nfs: return negative error value from nfs{,4}_stat_to_errno
[safe/jmp/linux-2.6] / mm / slub.c
index a5832f8..ca71d5b 100644 (file)
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -20,6 +20,7 @@
 #include <linux/mempolicy.h>
 #include <linux/ctype.h>
 #include <linux/kallsyms.h>
+#include <linux/memory.h>
 
 /*
  * Lock order:
@@ -90,7 +91,7 @@
  *                     One use of this flag is to mark slabs that are
  *                     used for allocations. Then such a slab becomes a cpu
  *                     slab. The cpu slab may be equipped with an additional
- *                     lockless_freelist that allows lockless access to
+ *                     freelist that allows lockless access to
  *                     free objects in addition to the regular freelist
  *                     that requires the slab lock.
  *
@@ -140,11 +141,6 @@ static inline void ClearSlabDebug(struct page *page)
 /*
  * Issues still to be resolved:
  *
- * - The per cpu array is updated for each new slab and and is a remote
- *   cacheline for most nodes. This could become a bouncing cacheline given
- *   enough frequent updates. There are 16 pointers in a cacheline, so at
- *   max 16 cpus could compete for the cacheline which may be okay.
- *
  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  *
  * - Variable sizing of the per node arrays
@@ -176,7 +172,7 @@ static inline void ClearSlabDebug(struct page *page)
  * Mininum number of partial slabs. These will be left on the partial
  * lists even if they are empty. kmem_cache_shrink may reclaim them.
  */
-#define MIN_PARTIAL 2
+#define MIN_PARTIAL 5
 
 /*
  * Maximum number of desirable partial slabs.
@@ -206,7 +202,10 @@ static inline void ClearSlabDebug(struct page *page)
 #endif
 
 /* Internal SLUB flags */
-#define __OBJECT_POISON 0x80000000     /* Poison object */
+#define __OBJECT_POISON                0x80000000 /* Poison object */
+#define __SYSFS_ADD_DEFERRED   0x40000000 /* Not yet visible via sysfs */
+#define __KMALLOC_CACHE                0x20000000 /* objects freed using kfree */
+#define __PAGE_ALLOC_FALLBACK  0x10000000 /* Allow fallback to page alloc */
 
 /* Not all arches define cache_line_size */
 #ifndef cache_line_size
@@ -228,7 +227,7 @@ static enum {
 
 /* A list of all slab caches on the system */
 static DECLARE_RWSEM(slub_lock);
-LIST_HEAD(slab_caches);
+static LIST_HEAD(slab_caches);
 
 /*
  * Tracking user of a slab.
@@ -246,11 +245,24 @@ enum track_item { TRACK_ALLOC, TRACK_FREE };
 static int sysfs_slab_add(struct kmem_cache *);
 static int sysfs_slab_alias(struct kmem_cache *, const char *);
 static void sysfs_slab_remove(struct kmem_cache *);
+
 #else
-static int sysfs_slab_add(struct kmem_cache *s) { return 0; }
-static int sysfs_slab_alias(struct kmem_cache *s, const char *p) { return 0; }
-static void sysfs_slab_remove(struct kmem_cache *s) {}
+static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
+static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
+                                                       { return 0; }
+static inline void sysfs_slab_remove(struct kmem_cache *s)
+{
+       kfree(s);
+}
+
+#endif
+
+static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
+{
+#ifdef CONFIG_SLUB_STATS
+       c->stat[si]++;
 #endif
+}
 
 /********************************************************************
  *                     Core slab cache functions
@@ -270,6 +282,16 @@ static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
 #endif
 }
 
+static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
+{
+#ifdef CONFIG_SMP
+       return s->cpu_slab[cpu];
+#else
+       return &s->cpu_slab;
+#endif
+}
+
+/* Verify that a pointer has an address that is valid within a slab page */
 static inline int check_valid_pointer(struct kmem_cache *s,
                                struct page *page, const void *object)
 {
@@ -347,22 +369,22 @@ static void print_section(char *text, u8 *addr, unsigned int length)
                        printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
                        newline = 0;
                }
-               printk(" %02x", addr[i]);
+               printk(KERN_CONT " %02x", addr[i]);
                offset = i % 16;
                ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
                if (offset == 15) {
-                       printk(" %s\n",ascii);
+                       printk(KERN_CONT " %s\n", ascii);
                        newline = 1;
                }
        }
        if (!newline) {
                i %= 16;
                while (i < 16) {
-                       printk("   ");
+                       printk(KERN_CONT "   ");
                        ascii[i] = ' ';
                        i++;
                }
-               printk(" %s\n", ascii);
+               printk(KERN_CONT " %s\n", ascii);
        }
 }
 
@@ -522,7 +544,7 @@ static void init_object(struct kmem_cache *s, void *object, int active)
 
        if (s->flags & __OBJECT_POISON) {
                memset(p, POISON_FREE, s->objsize - 1);
-               p[s->objsize -1] = POISON_END;
+               p[s->objsize - 1] = POISON_END;
        }
 
        if (s->flags & SLAB_RED_ZONE)
@@ -551,7 +573,7 @@ static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
 
 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
                        u8 *object, char *what,
-                       u8start, unsigned int value, unsigned int bytes)
+                       u8 *start, unsigned int value, unsigned int bytes)
 {
        u8 *fault;
        u8 *end;
@@ -598,7 +620,7 @@ static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  *     A. Free pointer (if we cannot overwrite object on free)
  *     B. Tracking data for SLAB_STORE_USER
  *     C. Padding to reach required alignment boundary or at mininum
- *             one word if debuggin is on to be able to detect writes
+ *             one word if debugging is on to be able to detect writes
  *             before the word boundary.
  *
  *     Padding is done using 0x5a (POISON_INUSE)
@@ -675,9 +697,10 @@ static int check_object(struct kmem_cache *s, struct page *page,
                        endobject, red, s->inuse - s->objsize))
                        return 0;
        } else {
-               if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
-                       check_bytes_and_report(s, page, p, "Alignment padding", endobject,
-                               POISON_INUSE, s->inuse - s->objsize);
+               if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
+                       check_bytes_and_report(s, page, p, "Alignment padding",
+                               endobject, POISON_INUSE, s->inuse - s->objsize);
+               }
        }
 
        if (s->flags & SLAB_POISON) {
@@ -685,7 +708,7 @@ static int check_object(struct kmem_cache *s, struct page *page,
                        (!check_bytes_and_report(s, page, p, "Poison", p,
                                        POISON_FREE, s->objsize - 1) ||
                         !check_bytes_and_report(s, page, p, "Poison",
-                               p + s->objsize -1, POISON_END, 1)))
+                               p + s->objsize - 1, POISON_END, 1)))
                        return 0;
                /*
                 * check_pad_bytes cleans up on its own.
@@ -722,11 +745,6 @@ static int check_slab(struct kmem_cache *s, struct page *page)
                slab_err(s, page, "Not a valid slab page");
                return 0;
        }
-       if (page->offset * sizeof(void *) != s->offset) {
-               slab_err(s, page, "Corrupted offset %lu",
-                       (unsigned long)(page->offset * sizeof(void *)));
-               return 0;
-       }
        if (page->inuse > s->objects) {
                slab_err(s, page, "inuse %u > max %u",
                        s->name, page->inuse, s->objects);
@@ -835,7 +853,7 @@ static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
        if (!check_slab(s, page))
                goto bad;
 
-       if (object && !on_freelist(s, page, object)) {
+       if (!on_freelist(s, page, object)) {
                object_err(s, page, object, "Object already allocated");
                goto bad;
        }
@@ -845,7 +863,7 @@ static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
                goto bad;
        }
 
-       if (object && !check_object(s, page, object, 0))
+       if (!check_object(s, page, object, 0))
                goto bad;
 
        /* Success perform special debug activities for allocs */
@@ -865,8 +883,6 @@ bad:
                slab_fix(s, "Marking all objects used");
                page->inuse = s->objects;
                page->freelist = NULL;
-               /* Fix up fields that may be corrupted */
-               page->offset = s->offset / sizeof(void *);
        }
        return 0;
 }
@@ -891,17 +907,15 @@ static int free_debug_processing(struct kmem_cache *s, struct page *page,
                return 0;
 
        if (unlikely(s != page->slab)) {
-               if (!PageSlab(page))
+               if (!PageSlab(page)) {
                        slab_err(s, page, "Attempt to free object(0x%p) "
                                "outside of slab", object);
-               else
-               if (!page->slab) {
+               } else if (!page->slab) {
                        printk(KERN_ERR
                                "SLUB <none>: no slab for object 0x%p.\n",
                                                object);
                        dump_stack();
-               }
-               else
+               } else
                        object_err(s, page, object,
                                        "page slab pointer corrupt.");
                goto fail;
@@ -947,7 +961,7 @@ static int __init setup_slub_debug(char *str)
        /*
         * Determine which debug features should be switched on
         */
-       for ( ;*str && *str != ','; str++) {
+       for (*str && *str != ','; str++) {
                switch (tolower(*str)) {
                case 'f':
                        slub_debug |= SLAB_DEBUG_FREE;
@@ -966,7 +980,7 @@ static int __init setup_slub_debug(char *str)
                        break;
                default:
                        printk(KERN_ERR "slub_debug option '%c' "
-                               "unknown. skipped\n",*str);
+                               "unknown. skipped\n", *str);
                }
        }
 
@@ -979,33 +993,18 @@ out:
 
 __setup("slub_debug", setup_slub_debug);
 
-static void kmem_cache_open_debug_check(struct kmem_cache *s)
+static unsigned long kmem_cache_flags(unsigned long objsize,
+       unsigned long flags, const char *name,
+       void (*ctor)(struct kmem_cache *, void *))
 {
        /*
-        * The page->offset field is only 16 bit wide. This is an offset
-        * in units of words from the beginning of an object. If the slab
-        * size is bigger then we cannot move the free pointer behind the
-        * object anymore.
-        *
-        * On 32 bit platforms the limit is 256k. On 64bit platforms
-        * the limit is 512k.
-        *
-        * Debugging or ctor may create a need to move the free
-        * pointer. Fail if this happens.
+        * Enable debugging if selected on the kernel commandline.
         */
-       if (s->objsize >= 65535 * sizeof(void *)) {
-               BUG_ON(s->flags & (SLAB_RED_ZONE | SLAB_POISON |
-                               SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
-               BUG_ON(s->ctor);
-       }
-       else
-               /*
-                * Enable debugging if selected on the kernel commandline.
-                */
-               if (slub_debug && (!slub_debug_slabs ||
-                   strncmp(slub_debug_slabs, s->name,
-                       strlen(slub_debug_slabs)) == 0))
-                               s->flags |= slub_debug;
+       if (slub_debug && (!slub_debug_slabs ||
+           strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
+                       flags |= slub_debug;
+
+       return flags;
 }
 #else
 static inline void setup_object_debug(struct kmem_cache *s,
@@ -1022,7 +1021,12 @@ static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
 static inline int check_object(struct kmem_cache *s, struct page *page,
                        void *object, int active) { return 1; }
 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
-static inline void kmem_cache_open_debug_check(struct kmem_cache *s) {}
+static inline unsigned long kmem_cache_flags(unsigned long objsize,
+       unsigned long flags, const char *name,
+       void (*ctor)(struct kmem_cache *, void *))
+{
+       return flags;
+}
 #define slub_debug 0
 #endif
 /*
@@ -1030,14 +1034,10 @@ static inline void kmem_cache_open_debug_check(struct kmem_cache *s) {}
  */
 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
 {
-       struct page * page;
+       struct page *page;
        int pages = 1 << s->order;
 
