X-Git-Url: http://ftp.safe.ca/?a=blobdiff_plain;ds=sidebyside;f=drivers%2Frtc%2FKconfig;h=cced4d108319600c24321021a3740a003df4cf84;hb=e8caa3c70e94d867ca2efe9e53fd388b52d6d0c8;hp=0cc448c0edddbe2d656e7001b1e47d0e6b512576;hpb=739d340dba45ab786a5553144bbffbee0afe15dd;p=safe%2Fjmp%2Flinux-2.6 diff --git a/drivers/rtc/Kconfig b/drivers/rtc/Kconfig index 0cc448c..cced4d1 100644 --- a/drivers/rtc/Kconfig +++ b/drivers/rtc/Kconfig @@ -16,14 +16,10 @@ menuconfig RTC_CLASS probably want to enable one or more of the interfaces below. This driver can also be built as a module. If so, the module - will be called rtc-class. + will be called rtc-core. if RTC_CLASS -if GEN_RTC || RTC -comment "Conflicting RTC option has been selected, check GEN_RTC and RTC" -endif - config RTC_HCTOSYS bool "Set system time from RTC on startup and resume" depends on RTC_CLASS = y @@ -39,8 +35,8 @@ config RTC_HCTOSYS_DEVICE default "rtc0" help The RTC device that will be used to (re)initialize the system - clock, usually rtc0. Initialization is done when the system - starts up, and when it resumes from a low power state. This + clock, usually rtc0. Initialization is done when the system + starts up, and when it resumes from a low power state. This device should record time in UTC, since the kernel won't do timezone correction. @@ -48,7 +44,7 @@ config RTC_HCTOSYS_DEVICE functions run, so it must usually be statically linked. This clock should be battery-backed, so that it reads the correct - time when the system boots from a power-off state. Otherwise, your + time when the system boots from a power-off state. Otherwise, your system will need an external clock source (like an NTP server). If the clock you specify here is not battery backed, it may still @@ -73,8 +69,7 @@ config RTC_INTF_SYSFS Say yes here if you want to use your RTCs using sysfs interfaces, /sys/class/rtc/rtc0 through /sys/.../rtcN. - This driver can also be built as a module. If so, the module - will be called rtc-sysfs. + If unsure, say Y. config RTC_INTF_PROC boolean "/proc/driver/rtc (procfs for rtc0)" @@ -82,11 +77,10 @@ config RTC_INTF_PROC default RTC_CLASS help Say yes here if you want to use your first RTC through the proc - interface, /proc/driver/rtc. Other RTCs will not be available + interface, /proc/driver/rtc. Other RTCs will not be available through that API. - This driver can also be built as a module. If so, the module - will be called rtc-proc. + If unsure, say Y. config RTC_INTF_DEV boolean "/dev/rtcN (character devices)" @@ -94,21 +88,27 @@ config RTC_INTF_DEV help Say yes here if you want to use your RTCs using the /dev interfaces, which "udev" sets up as /dev/rtc0 through - /dev/rtcN. You may want to set up a symbolic link so one - of these can be accessed as /dev/rtc, which is a name - expected by "hwclock" and some other programs. + /dev/rtcN. - This driver can also be built as a module. If so, the module - will be called rtc-dev. + You may want to set up a symbolic link so one of these + can be accessed as /dev/rtc, which is a name + expected by "hwclock" and some other programs. Recent + versions of "udev" are known to set up the symlink for you. + + If unsure, say Y. config RTC_INTF_DEV_UIE_EMUL bool "RTC UIE emulation on dev interface" depends on RTC_INTF_DEV help Provides an emulation for RTC_UIE if the underlying rtc chip - driver does not expose RTC_UIE ioctls. Those requests generate + driver does not expose RTC_UIE ioctls. Those requests generate once-per-second update interrupts, used for synchronization. + The emulation code will read the time from the hardware + clock several times per second, please enable this option + only if you know that you really need it. + config RTC_DRV_TEST tristate "Test driver/device" help @@ -132,14 +132,14 @@ config RTC_DRV_DS1307 tristate "Dallas/Maxim DS1307/37/38/39/40, ST M41T00" help If you say yes here you get support for various compatible RTC - chips (often with battery backup) connected with I2C. This driver + chips (often with battery backup) connected with I2C. This driver should handle DS1307, DS1337, DS1338, DS1339, DS1340, ST M41T00, - and probably other chips. In some cases the RTC must already + and probably other chips. In some cases the RTC must already have been initialized (by manufacturing or a bootloader). The first seven registers on these chips hold an RTC, and other registers may add features such as NVRAM, a