nfsd4: fix bad seqid on lock request incompatible with open mode
[safe/jmp/linux-2.6] / mm / slub.c
index 510ee9a..5cc4b7d 100644 (file)
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -20,6 +20,7 @@
 #include <linux/mempolicy.h>
 #include <linux/ctype.h>
 #include <linux/kallsyms.h>
+#include <linux/memory.h>
 
 /*
  * Lock order:
@@ -90,7 +91,7 @@
  *                     One use of this flag is to mark slabs that are
  *                     used for allocations. Then such a slab becomes a cpu
  *                     slab. The cpu slab may be equipped with an additional
- *                     lockless_freelist that allows lockless access to
+ *                     freelist that allows lockless access to
  *                     free objects in addition to the regular freelist
  *                     that requires the slab lock.
  *
@@ -140,11 +141,6 @@ static inline void ClearSlabDebug(struct page *page)
 /*
  * Issues still to be resolved:
  *
- * - The per cpu array is updated for each new slab and and is a remote
- *   cacheline for most nodes. This could become a bouncing cacheline given
- *   enough frequent updates. There are 16 pointers in a cacheline, so at
- *   max 16 cpus could compete for the cacheline which may be okay.
- *
  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  *
  * - Variable sizing of the per node arrays
@@ -176,7 +172,7 @@ static inline void ClearSlabDebug(struct page *page)
  * Mininum number of partial slabs. These will be left on the partial
  * lists even if they are empty. kmem_cache_shrink may reclaim them.
  */
-#define MIN_PARTIAL 2
+#define MIN_PARTIAL 5
 
 /*
  * Maximum number of desirable partial slabs.
@@ -205,13 +201,9 @@ static inline void ClearSlabDebug(struct page *page)
 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
 #endif
 
-/*
- * The page->inuse field is 16 bit thus we have this limitation
- */
-#define MAX_OBJECTS_PER_SLAB 65535
-
 /* Internal SLUB flags */
-#define __OBJECT_POISON 0x80000000     /* Poison object */
+#define __OBJECT_POISON                0x80000000 /* Poison object */
+#define __SYSFS_ADD_DEFERRED   0x40000000 /* Not yet visible via sysfs */
 
 /* Not all arches define cache_line_size */
 #ifndef cache_line_size
@@ -276,6 +268,15 @@ static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
 #endif
 }
 
+static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
+{
+#ifdef CONFIG_SMP
+       return s->cpu_slab[cpu];
+#else
+       return &s->cpu_slab;
+#endif
+}
+
 static inline int check_valid_pointer(struct kmem_cache *s,
                                struct page *page, const void *object)
 {
@@ -728,11 +729,6 @@ static int check_slab(struct kmem_cache *s, struct page *page)
                slab_err(s, page, "Not a valid slab page");
                return 0;
        }
-       if (page->offset * sizeof(void *) != s->offset) {
-               slab_err(s, page, "Corrupted offset %lu",
-                       (unsigned long)(page->offset * sizeof(void *)));
-               return 0;
-       }
        if (page->inuse > s->objects) {
                slab_err(s, page, "inuse %u > max %u",
                        s->name, page->inuse, s->objects);
@@ -871,8 +867,6 @@ bad:
                slab_fix(s, "Marking all objects used");
                page->inuse = s->objects;
                page->freelist = NULL;
-               /* Fix up fields that may be corrupted */
-               page->offset = s->offset / sizeof(void *);
        }
        return 0;
 }
@@ -985,7 +979,9 @@ out:
 