-       if (s->order)
-               flags |= __GFP_COMP;
-
-       if (s->flags & SLAB_CACHE_DMA)
-               flags |= SLUB_DMA;
+       flags |= s->allocflags;
 
        if (node == -1)
                page = alloc_pages(flags, s->order);
@@ -1060,7 +1060,7 @@ static void setup_object(struct kmem_cache *s, struct page *page,
 {
        setup_object_debug(s, page, object);
        if (unlikely(s->ctor))
-               s->ctor(object, s, 0);
+               s->ctor(s, object);
 }
 
 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
@@ -1068,23 +1068,19 @@ static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
        struct page *page;
        struct kmem_cache_node *n;
        void *start;
-       void *end;
        void *last;
        void *p;
 
-       BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
-
-       if (flags & __GFP_WAIT)
-               local_irq_enable();
+       BUG_ON(flags & GFP_SLAB_BUG_MASK);
 
-       page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
+       page = allocate_slab(s,
+               flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
        if (!page)
                goto out;
 
        n = get_node(s, page_to_nid(page));
        if (n)
                atomic_long_inc(&n->nr_slabs);
-       page->offset = s->offset / sizeof(void *);
        page->slab = s;
        page->flags |= 1 << PG_slab;
        if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
@@ -1092,7 +1088,6 @@ static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
                SetSlabDebug(page);
 
        start = page_address(page);
-       end = start + s->objects * s->size;
 
        if (unlikely(s->flags & SLAB_POISON))
                memset(start, POISON_INUSE, PAGE_SIZE << s->order);
@@ -1107,11 +1102,8 @@ static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
        set_freepointer(s, last, NULL);
 
        page->freelist = start;
-       page->lockless_freelist = NULL;
        page->inuse = 0;
 out:
-       if (flags & __GFP_WAIT)
-               local_irq_disable();
        return page;
 }
 
@@ -1125,14 +1117,14 @@ static void __free_slab(struct kmem_cache *s, struct page *page)
                slab_pad_check(s, page);
                for_each_object(p, s, page_address(page))
                        check_object(s, page, p, 0);
+               ClearSlabDebug(page);
        }
 
        mod_zone_page_state(page_zone(page),
                (s->flags & SLAB_RECLAIM_ACCOUNT) ?
                NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
-               - pages);
+               -pages);
 
-       page->mapping = NULL;
        __free_pages(page, s->order);
 }
 
@@ -1163,7 +1155,6 @@ static void discard_slab(struct kmem_cache *s, struct page *page)
 
        atomic_long_dec(&n->nr_slabs);
        reset_page_mapcount(page);
-       ClearSlabDebug(page);
        __ClearPageSlab(page);
        free_slab(s, page);
 }
@@ -1178,7 +1169,7 @@ static __always_inline void slab_lock(struct page *page)
 
 static __always_inline void slab_unlock(struct page *page)
 {
-       bit_spin_unlock(PG_locked, &page->flags);
+       __bit_spin_unlock(PG_locked, &page->flags);
 }
 
 static __always_inline int slab_trylock(struct page *page)
@@ -1192,19 +1183,15 @@ static __always_inline int slab_trylock(struct page *page)
 /*
  * Management of partially allocated slabs
  */
-static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
+static void add_partial(struct kmem_cache_node *n,
+                               struct page *page, int tail)
 {
        spin_lock(&n->list_lock);
        n->nr_partial++;
-       list_add_tail(&page->lru, &n->partial);
-       spin_unlock(&n->list_lock);
-}
-
-static void add_partial(struct kmem_cache_node *n, struct page *page)
-{
-       spin_lock(&n->list_lock);
-       n->nr_partial++;
-       list_add(&page->lru, &n->partial);
+       if (tail)
+               list_add_tail(&page->lru, &n->partial);
+       else
+               list_add(&page->lru, &n->partial);
        spin_unlock(&n->list_lock);
 }
 
@@ -1282,18 +1269,19 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
         * may return off node objects because partial slabs are obtained
         * from other nodes and filled up.
         *
-        * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
+        * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
         * defrag_ratio = 1000) then every (well almost) allocation will
         * first attempt to defrag slab caches on other nodes. This means
         * scanning over all nodes to look for partial slabs which may be
         * expensive if we do it every time we are trying to find a slab
         * with available objects.
         */
-       if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
+       if (!s->remote_node_defrag_ratio ||
+                       get_cycles() % 1024 > s->remote_node_defrag_ratio)
                return NULL;
 
-       zonelist = &NODE_DATA(slab_node(current->mempolicy))
-                                       ->node_zonelists[gfp_zone(flags)];
+       zonelist = &NODE_DATA(
+               slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)];
        for (z = zonelist->zones; *z; z++) {
                struct kmem_cache_node *n;
 
@@ -1332,33 +1320,41 @@ static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  *
  * On exit the slab lock will have been dropped.
  */
-static void unfreeze_slab(struct kmem_cache *s, struct page *page)
+static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
 {
        struct kmem_cache_node *n = get_node(s, page_to_nid(page));
+       struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
 
        ClearSlabFrozen(page);
        if (page->inuse) {
 
-               if (page->freelist)
-                       add_partial(n, page);
-               else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
-                       add_full(n, page);
+               if (page->freelist) {
+                       add_partial(n, page, tail);
+                       stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
+               } else {
+                       stat(c, DEACTIVATE_FULL);
+                       if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
+                               add_full(n, page);
+               }
                slab_unlock(page);
-
        } else {
+               stat(c, DEACTIVATE_EMPTY);
                if (n->nr_partial < MIN_PARTIAL) {
                        /*
                         * Adding an empty slab to the partial slabs in order
                         * to avoid page allocator overhead. This slab needs
                         * to come after the other slabs with objects in
-                        * order to fill them up. That way the size of the
-                        * partial list stays small. kmem_cache_shrink can
-                        * reclaim empty slabs from the partial list.
+                        * so that the others get filled first. That way the
+                        * size of the partial list stays small.
+                        *
+                        * kmem_cache_shrink can reclaim any empty slabs from the
+                        * partial list.
                         */
-                       add_partial_tail(n, page);
+                       add_partial(n, page, 1);
                        slab_unlock(page);
                } else {
                        slab_unlock(page);
+                       stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
                        discard_slab(s, page);
                }
        }
@@ -1367,53 +1363,61 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page)
 /*
  * Remove the cpu slab
  */
-static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
+static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
 {
+       struct page *page = c->page;
+       int tail = 1;
+
+       if (page->freelist)
+               stat(c, DEACTIVATE_REMOTE_FREES);
        /*
-        * Merge cpu freelist into freelist. Typically we get here
+        * Merge cpu freelist into slab freelist. Typically we get here
         * because both freelists are empty. So this is unlikely
         * to occur.
         */
-       while (unlikely(page->lockless_freelist)) {
+       while (unlikely(c->freelist)) {
                void **object;
 
+               tail = 0;       /* Hot objects. Put the slab first */
+
                /* Retrieve object from cpu_freelist */
-               object = page->lockless_freelist;
-               page->lockless_freelist = page->lockless_freelist[page->offset];
+               object = c->freelist;
+               c->freelist = c->freelist[c->offset];
 
                /* And put onto the regular freelist */
-               object[page->offset] = page->freelist;
+               object[c->offset] = page->freelist;
                page->freelist = object;
                page->inuse--;
        }
-       s->cpu_slab[cpu] = NULL;
-       unfreeze_slab(s, page);
+       c->page = NULL;
+       unfreeze_slab(s, page, tail);
 }
 
-static void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
+static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
 {
-       slab_lock(page);
-       deactivate_slab(s, page, cpu);
+       stat(c, CPUSLAB_FLUSH);
+       slab_lock(c->page);
+       deactivate_slab(s, c);
 }
 
 /*
  * Flush cpu slab.
+ *
  * Called from IPI handler with interrupts disabled.
  */
-static void __flush_cpu_slab(struct kmem_cache *s, int cpu)
+static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
 {
-       struct page *page = s->cpu_slab[cpu];
+       struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
 
-       if (likely(page))
-               flush_slab(s, page, cpu);
+       if (likely(c && c->page))
+               flush_slab(s, c);
 }
 
 static void flush_cpu_slab(void *d)
 {
        struct kmem_cache *s = d;
-       int cpu = smp_processor_id();
 
-       __flush_cpu_slab(s, cpu);
+       __flush_cpu_slab(s, smp_processor_id());
 }
 
 static void flush_all(struct kmem_cache *s)
@@ -1430,6 +1434,19 @@ static void flush_all(struct kmem_cache *s)
 }
 
 /*
+ * Check if the objects in a per cpu structure fit numa
+ * locality expectations.
+ */
+static inline int node_match(struct kmem_cache_cpu *c, int node)
+{
+#ifdef CONFIG_NUMA
+       if (node != -1 && c->node != node)
+               return 0;
+#endif
+       return 1;
+}
+
+/*
  * Slow path. The lockless freelist is empty or we need to perform
  * debugging duties.
  *
@@ -1444,84 +1461,99 @@ static void flush_all(struct kmem_cache *s)
  * rest of the freelist to the lockless freelist.
  *
  * And if we were unable to get a new slab from the partial slab lists then
- * we need to allocate a new slab. This is slowest path since we may sleep.
+ * we need to allocate a new slab. This is the slowest path since it involves
+ * a call to the page allocator and the setup of a new slab.
  */
 static void *__slab_alloc(struct kmem_cache *s,
-               gfp_t gfpflags, int node, void *addr, struct page *page)
+               gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
 {
        void **object;
-       int cpu = smp_processor_id();
+       struct page *new;
 
-       if (!page)
+       if (!c->page)
                goto new_slab;
 
-       slab_lock(page);
-       if (unlikely(node != -1 && page_to_nid(page) != node))
+       slab_lock(c->page);
+       if (unlikely(!node_match(c, node)))
                goto another_slab;
+
+       stat(c, ALLOC_REFILL);
+
 load_freelist:
-       object = page->freelist;
+       object = c->page->freelist;
        if (unlikely(!object))
                goto another_slab;
-       if (unlikely(SlabDebug(page)))
+       if (unlikely(SlabDebug(c->page)))
                goto debug;
 
-       object = page->freelist;
-       page->lockless_freelist = object[page->offset];
-       page->inuse = s->objects;
-       page->freelist = NULL;
-       slab_unlock(page);
+       c->freelist = object[c->offset];
+       c->page->inuse = s->objects;
+       c->page->freelist = NULL;
+       c->node = page_to_nid(c->page);
+unlock_out:
+       slab_unlock(c->page);
+       stat(c, ALLOC_SLOWPATH);
        return object;
 
 another_slab:
-       deactivate_slab(s, page, cpu);
+       deactivate_slab(s, c);
 
 new_slab:
-       page = get_partial(s, gfpflags, node);
-       if (page) {
-               s->cpu_slab[cpu] = page;
+       new = get_partial(s, gfpflags, node);
+       if (new) {
+               c->page = new;
+               stat(c, ALLOC_FROM_PARTIAL);
                goto load_freelist;
        }
 
