by passing %NULL to the @from argument. - * Otherwise if @from is not %NULL, searches continue from previous device on the global list. - */ -struct pci_dev * -pci_find_device_reverse(unsigned int vendor, unsigned int device, const struct pci_dev *from) -{ - struct list_head *n; - struct pci_dev *dev; - - WARN_ON(in_interrupt()); - spin_lock(&pci_bus_lock); - n = from ? from->global_list.prev : pci_devices.prev; - - while (n && (n != &pci_devices)) { - dev = pci_dev_g(n); - if ((vendor == PCI_ANY_ID || dev->vendor == vendor) && - (device == PCI_ANY_ID || dev->device == device)) - goto exit; - n = n->prev; - } - dev = NULL; -exit: - spin_unlock(&pci_bus_lock); - return dev; -} - /** * pci_get_class - begin or continue searching for a PCI device by class * @class: search for a PCI device with this class designation @@ -317,31 +296,25 @@ exit: * found with a matching @class, the reference count to the device is * incremented and a pointer to its device structure is returned. * Otherwise, %NULL is returned. - * A new search is initiated by passing %NULL to the @from argument. + * A new search is initiated by passing %NULL as the @from argument. * Otherwise if @from is not %NULL, searches continue from next device * on the global list. The reference count for @from is always decremented * if it is not %NULL. */ struct pci_dev *pci_get_class(unsigned int class, struct pci_dev *from) { - struct list_head *n; struct pci_dev *dev; + struct pci_device_id *id; - WARN_ON(in_interrupt()); - spin_lock(&pci_bus_lock); - n = from ? from->global_list.next : pci_devices.next; + id = kzalloc(sizeof(*id), GFP_KERNEL); + if (!id) + return NULL; + id->vendor = id->device = id->subvendor = id->subdevice = PCI_ANY_ID; + id->class_mask = PCI_ANY_ID; + id->class = class; - while (n && (n != &pci_devices)) { - dev = pci_dev_g(n); - if (dev->class == class) - goto exit; - n = n->next; - } - dev = NULL; -exit: - pci_dev_put(from); - dev = pci_dev_get(dev); - spin_unlock(&pci_bus_lock); + dev = pci_get_dev_by_id(id, from); + kfree(id); return dev; } @@ -358,32 +331,28 @@ exit: */ int pci_dev_present(const struct pci_device_id *ids) { - struct pci_dev *dev; - int found = 0; + struct pci_dev *found = NULL; WARN_ON(in_interrupt()); - spin_lock(&pci_bus_lock); while (ids->vendor || ids->subvendor || ids->class_mask) { - list_for_each_entry(dev, &pci_devices, global_list) { - if (pci_match_one_device(ids, dev)) { - found = 1; - goto exit; - } - } + found = pci_get_dev_by_id(ids, NULL); + if (found) + goto exit; ids++; } -exit: - spin_unlock(&pci_bus_lock); - return found; +exit: + if (found) + return 1; + return 0; } EXPORT_SYMBOL(pci_dev_present); +/* For boot time work */ EXPORT_SYMBOL(pci_find_bus); EXPORT_SYMBOL(pci_find_next_bus); -EXPORT_SYMBOL(pci_find_device); -EXPORT_SYMBOL(pci_find_device_reverse); -EXPORT_SYMBOL(pci_find_slot); +/* For everyone */ EXPORT_SYMBOL(pci_get_device); EXPORT_SYMBOL(pci_get_subsys); EXPORT_SYMBOL(pci_get_slot); +EXPORT_SYMBOL(pci_get_bus_and_slot); EXPORT_SYMBOL(pci_get_class);