 __setup("slub_debug", setup_slub_debug);
 
-static void kmem_cache_open_debug_check(struct kmem_cache *s)
+static unsigned long kmem_cache_flags(unsigned long objsize,
+       unsigned long flags, const char *name,
+       void (*ctor)(struct kmem_cache *, void *))
 {
        /*
         * The page->offset field is only 16 bit wide. This is an offset
@@ -999,19 +995,21 @@ static void kmem_cache_open_debug_check(struct kmem_cache *s)
         * Debugging or ctor may create a need to move the free
         * pointer. Fail if this happens.
         */
-       if (s->objsize >= 65535 * sizeof(void *)) {
-               BUG_ON(s->flags & (SLAB_RED_ZONE | SLAB_POISON |
+       if (objsize >= 65535 * sizeof(void *)) {
+               BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
                                SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
-               BUG_ON(s->ctor);
-       }
-       else
+               BUG_ON(ctor);
+       } else {
                /*
                 * Enable debugging if selected on the kernel commandline.
                 */
                if (slub_debug && (!slub_debug_slabs ||
-                   strncmp(slub_debug_slabs, s->name,
+                   strncmp(slub_debug_slabs, name,
                        strlen(slub_debug_slabs)) == 0))
-                               s->flags |= slub_debug;
+                               flags |= slub_debug;
+       }
+
+       return flags;
 }
 #else
 static inline void setup_object_debug(struct kmem_cache *s,
@@ -1028,7 +1026,12 @@ static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
 static inline int check_object(struct kmem_cache *s, struct page *page,
                        void *object, int active) { return 1; }
 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
-static inline void kmem_cache_open_debug_check(struct kmem_cache *s) {}
+static inline unsigned long kmem_cache_flags(unsigned long objsize,
+       unsigned long flags, const char *name,
+       void (*ctor)(struct kmem_cache *, void *))
+{
+       return flags;
+}
 #define slub_debug 0
 #endif
 /*
@@ -1045,6 +1048,9 @@ static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
        if (s->flags & SLAB_CACHE_DMA)
                flags |= SLUB_DMA;
 
+       if (s->flags & SLAB_RECLAIM_ACCOUNT)
+               flags |= __GFP_RECLAIMABLE;
+
        if (node == -1)
                page = alloc_pages(flags, s->order);
        else
@@ -1066,7 +1072,7 @@ static void setup_object(struct kmem_cache *s, struct page *page,
 {
        setup_object_debug(s, page, object);
        if (unlikely(s->ctor))
-               s->ctor(object, s, 0);
+               s->ctor(s, object);
 }
 
 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
@@ -1074,23 +1080,19 @@ static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
        struct page *page;
        struct kmem_cache_node *n;
        void *start;
-       void *end;
        void *last;
        void *p;
 
-       BUG_ON(flags & ~(GFP_DMA | __GFP_ZERO | GFP_LEVEL_MASK));
-
-       if (flags & __GFP_WAIT)
-               local_irq_enable();
+       BUG_ON(flags & GFP_SLAB_BUG_MASK);
 
-       page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
+       page = allocate_slab(s,
+               flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
        if (!page)
                goto out;
 
        n = get_node(s, page_to_nid(page));
        if (n)
                atomic_long_inc(&n->nr_slabs);
-       page->offset = s->offset / sizeof(void *);
        page->slab = s;
        page->flags |= 1 << PG_slab;
        if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
@@ -1098,7 +1100,6 @@ static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
                SetSlabDebug(page);
 
        start = page_address(page);
-       end = start + s->objects * s->size;
 
        if (unlikely(s->flags & SLAB_POISON))
                memset(start, POISON_INUSE, PAGE_SIZE << s->order);
@@ -1113,11 +1114,8 @@ static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
        set_freepointer(s, last, NULL);
 
        page->freelist = start;
-       page->lockless_freelist = NULL;
        page->inuse = 0;
 out:
-       if (flags & __GFP_WAIT)
-               local_irq_disable();
        return page;
 }
 
@@ -1131,6 +1129,7 @@ static void __free_slab(struct kmem_cache *s, struct page *page)
                slab_pad_check(s, page);
                for_each_object(p, s, page_address(page))
                        check_object(s, page, p, 0);
+               ClearSlabDebug(page);
        }
 
        mod_zone_page_state(page_zone(page),
@@ -1138,7 +1137,6 @@ static void __free_slab(struct kmem_cache *s, struct page *page)
                NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
                - pages);
 