-       page = new_slab(s, gfpflags, node);
-       if (page) {
-               cpu = smp_processor_id();
-               if (s->cpu_slab[cpu]) {
-                       /*
-                        * Someone else populated the cpu_slab while we
-                        * enabled interrupts, or we have gotten scheduled
-                        * on another cpu. The page may not be on the
-                        * requested node even if __GFP_THISNODE was
-                        * specified. So we need to recheck.
-                        */
-                       if (node == -1 ||
-                               page_to_nid(s->cpu_slab[cpu]) == node) {
-                               /*
-                                * Current cpuslab is acceptable and we
-                                * want the current one since its cache hot
-                                */
-                               discard_slab(s, page);
-                               page = s->cpu_slab[cpu];
-                               slab_lock(page);
-                               goto load_freelist;
-                       }
-                       /* New slab does not fit our expectations */
-                       flush_slab(s, s->cpu_slab[cpu], cpu);
-               }
-               slab_lock(page);
-               SetSlabFrozen(page);
-               s->cpu_slab[cpu] = page;
+       if (gfpflags & __GFP_WAIT)
+               local_irq_enable();
+
+       new = new_slab(s, gfpflags, node);
+
+       if (gfpflags & __GFP_WAIT)
+               local_irq_disable();
+
+       if (new) {
+               c = get_cpu_slab(s, smp_processor_id());
+               stat(c, ALLOC_SLAB);
+               if (c->page)
+                       flush_slab(s, c);
+               slab_lock(new);
+               SetSlabFrozen(new);
+               c->page = new;
                goto load_freelist;
        }
+
+       /*
+        * No memory available.
+        *
+        * If the slab uses higher order allocs but the object is
+        * smaller than a page size then we can fallback in emergencies
+        * to the page allocator via kmalloc_large. The page allocator may
+        * have failed to obtain a higher order page and we can try to
+        * allocate a single page if the object fits into a single page.
+        * That is only possible if certain conditions are met that are being
+        * checked when a slab is created.
+        */
+       if (!(gfpflags & __GFP_NORETRY) &&
+                               (s->flags & __PAGE_ALLOC_FALLBACK)) {
+               if (gfpflags & __GFP_WAIT)
+                       local_irq_enable();
+               object = kmalloc_large(s->objsize, gfpflags);
+               if (gfpflags & __GFP_WAIT)
+                       local_irq_disable();
+               return object;
+       }
        return NULL;
 debug:
-       object = page->freelist;
-       if (!alloc_debug_processing(s, page, object, addr))
+       if (!alloc_debug_processing(s, c->page, object, addr))
                goto another_slab;
 
-       page->inuse++;
-       page->freelist = object[page->offset];
-       slab_unlock(page);
-       return object;
+       c->page->inuse++;
+       c->page->freelist = object[c->offset];
+       c->node = -1;
+       goto unlock_out;
 }
 
 /*
@@ -1534,25 +1566,29 @@ debug:
  *
  * Otherwise we can simply pick the next object from the lockless free list.
  */
-static void __always_inline *slab_alloc(struct kmem_cache *s,
-                               gfp_t gfpflags, int node, void *addr)
+static __always_inline void *slab_alloc(struct kmem_cache *s,
+               gfp_t gfpflags, int node, void *addr)
 {
-       struct page *page;
        void **object;
+       struct kmem_cache_cpu *c;
        unsigned long flags;
 
        local_irq_save(flags);
-       page = s->cpu_slab[smp_processor_id()];
-       if (unlikely(!page || !page->lockless_freelist ||
-                       (node != -1 && page_to_nid(page) != node)))
+       c = get_cpu_slab(s, smp_processor_id());
+       if (unlikely(!c->freelist || !node_match(c, node)))
 
-               object = __slab_alloc(s, gfpflags, node, addr, page);
+               object = __slab_alloc(s, gfpflags, node, addr, c);
 
        else {
-               object = page->lockless_freelist;
-               page->lockless_freelist = object[page->offset];
+               object = c->freelist;
+               c->freelist = object[c->offset];
+               stat(c, ALLOC_FASTPATH);
        }
        local_irq_restore(flags);
+
+       if (unlikely((gfpflags & __GFP_ZERO) && object))
+               memset(object, 0, c->objsize);
+
        return object;
 }
 
@@ -1579,46 +1615,55 @@ EXPORT_SYMBOL(kmem_cache_alloc_node);
  * handling required then we can return immediately.
  */
 static void __slab_free(struct kmem_cache *s, struct page *page,
-                                       void *x, void *addr)
+                               void *x, void *addr, unsigned int offset)
 {
        void *prior;
        void **object = (void *)x;
+       struct kmem_cache_cpu *c;
 
+       c = get_cpu_slab(s, raw_smp_processor_id());
+       stat(c, FREE_SLOWPATH);
        slab_lock(page);
 
        if (unlikely(SlabDebug(page)))
                goto debug;
+
 checks_ok:
-       prior = object[page->offset] = page->freelist;
+       prior = object[offset] = page->freelist;
        page->freelist = object;
        page->inuse--;
 
-       if (unlikely(SlabFrozen(page)))
+       if (unlikely(SlabFrozen(page))) {
+               stat(c, FREE_FROZEN);
                goto out_unlock;
+       }
 
        if (unlikely(!page->inuse))
                goto slab_empty;
 
        /*
-        * Objects left in the slab. If it
-        * was not on the partial list before
+        * Objects left in the slab. If it was not on the partial list before
         * then add it.
         */
-       if (unlikely(!prior))
-               add_partial(get_node(s, page_to_nid(page)), page);
+       if (unlikely(!prior)) {
+               add_partial(get_node(s, page_to_nid(page)), page, 1);
+               stat(c, FREE_ADD_PARTIAL);
+       }
 
 out_unlock:
        slab_unlock(page);
        return;
 
 slab_empty:
-       if (prior)
+       if (prior) {
                /*
                 * Slab still on the partial list.
                 */
                remove_partial(s, page);
-
+               stat(c, FREE_REMOVE_PARTIAL);
+       }
        slab_unlock(page);
+       stat(c, FREE_SLAB);
        discard_slab(s, page);
        return;
 
@@ -1639,19 +1684,22 @@ debug:
  * If fastpath is not possible then fall back to __slab_free where we deal
  * with all sorts of special processing.
  */
-static void __always_inline slab_free(struct kmem_cache *s,
+static __always_inline void slab_free(struct kmem_cache *s,
                        struct page *page, void *x, void *addr)
 {
        void **object = (void *)x;
+       struct kmem_cache_cpu *c;
        unsigned long flags;
 
        local_irq_save(flags);
-       if (likely(page == s->cpu_slab[smp_processor_id()] &&
-                                               !SlabDebug(page))) {
-               object[page->offset] = page->lockless_freelist;
-               page->lockless_freelist = object;
+       c = get_cpu_slab(s, smp_processor_id());
+       debug_check_no_locks_freed(object, c->objsize);
+       if (likely(page == c->page && c->node >= 0)) {
+               object[c->offset] = c->freelist;
+               c->freelist = object;
+               stat(c, FREE_FASTPATH);
        } else
-               __slab_free(s, page, x, addr);
+               __slab_free(s, page, x, addr, c->offset);
 
        local_irq_restore(flags);
 }
@@ -1736,8 +1784,9 @@ static inline int slab_order(int size, int min_objects,
 {
        int order;
        int rem;
+       int min_order = slub_min_order;
 
-       for (order = max(slub_min_order,
+       for (order = max(min_order,
                                fls(min_objects * size - 1) - PAGE_SHIFT);
                        order <= max_order; order++) {
 
@@ -1807,32 +1856,170 @@ static unsigned long calculate_alignment(unsigned long flags,
                unsigned long align, unsigned long size)
 {
        /*
-        * If the user wants hardware cache aligned objects then
-        * follow that suggestion if the object is sufficiently
-        * large.
+        * If the user wants hardware cache aligned objects then follow that
+        * suggestion if the object is sufficiently large.
         *
-        * The hardware cache alignment cannot override the
-        * specified alignment though. If that is greater
-        * then use it.
+        * The hardware cache alignment cannot override the specified
+        * alignment though. If that is greater then use it.
         */
-       if ((flags & SLAB_HWCACHE_ALIGN) &&
-                       size > cache_line_size() / 2)
-               return max_t(unsigned long, align, cache_line_size());
+       if (flags & SLAB_HWCACHE_ALIGN) {
+               unsigned long ralign = cache_line_size();
+               while (size <= ralign / 2)
+                       ralign /= 2;
+               align = max(align, ralign);
+       }
 
        if (align < ARCH_SLAB_MINALIGN)
-               return ARCH_SLAB_MINALIGN;
+               align = ARCH_SLAB_MINALIGN;
 
        return ALIGN(align, sizeof(void *));
 }
 
+static void init_kmem_cache_cpu(struct kmem_cache *s,
+                       struct kmem_cache_cpu *c)
+{
+       c->page = NULL;
+       c->freelist = NULL;
+       c->node = 0;
+       c->offset = s->offset / sizeof(void *);
+       c->objsize = s->objsize;
+}
+
 static void init_kmem_cache_node(struct kmem_cache_node *n)
 {
        n->nr_partial = 0;
        atomic_long_set(&n->nr_slabs, 0);
        spin_lock_init(&n->list_lock);
        INIT_LIST_HEAD(&n->partial);
+#ifdef CONFIG_SLUB_DEBUG
        INIT_LIST_HEAD(&n->full);
+#endif
+}
+
+#ifdef CONFIG_SMP
+/*
+ * Per cpu array for per cpu structures.
+ *
+ * The per cpu array places all kmem_cache_cpu structures from one processor
+ * close together meaning that it becomes possible that multiple per cpu
+ * structures are contained in one cacheline. This may be particularly
+ * beneficial for the kmalloc caches.
+ *
+ * A desktop system typically has around 60-80 slabs. With 100 here we are
+ * likely able to get per cpu structures for all caches from the array defined
+ * here. We must be able to cover all kmalloc caches during bootstrap.
+ *
+ * If the per cpu array is exhausted then fall back to kmalloc
+ * of individual cachelines. No sharing is possible then.
+ */
+#define NR_KMEM_CACHE_CPU 100
+
+static DEFINE_PER_CPU(struct kmem_cache_cpu,
+                               kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
+
+static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
+static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
+
+static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
+                                                       int cpu, gfp_t flags)
+{
+       struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
+
+       if (c)
+               per_cpu(kmem_cache_cpu_free, cpu) =
+                               (void *)c->freelist;
+       else {
+               /* Table overflow: So allocate ourselves */
+               c = kmalloc_node(
+                       ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
+                       flags, cpu_to_node(cpu));
+               if (!c)
+                       return NULL;
+       }
+
+       init_kmem_cache_cpu(s, c);
+       return c;
+}
+
+static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
+{
+       if (c < per_cpu(kmem_cache_cpu, cpu) ||
+                       c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
+               kfree(c);
+               return;
+       }
+       c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
+       per_cpu(kmem_cache_cpu_free, cpu) = c;
+}
+
+static void free_kmem_cache_cpus(struct kmem_cache *s)
+{
+       int cpu;
+
+       for_each_online_cpu(cpu) {
+               struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
+
+               if (c) {
+                       s->cpu_slab[cpu] = NULL;
+                       free_kmem_cache_cpu(c, cpu);
+               }
+       }
+}
+
+static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
+{
+       int cpu;
+
+       for_each_online_cpu(cpu) {
+               struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
+
+               if (c)
+                       continue;
+
+               c = alloc_kmem_cache_cpu(s, cpu, flags);
+               if (!c) {
+                       free_kmem_cache_cpus(s);
+                       return 0;
+               }
+               s->cpu_slab[cpu] = c;
+       }
+       return 1;
+}
+
+/*
+ * Initialize the per cpu array.
+ */
+static void init_alloc_cpu_cpu(int cpu)
+{
+       int i;
+
+       if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
+               return;
+
+       for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
+               free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
+
+       cpu_set(cpu, kmem_cach_cpu_free_init_once);
+}
+
+static void __init init_alloc_cpu(void)
+{
+       int cpu;
+
+       for_each_online_cpu(cpu)
+               init_alloc_cpu_cpu(cpu);
+  }
+
+#else
+static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
+static inline void init_alloc_cpu(void) {}
+
+static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
+{
+       init_kmem_cache_cpu(s, &s->cpu_slab);
+       return 1;
 }
+#endif
 
