X-Git-Url: http://ftp.safe.ca/?a=blobdiff_plain;ds=sidebyside;f=mm%2Fhugetlb.c;h=618e98304080a8bdb3ace929c8dcb8938662fad4;hb=9062712fa9ed13b531dfc2228086650b8bd6a255;hp=65616941a383a3304bbccdd50a1858b112195534;hpb=84afd99b8398c9d73af8238aa3cd835858e3097a;p=safe%2Fjmp%2Flinux-2.6 diff --git a/mm/hugetlb.c b/mm/hugetlb.c index 6561694..618e983 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c @@ -7,33 +7,42 @@ #include #include #include +#include #include #include +#include #include #include #include #include #include +#include +#include #include #include +#include #include #include "internal.h" const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; -static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages; -static unsigned long surplus_huge_pages; -static unsigned long nr_overcommit_huge_pages; -unsigned long max_huge_pages; -unsigned long sysctl_overcommit_huge_pages; -static struct list_head hugepage_freelists[MAX_NUMNODES]; -static unsigned int nr_huge_pages_node[MAX_NUMNODES]; -static unsigned int free_huge_pages_node[MAX_NUMNODES]; -static unsigned int surplus_huge_pages_node[MAX_NUMNODES]; static gfp_t htlb_alloc_mask = GFP_HIGHUSER; unsigned long hugepages_treat_as_movable; -static int hugetlb_next_nid; + +static int max_hstate; +unsigned int default_hstate_idx; +struct hstate hstates[HUGE_MAX_HSTATE]; + +__initdata LIST_HEAD(huge_boot_pages); + +/* for command line parsing */ +static struct hstate * __initdata parsed_hstate; +static unsigned long __initdata default_hstate_max_huge_pages; +static unsigned long __initdata default_hstate_size; + +#define for_each_hstate(h) \ + for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++) /* * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages @@ -201,27 +210,45 @@ static long region_count(struct list_head *head, long f, long t) /* * Convert the address within this vma to the page offset within - * the mapping, in base page units. + * the mapping, in pagecache page units; huge pages here. */ -static pgoff_t vma_page_offset(struct vm_area_struct *vma, - unsigned long address) +static pgoff_t vma_hugecache_offset(struct hstate *h, + struct vm_area_struct *vma, unsigned long address) { - return ((address - vma->vm_start) >> PAGE_SHIFT) + - (vma->vm_pgoff >> PAGE_SHIFT); + return ((address - vma->vm_start) >> huge_page_shift(h)) + + (vma->vm_pgoff >> huge_page_order(h)); } /* - * Convert the address within this vma to the page offset within - * the mapping, in pagecache page units; huge pages here. + * Return the size of the pages allocated when backing a VMA. In the majority + * cases this will be same size as used by the page table entries. */ -static pgoff_t vma_pagecache_offset(struct vm_area_struct *vma, - unsigned long address) +unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) { - return ((address - vma->vm_start) >> HPAGE_SHIFT) + - (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT)); + struct hstate *hstate; + + if (!is_vm_hugetlb_page(vma)) + return PAGE_SIZE; + + hstate = hstate_vma(vma); + + return 1UL << (hstate->order + PAGE_SHIFT); } /* + * Return the page size being used by the MMU to back a VMA. In the majority + * of cases, the page size used by the kernel matches the MMU size. On + * architectures where it differs, an architecture-specific version of this + * function is required. + */ +#ifndef vma_mmu_pagesize +unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) +{ + return vma_kernel_pagesize(vma); +} +#endif + +/* * Flags for MAP_PRIVATE reservations. These are stored in the bottom * bits of the reservation map pointer, which are always clear due to * alignment. @@ -265,7 +292,7 @@ struct resv_map { struct list_head regions; }; -struct resv_map *resv_map_alloc(void) +static struct resv_map *resv_map_alloc(void) { struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); if (!resv_map) @@ -277,7 +304,7 @@ struct resv_map *resv_map_alloc(void) return resv_map; } -void resv_map_release(struct kref *ref) +static void resv_map_release(struct kref *ref) { struct resv_map *resv_map = container_of(ref, struct resv_map, refs); @@ -292,7 +319,7 @@ static struct resv_map *vma_resv_map(struct vm_area_struct *vma) if (!(vma->vm_flags & VM_SHARED)) return (struct resv_map *)(get_vma_private_data(vma) & ~HPAGE_RESV_MASK); - return 0; + return NULL; } static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) @@ -320,20 +347,21 @@ static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) } /* Decrement the reserved pages in the hugepage pool by one */ -static void decrement_hugepage_resv_vma(struct vm_area_struct *vma) +static void decrement_hugepage_resv_vma(struct hstate *h, + struct vm_area_struct *vma) { if (vma->vm_flags & VM_NORESERVE) return; if (vma->vm_flags & VM_SHARED) { /* Shared mappings always use reserves */ - resv_huge_pages--; + h->resv_huge_pages--; } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { /* * Only the process that called mmap() has reserves for * private mappings. */ - resv_huge_pages--; + h->resv_huge_pages--; } } @@ -346,65 +374,107 @@ void reset_vma_resv_huge_pages(struct vm_area_struct *vma) } /* Returns true if the VMA has associated reserve pages */ -static int vma_has_private_reserves(struct vm_area_struct *vma) +static int vma_has_reserves(struct vm_area_struct *vma) { if (vma->vm_flags & VM_SHARED) - return 0; - if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) - return 0; - return 1; + return 1; + if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) + return 1; + return 0; } -static void clear_huge_page(struct page *page, unsigned long addr) +static void clear_gigantic_page(struct page *page, + unsigned long addr, unsigned long sz) +{ + int i; + struct page *p = page; + + might_sleep(); + for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) { + cond_resched(); + clear_user_highpage(p, addr + i * PAGE_SIZE); + } +} +static void clear_huge_page(struct page *page, + unsigned long addr, unsigned long sz) { int i; + if (unlikely(sz > MAX_ORDER_NR_PAGES)) { + clear_gigantic_page(page, addr, sz); + return; + } + might_sleep(); - for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) { + for (i = 0; i < sz/PAGE_SIZE; i++) { cond_resched(); clear_user_highpage(page + i, addr + i * PAGE_SIZE); } } +static void copy_gigantic_page(struct page *dst, struct page *src, + unsigned long addr, struct vm_area_struct *vma) +{ + int i; + struct hstate *h = hstate_vma(vma); + struct page *dst_base = dst; + struct page *src_base = src; + might_sleep(); + for (i = 0; i < pages_per_huge_page(h); ) { + cond_resched(); + copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); + + i++; + dst = mem_map_next(dst, dst_base, i); + src = mem_map_next(src, src_base, i); + } +} static void copy_huge_page(struct page *dst, struct page *src, unsigned long addr, struct vm_area_struct *vma) { int i; + struct hstate *h = hstate_vma(vma); + + if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) { + copy_gigantic_page(dst, src, addr, vma); + return; + } might_sleep(); - for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) { + for (i = 0; i < pages_per_huge_page(h); i++) { cond_resched(); copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); } } -static void enqueue_huge_page(struct page *page) +static void enqueue_huge_page(struct hstate *h, struct page *page) { int nid = page_to_nid(page); - list_add(&page->lru, &hugepage_freelists[nid]); - free_huge_pages++; - free_huge_pages_node[nid]++; + list_add(&page->lru, &h->hugepage_freelists[nid]); + h->free_huge_pages++; + h->free_huge_pages_node[nid]++; } -static struct page *dequeue_huge_page(void) +static struct page *dequeue_huge_page(struct hstate *h) { int nid; struct page *page = NULL; for (nid = 0; nid < MAX_NUMNODES; ++nid) { - if (!list_empty(&hugepage_freelists[nid])) { - page = list_entry(hugepage_freelists[nid].next, + if (!list_empty(&h->hugepage_freelists[nid])) { + page = list_entry(h->hugepage_freelists[nid].next, struct page, lru); list_del(&page->lru); - free_huge_pages--; - free_huge_pages_node[nid]--; + h->free_huge_pages--; + h->free_huge_pages_node[nid]--; break; } } return page; } -static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma, +static struct page *dequeue_huge_page_vma(struct hstate *h, + struct vm_area_struct *vma, unsigned long address, int avoid_reserve) { int nid; @@ -421,27 +491,27 @@ static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma, * have no page reserves. This check ensures that reservations are * not "stolen". The child may still get SIGKILLed */ - if (!vma_has_private_reserves(vma) && - free_huge_pages - resv_huge_pages == 0) + if (!vma_has_reserves(vma) && + h->free_huge_pages - h->resv_huge_pages == 0) return NULL; /* If reserves cannot be used, ensure enough pages are in the pool */ - if (avoid_reserve && free_huge_pages - resv_huge_pages == 0) + if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) return NULL; for_each_zone_zonelist_nodemask(zone, z, zonelist, MAX_NR_ZONES - 1, nodemask) { nid = zone_to_nid(zone); if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) && - !list_empty(&hugepage_freelists[nid])) { - page = list_entry(hugepage_freelists[nid].next, + !list_empty(&h->hugepage_freelists[nid])) { + page = list_entry(h->hugepage_freelists[nid].next, struct page, lru); list_del(&page->lru); - free_huge_pages--; - free_huge_pages_node[nid]--; + h->free_huge_pages--; + h->free_huge_pages_node[nid]--; if (!avoid_reserve) - decrement_hugepage_resv_vma(vma); + decrement_hugepage_resv_vma(h, vma); break; } @@ -450,12 +520,15 @@ static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma, return page; } -static void update_and_free_page(struct page *page) +static void update_and_free_page(struct hstate *h, struct page *page) { int i; - nr_huge_pages--; - nr_huge_pages_node[page_to_nid(page)]--; - for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) { + + VM_BUG_ON(h->order >= MAX_ORDER); + + h->nr_huge_pages--; + h->nr_huge_pages_node[page_to_nid(page)]--; + for (i = 0; i < pages_per_huge_page(h); i++) { page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved | 1 << PG_private | 1<< PG_writeback); @@ -463,11 +536,27 @@ static void update_and_free_page(struct page *page) set_compound_page_dtor(page, NULL); set_page_refcounted(page); arch_release_hugepage(page); - __free_pages(page, HUGETLB_PAGE_ORDER); + __free_pages(page, huge_page_order(h)); +} + +struct hstate *size_to_hstate(unsigned long size) +{ + struct hstate *h; + + for_each_hstate(h) { + if (huge_page_size(h) == size) + return h; + } + return NULL; } static void free_huge_page(struct page *page) { + /* + * Can't pass hstate in here because it is called from the + * compound page destructor. + */ + struct hstate *h = page_hstate(page); int nid = page_to_nid(page); struct address_space *mapping; @@ -477,12 +566,12 @@ static void free_huge_page(struct page *page) INIT_LIST_HEAD(&page->lru); spin_lock(&hugetlb_lock); - if (surplus_huge_pages_node[nid]) { - update_and_free_page(page); - surplus_huge_pages--; - surplus_huge_pages_node[nid]--; + if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) { + update_and_free_page(h, page); + h->surplus_huge_pages--; + h->surplus_huge_pages_node[nid]--; } else { - enqueue_huge_page(page); + enqueue_huge_page(h, page); } spin_unlock(&hugetlb_lock); if (mapping) @@ -494,7 +583,7 @@ static void free_huge_page(struct page *page) * balanced by operating on them in a round-robin fashion. * Returns 1 if an adjustment was made. */ -static int adjust_pool_surplus(int delta) +static int adjust_pool_surplus(struct hstate *h, int delta) { static int prev_nid; int nid = prev_nid; @@ -507,15 +596,15 @@ static int adjust_pool_surplus(int delta) nid = first_node(node_online_map); /* To shrink on this node, there must be a surplus page */ - if (delta < 0 && !surplus_huge_pages_node[nid]) + if (delta < 0 && !h->surplus_huge_pages_node[nid]) continue; /* Surplus cannot exceed the total number of pages */ - if (delta > 0 && surplus_huge_pages_node[nid] >= - nr_huge_pages_node[nid]) + if (delta > 0 && h->surplus_huge_pages_node[nid] >= + h->nr_huge_pages_node[nid]) continue; - surplus_huge_pages += delta; - surplus_huge_pages_node[nid] += delta; + h->surplus_huge_pages += delta; + h->surplus_huge_pages_node[nid] += delta; ret = 1; break; } while (nid != prev_nid); @@ -524,59 +613,74 @@ static int adjust_pool_surplus(int delta) return ret; } -static struct page *alloc_fresh_huge_page_node(int nid) +static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) +{ + set_compound_page_dtor(page, free_huge_page); + spin_lock(&hugetlb_lock); + h->nr_huge_pages++; + h->nr_huge_pages_node[nid]++; + spin_unlock(&hugetlb_lock); + put_page(page); /* free it into the hugepage allocator */ +} + +static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) { struct page *page; + if (h->order >= MAX_ORDER) + return NULL; + page = alloc_pages_node(nid, htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| __GFP_REPEAT|__GFP_NOWARN, - HUGETLB_PAGE_ORDER); + huge_page_order(h)); if (page) { if (arch_prepare_hugepage(page)) { - __free_pages(page, HUGETLB_PAGE_ORDER); + __free_pages(page, huge_page_order(h)); return