-       page->mapping = NULL;
        __free_pages(page, s->order);
 }
 
@@ -1169,7 +1167,6 @@ static void discard_slab(struct kmem_cache *s, struct page *page)
 
        atomic_long_dec(&n->nr_slabs);
        reset_page_mapcount(page);
-       ClearSlabDebug(page);
        __ClearPageSlab(page);
        free_slab(s, page);
 }
@@ -1373,33 +1370,34 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page)
 /*
  * Remove the cpu slab
  */
-static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
+static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
 {
+       struct page *page = c->page;
        /*
         * Merge cpu freelist into freelist. Typically we get here
         * because both freelists are empty. So this is unlikely
         * to occur.
         */
-       while (unlikely(page->lockless_freelist)) {
+       while (unlikely(c->freelist)) {
                void **object;
 
                /* Retrieve object from cpu_freelist */
-               object = page->lockless_freelist;
-               page->lockless_freelist = page->lockless_freelist[page->offset];
+               object = c->freelist;
+               c->freelist = c->freelist[c->offset];
 
                /* And put onto the regular freelist */
-               object[page->offset] = page->freelist;
+               object[c->offset] = page->freelist;
                page->freelist = object;
                page->inuse--;
        }
-       s->cpu_slab[cpu] = NULL;
+       c->page = NULL;
        unfreeze_slab(s, page);
 }
 
-static inline void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
+static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
 {
-       slab_lock(page);
-       deactivate_slab(s, page, cpu);
+       slab_lock(c->page);
+       deactivate_slab(s, c);
 }
 
 /*
@@ -1408,18 +1406,17 @@ static inline void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
  */
 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
 {
-       struct page *page = s->cpu_slab[cpu];
+       struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
 
-       if (likely(page))
-               flush_slab(s, page, cpu);
+       if (likely(c && c->page))
+               flush_slab(s, c);
 }
 
 static void flush_cpu_slab(void *d)
 {
        struct kmem_cache *s = d;
-       int cpu = smp_processor_id();
 
-       __flush_cpu_slab(s, cpu);
+       __flush_cpu_slab(s, smp_processor_id());
 }
 
 static void flush_all(struct kmem_cache *s)
@@ -1436,6 +1433,19 @@ static void flush_all(struct kmem_cache *s)
 }
 
 /*
+ * Check if the objects in a per cpu structure fit numa
+ * locality expectations.
+ */
+static inline int node_match(struct kmem_cache_cpu *c, int node)
+{
+#ifdef CONFIG_NUMA
+       if (node != -1 && c->node != node)
+               return 0;
+#endif
+       return 1;
+}
+
+/*
  * Slow path. The lockless freelist is empty or we need to perform
  * debugging duties.
  *
@@ -1453,80 +1463,69 @@ static void flush_all(struct kmem_cache *s)
  * we need to allocate a new slab. This is slowest path since we may sleep.
  */
 static void *__slab_alloc(struct kmem_cache *s,
-               gfp_t gfpflags, int node, void *addr, struct page *page)
+               gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
 {
        void **object;
-       int cpu = smp_processor_id();
+       struct page *new;
 
-       if (!page)
+       if (!c->page)
                goto new_slab;
 
-       slab_lock(page);
-       if (unlikely(node != -1 && page_to_nid(page) != node))
+       slab_lock(c->page);
+       if (unlikely(!node_match(c, node)))
                goto another_slab;
 load_freelist:
-       object = page->freelist;
+       object = c->page->freelist;
        if (unlikely(!object))
                goto another_slab;
-       if (unlikely(SlabDebug(page)))
+       if (unlikely(SlabDebug(c->page)))
                goto debug;
 
-       object = page->freelist;
-       page->lockless_freelist = object[page->offset];
-       page->inuse = s->objects;
-       page->freelist = NULL;
-       slab_unlock(page);
+       object = c->page->freelist;
+       c->freelist = object[c->offset];
+       c->page->inuse = s->objects;
+       c->page->freelist = NULL;
+       c->node = page_to_nid(c->page);
+       slab_unlock(c->page);
        return object;
 
 another_slab:
-       deactivate_slab(s, page, cpu);
+       deactivate_slab(s, c);
 
 new_slab:
-       page = get_partial(s, gfpflags, node);
-       if (page) {
-               s->cpu_slab[cpu] = page;
+       new = get_partial(s, gfpflags, node);
+       if (new) {
+               c->page = new;
                goto load_freelist;
        }
 