 #ifdef CONFIG_NUMA
 /*
@@ -1841,34 +2028,48 @@ static void init_kmem_cache_node(struct kmem_cache_node *n)
  * possible.
  *
  * Note that this function only works on the kmalloc_node_cache
- * when allocating for the kmalloc_node_cache.
+ * when allocating for the kmalloc_node_cache. This is used for bootstrapping
+ * memory on a fresh node that has no slab structures yet.
  */
-static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
-                                                               int node)
+static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
+                                                          int node)
 {
        struct page *page;
        struct kmem_cache_node *n;
+       unsigned long flags;
 
        BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
 
-       page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node);
+       page = new_slab(kmalloc_caches, gfpflags, node);
 
        BUG_ON(!page);
+       if (page_to_nid(page) != node) {
+               printk(KERN_ERR "SLUB: Unable to allocate memory from "
+                               "node %d\n", node);
+               printk(KERN_ERR "SLUB: Allocating a useless per node structure "
+                               "in order to be able to continue\n");
+       }
+
        n = page->freelist;
        BUG_ON(!n);
        page->freelist = get_freepointer(kmalloc_caches, n);
        page->inuse++;
        kmalloc_caches->node[node] = n;
-       setup_object_debug(kmalloc_caches, page, n);
+#ifdef CONFIG_SLUB_DEBUG
+       init_object(kmalloc_caches, n, 1);
+       init_tracking(kmalloc_caches, n);
+#endif
        init_kmem_cache_node(n);
        atomic_long_inc(&n->nr_slabs);
-       add_partial(n, page);
 
        /*
-        * new_slab() disables interupts. If we do not reenable interrupts here
-        * then bootup would continue with interrupts disabled.
+        * lockdep requires consistent irq usage for each lock
+        * so even though there cannot be a race this early in
+        * the boot sequence, we still disable irqs.
         */
-       local_irq_enable();
+       local_irq_save(flags);
+       add_partial(n, page, 0);
+       local_irq_restore(flags);
        return n;
 }
 
@@ -1876,7 +2077,7 @@ static void free_kmem_cache_nodes(struct kmem_cache *s)
 {
        int node;
 
-       for_each_online_node(node) {
+       for_each_node_state(node, N_NORMAL_MEMORY) {
                struct kmem_cache_node *n = s->node[node];
                if (n && n != &s->local_node)
                        kmem_cache_free(kmalloc_caches, n);
@@ -1894,7 +2095,7 @@ static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
        else
                local_node = 0;
 
-       for_each_online_node(node) {
+       for_each_node_state(node, N_NORMAL_MEMORY) {
                struct kmem_cache_node *n;
 
                if (local_node == node)
@@ -1942,6 +2143,14 @@ static int calculate_sizes(struct kmem_cache *s)
        unsigned long align = s->align;
 
        /*
+        * Round up object size to the next word boundary. We can only
+        * place the free pointer at word boundaries and this determines
+        * the possible location of the free pointer.
+        */
+       size = ALIGN(size, sizeof(void *));
+
+#ifdef CONFIG_SLUB_DEBUG
+       /*
         * Determine if we can poison the object itself. If the user of
         * the slab may touch the object after free or before allocation
         * then we should never poison the object itself.
@@ -1952,14 +2161,7 @@ static int calculate_sizes(struct kmem_cache *s)
        else
                s->flags &= ~__OBJECT_POISON;
 
-       /*
-        * Round up object size to the next word boundary. We can only
-        * place the free pointer at word boundaries and this determines
-        * the possible location of the free pointer.
-        */
-       size = ALIGN(size, sizeof(void *));
 
-#ifdef CONFIG_SLUB_DEBUG
        /*
         * If we are Redzoning then check if there is some space between the
         * end of the object and the free pointer. If not then add an
@@ -2023,49 +2225,67 @@ static int calculate_sizes(struct kmem_cache *s)
        size = ALIGN(size, align);
        s->size = size;
 
-       s->order = calculate_order(size);
+       if ((flags & __KMALLOC_CACHE) &&
+                       PAGE_SIZE / size < slub_min_objects) {
+               /*
+                * Kmalloc cache that would not have enough objects in
+                * an order 0 page. Kmalloc slabs can fallback to
+                * page allocator order 0 allocs so take a reasonably large
+                * order that will allows us a good number of objects.
+                */
+               s->order = max(slub_max_order, PAGE_ALLOC_COSTLY_ORDER);
+               s->flags |= __PAGE_ALLOC_FALLBACK;
+               s->allocflags |= __GFP_NOWARN;
+       } else
+               s->order = calculate_order(size);
+
        if (s->order < 0)
                return 0;
 
+       s->allocflags = 0;
+       if (s->order)
+               s->allocflags |= __GFP_COMP;
+
+       if (s->flags & SLAB_CACHE_DMA)
+               s->allocflags |= SLUB_DMA;
+
+       if (s->flags & SLAB_RECLAIM_ACCOUNT)
+               s->allocflags |= __GFP_RECLAIMABLE;
+
        /*
         * Determine the number of objects per slab
         */
        s->objects = (PAGE_SIZE << s->order) / size;
 
-       /*
-        * Verify that the number of objects is within permitted limits.
-        * The page->inuse field is only 16 bit wide! So we cannot have
-        * more than 64k objects per slab.
-        */
-       if (!s->objects || s->objects > 65535)
-               return 0;
-       return 1;
+       return !!s->objects;
 
 }
 
 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
                const char *name, size_t size,
                size_t align, unsigned long flags,
-               void (*ctor)(void *, struct kmem_cache *, unsigned long))
+               void (*ctor)(struct kmem_cache *, void *))
 {
        memset(s, 0, kmem_size);
        s->name = name;
        s->ctor = ctor;
        s->objsize = size;
-       s->flags = flags;
        s->align = align;
-       kmem_cache_open_debug_check(s);
+       s->flags = kmem_cache_flags(size, flags, name, ctor);
 
        if (!calculate_sizes(s))
                goto error;
 
        s->refcount = 1;
 #ifdef CONFIG_NUMA
-       s->defrag_ratio = 100;
+       s->remote_node_defrag_ratio = 100;
 #endif
+       if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
+               goto error;
 
-       if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
+       if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
                return 1;
+       free_kmem_cache_nodes(s);
 error:
        if (flags & SLAB_PANIC)
                panic("Cannot create slab %s size=%lu realsize=%u "
@@ -2080,7 +2300,7 @@ error:
  */
 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
 {
-       struct page * page;
+       struct page *page;
 
        page = get_object_page(object);
 
@@ -2094,7 +2314,7 @@ int kmem_ptr_validate(struct kmem_cache *s, const void *object)
        /*
         * We could also check if the object is on the slabs freelist.
         * But this would be too expensive and it seems that the main
-        * purpose of kmem_ptr_valid is to check if the object belongs
+        * purpose of kmem_ptr_valid() is to check if the object belongs
         * to a certain slab.
         */
        return 1;
@@ -2141,14 +2361,15 @@ static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
 /*
  * Release all resources used by a slab cache.
  */
-static int kmem_cache_close(struct kmem_cache *s)
+static inline int kmem_cache_close(struct kmem_cache *s)
 {
        int node;
 
        flush_all(s);
 
        /* Attempt to free all objects */
-       for_each_online_node(node) {
+       free_kmem_cache_cpus(s);
+       for_each_node_state(node, N_NORMAL_MEMORY) {
                struct kmem_cache_node *n = get_node(s, node);
 
                n->nr_partial -= free_list(s, n, &n->partial);
@@ -2169,12 +2390,12 @@ void kmem_cache_destroy(struct kmem_cache *s)
        s->refcount--;
        if (!s->refcount) {
                list_del(&s->list);
+               up_write(&slub_lock);
                if (kmem_cache_close(s))
                        WARN_ON(1);
                sysfs_slab_remove(s);
-               kfree(s);
-       }
-       up_write(&slub_lock);
+       } else
+               up_write(&slub_lock);
 }
 EXPORT_SYMBOL(kmem_cache_destroy);
 
@@ -2182,16 +2403,16 @@ EXPORT_SYMBOL(kmem_cache_destroy);
  *             Kmalloc subsystem
  *******************************************************************/
 
-struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
+struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
 EXPORT_SYMBOL(kmalloc_caches);
 
 #ifdef CONFIG_ZONE_DMA
-static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
+static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
 #endif
 
 static int __init setup_slub_min_order(char *str)
 {
-       get_option (&str, &slub_min_order);
+       get_option(&str, &slub_min_order);
 
        return 1;
 }
@@ -2200,7 +2421,7 @@ __setup("slub_min_order=", setup_slub_min_order);
 
 static int __init setup_slub_max_order(char *str)
 {
-       get_option (&str, &slub_max_order);
+       get_option(&str, &slub_max_order);
 
        return 1;
 }
@@ -2209,7 +2430,7 @@ __setup("slub_max_order=", setup_slub_max_order);
 
 static int __init setup_slub_min_objects(char *str)
 {
-       get_option (&str, &slub_min_objects);
+       get_option(&str, &slub_min_objects);
 
        return 1;
 }
@@ -2234,7 +2455,7 @@ static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
 
        down_write(&slub_lock);
        if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
-                       flags, NULL))
+                       flags | __KMALLOC_CACHE, NULL))
                goto panic;
 
        list_add(&s->list, &slab_caches);
@@ -2247,93 +2468,192 @@ panic:
        panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
 }
 
-static struct kmem_cache *get_slab(size_t size, gfp_t flags)
-{
-       int index = kmalloc_index(size);
-
-       if (!index)
-               return NULL;
-
-       /* Allocation too large? */
-       BUG_ON(index < 0);
-
 #ifdef CONFIG_ZONE_DMA
-       if ((flags & SLUB_DMA)) {
-               struct kmem_cache *s;
-               struct kmem_cache *x;
-               char *text;
-               size_t realsize;
-
-               s = kmalloc_caches_dma[index];
-               if (s)
-                       return s;
 
-               /* Dynamically create dma cache */
-               x = kmalloc(kmem_size, flags & ~SLUB_DMA);
-               if (!x)
-                       panic("Unable to allocate memory for dma cache\n");
+static void sysfs_add_func(struct work_struct *w)
+{
+       struct kmem_cache *s;
 