NULL; } - set_compound_page_dtor(page, free_huge_page); - spin_lock(&hugetlb_lock); - nr_huge_pages++; - nr_huge_pages_node[nid]++; - spin_unlock(&hugetlb_lock); - put_page(page); /* free it into the hugepage allocator */ + prep_new_huge_page(h, page, nid); } return page; } -static int alloc_fresh_huge_page(void) +/* + * Use a helper variable to find the next node and then + * copy it back to hugetlb_next_nid afterwards: + * otherwise there's a window in which a racer might + * pass invalid nid MAX_NUMNODES to alloc_pages_node. + * But we don't need to use a spin_lock here: it really + * doesn't matter if occasionally a racer chooses the + * same nid as we do. Move nid forward in the mask even + * if we just successfully allocated a hugepage so that + * the next caller gets hugepages on the next node. + */ +static int hstate_next_node(struct hstate *h) +{ + int next_nid; + next_nid = next_node(h->hugetlb_next_nid, node_online_map); + if (next_nid == MAX_NUMNODES) + next_nid = first_node(node_online_map); + h->hugetlb_next_nid = next_nid; + return next_nid; +} + +static int alloc_fresh_huge_page(struct hstate *h) { struct page *page; int start_nid; int next_nid; int ret = 0; - start_nid = hugetlb_next_nid; + start_nid = h->hugetlb_next_nid; do { - page = alloc_fresh_huge_page_node(hugetlb_next_nid); + page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid); if (page) ret = 1; - /* - * Use a helper variable to find the next node and then - * copy it back to hugetlb_next_nid afterwards: - * otherwise there's a window in which a racer might - * pass invalid nid MAX_NUMNODES to alloc_pages_node. - * But we don't need to use a spin_lock here: it really - * doesn't matter if occasionally a racer chooses the - * same nid as we do. Move nid forward in the mask even - * if we just successfully allocated a hugepage so that - * the next caller gets hugepages on the next node. - */ - next_nid = next_node(hugetlb_next_nid, node_online_map); - if (next_nid == MAX_NUMNODES) - next_nid = first_node(node_online_map); - hugetlb_next_nid = next_nid; - } while (!page && hugetlb_next_nid != start_nid); + next_nid = hstate_next_node(h); + } while (!page && h->hugetlb_next_nid != start_nid); if (ret) count_vm_event(HTLB_BUDDY_PGALLOC); @@ -586,12 +690,15 @@ static int alloc_fresh_huge_page(void) return ret; } -static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma, - unsigned long address) +static struct page *alloc_buddy_huge_page(struct hstate *h, + struct vm_area_struct *vma, unsigned long address) { struct page *page; unsigned int nid; + if (h->order >= MAX_ORDER) + return NULL; + /* * Assume we will successfully allocate the surplus page to * prevent racing processes from causing the surplus to exceed @@ -616,18 +723,23 @@ static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma, * per-node value is checked there. */ spin_lock(&hugetlb_lock); - if (surplus_huge_pages >= nr_overcommit_huge_pages) { + if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { spin_unlock(&hugetlb_lock); return NULL; } else { - nr_huge_pages++; - surplus_huge_pages++; + h->nr_huge_pages++; + h->surplus_huge_pages++; } spin_unlock(&hugetlb_lock); page = alloc_pages(htlb_alloc_mask|__GFP_COMP| __GFP_REPEAT|__GFP_NOWARN, - HUGETLB_PAGE_ORDER); + huge_page_order(h)); + + if (page && arch_prepare_hugepage(page)) { + __free_pages(page, huge_page_order(h)); + return NULL; + } spin_lock(&hugetlb_lock); if (page) { @@ -642,12 +754,12 @@ static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma, /* * We incremented the global counters already */ - nr_huge_pages_node[nid]++; - surplus_huge_pages_node[nid]++; + h->nr_huge_pages_node[nid]++; + h->surplus_huge_pages_node[nid]++; __count_vm_event(HTLB_BUDDY_PGALLOC); } else { - nr_huge_pages--; - surplus_huge_pages--; + h->nr_huge_pages--; + h->surplus_huge_pages--; __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); } spin_unlock(&hugetlb_lock); @@ -659,16 +771,16 @@ static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma, * Increase the hugetlb pool such that it can accomodate a reservation * of size 'delta'. */ -static int gather_surplus_pages(int delta) +static int gather_surplus_pages(struct hstate *h, int delta) { struct list_head surplus_list; struct page *page, *tmp; int ret, i; int needed, allocated; - needed = (resv_huge_pages + delta) - free_huge_pages; + needed = (h->resv_huge_pages + delta) - h->free_huge_pages; if (needed <= 0) { - resv_huge_pages += delta; + h->resv_huge_pages += delta; return 0; } @@ -679,7 +791,7 @@ static int gather_surplus_pages(int delta) retry: spin_unlock(&hugetlb_lock); for (i = 0; i < needed; i++) { - page = alloc_buddy_huge_page(NULL, 0); + page = alloc_buddy_huge_page(h, NULL, 0); if (!page) { /* * We were not able to allocate enough pages to @@ -700,7 +812,8 @@ retry: * because either resv_huge_pages or free_huge_pages may have changed. */ spin_lock(&hugetlb_lock); - needed = (resv_huge_pages + delta) - (free_huge_pages + allocated); + needed = (h->resv_huge_pages + delta) - + (h->free_huge_pages + allocated); if (needed > 0) goto retry; @@ -713,7 +826,7 @@ retry: * before they are reserved. */ needed += allocated; - resv_huge_pages += delta; + h->resv_huge_pages += delta; ret = 0; free: /* Free the needed pages to the hugetlb pool */ @@ -721,7 +834,7 @@ free: if ((--needed) < 0) break; list_del(&page->lru); - enqueue_huge_page(page); + enqueue_huge_page(h, page); } /* Free unnecessary surplus pages to the buddy allocator */ @@ -749,7 +862,8 @@ free: * allocated to satisfy the reservation must be explicitly freed if they were * never used. */ -static void return_unused_surplus_pages(unsigned long unused_resv_pages) +static void return_unused_surplus_pages(struct hstate *h, + unsigned long unused_resv_pages) { static int nid = -1; struct page *page; @@ -764,27 +878,31 @@ static void return_unused_surplus_pages(unsigned long unused_resv_pages) unsigned long remaining_iterations = num_online_nodes(); /* Uncommit the reservation */ - resv_huge_pages -= unused_resv_pages; + h->resv_huge_pages -= unused_resv_pages; + + /* Cannot return gigantic pages currently */ + if (h->order >= MAX_ORDER) + return; - nr_pages = min(unused_resv_pages, surplus_huge_pages); + nr_pages = min(unused_resv_pages, h->surplus_huge_pages); while (remaining_iterations-- && nr_pages) { nid = next_node(nid, node_online_map); if (nid == MAX_NUMNODES) nid = first_node(node_online_map); - if (!surplus_huge_pages_node[nid]) + if (!h->surplus_huge_pages_node[nid]) continue; - if (!list_empty(&hugepage_freelists[nid])) { - page = list_entry(hugepage_freelists[nid].next, + if (!list_empty(&h->hugepage_freelists[nid])) { + page = list_entry(h->hugepage_freelists[nid].next, struct page, lru); list_del(&page->lru); - update_and_free_page(page); - free_huge_pages--; - free_huge_pages_node[nid]--; - surplus_huge_pages--; - surplus_huge_pages_node[nid]--; + update_and_free_page(h, page); + h->free_huge_pages--; + h->free_huge_pages_node[nid]--; + h->surplus_huge_pages--; + h->surplus_huge_pages_node[nid]--; nr_pages--; remaining_iterations = num_online_nodes(); } @@ -800,13 +918,14 @@ static void return_unused_surplus_pages(unsigned long unused_resv_pages) * an instantiated the change should be committed via vma_commit_reservation. * No action is required on failure. */ -static int vma_needs_reservation(struct vm_area_struct *vma, unsigned long addr) +static int vma_needs_reservation(struct hstate *h, + struct vm_area_struct *vma, unsigned long addr) { struct address_space *mapping = vma->vm_file->f_mapping; struct inode *inode = mapping->host; if (vma->vm_flags & VM_SHARED) { - pgoff_t idx = vma_pagecache_offset(vma, addr); + pgoff_t idx = vma_hugecache_offset(h, vma, addr); return region_chg(&inode->i_mapping->private_list, idx, idx + 1); @@ -815,7 +934,7 @@ static int vma_needs_reservation(struct vm_area_struct *vma, unsigned long addr) } else { int err; - pgoff_t idx = vma_pagecache_offset(vma, addr); + pgoff_t idx = vma_hugecache_offset(h, vma, addr); struct resv_map *reservations = vma_resv_map(vma); err = region_chg(&reservations->regions, idx, idx + 1); @@ -824,18 +943,18 @@ static int vma_needs_reservation(struct vm_area_struct *vma, unsigned long addr) return 0; } } -static void vma_commit_reservation(struct vm_area_struct *vma, - unsigned long addr) +static void vma_commit_reservation(struct hstate *h, + struct vm_area_struct *vma, unsigned long addr) { struct address_space *mapping = vma->vm_file->f_mapping; struct inode *inode = mapping->host; if (vma->vm_flags & VM_SHARED) { - pgoff_t idx = vma_pagecache_offset(vma, addr); + pgoff_t idx = vma_hugecache_offset(h, vma, addr); region_add(&inode->i_mapping->private_list, idx, idx + 1); } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { - pgoff_t idx = vma_pagecache_offset(vma, addr); + pgoff_t idx = vma_hugecache_offset(h, vma, addr); struct resv_map *reservations = vma_resv_map(vma); /* Mark this page used in the map. */ @@ -846,6 +965,7 @@ static void vma_commit_reservation(struct vm_area_struct *vma, static struct page *alloc_huge_page(struct vm_area_struct *vma, unsigned long addr, int avoid_reserve) { + struct hstate *h = hstate_vma(vma); struct page *page; struct address_space *mapping = vma->vm_file->f_mapping; struct inode *inode = mapping->host; @@ -858,7 +978,7 @@ static struct page *alloc_huge_page(struct vm_area_struct *vma, * MAP_NORESERVE mappings may also need pages and quota allocated * if no reserve mapping overlaps. */ - chg = vma_needs_reservation(vma, addr); + chg = vma_needs_reservation(h, vma, addr); if (chg < 0) return ERR_PTR(chg); if (chg) @@ -866,11 +986,11 @@ static struct page *alloc_huge_page(struct vm_area_struct *vma, return ERR_PTR(-ENOSPC); spin_lock(&hugetlb_lock); - page = dequeue_huge_page_vma(vma, addr, avoid_reserve); + page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve); spin_unlock(&hugetlb_lock); if (!page) { - page = alloc_buddy_huge_page(vma, addr); + page = alloc_buddy_huge_page(h, vma, addr); if (!page) { hugetlb_put_quota(inode->i_mapping, chg); return ERR_PTR(-VM_FAULT_OOM); @@ -880,83 +1000,154 @@ static struct page *alloc_huge_page(struct vm_area_struct *vma, set_page_refcounted(page); set_page_private(page, (unsigned long) mapping); - vma_commit_reservation(vma, addr); + vma_commit_reservation(h, vma, addr); return page; } -static int __init hugetlb_init(void) +int __weak alloc_bootmem_huge_page(struct hstate *h) { - unsigned long i; + struct huge_bootmem_page *m; + int nr_nodes = nodes_weight(node_online_map); - if (HPAGE_SHIFT == 0) - return 0; + while (nr_nodes) { + void *addr; - for (i = 0; i < MAX_NUMNODES; ++i) - INIT_LIST_HEAD(&hugepage_freelists[i]); + addr = __alloc_bootmem_node_nopanic( + NODE_DATA(h->hugetlb_next_nid), + huge_page_size(h), huge_page_size(h), 0); - hugetlb_next_nid = first_node(node_online_map); - - for (i = 0; i < max_huge_pages; ++i) { - if (!alloc_fresh_huge_page()) - break; + if (addr) { + /* + * Use the beginning of the huge page to store the + * huge_bootmem_page struct (until gather_bootmem + * puts them into the mem_map). + */ + m = addr; + goto found; + } + hstate_next_node(h); + nr_nodes--; } - max_huge_pages = free_huge_pages = nr_huge_pages = i; - printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages); return 0; + +found: + BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1)); + /* Put them into a private list first because mem_map is not up yet */ + list_add(&m->list, &huge_boot_pages); + m->hstate = h; + return 1; } -module_init(hugetlb_init); -static int __init hugetlb_setup(char *s) +static void prep_compound_huge_page(struct page *page, int order) { - if (sscanf(s, "%lu", &max_huge_pages) <= 0) - max_huge_pages = 0; - return 1; + if (unlikely(order > (MAX_ORDER - 1))) + prep_compound_gigantic_page(page, order); + else + prep_compound_page(page, order); } -__setup("hugepages=", hugetlb_setup); -static unsigned int cpuset_mems_nr(unsigned int *array) +/* Put bootmem huge pages into the standard lists after mem_map is up */ +static void __init gather_bootmem_prealloc(void) { - int node; - unsigned int nr = 0; + struct huge_bootmem_page *m; + + list_for_each_entry(m, &huge_boot_pages, list) { + struct page *page = virt_to_page(m); + struct hstate *h = m->hstate; + __ClearPageReserved(page); + WARN_ON(page_count(page) != 1); + prep_compound_huge_page(page, h->order); + prep_new_huge_page(h, page, page_to_nid(page)); + } +} - for_each_node_mask(node, cpuset_current_mems_allowed) - nr += array[node]; +static void __init hugetlb_hstate_alloc_pages(struct hstate *h) +{ + unsigned long i; - return nr; + for (i = 0; i < h->max_huge_pages; ++i) { + if (h->order >= MAX_ORDER) { + if (!alloc_bootmem_huge_page(h)) + break; + } else if (!alloc_fresh_huge_page(h)) + break; + } + h->max_huge_pages = i; +} + +static void __init hugetlb_init_hstates(void) +{ + struct hstate *h; + + for_each_hstate(h) { + /* oversize hugepages were init'ed in early boot */ + if (h->order < MAX_ORDER) + hugetlb_hstate_alloc_pages(h); + } +} + +static char * __init memfmt(char *buf, unsigned long n) +{ + if (n >= (1UL << 30)) + sprintf(buf, "%lu GB", n >> 30); + else if (n >= (1UL << 20)) + sprintf(buf, "%lu MB", n >> 20); + else + sprintf(buf, "%lu KB", n >> 10); + return buf; +} + +static void __init