trickle charger for - the RTC/NVRAM backup power, and alarms. NVRAM is visible in + the RTC/NVRAM backup power, and alarms. NVRAM is visible in sysfs, but other chip features may not be available. This driver can also be built as a module. If so, the module @@ -150,10 +150,10 @@ config RTC_DRV_DS1374 depends on RTC_CLASS && I2C help If you say yes here you get support for Dallas Semiconductor - DS1374 real-time clock chips. If an interrupt is associated + DS1374 real-time clock chips. If an interrupt is associated with the device, the alarm functionality is supported. - This driver can also be built as a module. If so, the module + This driver can also be built as a module. If so, the module will be called rtc-ds1374. config RTC_DRV_DS1672 @@ -175,10 +175,10 @@ config RTC_DRV_MAX6900 will be called rtc-max6900. config RTC_DRV_RS5C372 - tristate "Ricoh RS5C372A/B, RV5C386, RV5C387A" + tristate "Ricoh R2025S/D, RS5C372A/B, RV5C386, RV5C387A" help If you say yes here you get support for the - Ricoh RS5C372A, RS5C372B, RV5C386, and RV5C387A RTC chips. + Ricoh R2025S/D, RS5C372A, RS5C372B, RV5C386, and RV5C387A RTC chips. This driver can also be built as a module. If so, the module will be called rtc-rs5c372. @@ -224,22 +224,22 @@ config RTC_DRV_PCF8583 will be called rtc-pcf8583. config RTC_DRV_M41T80 - tristate "ST M41T80/81/82/83/84/85/87" + tristate "ST M41T65/M41T80/81/82/83/84/85/87" help - If you say Y here you will get support for the - ST M41T80 RTC chips series. Currently following chips are - supported: M41T80, M41T81, M41T82, M41T83, M41ST84, M41ST85 - and M41ST87. + If you say Y here you will get support for the ST M41T60 + and M41T80 RTC chips series. Currently, the following chips are + supported: M41T65, M41T80, M41T81, M41T82, M41T83, M41ST84, + M41ST85, and M41ST87. This driver can also be built as a module. If so, the module will be called rtc-m41t80. config RTC_DRV_M41T80_WDT - bool "ST M41T80 series RTC watchdog timer" + bool "ST M41T65/M41T80 series RTC watchdog timer" depends on RTC_DRV_M41T80 help If you say Y here you will get support for the - watchdog timer in ST M41T80 RTC chips series. + watchdog timer in the ST M41T60 and M41T80 RTC chips series. config RTC_DRV_TWL92330 boolean "TI TWL92330/Menelaus" @@ -247,15 +247,85 @@ config RTC_DRV_TWL92330 help If you say yes here you get support for the RTC on the TWL92330 "Menelaus" power management chip, used with OMAP2 - platforms. The support is integrated with the rest of + platforms. The support is integrated with the rest of the Menelaus driver; it's not separate module. +config RTC_DRV_TWL4030 + tristate "TI TWL4030/TWL5030/TPS659x0" + depends on RTC_CLASS && TWL4030_CORE + help + If you say yes here you get support for the RTC on the + TWL4030 family chips, used mostly with OMAP3 platforms. + + This driver can also be built as a module. If so, the module + will be called rtc-twl4030. + +config RTC_DRV_S35390A + tristate "Seiko Instruments S-35390A" + select BITREVERSE + help + If you say yes here you will get support for the Seiko + Instruments S-35390A. + + This driver can also be built as a module. If so the module + will be called rtc-s35390a. + +config RTC_DRV_FM3130 + tristate "Ramtron FM3130" + help + If you say Y here you will get support for the + Ramtron FM3130 RTC chips. + Ramtron FM3130 is a chip with two separate devices inside, + RTC clock and FRAM. This driver provides only RTC functionality. + + This driver can also be built as a module. If so the module + will be called rtc-fm3130. + +config RTC_DRV_RX8581 + tristate "Epson RX-8581" + help + If you say yes here you will get support for the Epson RX-8581. + + This driver can also be built as a module. If so the module + will be called rtc-rx8581. + endif # I2C comment "SPI RTC drivers" if SPI_MASTER +config RTC_DRV_M41T94 + tristate "ST M41T94" + help + If you say yes here you will get support for the + ST M41T94 SPI RTC chip. + + This driver can also be built as a module. If so, the module + will be called rtc-m41t94. + +config RTC_DRV_DS1305 + tristate "Dallas/Maxim DS1305/DS1306" + help + Select this driver to get support for the Dallas/Maxim DS1305 + and DS1306 real time clock chips. These support a trickle + charger, alarms, and NVRAM in addition to the clock. + + This driver can also be built as a module. If so, the module + will be called rtc-ds1305. + +config RTC_DRV_DS1390 + tristate "Dallas/Maxim DS1390/93/94" + help + If you say yes here you get support for the + Dallas/Maxim DS1390/93/94 chips. + + This driver only supports the RTC feature, and not other chip + features such as alarms and trickle charging. + + This driver can also be built as a module. If so, the module + will be called rtc-ds1390. + config RTC_DRV_MAX6902 tristate "Maxim MAX6902" help @@ -265,6 +335,15 @@ config RTC_DRV_MAX6902 This driver can also be built as a module. If so, the module will be called rtc-max6902. +config RTC_DRV_R9701 + tristate "Epson RTC-9701JE" + help + If you say yes here you will get support for the + Epson RTC-9701JE SPI RTC chip. + + This driver can also be built as a module. If so, the module + will be called rtc-r9701. + config RTC_DRV_RS5C348 tristate "Ricoh RS5C348A/B" help @@ -274,6 +353,15 @@ config RTC_DRV_RS5C348 This driver can also be built as a module. If so, the module will be called rtc-rs5c348. +config RTC_DRV_DS3234 + tristate "Maxim/Dallas DS3234" + help + If you say yes here you get support for the + Maxim/Dallas DS3234 SPI RTC chip. + + This driver can also be built as a module. If so, the module + will be called rtc-ds3234. + endif # SPI_MASTER comment "Platform RTC drivers" @@ -284,7 +372,8 @@ comment "Platform RTC drivers" config RTC_DRV_CMOS tristate "PC-style 'CMOS'" - depends on X86 || ALPHA || ARM || M32R || ATARI || PPC || MIPS + depends on X86 || ALPHA || ARM || M32R || ATARI || PPC || MIPS || SPARC64 + default y if X86 help Say "yes" here to get direct support for the real time clock found in every PC or ACPI-based system, and some other boards. @@ -293,7 +382,7 @@ config RTC_DRV_CMOS or LPC bus chips, and so on. Your system will need to define the platform device used by - this driver, otherwise it won't be accessible. This means + this driver, otherwise it won't be accessible. This means you can safely enable this driver if you don't know whether or not your board has this kind of hardware. @@ -306,12 +395,27 @@ config RTC_DRV_DS1216 help If you say yes here you get support for the Dallas DS1216 RTC chips. +config RTC_DRV_DS1286 + tristate "Dallas DS1286" + help + If you say yes here you get support for the Dallas DS1286 RTC chips. + config RTC_DRV_DS1302 tristate "Dallas DS1302" depends on SH_SECUREEDGE5410 help If you say yes here you get support for the Dallas DS1302 RTC chips. +config RTC_DRV_DS1511 + tristate "Dallas DS1511" + depends on RTC_CLASS + help + If you say yes here you get support for the + Dallas DS1511 timekeeping/watchdog chip. + + This driver can also be built as a module. If so, the module + will be called rtc-ds1511. + config RTC_DRV_DS1553 tristate "Maxim/Dallas DS1553" help @@ -349,15 +453,36 @@ config RTC_DRV_M48T86 This driver can also be built as a module. If so, the module will be called rtc-m48t86. +config RTC_DRV_M48T35 + tristate "ST M48T35" + help + If you say Y here you will get support for the + ST M48T35 RTC chip. + + This driver can also be built as a module, if so, the module + will be called "rtc-m48t35". + config RTC_DRV_M48T59 - tristate "ST M48T59" + tristate "ST M48T59/M48T08/M48T02" help If you say Y here you will get support for the - ST M48T59 RTC chip. + ST M48T59 RTC chip and compatible ST M48T08 and M48T02. + + These chips are usually found in Sun SPARC and UltraSPARC + workstations. This driver can also be built as a module, if so, the module will be called "rtc-m48t59". +config RTC_DRV_BQ4802 + tristate "TI BQ4802" + help + If you say Y here you will get support for the TI + BQ4802 RTC chip. + + This driver can also be built as a module. If so, the module + will be called rtc-bq4802. + config RTC_DRV_V3020 tristate "EM Microelectronic V3020" help @@ -367,6 +492,23 @@ config RTC_DRV_V3020 This driver can also be built as a module. If so, the module will be called rtc-v3020. +config RTC_DRV_WM8350 + tristate "Wolfson Microelectronics WM8350 RTC" + depends on MFD_WM8350 + help + If you say yes here you will get support for the RTC subsystem + of the Wolfson Microelectronics WM8350. + + This driver can also be built as a module. If so, the module + will be called "rtc-wm8350". + +config RTC_DRV_PCF50633 + depends on MFD_PCF50633 + tristate "NXP PCF50633 RTC" + help + If you say yes here you get support for the RTC subsystem of the + NXP PCF50633 used in embedded systems. + comment "on-CPU RTC drivers" config RTC_DRV_OMAP @@ -432,6 +574,16 @@ config