-               if (index <= KMALLOC_SHIFT_HIGH)
-                       realsize = 1 << index;
-               else {
-                       if (index == 1)
-                               realsize = 96;
-                       else
-                               realsize = 192;
+       down_write(&slub_lock);
+       list_for_each_entry(s, &slab_caches, list) {
+               if (s->flags & __SYSFS_ADD_DEFERRED) {
+                       s->flags &= ~__SYSFS_ADD_DEFERRED;
+                       sysfs_slab_add(s);
                }
-
-               text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
-                               (unsigned int)realsize);
-               s = create_kmalloc_cache(x, text, realsize, flags);
-               kmalloc_caches_dma[index] = s;
-               return s;
        }
-#endif
-       return &kmalloc_caches[index];
+       up_write(&slub_lock);
 }
 
-void *__kmalloc(size_t size, gfp_t flags)
-{
-       struct kmem_cache *s = get_slab(size, flags);
-
-       if (s)
-               return slab_alloc(s, flags, -1, __builtin_return_address(0));
-       return ZERO_SIZE_PTR;
-}
-EXPORT_SYMBOL(__kmalloc);
+static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
 
-#ifdef CONFIG_NUMA
-void *__kmalloc_node(size_t size, gfp_t flags, int node)
+static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
 {
-       struct kmem_cache *s = get_slab(size, flags);
+       struct kmem_cache *s;
+       char *text;
+       size_t realsize;
 
+       s = kmalloc_caches_dma[index];
        if (s)
-               return slab_alloc(s, flags, node, __builtin_return_address(0));
-       return ZERO_SIZE_PTR;
-}
-EXPORT_SYMBOL(__kmalloc_node);
-#endif
+               return s;
 
-size_t ksize(const void *object)
-{
-       struct page *page;
-       struct kmem_cache *s;
+       /* Dynamically create dma cache */
+       if (flags & __GFP_WAIT)
+               down_write(&slub_lock);
+       else {
+               if (!down_write_trylock(&slub_lock))
+                       goto out;
+       }
 
-       if (object == ZERO_SIZE_PTR)
-               return 0;
+       if (kmalloc_caches_dma[index])
+               goto unlock_out;
 
-       page = get_object_page(object);
-       BUG_ON(!page);
-       s = page->slab;
-       BUG_ON(!s);
+       realsize = kmalloc_caches[index].objsize;
+       text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
+                        (unsigned int)realsize);
+       s = kmalloc(kmem_size, flags & ~SLUB_DMA);
 
-       /*
+       if (!s || !text || !kmem_cache_open(s, flags, text,
+                       realsize, ARCH_KMALLOC_MINALIGN,
+                       SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
+               kfree(s);
+               kfree(text);
+               goto unlock_out;
+       }
+
+       list_add(&s->list, &slab_caches);
+       kmalloc_caches_dma[index] = s;
+
+       schedule_work(&sysfs_add_work);
+
+unlock_out:
+       up_write(&slub_lock);
+out:
+       return kmalloc_caches_dma[index];
+}
+#endif
+
+/*
+ * Conversion table for small slabs sizes / 8 to the index in the
+ * kmalloc array. This is necessary for slabs < 192 since we have non power
+ * of two cache sizes there. The size of larger slabs can be determined using
+ * fls.
+ */
+static s8 size_index[24] = {
+       3,      /* 8 */
+       4,      /* 16 */
+       5,      /* 24 */
+       5,      /* 32 */
+       6,      /* 40 */
+       6,      /* 48 */
+       6,      /* 56 */
+       6,      /* 64 */
+       1,      /* 72 */
+       1,      /* 80 */
+       1,      /* 88 */
+       1,      /* 96 */
+       7,      /* 104 */
+       7,      /* 112 */
+       7,      /* 120 */
+       7,      /* 128 */
+       2,      /* 136 */
+       2,      /* 144 */
+       2,      /* 152 */
+       2,      /* 160 */
+       2,      /* 168 */
+       2,      /* 176 */
+       2,      /* 184 */
+       2       /* 192 */
+};
+
+static struct kmem_cache *get_slab(size_t size, gfp_t flags)
+{
+       int index;
+
+       if (size <= 192) {
+               if (!size)
+                       return ZERO_SIZE_PTR;
+
+               index = size_index[(size - 1) / 8];
+       } else
+               index = fls(size - 1);
+
+#ifdef CONFIG_ZONE_DMA
+       if (unlikely((flags & SLUB_DMA)))
+               return dma_kmalloc_cache(index, flags);
+
+#endif
+       return &kmalloc_caches[index];
+}
+
+void *__kmalloc(size_t size, gfp_t flags)
+{
+       struct kmem_cache *s;
+
+       if (unlikely(size > PAGE_SIZE))
+               return kmalloc_large(size, flags);
+
+       s = get_slab(size, flags);
+
+       if (unlikely(ZERO_OR_NULL_PTR(s)))
+               return s;
+
+       return slab_alloc(s, flags, -1, __builtin_return_address(0));
+}
+EXPORT_SYMBOL(__kmalloc);
+
+static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
+{
+       struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
+                                               get_order(size));
+
+       if (page)
+               return page_address(page);
+       else
+               return NULL;
+}
+
+#ifdef CONFIG_NUMA
+void *__kmalloc_node(size_t size, gfp_t flags, int node)
+{
+       struct kmem_cache *s;
+
+       if (unlikely(size > PAGE_SIZE))
+               return kmalloc_large_node(size, flags, node);
+
+       s = get_slab(size, flags);
+
+       if (unlikely(ZERO_OR_NULL_PTR(s)))
+               return s;
+
+       return slab_alloc(s, flags, node, __builtin_return_address(0));
+}
+EXPORT_SYMBOL(__kmalloc_node);
+#endif
+
+size_t ksize(const void *object)
+{
+       struct page *page;
+       struct kmem_cache *s;
+
+       if (unlikely(object == ZERO_SIZE_PTR))
+               return 0;
+
+       page = virt_to_head_page(object);
+
+       if (unlikely(!PageSlab(page)))
+               return PAGE_SIZE << compound_order(page);
+
+       s = page->slab;
+
+#ifdef CONFIG_SLUB_DEBUG
+       /*
         * Debugging requires use of the padding between object
         * and whatever may come after it.
         */
        if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
                return s->objsize;
 
+#endif
        /*
         * If we have the need to store the freelist pointer
         * back there or track user information then we can
@@ -2341,7 +2661,6 @@ size_t ksize(const void *object)
         */
        if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
                return s->inuse;
-
        /*
         * Else we can use all the padding etc for the allocation
         */
@@ -2351,25 +2670,34 @@ EXPORT_SYMBOL(ksize);
 
 void kfree(const void *x)
 {
-       struct kmem_cache *s;
        struct page *page;
+       void *object = (void *)x;
 
-       /*
-        * This has to be an unsigned comparison. According to Linus
-        * some gcc version treat a pointer as a signed entity. Then
-        * this comparison would be true for all "negative" pointers
-        * (which would cover the whole upper half of the address space).
-        */
-       if ((unsigned long)x <= (unsigned long)ZERO_SIZE_PTR)
+       if (unlikely(ZERO_OR_NULL_PTR(x)))
                return;
 
        page = virt_to_head_page(x);
-       s = page->slab;
-
-       slab_free(s, page, (void *)x, __builtin_return_address(0));
+       if (unlikely(!PageSlab(page))) {
+               put_page(page);
+               return;
+       }
+       slab_free(page->slab, page, object, __builtin_return_address(0));
 }
 EXPORT_SYMBOL(kfree);
 
+static unsigned long count_partial(struct kmem_cache_node *n)
+{
+       unsigned long flags;
+       unsigned long x = 0;
+       struct page *page;
+
+       spin_lock_irqsave(&n->list_lock, flags);
+       list_for_each_entry(page, &n->partial, lru)
+               x += page->inuse;
+       spin_unlock_irqrestore(&n->list_lock, flags);
+       return x;
+}
+
 /*
  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  * the remaining slabs by the number of items in use. The slabs with the
@@ -2395,7 +2723,7 @@ int kmem_cache_shrink(struct kmem_cache *s)
                return -ENOMEM;
 
        flush_all(s);
-       for_each_online_node(node) {
+       for_each_node_state(node, N_NORMAL_MEMORY) {
                n = get_node(s, node);
 
                if (!n->nr_partial)
@@ -2424,15 +2752,11 @@ int kmem_cache_shrink(struct kmem_cache *s)
                                slab_unlock(page);
                                discard_slab(s, page);
                        } else {
-                               if (n->nr_partial > MAX_PARTIAL)
-                                       list_move(&page->lru,
-                                       slabs_by_inuse + page->inuse);
+                               list_move(&page->lru,
+                               slabs_by_inuse + page->inuse);
                        }
                }
 
-               if (n->nr_partial <= MAX_PARTIAL)
-                       goto out;
-
                /*
                 * Rebuild the partial list with the slabs filled up most
                 * first and the least used slabs at the end.
@@ -2440,7 +2764,6 @@ int kmem_cache_shrink(struct kmem_cache *s)
                for (i = s->objects - 1; i >= 0; i--)
                        list_splice(slabs_by_inuse + i, n->partial.prev);
 
-       out:
                spin_unlock_irqrestore(&n->list_lock, flags);
        }
 
@@ -2449,42 +2772,120 @@ int kmem_cache_shrink(struct kmem_cache *s)
 }
 EXPORT_SYMBOL(kmem_cache_shrink);
 
-/**
- * krealloc - reallocate memory. The contents will remain unchanged.
- * @p: object to reallocate memory for.
- * @new_size: how many bytes of memory are required.
- * @flags: the type of memory to allocate.
- *
- * The contents of the object pointed to are preserved up to the
- * lesser of the new and old sizes.  If @p is %NULL, krealloc()
- * behaves exactly like kmalloc().  If @size is 0 and @p is not a
- * %NULL pointer, the object pointed to is freed.
- */
-void *krealloc(const void *p, size_t new_size, gfp_t flags)
+#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
+static int slab_mem_going_offline_callback(void *arg)
+{
+       struct kmem_cache *s;
+
+       down_read(&slub_lock);
+       list_for_each_entry(s, &slab_caches, list)
+               kmem_cache_shrink(s);
+       up_read(&slub_lock);
+
+       return 0;
+}
+
+static void slab_mem_offline_callback(void *arg)
+{
+       struct kmem_cache_node *n;
+       struct kmem_cache *s;
+       struct memory_notify *marg = arg;
+       int offline_node;
+
+       offline_node = marg->status_change_nid;
+
+       /*
+        * If the node still has available memory. we need kmem_cache_node
+        * for it yet.
+        */
+       if (offline_node < 0)
+               return;
+
+       down_read(&slub_lock);
+       list_for_each_entry(s, &slab_caches, list) {
+               n = get_node(s, offline_node);
+               if (n) {
+                       /*
+                        * if n->nr_slabs > 0, slabs still exist on the node
+                        * that is going down. We were unable to free them,
+                        * and offline_pages() function shoudn't call this
+                        * callback. So, we must fail.
+                        */
+                       BUG_ON(atomic_long_read(&n->nr_slabs));
+
+                       s->node[offline_node] = NULL;
+                       kmem_cache_free(kmalloc_caches, n);
+               }
+       }
+       up_read(&slub_lock);
+}
+
+static int slab_mem_going_online_callback(void *arg)
 {
-       void *ret;
-       size_t ks;
+       struct kmem_cache_node *n;
+       struct kmem_cache *s;
+       struct memory_notify *marg = arg;
+       int nid = marg->status_change_nid;
+       int ret = 0;
 