-       page = new_slab(s, gfpflags, node);
-       if (page) {
-               cpu = smp_processor_id();
-               if (s->cpu_slab[cpu]) {
-                       /*
-                        * Someone else populated the cpu_slab while we
-                        * enabled interrupts, or we have gotten scheduled
-                        * on another cpu. The page may not be on the
-                        * requested node even if __GFP_THISNODE was
-                        * specified. So we need to recheck.
-                        */
-                       if (node == -1 ||
-                               page_to_nid(s->cpu_slab[cpu]) == node) {
-                               /*
-                                * Current cpuslab is acceptable and we
-                                * want the current one since its cache hot
-                                */
-                               discard_slab(s, page);
-                               page = s->cpu_slab[cpu];
-                               slab_lock(page);
-                               goto load_freelist;
-                       }
-                       /* New slab does not fit our expectations */
-                       flush_slab(s, s->cpu_slab[cpu], cpu);
-               }
-               slab_lock(page);
-               SetSlabFrozen(page);
-               s->cpu_slab[cpu] = page;
+       if (gfpflags & __GFP_WAIT)
+               local_irq_enable();
+
+       new = new_slab(s, gfpflags, node);
+
+       if (gfpflags & __GFP_WAIT)
+               local_irq_disable();
+
+       if (new) {
+               c = get_cpu_slab(s, smp_processor_id());
+               if (c->page)
+                       flush_slab(s, c);
+               slab_lock(new);
+               SetSlabFrozen(new);
+               c->page = new;
                goto load_freelist;
        }
        return NULL;
 debug:
-       object = page->freelist;
-       if (!alloc_debug_processing(s, page, object, addr))
+       object = c->page->freelist;
+       if (!alloc_debug_processing(s, c->page, object, addr))
                goto another_slab;
 
-       page->inuse++;
-       page->freelist = object[page->offset];
-       slab_unlock(page);
+       c->page->inuse++;
+       c->page->freelist = object[c->offset];
+       c->node = -1;
+       slab_unlock(c->page);
        return object;
 }
 
@@ -1543,25 +1542,24 @@ debug:
 static void __always_inline *slab_alloc(struct kmem_cache *s,
                gfp_t gfpflags, int node, void *addr)
 {
-       struct page *page;
        void **object;
        unsigned long flags;
+       struct kmem_cache_cpu *c;
 
        local_irq_save(flags);
-       page = s->cpu_slab[smp_processor_id()];
-       if (unlikely(!page || !page->lockless_freelist ||
-                       (node != -1 && page_to_nid(page) != node)))
+       c = get_cpu_slab(s, smp_processor_id());
+       if (unlikely(!c->freelist || !node_match(c, node)))
 
-               object = __slab_alloc(s, gfpflags, node, addr, page);
+               object = __slab_alloc(s, gfpflags, node, addr, c);
 
        else {
-               object = page->lockless_freelist;
-               page->lockless_freelist = object[page->offset];
+               object = c->freelist;
+               c->freelist = object[c->offset];
        }
        local_irq_restore(flags);
 
        if (unlikely((gfpflags & __GFP_ZERO) && object))
-               memset(object, 0, s->objsize);
+               memset(object, 0, c->objsize);
 
        return object;
 }
@@ -1589,7 +1587,7 @@ EXPORT_SYMBOL(kmem_cache_alloc_node);
  * handling required then we can return immediately.
  */
 static void __slab_free(struct kmem_cache *s, struct page *page,
-                                       void *x, void *addr)
+                               void *x, void *addr, unsigned int offset)
 {
        void *prior;
        void **object = (void *)x;
@@ -1599,7 +1597,7 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
        if (unlikely(SlabDebug(page)))
                goto debug;
 checks_ok:
-       prior = object[page->offset] = page->freelist;
+       prior = object[offset] = page->freelist;
        page->freelist = object;
        page->inuse--;
 
