X-Git-Url: http://ftp.safe.ca/?a=blobdiff_plain;f=Documentation%2FDocBook%2Fkernel-api.tmpl;h=44b3def961a24c85ead76a4ed713a1675dd28e58;hb=43c9c59185eec7caaff6e9dd8d4c93a4d9836a86;hp=d3290c46af51c0068148752d8b6ddab4d8bf88ca;hpb=20510f2f4e2dabb0ff6c13901807627ec9452f98;p=safe%2Fjmp%2Flinux-2.6 diff --git a/Documentation/DocBook/kernel-api.tmpl b/Documentation/DocBook/kernel-api.tmpl index d3290c4..44b3def 100644 --- a/Documentation/DocBook/kernel-api.tmpl +++ b/Documentation/DocBook/kernel-api.tmpl @@ -38,58 +38,6 @@ - - Driver Basics - Driver Entry and Exit points -!Iinclude/linux/init.h - - - Atomic and pointer manipulation -!Iinclude/asm-x86/atomic_32.h -!Iinclude/asm-x86/unaligned_32.h - - - Delaying, scheduling, and timer routines -!Iinclude/linux/sched.h -!Ekernel/sched.c -!Ekernel/timer.c - - High-resolution timers -!Iinclude/linux/ktime.h -!Iinclude/linux/hrtimer.h -!Ekernel/hrtimer.c - - Workqueues and Kevents -!Ekernel/workqueue.c - - Internal Functions -!Ikernel/exit.c -!Ikernel/signal.c -!Iinclude/linux/kthread.h -!Ekernel/kthread.c - - - Kernel objects manipulation - -!Elib/kobject.c - - - Kernel utility functions -!Iinclude/linux/kernel.h -!Ekernel/printk.c -!Ekernel/panic.c -!Ekernel/sys.c -!Ekernel/rcupdate.c - - - Device Resource Management -!Edrivers/base/devres.c - - - - Data Types Doubly Linked Lists @@ -119,7 +67,7 @@ X!Ilib/string.c !Elib/string.c Bit Operations -!Iinclude/asm-x86/bitops_32.h +!Iarch/x86/include/asm/bitops.h @@ -155,7 +103,7 @@ X!Ilib/string.c !Emm/slab.c User Space Memory Access -!Iinclude/asm-x86/uaccess_32.h +!Iarch/x86/include/asm/uaccess_32.h !Earch/x86/lib/usercopy_32.c More Memory Management Functions @@ -165,6 +113,7 @@ X!Ilib/string.c !Emm/vmalloc.c !Imm/page_alloc.c !Emm/mempool.c +!Emm/dmapool.c !Emm/page-writeback.c !Emm/truncate.c @@ -203,65 +152,6 @@ X!Ilib/string.c - - Linux Networking - Networking Base Types -!Iinclude/linux/net.h - - Socket Buffer Functions -!Iinclude/linux/skbuff.h -!Iinclude/net/sock.h -!Enet/socket.c -!Enet/core/skbuff.c -!Enet/core/sock.c -!Enet/core/datagram.c -!Enet/core/stream.c - - Socket Filter -!Enet/core/filter.c - - Generic Network Statistics -!Iinclude/linux/gen_stats.h -!Enet/core/gen_stats.c -!Enet/core/gen_estimator.c - - SUN RPC subsystem - -!Enet/sunrpc/xdr.c -!Enet/sunrpc/svcsock.c -!Enet/sunrpc/sched.c - - - - - Network device support - Driver Support -!Enet/core/dev.c -!Enet/ethernet/eth.c -!Enet/sched/sch_generic.c -!Iinclude/linux/etherdevice.h -!Iinclude/linux/netdevice.h - - PHY Support -!Edrivers/net/phy/phy.c -!Idrivers/net/phy/phy.c -!Edrivers/net/phy/phy_device.c -!Idrivers/net/phy/phy_device.c -!Edrivers/net/phy/mdio_bus.c -!Idrivers/net/phy/mdio_bus.c - - - Synchronous PPP -!Edrivers/net/wan/syncppp.c - - - Module Support Module Loading @@ -300,15 +190,20 @@ X!Ekernel/module.c !Edrivers/pci/pci.c !Edrivers/pci/pci-driver.c !Edrivers/pci/remove.c -!Edrivers/pci/pci-acpi.c !Edrivers/pci/search.c !Edrivers/pci/msi.c !Edrivers/pci/bus.c +!Edrivers/pci/access.c +!Edrivers/pci/irq.c +!Edrivers/pci/htirq.c !Edrivers/pci/probe.c +!Edrivers/pci/slot.c !Edrivers/pci/rom.c +!Edrivers/pci/iov.c +!Idrivers/pci/pci-sysfs.c PCI Hotplug Support Library !Edrivers/pci/hotplug/pci_hotplug_core.c @@ -323,7 +218,7 @@ X!Earch/x86/kernel/mca_32.c --> MCA Bus DMA -!Iinclude/asm-x86/mca_dma.h +!Iarch/x86/include/asm/mca_dma.h @@ -341,6 +236,7 @@ X!Earch/x86/kernel/mca_32.c Security Framework !Isecurity/security.c +!Esecurity/inode.c @@ -355,71 +251,21 @@ X!Earch/x86/kernel/mca_32.c !Ikernel/acct.c - - Power Management -!Ekernel/power/pm.c - - - - Device drivers infrastructure - Device Drivers Base - -!Edrivers/base/driver.c -!Edrivers/base/core.c -!Edrivers/base/class.c -!Edrivers/base/firmware_class.c -!Edrivers/base/transport_class.c -!Edrivers/base/dmapool.c - -!Edrivers/base/sys.c - -!Edrivers/base/platform.c -!Edrivers/base/bus.c - - Device Drivers Power Management -!Edrivers/base/power/main.c - - Device Drivers ACPI Support - -!Edrivers/acpi/scan.c -!Idrivers/acpi/scan.c - - - Device drivers PnP support -!Idrivers/pnp/core.c - -!Edrivers/pnp/card.c -!Idrivers/pnp/driver.c -!Edrivers/pnp/manager.c -!Edrivers/pnp/support.c - - Userspace IO devices -!Edrivers/uio/uio.c -!Iinclude/linux/uio_driver.h - - - Block Devices -!Eblock/ll_rw_blk.c +!Eblock/blk-core.c +!Iblock/blk-core.c +!Eblock/blk-map.c +!Iblock/blk-sysfs.c +!Eblock/blk-settings.c +!Eblock/blk-exec.c +!Eblock/blk-barrier.c +!Eblock/blk-tag.c +!Iblock/blk-tag.c +!Eblock/blk-integrity.c +!Ikernel/trace/blktrace.c +!Iblock/genhd.c +!Eblock/genhd.c @@ -432,298 +278,58 @@ X!Edrivers/pnp/system.c !Edrivers/char/misc.c - - Parallel Port Devices -!Iinclude/linux/parport.h -!Edrivers/parport/ieee1284.c -!Edrivers/parport/share.c -!Idrivers/parport/daisy.c - - - - Message-based devices - Fusion message devices -!Edrivers/message/fusion/mptbase.c -!Idrivers/message/fusion/mptbase.c -!Edrivers/message/fusion/mptscsih.c -!Idrivers/message/fusion/mptscsih.c -!Idrivers/message/fusion/mptctl.c -!Idrivers/message/fusion/mptspi.c -!Idrivers/message/fusion/mptfc.c -!Idrivers/message/fusion/mptlan.c - - I2O message devices -!Iinclude/linux/i2o.h -!Idrivers/message/i2o/core.h -!Edrivers/message/i2o/iop.c -!Idrivers/message/i2o/iop.c -!Idrivers/message/i2o/config-osm.c -!Edrivers/message/i2o/exec-osm.c -!Idrivers/message/i2o/exec-osm.c -!Idrivers/message/i2o/bus-osm.c -!Edrivers/message/i2o/device.c -!Idrivers/message/i2o/device.c -!Idrivers/message/i2o/driver.c -!Idrivers/message/i2o/pci.c -!Idrivers/message/i2o/i2o_block.c -!Idrivers/message/i2o/i2o_scsi.c -!Idrivers/message/i2o/i2o_proc.c - - - - - Sound Devices -!Iinclude/sound/core.h -!Esound/sound_core.c -!Iinclude/sound/pcm.h -!Esound/core/pcm.c -!Esound/core/device.c -!Esound/core/info.c -!Esound/core/rawmidi.c -!Esound/core/sound.c -!Esound/core/memory.c -!Esound/core/pcm_memory.c -!Esound/core/init.c -!Esound/core/isadma.c -!Esound/core/control.c -!Esound/core/pcm_lib.c -!Esound/core/hwdep.c -!Esound/core/pcm_native.c -!Esound/core/memalloc.c - - - - - 16x50 UART Driver -!Iinclude/linux/serial_core.h -!Edrivers/serial/serial_core.c -!Edrivers/serial/8250.c - - - - Z85230 Support Library -!Edrivers/net/wan/z85230.c - - - - Frame Buffer Library - - - The frame buffer drivers depend heavily on four data structures. - These structures are declared in include/linux/fb.h. They are - fb_info, fb_var_screeninfo, fb_fix_screeninfo and fb_monospecs. - The last three can be made available to and from userland. - + + Clock Framework - fb_info defines the current state of a particular video card. - Inside fb_info, there exists a fb_ops structure which is a - collection of needed functions to make fbdev and fbcon work. - fb_info is only visible to the kernel. + The clock framework defines programming interfaces to support + software management of the system clock tree. + This framework is widely used with System-On-Chip (SOC) platforms + to support power management and various devices which may need + custom clock rates. + Note that these "clocks" don't relate to timekeeping or real + time clocks (RTCs), each of which have separate frameworks. + These struct clk instances may be used + to manage for example a 96 MHz signal that is used to shift bits + into and out of peripherals or busses, or otherwise trigger + synchronous state machine transitions in system hardware. - fb_var_screeninfo is used to describe the features of a video card - that are user defined. With fb_var_screeninfo, things such as - depth and the resolution may be defined. + Power management is supported by explicit software clock gating: + unused clocks are disabled, so the system doesn't waste power + changing the state of transistors that