report_hugepages(void) +{ + struct hstate *h; + + for_each_hstate(h) { + char buf[32]; + printk(KERN_INFO "HugeTLB registered %s page size, " + "pre-allocated %ld pages\n", + memfmt(buf, huge_page_size(h)), + h->free_huge_pages); + } } -#ifdef CONFIG_SYSCTL #ifdef CONFIG_HIGHMEM -static void try_to_free_low(unsigned long count) +static void try_to_free_low(struct hstate *h, unsigned long count) { int i; + if (h->order >= MAX_ORDER) + return; + for (i = 0; i < MAX_NUMNODES; ++i) { struct page *page, *next; - list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) { - if (count >= nr_huge_pages) + struct list_head *freel = &h->hugepage_freelists[i]; + list_for_each_entry_safe(page, next, freel, lru) { + if (count >= h->nr_huge_pages) return; if (PageHighMem(page)) continue; list_del(&page->lru); - update_and_free_page(page); - free_huge_pages--; - free_huge_pages_node[page_to_nid(page)]--; + update_and_free_page(h, page); + h->free_huge_pages--; + h->free_huge_pages_node[page_to_nid(page)]--; } } } #else -static inline void try_to_free_low(unsigned long count) +static inline void try_to_free_low(struct hstate *h, unsigned long count) { } #endif -#define persistent_huge_pages (nr_huge_pages - surplus_huge_pages) -static unsigned long set_max_huge_pages(unsigned long count) +#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) +static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count) { unsigned long min_count, ret; + if (h->order >= MAX_ORDER) + return h->max_huge_pages; + /* * Increase the pool size * First take pages out of surplus state. Then make up the @@ -969,19 +1160,19 @@ static unsigned long set_max_huge_pages(unsigned long count) * within all the constraints specified by the sysctls. */ spin_lock(&hugetlb_lock); - while (surplus_huge_pages && count > persistent_huge_pages) { - if (!adjust_pool_surplus(-1)) + while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { + if (!adjust_pool_surplus(h, -1)) break; } - while (count > persistent_huge_pages) { + while (count > persistent_huge_pages(h)) { /* * If this allocation races such that we no longer need the * page, free_huge_page will handle it by freeing the page * and reducing the surplus. */ spin_unlock(&hugetlb_lock); - ret = alloc_fresh_huge_page(); + ret = alloc_fresh_huge_page(h); spin_lock(&hugetlb_lock); if (!ret) goto out; @@ -1003,31 +1194,305 @@ static unsigned long set_max_huge_pages(unsigned long count) * and won't grow the pool anywhere else. Not until one of the * sysctls are changed, or the surplus pages go out of use. */ - min_count = resv_huge_pages + nr_huge_pages - free_huge_pages; + min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; min_count = max(count, min_count); - try_to_free_low(min_count); - while (min_count < persistent_huge_pages) { - struct page *page = dequeue_huge_page(); + try_to_free_low(h, min_count); + while (min_count < persistent_huge_pages(h)) { + struct page *page = dequeue_huge_page(h); if (!page) break; - update_and_free_page(page); + update_and_free_page(h, page); } - while (count < persistent_huge_pages) { - if (!adjust_pool_surplus(1)) + while (count < persistent_huge_pages(h)) { + if (!adjust_pool_surplus(h, 1)) break; } out: - ret = persistent_huge_pages; + ret = persistent_huge_pages(h); spin_unlock(&hugetlb_lock); return ret; } +#define HSTATE_ATTR_RO(_name) \ + static struct kobj_attribute _name##_attr = __ATTR_RO(_name) + +#define HSTATE_ATTR(_name) \ + static struct kobj_attribute _name##_attr = \ + __ATTR(_name, 0644, _name##_show, _name##_store) + +static struct kobject *hugepages_kobj; +static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; + +static struct hstate *kobj_to_hstate(struct kobject *kobj) +{ + int i; + for (i = 0; i < HUGE_MAX_HSTATE; i++) + if (hstate_kobjs[i] == kobj) + return &hstates[i]; + BUG(); + return NULL; +} + +static ssize_t nr_hugepages_show(struct kobject *kobj, + struct kobj_attribute *attr, char *buf) +{ + struct hstate *h = kobj_to_hstate(kobj); + return sprintf(buf, "%lu\n", h->nr_huge_pages); +} +static ssize_t nr_hugepages_store(struct kobject *kobj, + struct kobj_attribute *attr, const char *buf, size_t count) +{ + int err; + unsigned long input; + struct hstate *h = kobj_to_hstate(kobj); + + err = strict_strtoul(buf, 10, &input); + if (err) + return 0; + + h->max_huge_pages = set_max_huge_pages(h, input); + + return count; +} +HSTATE_ATTR(nr_hugepages); + +static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, + struct kobj_attribute *attr, char *buf) +{ + struct hstate *h = kobj_to_hstate(kobj); + return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); +} +static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, + struct kobj_attribute *attr, const char *buf, size_t count) +{ + int err; + unsigned long input; + struct hstate *h = kobj_to_hstate(kobj); + + err = strict_strtoul(buf, 10, &input); + if (err) + return 0; + + spin_lock(&hugetlb_lock); + h->nr_overcommit_huge_pages = input; + spin_unlock(&hugetlb_lock); + + return count; +} +HSTATE_ATTR(nr_overcommit_hugepages); + +static ssize_t free_hugepages_show(struct kobject *kobj, + struct kobj_attribute *attr, char *buf) +{ + struct hstate *h = kobj_to_hstate(kobj); + return sprintf(buf, "%lu\n", h->free_huge_pages); +} +HSTATE_ATTR_RO(free_hugepages); + +static ssize_t resv_hugepages_show(struct kobject *kobj, + struct kobj_attribute *attr, char *buf) +{ + struct hstate *h = kobj_to_hstate(kobj); + return sprintf(buf, "%lu\n", h->resv_huge_pages); +} +HSTATE_ATTR_RO(resv_hugepages); + +static ssize_t surplus_hugepages_show(struct kobject *kobj, + struct kobj_attribute *attr, char *buf) +{ + struct hstate *h = kobj_to_hstate(kobj); + return sprintf(buf, "%lu\n", h->surplus_huge_pages); +} +HSTATE_ATTR_RO(surplus_hugepages); + +static struct attribute *hstate_attrs[] = { + &nr_hugepages_attr.attr, + &nr_overcommit_hugepages_attr.attr, + &free_hugepages_attr.attr, + &resv_hugepages_attr.attr, + &surplus_hugepages_attr.attr, + NULL, +}; + +static struct attribute_group hstate_attr_group = { + .attrs = hstate_attrs, +}; + +static int __init hugetlb_sysfs_add_hstate(struct hstate *h) +{ + int retval; + + hstate_kobjs[h - hstates] = kobject_create_and_add(h->name, + hugepages_kobj); + if (!hstate_kobjs[h - hstates]) + return -ENOMEM; + + retval = sysfs_create_group(hstate_kobjs[h - hstates], + &hstate_attr_group); + if (retval) + kobject_put(hstate_kobjs[h - hstates]); + + return retval; +} + +static void __init hugetlb_sysfs_init(void) +{ + struct hstate *h; + int err; + + hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); + if (!hugepages_kobj) + return; + + for_each_hstate(h) { + err = hugetlb_sysfs_add_hstate(h); + if (err) + printk(KERN_ERR "Hugetlb: Unable to add hstate %s", + h->name); + } +} + +static void __exit hugetlb_exit(void) +{ + struct hstate *h; + + for_each_hstate(h) { + kobject_put(hstate_kobjs[h - hstates]); + } + + kobject_put(hugepages_kobj); +} +module_exit(hugetlb_exit); + +static int __init hugetlb_init(void) +{ + /* Some platform decide whether they support huge pages at boot + * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when + * there is no such support + */ + if (HPAGE_SHIFT == 0) + return 0; + + if (!size_to_hstate(default_hstate_size)) { + default_hstate_size = HPAGE_SIZE; + if (!size_to_hstate(default_hstate_size)) + hugetlb_add_hstate(HUGETLB_PAGE_ORDER); + } + default_hstate_idx = size_to_hstate(default_hstate_size) - hstates; + if (default_hstate_max_huge_pages) + default_hstate.max_huge_pages = default_hstate_max_huge_pages; + + hugetlb_init_hstates(); + + gather_bootmem_prealloc(); + + report_hugepages(); + + hugetlb_sysfs_init(); + + return 0; +} +module_init(hugetlb_init); + +/* Should be called on processing a hugepagesz=... option */ +void __init hugetlb_add_hstate(unsigned order) +{ + struct hstate *h; + unsigned long i; + + if (size_to_hstate(PAGE_SIZE << order)) { + printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n"); + return; + } + BUG_ON(max_hstate >= HUGE_MAX_HSTATE); + BUG_ON(order == 0); + h = &hstates[max_hstate++]; + h->order = order; + h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); + h->nr_huge_pages = 0; + h->free_huge_pages = 0; + for (i = 0; i < MAX_NUMNODES; ++i) + INIT_LIST_HEAD(&h->hugepage_freelists[i]); + h->hugetlb_next_nid = first_node(node_online_map); + snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", + huge_page_size(h)/1024); + + parsed_hstate = h; +} + +static int __init hugetlb_nrpages_setup(char *s) +{ + unsigned long *mhp; + static unsigned long *last_mhp; + + /* + * !max_hstate means we haven't parsed a hugepagesz= parameter yet, + * so this hugepages= parameter goes to the "default hstate". + */ + if (!max_hstate) + mhp = &default_hstate_max_huge_pages; + else + mhp = &parsed_hstate->max_huge_pages; + + if (mhp == last_mhp) { + printk(KERN_WARNING "hugepages= specified twice without " + "interleaving hugepagesz=, ignoring\n"); + return 1; + } + + if (sscanf(s, "%lu", mhp) <= 0) + *mhp = 0; + + /* + * Global state is always initialized later in hugetlb_init. + * But we need to allocate >= MAX_ORDER hstates here early to still + * use the bootmem allocator. + */ + if (max_hstate && parsed_hstate->order >= MAX_ORDER) + hugetlb_hstate_alloc_pages(parsed_hstate); + + last_mhp = mhp; + + return 1; +} +__setup("hugepages=", hugetlb_nrpages_setup); + +static int __init hugetlb_default_setup(char *s) +{ + default_hstate_size = memparse(s, &s); + return 1; +} +__setup("default_hugepagesz=", hugetlb_default_setup); + +static unsigned int cpuset_mems_nr(unsigned int *array) +{ + int node; + unsigned int nr = 0; + + for_each_node_mask(node, cpuset_current_mems_allowed) + nr += array[node]; + + return nr; +} + +#ifdef CONFIG_SYSCTL int hugetlb_sysctl_handler(struct ctl_table *table, int write, struct file *file, void __user *buffer, size_t *length, loff_t *ppos) { + struct hstate *h = &default_hstate; + unsigned long tmp; + + if (!write) + tmp = h->max_huge_pages; + + table->data = &tmp; + table->maxlen = sizeof(unsigned long); proc_doulongvec_minmax(table, write, file, buffer, length, ppos); - max_huge_pages = set_max_huge_pages(max_huge_pages); + + if (write) + h->max_huge_pages = set_max_huge_pages(h, tmp); + return 0; } @@ -1047,48 +1512,63 @@ int hugetlb_overcommit_handler(struct ctl_table *table, int write, struct file *file, void __user *buffer, size_t *length, loff_t *ppos) { + struct hstate *h = &default_hstate; + unsigned long tmp; + + if (!write) + tmp = h->nr_overcommit_huge_pages; + + table->data = &tmp; + table->maxlen = sizeof(unsigned long); proc_doulongvec_minmax(table, write, file, buffer, length, ppos); - spin_lock(&hugetlb_lock); - nr_overcommit_huge_pages = sysctl_overcommit_huge_pages; - spin_unlock(&hugetlb_lock); + + if (write) { + spin_lock(&hugetlb_lock); + h->nr_overcommit_huge_pages = tmp; + spin_unlock(&hugetlb_lock); + } + return 0; } #endif /* CONFIG_SYSCTL */ -int hugetlb_report_meminfo(char *buf) +void hugetlb_report_meminfo(struct seq_file *m) { - return sprintf(buf, - "HugePages_Total: %5lu\n" - "HugePages_Free: %5lu\n" - "HugePages_Rsvd: %5lu\n" - "HugePages_Surp: %5lu\n" - "Hugepagesize: %5lu kB\n", - nr_huge_pages, - free_huge_pages, - resv_huge_pages, - surplus_huge_pages, - HPAGE_SIZE/1024); + struct hstate *h = &default_hstate; + seq_printf(m, + "HugePages_Total: %5lu\n" + "HugePages_Free: %5lu\n" + "HugePages_Rsvd: %5lu\n" + "HugePages_Surp: %5lu\n" + "Hugepagesize: %8lu kB\n", + h->nr_huge_pages, + h->free_huge_pages, + h->resv_huge_pages, + h->surplus_huge_pages, + 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); } int hugetlb_report_node_meminfo(int nid, char *buf) { + struct hstate *h = &default_hstate; return sprintf(buf, "Node %d HugePages_Total: %5u\n" "Node %d HugePages_Free: %5u\n" "Node %d HugePages_Surp: %5u\n", - nid, nr_huge_pages_node[nid], - nid, free_huge_pages_node[nid], - nid, surplus_huge_pages_node[nid]); + nid, h->nr_huge_pages_node[nid], + nid, h->free_huge_pages_node[nid], + nid, h->surplus_huge_pages_node[nid]); } /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ unsigned long hugetlb_total_pages(void) { - return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE); + struct hstate *h = &default_hstate; + return h->nr_huge_pages * pages_per_huge_page(h); } -static int hugetlb_acct_memory(long delta) +static int hugetlb_acct_memory(struct hstate *h, long delta) { int ret = -ENOMEM; @@ -1111,18 +1591,18 @@ static int hugetlb_acct_memory(long delta) * semantics that cpuset has. */ if (delta > 0) { - if (gather_surplus_pages(delta) < 0) + if (gather_surplus_pages(h, delta) < 0) goto out; - if (delta > cpuset_mems_nr(free_huge_pages_node)) { - return_unused_surplus_pages(delta); + if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { + return_unused_surplus_pages(h, delta); goto out; } } ret = 0; if (delta < 0) - return_unused_surplus_pages((unsigned long) -delta); + return_unused_surplus_pages(h, (unsigned long) -delta); out: spin_unlock(&hugetlb_lock); @@ -1147,22 +1627,25 @@ static void hugetlb_vm_op_open(struct vm_area_struct *vma) static void hugetlb_vm_op_close(struct vm_area_struct *vma) { + struct hstate *h = hstate_vma(vma); struct resv_map *reservations = vma_resv_map(vma); unsigned long