@@ -1615,7 +1613,7 @@ checks_ok:
         * then add it.
         */
        if (unlikely(!prior))
-               add_partial(get_node(s, page_to_nid(page)), page);
+               add_partial_tail(get_node(s, page_to_nid(page)), page);
 
 out_unlock:
        slab_unlock(page);
@@ -1654,14 +1652,16 @@ static void __always_inline slab_free(struct kmem_cache *s,
 {
        void **object = (void *)x;
        unsigned long flags;
+       struct kmem_cache_cpu *c;
 
        local_irq_save(flags);
-       if (likely(page == s->cpu_slab[smp_processor_id()] &&
-                                               !SlabDebug(page))) {
-               object[page->offset] = page->lockless_freelist;
-               page->lockless_freelist = object;
+       debug_check_no_locks_freed(object, s->objsize);
+       c = get_cpu_slab(s, smp_processor_id());
+       if (likely(page == c->page && c->node >= 0)) {
+               object[c->offset] = c->freelist;
+               c->freelist = object;
        } else
-               __slab_free(s, page, x, addr);
+               __slab_free(s, page, x, addr, c->offset);
 
        local_irq_restore(flags);
 }
@@ -1748,14 +1748,6 @@ static inline int slab_order(int size, int min_objects,
        int rem;
        int min_order = slub_min_order;
 
-       /*
-        * If we would create too many object per slab then reduce
-        * the slab order even if it goes below slub_min_order.
-        */
-       while (min_order > 0 &&
-               (PAGE_SIZE << min_order) >= MAX_OBJECTS_PER_SLAB * size)
-                       min_order--;
-
        for (order = max(min_order,
                                fls(min_objects * size - 1) - PAGE_SHIFT);
                        order <= max_order; order++) {
@@ -1770,9 +1762,6 @@ static inline int slab_order(int size, int min_objects,
                if (rem <= slab_size / fract_leftover)
                        break;
 
-               /* If the next size is too high then exit now */
-               if (slab_size * 2 >= MAX_OBJECTS_PER_SLAB * size)
-                       break;
        }
 
        return order;
@@ -1847,15 +1836,152 @@ static unsigned long calculate_alignment(unsigned long flags,
        return ALIGN(align, sizeof(void *));
 }
 
+static void init_kmem_cache_cpu(struct kmem_cache *s,
+                       struct kmem_cache_cpu *c)
+{
+       c->page = NULL;
+       c->freelist = NULL;
+       c->node = 0;
+       c->offset = s->offset / sizeof(void *);
+       c->objsize = s->objsize;
+}
+
 static void init_kmem_cache_node(struct kmem_cache_node *n)
 {
        n->nr_partial = 0;
        atomic_long_set(&n->nr_slabs, 0);
        spin_lock_init(&n->list_lock);
        INIT_LIST_HEAD(&n->partial);
+#ifdef CONFIG_SLUB_DEBUG
        INIT_LIST_HEAD(&n->full);
+#endif
+}
+
+#ifdef CONFIG_SMP
+/*
+ * Per cpu array for per cpu structures.
+ *
+ * The per cpu array places all kmem_cache_cpu structures from one processor
+ * close together meaning that it becomes possible that multiple per cpu
+ * structures are contained in one cacheline. This may be particularly
+ * beneficial for the kmalloc caches.
+ *
+ * A desktop system typically has around 60-80 slabs. With 100 here we are
+ * likely able to get per cpu structures for all caches from the array defined
+ * here. We must be able to cover all kmalloc caches during bootstrap.
+ *
+ * If the per cpu array is exhausted then fall back to kmalloc
+ * of individual cachelines. No sharing is possible then.
+ */
+#define NR_KMEM_CACHE_CPU 100
+
+static DEFINE_PER_CPU(struct kmem_cache_cpu,
+                               kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
+
+static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
+static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
+
+static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
+                                                       int cpu, gfp_t flags)
+{
+       struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
+
+       if (c)
+               per_cpu(kmem_cache_cpu_free, cpu) =
+                               (void *)c->freelist;
+       else {
+               /* Table overflow: So allocate ourselves */
+               c = kmalloc_node(
+                       ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
+                       flags, cpu_to_node(cpu));
+               if (!c)
+                       return NULL;
+       }
+
+       init_kmem_cache_cpu(s, c);
+       return c;
+}
+
+static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
+{
+       if (c < per_cpu(kmem_cache_cpu, cpu) ||
+                       c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
+               kfree(c);
+               return;
+       }
+       c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
+       per_cpu(kmem_cache_cpu_free, cpu) = c;
+}
+
+static void free_kmem_cache_cpus(struct kmem_cache *s)
+{
+       int cpu;
+
+       for_each_online_cpu(cpu) {
+               struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
+
+               if (c) {
+                       s->cpu_slab[cpu] = NULL;
+                       free_kmem_cache_cpu(c, cpu);
+               }
+       }
 }
 