-       if (unlikely(!p || p == ZERO_SIZE_PTR))
-               return kmalloc(new_size, flags);
+       /*
+        * If the node's memory is already available, then kmem_cache_node is
+        * already created. Nothing to do.
+        */
+       if (nid < 0)
+               return 0;
 
-       if (unlikely(!new_size)) {
-               kfree(p);
-               return ZERO_SIZE_PTR;
+       /*
+        * We are bringing a node online. No memory is availabe yet. We must
+        * allocate a kmem_cache_node structure in order to bring the node
+        * online.
+        */
+       down_read(&slub_lock);
+       list_for_each_entry(s, &slab_caches, list) {
+               /*
+                * XXX: kmem_cache_alloc_node will fallback to other nodes
+                *      since memory is not yet available from the node that
+                *      is brought up.
+                */
+               n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
+               if (!n) {
+                       ret = -ENOMEM;
+                       goto out;
+               }
+               init_kmem_cache_node(n);
+               s->node[nid] = n;
        }
+out:
+       up_read(&slub_lock);
+       return ret;
+}
 
-       ks = ksize(p);
-       if (ks >= new_size)
-               return (void *)p;
+static int slab_memory_callback(struct notifier_block *self,
+                               unsigned long action, void *arg)
+{
+       int ret = 0;
 
-       ret = kmalloc(new_size, flags);
-       if (ret) {
-               memcpy(ret, p, min(new_size, ks));
-               kfree(p);
+       switch (action) {
+       case MEM_GOING_ONLINE:
+               ret = slab_mem_going_online_callback(arg);
+               break;
+       case MEM_GOING_OFFLINE:
+               ret = slab_mem_going_offline_callback(arg);
+               break;
+       case MEM_OFFLINE:
+       case MEM_CANCEL_ONLINE:
+               slab_mem_offline_callback(arg);
+               break;
+       case MEM_ONLINE:
+       case MEM_CANCEL_OFFLINE:
+               break;
        }
+
+       ret = notifier_from_errno(ret);
        return ret;
 }
-EXPORT_SYMBOL(krealloc);
+
+#endif /* CONFIG_MEMORY_HOTPLUG */
 
 /********************************************************************
  *                     Basic setup of slabs
@@ -2495,6 +2896,8 @@ void __init kmem_cache_init(void)
        int i;
        int caches = 0;
 
+       init_alloc_cpu();
+
 #ifdef CONFIG_NUMA
        /*
         * Must first have the slab cache available for the allocations of the
@@ -2505,6 +2908,8 @@ void __init kmem_cache_init(void)
                sizeof(struct kmem_cache_node), GFP_KERNEL);
        kmalloc_caches[0].refcount = -1;
        caches++;
+
+       hotplug_memory_notifier(slab_memory_callback, 1);
 #endif
 
        /* Able to allocate the per node structures */
@@ -2522,27 +2927,47 @@ void __init kmem_cache_init(void)
                caches++;
        }
 
-       for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
+       for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
                create_kmalloc_cache(&kmalloc_caches[i],
                        "kmalloc", 1 << i, GFP_KERNEL);
                caches++;
        }
 
+
+       /*
+        * Patch up the size_index table if we have strange large alignment
+        * requirements for the kmalloc array. This is only the case for
+        * MIPS it seems. The standard arches will not generate any code here.
+        *
+        * Largest permitted alignment is 256 bytes due to the way we
+        * handle the index determination for the smaller caches.
+        *
+        * Make sure that nothing crazy happens if someone starts tinkering
+        * around with ARCH_KMALLOC_MINALIGN
+        */
+       BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
+               (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
+
+       for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
+               size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
+
        slab_state = UP;
 
        /* Provide the correct kmalloc names now that the caches are up */
-       for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
+       for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
                kmalloc_caches[i]. name =
                        kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
 
 #ifdef CONFIG_SMP
        register_cpu_notifier(&slab_notifier);
-#endif
-
        kmem_size = offsetof(struct kmem_cache, cpu_slab) +
-                               nr_cpu_ids * sizeof(struct page *);
+                               nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
+#else
+       kmem_size = sizeof(struct kmem_cache);
+#endif
 
-       printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
+       printk(KERN_INFO
+               "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
                " CPUs=%d, Nodes=%d\n",
                caches, cache_line_size(),
                slub_min_order, slub_max_order, slub_min_objects,
@@ -2557,6 +2982,9 @@ static int slab_unmergeable(struct kmem_cache *s)
        if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
                return 1;
 
+       if ((s->flags & __PAGE_ALLOC_FALLBACK))
+               return 1;
+
        if (s->ctor)
                return 1;
 
@@ -2570,8 +2998,8 @@ static int slab_unmergeable(struct kmem_cache *s)
 }
 
 static struct kmem_cache *find_mergeable(size_t size,
-               size_t align, unsigned long flags,
-               void (*ctor)(void *, struct kmem_cache *, unsigned long))
+               size_t align, unsigned long flags, const char *name,
+               void (*ctor)(struct kmem_cache *, void *))
 {
        struct kmem_cache *s;
 
@@ -2584,6 +3012,7 @@ static struct kmem_cache *find_mergeable(size_t size,
        size = ALIGN(size, sizeof(void *));
        align = calculate_alignment(flags, align, size);
        size = ALIGN(size, align);
+       flags = kmem_cache_flags(size, flags, name, NULL);
 
        list_for_each_entry(s, &slab_caches, list) {
                if (slab_unmergeable(s))
@@ -2592,14 +3021,13 @@ static struct kmem_cache *find_mergeable(size_t size,
                if (size > s->size)
                        continue;
 
-               if (((flags | slub_debug) & SLUB_MERGE_SAME) !=
-                       (s->flags & SLUB_MERGE_SAME))
+               if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
                                continue;
                /*
                 * Check if alignment is compatible.
                 * Courtesy of Adrian Drzewiecki
                 */
-               if ((s->size & ~(align -1)) != s->size)
+               if ((s->size & ~(align - 1)) != s->size)
                        continue;
 
                if (s->size - size >= sizeof(void *))
@@ -2612,41 +3040,52 @@ static struct kmem_cache *find_mergeable(size_t size,
 
 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
                size_t align, unsigned long flags,
-               void (*ctor)(void *, struct kmem_cache *, unsigned long),
-               void (*dtor)(void *, struct kmem_cache *, unsigned long))
+               void (*ctor)(struct kmem_cache *, void *))
 {
        struct kmem_cache *s;
 
-       BUG_ON(dtor);
        down_write(&slub_lock);
-       s = find_mergeable(size, align, flags, ctor);
+       s = find_mergeable(size, align, flags, name, ctor);
        if (s) {
+               int cpu;
+
                s->refcount++;
                /*
                 * Adjust the object sizes so that we clear
                 * the complete object on kzalloc.
                 */
                s->objsize = max(s->objsize, (int)size);
+
+               /*
+                * And then we need to update the object size in the
+                * per cpu structures
+                */
+               for_each_online_cpu(cpu)
+                       get_cpu_slab(s, cpu)->objsize = s->objsize;
+
                s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
+               up_write(&slub_lock);
+
                if (sysfs_slab_alias(s, name))
                        goto err;
-       } else {
-               s = kmalloc(kmem_size, GFP_KERNEL);
-               if (s && kmem_cache_open(s, GFP_KERNEL, name,
+               return s;
+       }
+
+       s = kmalloc(kmem_size, GFP_KERNEL);
+       if (s) {
+               if (kmem_cache_open(s, GFP_KERNEL, name,
                                size, align, flags, ctor)) {
-                       if (sysfs_slab_add(s)) {
-                               kfree(s);
-                               goto err;
-                       }
                        list_add(&s->list, &slab_caches);
-               } else
-                       kfree(s);
+                       up_write(&slub_lock);
+                       if (sysfs_slab_add(s))
+                               goto err;
+                       return s;
+               }
+               kfree(s);
        }
        up_write(&slub_lock);
-       return s;
 
 err:
-       up_write(&slub_lock);
        if (flags & SLAB_PANIC)
                panic("Cannot create slabcache %s\n", name);
        else
@@ -2655,17 +3094,6 @@ err:
 }
 EXPORT_SYMBOL(kmem_cache_create);
 
-void *kmem_cache_zalloc(struct kmem_cache *s, gfp_t flags)
-{
-       void *x;
-
-       x = slab_alloc(s, flags, -1, __builtin_return_address(0));
-       if (x)
-               memset(x, 0, s->objsize);
-       return x;
-}
-EXPORT_SYMBOL(kmem_cache_zalloc);
-
 #ifdef CONFIG_SMP
 /*
  * Use the cpu notifier to insure that the cpu slabs are flushed when
@@ -2679,15 +3107,29 @@ static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
        unsigned long flags;
 
        switch (action) {
+       case CPU_UP_PREPARE:
+       case CPU_UP_PREPARE_FROZEN:
+               init_alloc_cpu_cpu(cpu);
+               down_read(&slub_lock);
+               list_for_each_entry(s, &slab_caches, list)
+                       s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
+                                                       GFP_KERNEL);
+               up_read(&slub_lock);
+               break;
+
        case CPU_UP_CANCELED:
        case CPU_UP_CANCELED_FROZEN:
        case CPU_DEAD:
        case CPU_DEAD_FROZEN:
                down_read(&slub_lock);
                list_for_each_entry(s, &slab_caches, list) {
+                       struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
+
                        local_irq_save(flags);
                        __flush_cpu_slab(s, cpu);
                        local_irq_restore(flags);
+                       free_kmem_cache_cpu(c, cpu);
+                       s->cpu_slab[cpu] = NULL;
                }
                up_read(&slub_lock);
                break;
@@ -2697,17 +3139,23 @@ static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
        return NOTIFY_OK;
 }
 
-static struct notifier_block __cpuinitdata slab_notifier =
-       { &slab_cpuup_callback, NULL, 0 };
+static struct notifier_block __cpuinitdata slab_notifier = {
+       .notifier_call = slab_cpuup_callback
+};
 
 #endif
 
 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
 {
-       struct kmem_cache *s = get_slab(size, gfpflags);
+       struct kmem_cache *s;
+
+       if (unlikely(size > PAGE_SIZE))
+               return kmalloc_large(size, gfpflags);
 
-       if (!s)
-               return ZERO_SIZE_PTR;
+       s = get_slab(size, gfpflags);
+
+       if (unlikely(ZERO_OR_NULL_PTR(s)))
+               return s;
 
        return slab_alloc(s, gfpflags, -1, caller);
 }
@@ -2715,20 +3163,25 @@ void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
                                        int node, void *caller)
 {
-       struct kmem_cache *s = get_slab(size, gfpflags);
+       struct kmem_cache *s;
 