reserve; unsigned long start; unsigned long end; if (reservations) { - start = vma_pagecache_offset(vma, vma->vm_start); - end = vma_pagecache_offset(vma, vma->vm_end); + start = vma_hugecache_offset(h, vma, vma->vm_start); + end = vma_hugecache_offset(h, vma, vma->vm_end); reserve = (end - start) - region_count(&reservations->regions, start, end); kref_put(&reservations->refs, resv_map_release); - if (reserve) - hugetlb_acct_memory(-reserve); + if (reserve) { + hugetlb_acct_memory(h, -reserve); + hugetlb_put_quota(vma->vm_file->f_mapping, reserve); + } } } @@ -1220,14 +1703,16 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, struct page *ptepage; unsigned long addr; int cow; + struct hstate *h = hstate_vma(vma); + unsigned long sz = huge_page_size(h); cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; - for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) { + for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { src_pte = huge_pte_offset(src, addr); if (!src_pte) continue; - dst_pte = huge_pte_alloc(dst, addr); + dst_pte = huge_pte_alloc(dst, addr, sz); if (!dst_pte) goto nomem; @@ -1263,6 +1748,9 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, pte_t pte; struct page *page; struct page *tmp; + struct hstate *h = hstate_vma(vma); + unsigned long sz = huge_page_size(h); + /* * A page gathering list, protected by per file i_mmap_lock. The * lock is used to avoid list corruption from multiple unmapping @@ -1271,11 +1759,12 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, LIST_HEAD(page_list); WARN_ON(!is_vm_hugetlb_page(vma)); - BUG_ON(start & ~HPAGE_MASK); - BUG_ON(end & ~HPAGE_MASK); + BUG_ON(start & ~huge_page_mask(h)); + BUG_ON(end & ~huge_page_mask(h)); + mmu_notifier_invalidate_range_start(mm, start, end); spin_lock(&mm->page_table_lock); - for (address = start; address < end; address += HPAGE_SIZE) { + for (address = start; address < end; address += sz) { ptep = huge_pte_offset(mm, address); if (!ptep) continue; @@ -1315,6 +1804,7 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, } spin_unlock(&mm->page_table_lock); flush_tlb_range(vma, start, end); + mmu_notifier_invalidate_range_end(mm, start, end); list_for_each_entry_safe(page, tmp, &page_list, lru) { list_del(&page->lru); put_page(page); @@ -1324,19 +1814,9 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, unsigned long end, struct page *ref_page) { - /* - * It is undesirable to test vma->vm_file as it should be non-null - * for valid hugetlb area. However, vm_file will be NULL in the error - * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails, - * do_mmap_pgoff() nullifies vma->vm_file before calling this function - * to clean up. Since no pte has actually been setup, it is safe to - * do nothing in this case. - */ - if (vma->vm_file) { - spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); - __unmap_hugepage_range(vma, start, end, ref_page); - spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); - } + spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); + __unmap_hugepage_range(vma, start, end, ref_page); + spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); } /* @@ -1345,11 +1825,10 @@ void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, * from other VMAs and let the children be SIGKILLed if they are faulting the * same region. */ -int unmap_ref_private(struct mm_struct *mm, - struct vm_area_struct *vma, - struct page *page, - unsigned long address) +static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, + struct page *page, unsigned long address) { + struct hstate *h = hstate_vma(vma); struct vm_area_struct *iter_vma; struct address_space *mapping; struct prio_tree_iter iter; @@ -1359,7 +1838,7 @@ int unmap_ref_private(struct mm_struct *mm, * vm_pgoff is in PAGE_SIZE units, hence the different calculation * from page cache lookup which is in HPAGE_SIZE units. */ - address = address & huge_page_mask(hstate_vma(vma)); + address = address & huge_page_mask(h); pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + (vma->vm_pgoff >> PAGE_SHIFT); mapping = (struct address_space *)page_private(page); @@ -1378,7 +1857,7 @@ int unmap_ref_private(struct mm_struct *mm, */ if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) unmap_hugepage_range(iter_vma, - address, address + HPAGE_SIZE, + address, address + huge_page_size(h), page); } @@ -1389,6 +1868,7 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, pte_t *ptep, pte_t pte, struct page *pagecache_page) { + struct hstate *h = hstate_vma(vma); struct page *old_page, *new_page; int avoidcopy; int outside_reserve = 0; @@ -1449,7 +1929,7 @@ retry_avoidcopy: __SetPageUptodate(new_page); spin_lock(&mm->page_table_lock); - ptep = huge_pte_offset(mm, address & HPAGE_MASK); + ptep = huge_pte_offset(mm, address & huge_page_mask(h)); if (likely(pte_same(huge_ptep_get(ptep), pte))) { /* Break COW */ huge_ptep_clear_flush(vma, address, ptep); @@ -1464,14 +1944,14 @@ retry_avoidcopy: } /* Return the pagecache page at a given address within a VMA */ -static struct page *hugetlbfs_pagecache_page(struct vm_area_struct *vma, - unsigned long address) +static struct page *hugetlbfs_pagecache_page(struct hstate *h, + struct vm_area_struct *vma, unsigned long address) { struct address_space *mapping; pgoff_t idx; mapping = vma->vm_file->f_mapping; - idx = vma_pagecache_offset(vma, address); + idx = vma_hugecache_offset(h, vma, address); return find_lock_page(mapping, idx); } @@ -1479,6 +1959,7 @@ static struct page *hugetlbfs_pagecache_page(struct vm_area_struct *vma, static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, pte_t *ptep, int write_access) { + struct hstate *h = hstate_vma(vma); int ret = VM_FAULT_SIGBUS; pgoff_t idx; unsigned long size; @@ -1499,7 +1980,7 @@ static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, } mapping = vma->vm_file->f_mapping; - idx = vma_pagecache_offset(vma, address); + idx = vma_hugecache_offset(h, vma, address); /* * Use page lock to guard against racing truncation @@ -1508,7 +1989,7 @@ static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, retry: page = find_lock_page(mapping, idx); if (!page) { - size = i_size_read(mapping->host) >> HPAGE_SHIFT; + size = i_size_read(mapping->host) >> huge_page_shift(h); if (idx >= size) goto out; page = alloc_huge_page(vma, address, 0); @@ -1516,7 +1997,7 @@ retry: ret = -PTR_ERR(page); goto out; } - clear_huge_page(page, address); + clear_huge_page(page, address, huge_page_size(h)); __SetPageUptodate(page); if (vma->vm_flags & VM_SHARED) { @@ -1532,14 +2013,26 @@ retry: } spin_lock(&inode->i_lock); - inode->i_blocks += BLOCKS_PER_HUGEPAGE; + inode->i_blocks += blocks_per_huge_page(h); spin_unlock(&inode->i_lock); } else lock_page(page); } + /* + * If we are going to COW a private mapping later, we examine the + * pending reservations for this page now. This will ensure that + * any allocations necessary to record that reservation occur outside + * the spinlock. + */ + if (write_access && !