+static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
+{
+       int cpu;
+
+       for_each_online_cpu(cpu) {
+               struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
+
+               if (c)
+                       continue;
+
+               c = alloc_kmem_cache_cpu(s, cpu, flags);
+               if (!c) {
+                       free_kmem_cache_cpus(s);
+                       return 0;
+               }
+               s->cpu_slab[cpu] = c;
+       }
+       return 1;
+}
+
+/*
+ * Initialize the per cpu array.
+ */
+static void init_alloc_cpu_cpu(int cpu)
+{
+       int i;
+
+       if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
+               return;
+
+       for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
+               free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
+
+       cpu_set(cpu, kmem_cach_cpu_free_init_once);
+}
+
+static void __init init_alloc_cpu(void)
+{
+       int cpu;
+
+       for_each_online_cpu(cpu)
+               init_alloc_cpu_cpu(cpu);
+  }
+
+#else
+static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
+static inline void init_alloc_cpu(void) {}
+
+static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
+{
+       init_kmem_cache_cpu(s, &s->cpu_slab);
+       return 1;
+}
+#endif
+
 #ifdef CONFIG_NUMA
 /*
  * No kmalloc_node yet so do it by hand. We know that this is the first
@@ -1863,35 +1989,39 @@ static void init_kmem_cache_node(struct kmem_cache_node *n)
  * possible.
  *
  * Note that this function only works on the kmalloc_node_cache
- * when allocating for the kmalloc_node_cache.
+ * when allocating for the kmalloc_node_cache. This is used for bootstrapping
+ * memory on a fresh node that has no slab structures yet.
  */
-static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
-                                                               int node)
+static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
+                                                          int node)
 {
        struct page *page;
        struct kmem_cache_node *n;
 
        BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
 
-       page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node);
+       page = new_slab(kmalloc_caches, gfpflags, node);
 
        BUG_ON(!page);
+       if (page_to_nid(page) != node) {
+               printk(KERN_ERR "SLUB: Unable to allocate memory from "
+                               "node %d\n", node);
+               printk(KERN_ERR "SLUB: Allocating a useless per node structure "
+                               "in order to be able to continue\n");
+       }
+
        n = page->freelist;
        BUG_ON(!n);
        page->freelist = get_freepointer(kmalloc_caches, n);
        page->inuse++;
        kmalloc_caches->node[node] = n;
+#ifdef CONFIG_SLUB_DEBUG
        init_object(kmalloc_caches, n, 1);
        init_tracking(kmalloc_caches, n);
+#endif
        init_kmem_cache_node(n);
        atomic_long_inc(&n->nr_slabs);
        add_partial(n, page);
-
-       /*
-        * new_slab() disables interupts. If we do not reenable interrupts here
-        * then bootup would continue with interrupts disabled.
-        */
-       local_irq_enable();
        return n;
 }
 
@@ -1899,7 +2029,7 @@ static void free_kmem_cache_nodes(struct kmem_cache *s)
 {
        int node;
 
-       for_each_online_node(node) {
+       for_each_node_state(node, N_NORMAL_MEMORY) {
                struct kmem_cache_node *n = s->node[node];
                if (n && n != &s->local_node)
                        kmem_cache_free(kmalloc_caches, n);
@@ -1917,7 +2047,7 @@ static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
        else
                local_node = 0;
 
-       for_each_online_node(node) {
+       for_each_node_state(node, N_NORMAL_MEMORY) {
                struct kmem_cache_node *n;
 
                if (local_node == node)
@@ -2055,29 +2185,21 @@ static int calculate_sizes(struct kmem_cache *s)
         */
        s->objects = (PAGE_SIZE << s->order) / size;
 