aren't in active use. + On some systems this may be backed by hardware clock gating, + where clocks are gated without being disabled in software. + Sections of chips that are powered but not clocked may be able + to retain their last state. + This low power state is often called a retention + mode. + This mode still incurs leakage currents, especially with finer + circuit geometries, but for CMOS circuits power is mostly used + by clocked state changes. - The next structure is fb_fix_screeninfo. This defines the - properties of a card that are created when a mode is set and can't - be changed otherwise. A good example of this is the start of the - frame buffer memory. This "locks" the address of the frame buffer - memory, so that it cannot be changed or moved. + Power-aware drivers only enable their clocks when the device + they manage is in active use. Also, system sleep states often + differ according to which clock domains are active: while a + "standby" state may allow wakeup from several active domains, a + "mem" (suspend-to-RAM) state may require a more wholesale shutdown + of clocks derived from higher speed PLLs and oscillators, limiting + the number of possible wakeup event sources. A driver's suspend + method may need to be aware of system-specific clock constraints + on the target sleep state. - The last structure is fb_monospecs. In the old API, there was - little importance for fb_monospecs. This allowed for forbidden things - such as setting a mode of 800x600 on a fix frequency monitor. With - the new API, fb_monospecs prevents such things, and if used - correctly, can prevent a monitor from being cooked. fb_monospecs - will not be useful until kernels 2.5.x. + Some platforms support programmable clock generators. These + can be used by external chips of various kinds, such as other + CPUs, multimedia codecs, and devices with strict requirements + for interface clocking. - Frame Buffer Memory -!Edrivers/video/fbmem.c - - - Frame Buffer Colormap -!Edrivers/video/fbcmap.c - - - Frame Buffer Video Mode Database -!Idrivers/video/modedb.c -!Edrivers/video/modedb.c - - Frame Buffer Macintosh Video Mode Database -!Edrivers/video/macmodes.c - - Frame Buffer Fonts - - Refer to the file drivers/video/console/fonts.c for more information. - - - - - - - Input Subsystem -!Iinclude/linux/input.h -!Edrivers/input/input.c -!Edrivers/input/ff-core.c -!Edrivers/input/ff-memless.c - - - - Serial Peripheral Interface (SPI) - - SPI is the "Serial Peripheral Interface", widely used with - embedded systems because it is a simple and efficient - interface: basically a multiplexed shift register. - Its three signal wires hold a clock (SCK, often in the range - of 1-20 MHz), a "Master Out, Slave In" (MOSI) data line, and - a "Master In, Slave Out" (MISO) data line. - SPI is a full duplex protocol; for each bit shifted out the - MOSI line (one per clock) another is shifted in on the MISO line. - Those bits are assembled into words of various sizes on the - way to and from system memory. - An additional chipselect line is usually active-low (nCS); - four signals are normally used for each peripheral, plus - sometimes an interrupt. - - - The SPI bus facilities listed here provide a generalized - interface to declare SPI busses and devices, manage them - according to the standard Linux driver model, and perform - input/output operations. - At this time, only "master" side interfaces are supported, - where Linux talks to SPI peripherals and does not implement - such a peripheral itself. - (Interfaces to support implementing SPI slaves would - necessarily look different.) - - - The programming interface is structured around two kinds of driver, - and two kinds of device. - A "Controller Driver" abstracts the controller hardware, which may - be as simple as a set of GPIO pins or as complex as a pair of FIFOs - connected to dual DMA engines on the other side of the SPI shift - register (maximizing throughput). Such drivers bridge between - whatever bus they sit on (often the platform bus) and SPI, and - expose the SPI side of their device as a - struct spi_master. - SPI devices are children of that master, represented as a - struct spi_device and manufactured from - struct spi_board_info descriptors which - are usually provided by board-specific initialization code. - A struct spi_driver is called a - "Protocol Driver", and is bound to a spi_device using normal - driver model calls. - - - The I/O model is a set of queued messages. Protocol drivers - submit one or more struct spi_message - objects, which are processed and completed asynchronously. - (There are synchronous wrappers, however.) Messages are - built from one or more struct spi_transfer - objects, each of which wraps a full duplex SPI transfer. - A variety of protocol tweaking options are needed, because - different chips adopt very different policies for how they - use the bits transferred with SPI. - -!Iinclude/linux/spi/spi.h -!Fdrivers/spi/spi.c spi_register_board_info -!Edrivers/spi/spi.c - - - - I<superscript>2</superscript>C and SMBus Subsystem - - - I2C (or without fancy typography, "I2C") - is an acronym for the "Inter-IC" bus, a simple bus protocol which is - widely used where low data rate communications suffice. - Since it's also a licensed trademark, some vendors use another - name (such as "Two-Wire Interface", TWI) for the same bus. - I2C only needs two signals (SCL for clock, SDA for data), conserving - board real estate and minimizing signal quality issues. - Most I2C devices use seven bit addresses, and bus speeds of up - to 400 kHz; there's a high speed extension (3.4 MHz) that's not yet - found wide use. - I2C is a multi-master bus; open drain signaling is used to - arbitrate between masters, as well as to handshake and to - synchronize clocks from slower clients. - - - - The Linux I2C programming interfaces support only the master - side of bus interactions, not the slave side. - The programming interface is structured around two kinds of driver, - and two kinds of device. - An I2C "Adapter Driver" abstracts the controller hardware; it binds - to a physical device (perhaps a PCI device or platform_device) and - exposes a struct i2c_adapter representing - each I2C bus segment it manages. - On each I2C bus segment will be I2C devices represented by a - struct i2c_client. Those devices will - be bound to a struct i2c_driver, - which should follow the standard Linux driver model. - (At this writing, a legacy model is more widely used.) - There are functions to perform various I2C protocol operations; at - this writing all such functions are usable only from task context. - - - - The System Management Bus (SMBus) is a sibling protocol. Most SMBus - systems are also I2C conformant. The electrical constraints are - tighter for SMBus, and it standardizes particular protocol messages - and idioms. Controllers that support I2C can also support most - SMBus operations, but SMBus controllers don't support all the protocol - options that an I2C controller will. - There are functions to perform various SMBus protocol operations, - either using I2C primitives or by issuing SMBus commands to - i2c_adapter devices which don't support those I2C operations. - - -!Iinclude/linux/i2c.h -!Fdrivers/i2c/i2c-boardinfo.c i2c_register_board_info -!Edrivers/i2c/i2c-core.c - - - - splice API - - splice is a method for moving blocks of data around inside the - kernel, without continually transferring them between the kernel - and user space. - -!Ffs/splice.c - - - - pipes API - - Pipe interfaces are all for in-kernel (builtin image) use. - They are not exported for use by modules. - -!Iinclude/linux/pipe_fs_i.h -!Ffs/pipe.c +!Iinclude/linux/clk.h