-       if (!s)
-               return ZERO_SIZE_PTR;
+       if (unlikely(size > PAGE_SIZE))
+               return kmalloc_large_node(size, gfpflags, node);
+
+       s = get_slab(size, gfpflags);
+
+       if (unlikely(ZERO_OR_NULL_PTR(s)))
+               return s;
 
        return slab_alloc(s, gfpflags, node, caller);
 }
 
 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
-static int validate_slab(struct kmem_cache *s, struct page *page)
+static int validate_slab(struct kmem_cache *s, struct page *page,
+                                               unsigned long *map)
 {
        void *p;
        void *addr = page_address(page);
-       DECLARE_BITMAP(map, s->objects);
 
        if (!check_slab(s, page) ||
                        !on_freelist(s, page, NULL))
@@ -2750,10 +3203,11 @@ static int validate_slab(struct kmem_cache *s, struct page *page)
        return 1;
 }
 
-static void validate_slab_slab(struct kmem_cache *s, struct page *page)
+static void validate_slab_slab(struct kmem_cache *s, struct page *page,
+                                               unsigned long *map)
 {
        if (slab_trylock(page)) {
-               validate_slab(s, page);
+               validate_slab(s, page, map);
                slab_unlock(page);
        } else
                printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
@@ -2770,7 +3224,8 @@ static void validate_slab_slab(struct kmem_cache *s, struct page *page)
        }
 }
 
-static int validate_slab_node(struct kmem_cache *s, struct kmem_cache_node *n)
+static int validate_slab_node(struct kmem_cache *s,
+               struct kmem_cache_node *n, unsigned long *map)
 {
        unsigned long count = 0;
        struct page *page;
@@ -2779,7 +3234,7 @@ static int validate_slab_node(struct kmem_cache *s, struct kmem_cache_node *n)
        spin_lock_irqsave(&n->list_lock, flags);
 
        list_for_each_entry(page, &n->partial, lru) {
-               validate_slab_slab(s, page);
+               validate_slab_slab(s, page, map);
                count++;
        }
        if (count != n->nr_partial)
@@ -2790,7 +3245,7 @@ static int validate_slab_node(struct kmem_cache *s, struct kmem_cache_node *n)
                goto out;
 
        list_for_each_entry(page, &n->full, lru) {
-               validate_slab_slab(s, page);
+               validate_slab_slab(s, page, map);
                count++;
        }
        if (count != atomic_long_read(&n->nr_slabs))
@@ -2803,17 +3258,23 @@ out:
        return count;
 }
 
-static unsigned long validate_slab_cache(struct kmem_cache *s)
+static long validate_slab_cache(struct kmem_cache *s)
 {
        int node;
        unsigned long count = 0;
+       unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
+                               sizeof(unsigned long), GFP_KERNEL);
+
+       if (!map)
+               return -ENOMEM;
 
        flush_all(s);
-       for_each_online_node(node) {
+       for_each_node_state(node, N_NORMAL_MEMORY) {
                struct kmem_cache_node *n = get_node(s, node);
 
-               count += validate_slab_node(s, n);
+               count += validate_slab_node(s, n, map);
        }
+       kfree(map);
        return count;
 }
 
@@ -2837,8 +3298,9 @@ static void resiliency_test(void)
        p = kzalloc(32, GFP_KERNEL);
        p[32 + sizeof(void *)] = 0x34;
        printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
-                       " 0x34 -> -0x%p\n", p);
-       printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
+                       " 0x34 -> -0x%p\n", p);
+       printk(KERN_ERR
+               "If allocated object is overwritten then not detectable\n\n");
 
        validate_slab_cache(kmalloc_caches + 5);
        p = kzalloc(64, GFP_KERNEL);
@@ -2846,7 +3308,8 @@ static void resiliency_test(void)
        *p = 0x56;
        printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
                                                                        p);
-       printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
+       printk(KERN_ERR
+               "If allocated object is overwritten then not detectable\n\n");
        validate_slab_cache(kmalloc_caches + 6);
 
        printk(KERN_ERR "\nB. Corruption after free\n");
@@ -2859,7 +3322,8 @@ static void resiliency_test(void)
        p = kzalloc(256, GFP_KERNEL);
        kfree(p);
        p[50] = 0x9a;
-       printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
+       printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
+                       p);
        validate_slab_cache(kmalloc_caches + 8);
 
        p = kzalloc(512, GFP_KERNEL);
@@ -3016,24 +3480,24 @@ static void process_slab(struct loc_track *t, struct kmem_cache *s,
 static int list_locations(struct kmem_cache *s, char *buf,
                                        enum track_item alloc)
 {
-       int n = 0;
+       int len = 0;
        unsigned long i;
        struct loc_track t = { 0, 0, NULL };
        int node;
 
        if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
-                       GFP_KERNEL))
+                       GFP_TEMPORARY))
                return sprintf(buf, "Out of memory\n");
 
        /* Push back cpu slabs */
        flush_all(s);
 
-       for_each_online_node(node) {
+       for_each_node_state(node, N_NORMAL_MEMORY) {
                struct kmem_cache_node *n = get_node(s, node);
                unsigned long flags;
                struct page *page;
 
-               if (!atomic_read(&n->nr_slabs))
+               if (!atomic_long_read(&n->nr_slabs))
                        continue;
 
                spin_lock_irqsave(&n->list_lock, flags);
@@ -3047,67 +3511,54 @@ static int list_locations(struct kmem_cache *s, char *buf,
        for (i = 0; i < t.count; i++) {
                struct location *l = &t.loc[i];
 
-               if (n > PAGE_SIZE - 100)
+               if (len > PAGE_SIZE - 100)
                        break;
-               n += sprintf(buf + n, "%7ld ", l->count);
+               len += sprintf(buf + len, "%7ld ", l->count);
 
                if (l->addr)
-                       n += sprint_symbol(buf + n, (unsigned long)l->addr);
+                       len += sprint_symbol(buf + len, (unsigned long)l->addr);
                else
-                       n += sprintf(buf + n, "<not-available>");
+                       len += sprintf(buf + len, "<not-available>");
 
                if (l->sum_time != l->min_time) {
                        unsigned long remainder;
 
-                       n += sprintf(buf + n, " age=%ld/%ld/%ld",
+                       len += sprintf(buf + len, " age=%ld/%ld/%ld",
                        l->min_time,
                        div_long_long_rem(l->sum_time, l->count, &remainder),
                        l->max_time);
                } else
-                       n += sprintf(buf + n, " age=%ld",
+                       len += sprintf(buf + len, " age=%ld",
                                l->min_time);
 
                if (l->min_pid != l->max_pid)
-                       n += sprintf(buf + n, " pid=%ld-%ld",
+                       len += sprintf(buf + len, " pid=%ld-%ld",
                                l->min_pid, l->max_pid);
                else
-                       n += sprintf(buf + n, " pid=%ld",
+                       len += sprintf(buf + len, " pid=%ld",
                                l->min_pid);
 
                if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
-                               n < PAGE_SIZE - 60) {
-                       n += sprintf(buf + n, " cpus=");
-                       n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
+                               len < PAGE_SIZE - 60) {
+                       len += sprintf(buf + len, " cpus=");
+                       len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
                                        l->cpus);
                }
 
                if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
-                               n < PAGE_SIZE - 60) {
-                       n += sprintf(buf + n, " nodes=");
-                       n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
+                               len < PAGE_SIZE - 60) {
+                       len += sprintf(buf + len, " nodes=");
+                       len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
                                        l->nodes);
                }
 
-               n += sprintf(buf + n, "\n");
+               len += sprintf(buf + len, "\n");
        }
 
        free_loc_track(&t);
        if (!t.count)
-               n += sprintf(buf, "No data\n");
-       return n;
-}
-
-static unsigned long count_partial(struct kmem_cache_node *n)
-{
-       unsigned long flags;
-       unsigned long x = 0;
-       struct page *page;
-
-       spin_lock_irqsave(&n->list_lock, flags);
-       list_for_each_entry(page, &n->partial, lru)
-               x += page->inuse;
-       spin_unlock_irqrestore(&n->list_lock, flags);
-       return x;
+               len += sprintf(buf, "No data\n");
+       return len;
 }
 
 enum slab_stat_type {
@@ -3122,8 +3573,8 @@ enum slab_stat_type {
 #define SO_CPU         (1 << SL_CPU)
 #define SO_OBJECTS     (1 << SL_OBJECTS)
 
-static unsigned long slab_objects(struct kmem_cache *s,
-                       char *buf, unsigned long flags)
+static ssize_t show_slab_objects(struct kmem_cache *s,
+                           char *buf, unsigned long flags)
 {
        unsigned long total = 0;
        int cpu;
@@ -3133,17 +3584,23 @@ static unsigned long slab_objects(struct kmem_cache *s,
        unsigned long *per_cpu;
 
        nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
+       if (!nodes)
+               return -ENOMEM;
        per_cpu = nodes + nr_node_ids;
 
        for_each_possible_cpu(cpu) {
-               struct page *page = s->cpu_slab[cpu];
-               int node;
+               struct page *page;
+               struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
+
+               if (!c)
+                       continue;
 
+               page = c->page;
+               node = c->node;
+               if (node < 0)
+                       continue;
                if (page) {
-                       node = page_to_nid(page);
                        if (flags & SO_CPU) {
-                               int x = 0;
-
                                if (flags & SO_OBJECTS)
                                        x = page->inuse;
                                else
@@ -3155,7 +3612,7 @@ static unsigned long slab_objects(struct kmem_cache *s,
                }
        }
 
-       for_each_online_node(node) {
+       for_each_node_state(node, N_NORMAL_MEMORY) {
                struct kmem_cache_node *n = get_node(s, node);
 
                if (flags & SO_PARTIAL) {
@@ -3168,7 +3625,7 @@ static unsigned long slab_objects(struct kmem_cache *s,
                }
 
                if (flags & SO_FULL) {
-                       int full_slabs = atomic_read(&n->nr_slabs)
+                       int full_slabs = atomic_long_read(&n->nr_slabs)
                                        - per_cpu[node]
                                        - n->nr_partial;
 
@@ -3183,7 +3640,7 @@ static unsigned long slab_objects(struct kmem_cache *s,
 
        x = sprintf(buf, "%lu", total);
 #ifdef CONFIG_NUMA
-       for_each_online_node(node)
+       for_each_node_state(node, N_NORMAL_MEMORY)
                if (nodes[node])
                        x += sprintf(buf + x, " N%d=%lu",
                                        node, nodes[node]);
@@ -3197,14 +3654,20 @@ static int any_slab_objects(struct kmem_cache *s)
        int node;
        int cpu;
 
-       for_each_possible_cpu(cpu)
-               if (s->cpu_slab[cpu])
+       for_each_possible_cpu(cpu) {
+               struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
+
+               if (c && c->page)
                        return 1;
+       }
 
-       for_each_node(node) {
+       for_each_online_node(node) {
                struct kmem_cache_node *n = get_node(s, node);
 
-               if (n->nr_partial || atomic_read(&n->nr_slabs))
+               if (!n)
+                       continue;
+
+               if (n->nr_partial || atomic_long_read(&n->nr_slabs))
                        return 1;
        }
        return 0;
@@ -3275,25 +3738,25 @@ SLAB_ATTR_RO(aliases);
 
 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
 {
-       return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
+       return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
 }
 SLAB_ATTR_RO(slabs);
 
 static ssize_t partial_show(struct kmem_cache *s, char *buf)
 {
-       return slab_objects(s, buf, SO_PARTIAL);
+       return show_slab_objects(s, buf, SO_PARTIAL);
 }
 SLAB_ATTR_RO(partial);
 