(vma->vm_flags & VM_SHARED)) + if (vma_needs_reservation(h, vma, address) < 0) { + ret = VM_FAULT_OOM; + goto backout_unlocked; + } + spin_lock(&mm->page_table_lock); - size = i_size_read(mapping->host) >> HPAGE_SHIFT; + size = i_size_read(mapping->host) >> huge_page_shift(h); if (idx >= size) goto backout; @@ -1563,6 +2056,7 @@ out: backout: spin_unlock(&mm->page_table_lock); +backout_unlocked: unlock_page(page); put_page(page); goto out; @@ -1574,9 +2068,11 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, pte_t *ptep; pte_t entry; int ret; + struct page *pagecache_page = NULL; static DEFINE_MUTEX(hugetlb_instantiation_mutex); + struct hstate *h = hstate_vma(vma); - ptep = huge_pte_alloc(mm, address); + ptep = huge_pte_alloc(mm, address, huge_page_size(h)); if (!ptep) return VM_FAULT_OOM; @@ -1589,30 +2085,79 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, entry = huge_ptep_get(ptep); if (huge_pte_none(entry)) { ret = hugetlb_no_page(mm, vma, address, ptep, write_access); - mutex_unlock(&hugetlb_instantiation_mutex); - return ret; + goto out_mutex; } ret = 0; + /* + * If we are going to COW the mapping later, we examine the pending + * reservations for this page now. This will ensure that any + * allocations necessary to record that reservation occur outside the + * spinlock. For private mappings, we also lookup the pagecache + * page now as it is used to determine if a reservation has been + * consumed. + */ + if (write_access && !pte_write(entry)) { + if (vma_needs_reservation(h, vma, address) < 0) { + ret = VM_FAULT_OOM; + goto out_mutex; + } + + if (!(vma->vm_flags & VM_SHARED)) + pagecache_page = hugetlbfs_pagecache_page(h, + vma, address); + } + spin_lock(&mm->page_table_lock); /* Check for a racing update before calling hugetlb_cow */ - if (likely(pte_same(entry, huge_ptep_get(ptep)))) - if (write_access && !pte_write(entry)) { - struct page *page; - page = hugetlbfs_pagecache_page(vma, address); - ret = hugetlb_cow(mm, vma, address, ptep, entry, page); - if (page) { - unlock_page(page); - put_page(page); - } + if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) + goto out_page_table_lock; + + + if (write_access) { + if (!pte_write(entry)) { + ret = hugetlb_cow(mm, vma, address, ptep, entry, + pagecache_page); + goto out_page_table_lock; } + entry = pte_mkdirty(entry); + } + entry = pte_mkyoung(entry); + if (huge_ptep_set_access_flags(vma, address, ptep, entry, write_access)) + update_mmu_cache(vma, address, entry); + +out_page_table_lock: spin_unlock(&mm->page_table_lock); + + if (pagecache_page) { + unlock_page(pagecache_page); + put_page(pagecache_page); + } + +out_mutex: mutex_unlock(&hugetlb_instantiation_mutex); return ret; } +/* Can be overriden by architectures */ +__attribute__((weak)) struct page * +follow_huge_pud(struct mm_struct *mm, unsigned long address, + pud_t *pud, int write) +{ + BUG(); + return NULL; +} + +static int huge_zeropage_ok(pte_t *ptep, int write, int shared) +{ + if (!ptep || write || shared) + return 0; + else + return huge_pte_none(huge_ptep_get(ptep)); +} + int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, struct page **pages, struct vm_area_struct **vmas, unsigned long *position, int *length, int i, @@ -1621,6 +2166,9 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long pfn_offset; unsigned long vaddr = *position; int remainder = *length; + struct hstate *h = hstate_vma(vma); + int zeropage_ok = 0; + int shared = vma->vm_flags & VM_SHARED; spin_lock(&mm->page_table_lock); while (vaddr < vma->vm_end && remainder) { @@ -1632,9 +2180,12 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, * each hugepage. We have to make * sure we get the * first, for the page indexing below to work. */ - pte = huge_pte_offset(mm, vaddr & HPAGE_MASK); + pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); + if (huge_zeropage_ok(pte, write, shared)) + zeropage_ok = 1; - if (!pte || huge_pte_none(huge_ptep_get(pte)) || + if (!pte || + (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) || (write && !pte_write(huge_ptep_get(pte)))) { int ret; @@ -1650,12 +2201,15 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, break; } - pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT; + pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; page = pte_page(huge_ptep_get(pte)); same_page: if (pages) { - get_page(page); - pages[i] = page + pfn_offset; + if (zeropage_ok) + pages[i] = ZERO_PAGE(0); + else + pages[i] = mem_map_offset(page, pfn_offset); + get_page(pages[i]); } if (vmas) @@ -1666,7 +2220,7 @@ same_page: --remainder; ++i; if (vaddr < vma->vm_end && remainder && - pfn_offset < HPAGE_SIZE/PAGE_SIZE) { + pfn_offset < pages_per_huge_page(h)) { /* * We use pfn_offset to avoid touching the pageframes * of this compound page. @@ -1688,13 +2242,14 @@ void hugetlb_change_protection(struct vm_area_struct *vma, unsigned long start = address; pte_t *ptep; pte_t pte; + struct hstate *h = hstate_vma(vma); BUG_ON(address >= end); flush_cache_range(vma, address, end); spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); spin_lock(&mm->page_table_lock); - for (; address < end; address += HPAGE_SIZE) { + for (; address < end; address += huge_page_size(h)) { ptep = huge_pte_offset(mm, address); if (!ptep) continue; @@ -1717,6 +2272,7 @@ int hugetlb_reserve_pages(struct inode *inode, struct vm_area_struct *vma) { long ret, chg; + struct hstate *h = hstate_inode(inode); if (vma && vma->vm_flags & VM_NORESERVE) return 0; @@ -1745,7 +2301,7 @@ int hugetlb_reserve_pages(struct inode *inode, if (hugetlb_get_quota(inode->i_mapping, chg)) return -ENOSPC; - ret = hugetlb_acct_memory(chg); + ret = hugetlb_acct_memory(h, chg); if (ret < 0) { hugetlb_put_quota(inode->i_mapping, chg); return ret; @@ -1757,12 +2313,13 @@ int hugetlb_reserve_pages(struct inode *inode, void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) { + struct hstate *h = hstate_inode(inode); long chg = region_truncate(&inode->i_mapping->private_list, offset); spin_lock(&inode->i_lock); - inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed; + inode->i_blocks -= blocks_per_huge_page(h); spin_unlock(&inode->i_lock); hugetlb_put_quota(inode->i_mapping, (chg - freed)); - hugetlb_acct_memory(-(chg - freed)); + hugetlb_acct_memory(h, -(chg - freed)); }