RTC_DRV_VR41XX To compile this driver as a module, choose M here: the module will be called rtc-vr41xx. +config RTC_DRV_PL030 + tristate "ARM AMBA PL030 RTC" + depends on ARM_AMBA + help + If you say Y here you will get access to ARM AMBA + PrimeCell PL030 RTC found on certain ARM SOCs. + + To compile this driver as a module, choose M here: the + module will be called rtc-pl030. + config RTC_DRV_PL031 tristate "ARM AMBA PL031 RTC" depends on ARM_AMBA @@ -450,14 +602,62 @@ config RTC_DRV_AT32AP700X AT32AP700x family processors. config RTC_DRV_AT91RM9200 - tristate "AT91RM9200" - depends on ARCH_AT91RM9200 - help - Driver for the Atmel AT91RM9200's internal RTC (Realtime Clock). + tristate "AT91RM9200 or AT91SAM9RL" + depends on ARCH_AT91RM9200 || ARCH_AT91SAM9RL + help + Driver for the internal RTC (Realtime Clock) module found on + Atmel AT91RM9200's and AT91SAM9RL chips. On SAM9RL chips + this is powered by the backup power supply. + +config RTC_DRV_AT91SAM9 + tristate "AT91SAM9x/AT91CAP9" + depends on ARCH_AT91 && !(ARCH_AT91RM9200 || ARCH_AT91X40) + help + RTC driver for the Atmel AT91SAM9x and AT91CAP9 internal RTT + (Real Time Timer). These timers are powered by the backup power + supply (such as a small coin cell battery), but do not need to + be used as RTCs. + + (On AT91SAM9rl chips you probably want to use the dedicated RTC + module and leave the RTT available for other uses.) + +config RTC_DRV_AT91SAM9_RTT + int + range 0 1 + default 0 + prompt "RTT module Number" if ARCH_AT91SAM9263 + depends on RTC_DRV_AT91SAM9 + help + More than one RTT module is available. You can choose which + one will be used as an RTC. The default of zero is normally + OK to use, though some systems use that for non-RTC purposes. + +config RTC_DRV_AT91SAM9_GPBR + int + range 0 3 if !ARCH_AT91SAM9263 + range 0 15 if ARCH_AT91SAM9263 + default 0 + prompt "Backup Register Number" + depends on RTC_DRV_AT91SAM9 + help + The RTC driver needs to use one of the General Purpose Backup + Registers (GPBRs) as well as the RTT. You can choose which one + will be used. The default of zero is normally OK to use, but + on some systems other software needs to use that register. + +config RTC_DRV_AU1XXX + tristate "Au1xxx Counter0 RTC support" + depends on SOC_AU1X00 + help + This is a driver for the Au1xxx on-chip Counter0 (Time-Of-Year + counter) to be used as a RTC. + + This driver can also be built as a module. If so, the module + will be called rtc-au1xxx. config RTC_DRV_BFIN tristate "Blackfin On-Chip RTC" - depends on BLACKFIN + depends on BLACKFIN && !BF561 help If you say yes here you will get support for the Blackfin On-Chip Real Time Clock. @@ -471,4 +671,63 @@ config RTC_DRV_RS5C313 help If you say yes here you get support for the Ricoh RS5C313 RTC chips. +config RTC_DRV_PARISC + tristate "PA-RISC firmware RTC support" + depends on PARISC + help + Say Y or M here to enable RTC support on PA-RISC systems using + firmware calls. If you do not know what you are doing, you should + just say Y. + +config RTC_DRV_PPC + tristate "PowerPC machine dependent RTC support" + depends on PPC + help + The PowerPC kernel has machine-specific functions for accessing + the RTC. This exposes that functionality through the generic RTC + class. + +config RTC_DRV_PXA + tristate "PXA27x/PXA3xx" + depends on ARCH_PXA + help + If you say Y here you will get access to the real time clock + built into your PXA27x or PXA3xx CPU. + + This RTC driver uses PXA RTC registers available since pxa27x + series (RDxR, RYxR) instead of legacy RCNR, RTAR. + + +config RTC_DRV_SUN4V + bool "SUN4V Hypervisor RTC" + depends on SPARC64 + help + If you say Y here you will get support for the Hypervisor + based RTC on SUN4V systems. + +config RTC_DRV_STARFIRE + bool "Starfire RTC" + depends on SPARC64 + help + If you say Y here you will get support for the RTC found on + Starfire systems. + +config RTC_DRV_TX4939 + tristate "TX4939 SoC" + depends on SOC_TX4939 + help + Driver for the internal RTC (Realtime Clock) module found on + Toshiba TX4939 SoC. + +config RTC_DRV_MV + tristate "Marvell SoC RTC" + depends on ARCH_KIRKWOOD + help + If you say yes here you will get support for the in-chip RTC + that can be found in some of Marvell's SoC devices, such as + the Kirkwood 88F6281 and 88F6192. + + This driver can also be built as a module. If so, the module + will be called rtc-mv. + endif # RTC_CLASS