 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
 {
-       return slab_objects(s, buf, SO_CPU);
+       return show_slab_objects(s, buf, SO_CPU);
 }
 SLAB_ATTR_RO(cpu_slabs);
 
 static ssize_t objects_show(struct kmem_cache *s, char *buf)
 {
-       return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
+       return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
 }
 SLAB_ATTR_RO(objects);
 
@@ -3427,11 +3890,14 @@ static ssize_t validate_show(struct kmem_cache *s, char *buf)
 static ssize_t validate_store(struct kmem_cache *s,
                        const char *buf, size_t length)
 {
-       if (buf[0] == '1')
-               validate_slab_cache(s);
-       else
-               return -EINVAL;
-       return length;
+       int ret = -EINVAL;
+
+       if (buf[0] == '1') {
+               ret = validate_slab_cache(s);
+               if (ret >= 0)
+                       ret = length;
+       }
+       return ret;
 }
 SLAB_ATTR(validate);
 
@@ -3471,24 +3937,79 @@ static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
 SLAB_ATTR_RO(free_calls);
 
 #ifdef CONFIG_NUMA
-static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
+static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
 {
-       return sprintf(buf, "%d\n", s->defrag_ratio / 10);
+       return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
 }
 
-static ssize_t defrag_ratio_store(struct kmem_cache *s,
+static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
                                const char *buf, size_t length)
 {
        int n = simple_strtoul(buf, NULL, 10);
 
        if (n < 100)
-               s->defrag_ratio = n * 10;
+               s->remote_node_defrag_ratio = n * 10;
        return length;
 }
-SLAB_ATTR(defrag_ratio);
+SLAB_ATTR(remote_node_defrag_ratio);
+#endif
+
+#ifdef CONFIG_SLUB_STATS
+static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
+{
+       unsigned long sum  = 0;
+       int cpu;
+       int len;
+       int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
+
+       if (!data)
+               return -ENOMEM;
+
+       for_each_online_cpu(cpu) {
+               unsigned x = get_cpu_slab(s, cpu)->stat[si];
+
+               data[cpu] = x;
+               sum += x;
+       }
+
+       len = sprintf(buf, "%lu", sum);
+
+       for_each_online_cpu(cpu) {
+               if (data[cpu] && len < PAGE_SIZE - 20)
+                       len += sprintf(buf + len, " c%d=%u", cpu, data[cpu]);
+       }
+       kfree(data);
+       return len + sprintf(buf + len, "\n");
+}
+
+#define STAT_ATTR(si, text)                                    \
+static ssize_t text##_show(struct kmem_cache *s, char *buf)    \
+{                                                              \
+       return show_stat(s, buf, si);                           \
+}                                                              \
+SLAB_ATTR_RO(text);                                            \
+
+STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
+STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
+STAT_ATTR(FREE_FASTPATH, free_fastpath);
+STAT_ATTR(FREE_SLOWPATH, free_slowpath);
+STAT_ATTR(FREE_FROZEN, free_frozen);
+STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
+STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
+STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
+STAT_ATTR(ALLOC_SLAB, alloc_slab);
+STAT_ATTR(ALLOC_REFILL, alloc_refill);
+STAT_ATTR(FREE_SLAB, free_slab);
+STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
+STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
+STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
+STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
+STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
+STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
+
 #endif
 
-static struct attribute * slab_attrs[] = {
+static struct attribute *slab_attrs[] = {
        &slab_size_attr.attr,
        &object_size_attr.attr,
        &objs_per_slab_attr.attr,
@@ -3516,7 +4037,26 @@ static struct attribute * slab_attrs[] = {
        &cache_dma_attr.attr,
 #endif
 #ifdef CONFIG_NUMA
-       &defrag_ratio_attr.attr,
+       &remote_node_defrag_ratio_attr.attr,
+#endif
+#ifdef CONFIG_SLUB_STATS
+       &alloc_fastpath_attr.attr,
+       &alloc_slowpath_attr.attr,
+       &free_fastpath_attr.attr,
+       &free_slowpath_attr.attr,
+       &free_frozen_attr.attr,
+       &free_add_partial_attr.attr,
+       &free_remove_partial_attr.attr,
+       &alloc_from_partial_attr.attr,
+       &alloc_slab_attr.attr,
+       &alloc_refill_attr.attr,
+       &free_slab_attr.attr,
+       &cpuslab_flush_attr.attr,
+       &deactivate_full_attr.attr,
+       &deactivate_empty_attr.attr,
+       &deactivate_to_head_attr.attr,
+       &deactivate_to_tail_attr.attr,
+       &deactivate_remote_frees_attr.attr,
 #endif
        NULL
 };
@@ -3563,6 +4103,13 @@ static ssize_t slab_attr_store(struct kobject *kobj,
        return err;
 }
 
+static void kmem_cache_release(struct kobject *kobj)
+{
+       struct kmem_cache *s = to_slab(kobj);
+
+       kfree(s);
+}
+
 static struct sysfs_ops slab_sysfs_ops = {
        .show = slab_attr_show,
        .store = slab_attr_store,
@@ -3570,6 +4117,7 @@ static struct sysfs_ops slab_sysfs_ops = {
 
 static struct kobj_type slab_ktype = {
        .sysfs_ops = &slab_sysfs_ops,
+       .release = kmem_cache_release
 };
 
 static int uevent_filter(struct kset *kset, struct kobject *kobj)
@@ -3585,13 +4133,13 @@ static struct kset_uevent_ops slab_uevent_ops = {
        .filter = uevent_filter,
 };
 
-decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
+static struct kset *slab_kset;
 
 #define ID_STR_LENGTH 64
 
 /* Create a unique string id for a slab cache:
- * format
- * :[flags-]size:[memory address of kmemcache]
+ *
+ * Format      :[flags-]size
  */
 static char *create_unique_id(struct kmem_cache *s)
 {
@@ -3638,7 +4186,7 @@ static int sysfs_slab_add(struct kmem_cache *s)
                 * This is typically the case for debug situations. In that
                 * case we can catch duplicate names easily.
                 */
-               sysfs_remove_link(&slab_subsys.kobj, s->name);
+               sysfs_remove_link(&slab_kset->kobj, s->name);
                name = s->name;
        } else {
                /*
@@ -3648,12 +4196,12 @@ static int sysfs_slab_add(struct kmem_cache *s)
                name = create_unique_id(s);
        }
 
-       kobj_set_kset_s(s, slab_subsys);
-       kobject_set_name(&s->kobj, name);
-       kobject_init(&s->kobj);
-       err = kobject_add(&s->kobj);
-       if (err)
+       s->kobj.kset = slab_kset;
+       err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
+       if (err) {
+               kobject_put(&s->kobj);
                return err;
+       }
 
        err = sysfs_create_group(&s->kobj, &slab_attr_group);
        if (err)
@@ -3671,6 +4219,7 @@ static void sysfs_slab_remove(struct kmem_cache *s)
 {
        kobject_uevent(&s->kobj, KOBJ_REMOVE);
        kobject_del(&s->kobj);
+       kobject_put(&s->kobj);
 }
 
 /*
@@ -3683,7 +4232,7 @@ struct saved_alias {
        struct saved_alias *next;
 };
 
-struct saved_alias *alias_list;
+static struct saved_alias *alias_list;
 
 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
 {
@@ -3693,9 +4242,8 @@ static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
                /*
                 * If we have a leftover link then remove it.
                 */
-               sysfs_remove_link(&slab_subsys.kobj, name);
-               return sysfs_create_link(&slab_subsys.kobj,
-                                               &s->kobj, name);
+               sysfs_remove_link(&slab_kset->kobj, name);
+               return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
        }
 
        al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
@@ -3714,8 +4262,8 @@ static int __init slab_sysfs_init(void)
        struct kmem_cache *s;
        int err;
 
-       err = subsystem_register(&slab_subsys);
-       if (err) {
+       slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
+       if (!slab_kset) {
                printk(KERN_ERR "Cannot register slab subsystem.\n");
                return -ENOSYS;
        }
@@ -3724,7 +4272,9 @@ static int __init slab_sysfs_init(void)
 
        list_for_each_entry(s, &slab_caches, list) {
                err = sysfs_slab_add(s);
-               BUG_ON(err);
+               if (err)
+                       printk(KERN_ERR "SLUB: Unable to add boot slab %s"
+                                               " to sysfs\n", s->name);
        }
 
        while (alias_list) {
@@ -3732,7 +4282,9 @@ static int __init slab_sysfs_init(void)
 
                alias_list = alias_list->next;
                err = sysfs_slab_alias(al->s, al->name);
-               BUG_ON(err);
+               if (err)
+                       printk(KERN_ERR "SLUB: Unable to add boot slab alias"
+                                       " %s to sysfs\n", s->name);
                kfree(al);
        }
 
@@ -3742,3 +4294,89 @@ static int __init slab_sysfs_init(void)
 
 __initcall(slab_sysfs_init);
 #endif
+
+/*
+ * The /proc/slabinfo ABI
+ */
+#ifdef CONFIG_SLABINFO
+
+ssize_t slabinfo_write(struct file *file, const char __user * buffer,
+                       size_t count, loff_t *ppos)
+{
+       return -EINVAL;
+}
+
+
+static void print_slabinfo_header(struct seq_file *m)
+{
+       seq_puts(m, "slabinfo - version: 2.1\n");
+       seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
+                "<objperslab> <pagesperslab>");
+       seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
+       seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
+       seq_putc(m, '\n');
+}
+
+static void *s_start(struct seq_file *m, loff_t *pos)
+{
+       loff_t n = *pos;
+
+       down_read(&slub_lock);
+       if (!n)
+               print_slabinfo_header(m);
+
+       return seq_list_start(&slab_caches, *pos);
+}
+
+static void *s_next(struct seq_file *m, void *p, loff_t *pos)
+{
+       return seq_list_next(p, &slab_caches, pos);
+}
+
+static void s_stop(struct seq_file *m, void *p)
+{
+       up_read(&slub_lock);
+}
+
+static int s_show(struct seq_file *m, void *p)
+{
+       unsigned long nr_partials = 0;
+       unsigned long nr_slabs = 0;
+       unsigned long nr_inuse = 0;
+       unsigned long nr_objs;
+       struct kmem_cache *s;
+       int node;
+
+       s = list_entry(p, struct kmem_cache, list);
+
+       for_each_online_node(node) {
+               struct kmem_cache_node *n = get_node(s, node);
+
+               if (!n)
+                       continue;
+
+               nr_partials += n->nr_partial;
+               nr_slabs += atomic_long_read(&n->nr_slabs);
+               nr_inuse += count_partial(n);
+       }
+
+       nr_objs = nr_slabs * s->objects;
+       nr_inuse += (nr_slabs - nr_partials) * s->objects;
+
+       seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
+                  nr_objs, s->size, s->objects, (1 << s->order));
+       seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
+       seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
+                  0UL);
+       seq_putc(m, '\n');
+       return 0;
+}
+
+const struct seq_operations slabinfo_op = {
+       .start = s_start,
+       .next = s_next,
+       .stop = s_stop,
+       .show = s_show,
+};
+
+#endif /* CONFIG_SLABINFO */