X-Git-Url: http://ftp.safe.ca/?a=blobdiff_plain;f=Documentation%2Flocal_ops.txt;h=300da4bdfdbd703c4809bc4b3ec5433dfe634d1e;hb=dab4b911a5327859bb8f969249c6978c26cd4853;hp=b0aca0705d1eab9e815d40902e61803061b4de37;hpb=f1f8810cf48dd88ee70e974924f2dd76e5669dd5;p=safe%2Fjmp%2Flinux-2.6 diff --git a/Documentation/local_ops.txt b/Documentation/local_ops.txt index b0aca07..300da4b 100644 --- a/Documentation/local_ops.txt +++ b/Documentation/local_ops.txt @@ -27,16 +27,16 @@ CPU which owns the data. Therefore, care must taken to make sure that only one CPU writes to the local_t data. This is done by using per cpu data and making sure that we modify it from within a preemption safe context. It is however permitted to read local_t data from any CPU : it will then appear to be written -out of order wrt other memory writes on the owner CPU. +out of order wrt other memory writes by the owner CPU. * Implementation for a given architecture It can be done by slightly modifying the standard atomic operations : only their UP variant must be kept. It typically means removing LOCK prefix (on -i386 and x86_64) and any SMP sychronization barrier. If the architecture does +i386 and x86_64) and any SMP synchronization barrier. If the architecture does not have a different behavior between SMP and UP, including asm-generic/local.h -in your archtecture's local.h is sufficient. +in your architecture's local.h is sufficient. The local_t type is defined as an opaque signed long by embedding an atomic_long_t inside a structure. This is made so a cast from this type to a @@ -45,6 +45,29 @@ long fails. The definition looks like : typedef struct { atomic_long_t a; } local_t; +* Rules to follow when using local atomic operations + +- Variables touched by local ops must be per cpu variables. +- _Only_ the CPU owner of these variables must write to them. +- This CPU can use local ops from any context (process, irq, softirq, nmi, ...) + to update its local_t variables. +- Preemption (or interrupts) must be disabled when using local ops in + process context to make sure the process won't be migrated to a + different CPU between getting the per-cpu variable and doing the + actual local op. +- When using local ops in interrupt context, no special care must be + taken on a mainline kernel, since they will run on the local CPU with + preemption already disabled. I suggest, however, to explicitly + disable preemption anyway to make sure it will still work correctly on + -rt kernels. +- Reading the local cpu variable will provide the current copy of the + variable. +- Reads of these variables can be done from any CPU, because updates to + "long", aligned, variables are always atomic. Since no memory + synchronization is done by the writer CPU, an outdated copy of the + variable can be read when reading some _other_ cpu's variables. + + * How to use local atomic operations #include @@ -126,7 +149,7 @@ static void do_test_timer(unsigned long data) int cpu; /* Increment the counters */ - on_each_cpu(test_each, NULL, 0, 1); + on_each_cpu(test_each, NULL, 1); /* Read all the counters */ printk("Counters read from CPU %d\n", smp_processor_id()); for_each_online_cpu(cpu) {