-       /*
-        * Verify that the number of objects is within permitted limits.
-        * The page->inuse field is only 16 bit wide! So we cannot have
-        * more than 64k objects per slab.
-        */
-       if (!s->objects || s->objects > MAX_OBJECTS_PER_SLAB)
-               return 0;
-       return 1;
+       return !!s->objects;
 
 }
 
 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
                const char *name, size_t size,
                size_t align, unsigned long flags,
-               void (*ctor)(void *, struct kmem_cache *, unsigned long))
+               void (*ctor)(struct kmem_cache *, void *))
 {
        memset(s, 0, kmem_size);
        s->name = name;
        s->ctor = ctor;
        s->objsize = size;
-       s->flags = flags;
        s->align = align;
-       kmem_cache_open_debug_check(s);
+       s->flags = kmem_cache_flags(size, flags, name, ctor);
 
        if (!calculate_sizes(s))
                goto error;
@@ -2086,9 +2208,12 @@ static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
 #ifdef CONFIG_NUMA
        s->defrag_ratio = 100;
 #endif
+       if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
+               goto error;
 
-       if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
+       if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
                return 1;
+       free_kmem_cache_nodes(s);
 error:
        if (flags & SLAB_PANIC)
                panic("Cannot create slab %s size=%lu realsize=%u "
@@ -2171,7 +2296,8 @@ static inline int kmem_cache_close(struct kmem_cache *s)
        flush_all(s);
 
        /* Attempt to free all objects */
-       for_each_online_node(node) {
+       free_kmem_cache_cpus(s);
+       for_each_node_state(node, N_NORMAL_MEMORY) {
                struct kmem_cache_node *n = get_node(s, node);
 
                n->nr_partial -= free_list(s, n, &n->partial);
@@ -2192,12 +2318,13 @@ void kmem_cache_destroy(struct kmem_cache *s)
        s->refcount--;
        if (!s->refcount) {
                list_del(&s->list);
+               up_write(&slub_lock);
                if (kmem_cache_close(s))
                        WARN_ON(1);
                sysfs_slab_remove(s);
                kfree(s);
-       }
-       up_write(&slub_lock);
+       } else
+               up_write(&slub_lock);
 }
 EXPORT_SYMBOL(kmem_cache_destroy);
 
@@ -2205,11 +2332,11 @@ EXPORT_SYMBOL(kmem_cache_destroy);
  *             Kmalloc subsystem
  *******************************************************************/
 
-struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
+struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
 EXPORT_SYMBOL(kmalloc_caches);
 
 #ifdef CONFIG_ZONE_DMA
-static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
+static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
 #endif
 
 static int __init setup_slub_min_order(char *str)
@@ -2271,10 +2398,26 @@ panic:
 }
 
 #ifdef CONFIG_ZONE_DMA
+
+static void sysfs_add_func(struct work_struct *w)
+{
+       struct kmem_cache *s;
+
+       down_write(&slub_lock);
+       list_for_each_entry(s, &slab_caches, list) {
+               if (s->flags & __SYSFS_ADD_DEFERRED) {
+                       s->flags &= ~__SYSFS_ADD_DEFERRED;
+                       sysfs_slab_add(s);
+               }
+       }
+       up_write(&slub_lock);
+}
+
+static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
+
 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
 {
        struct kmem_cache *s;
-       struct kmem_cache *x;
        char *text;
        size_t realsize;
 
@@ -2283,22 +2426,36 @@ static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
                return s;
 
        /* Dynamically create dma cache */
-       x = kmalloc(kmem_size, flags & ~SLUB_DMA);
-       if (!x)
-               panic("Unable to allocate memory for dma cache\n");
+       if (flags & __GFP_WAIT)
+               down_write(&slub_lock);
+       else {
+               if (!down_write_trylock(&slub_lock))
+                       goto out;
+       }
+
+       if (kmalloc_caches_dma[index])
+               goto unlock_out;
 
        realsize = kmalloc_caches[index].objsize;
-       text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
-                       (unsigned int)realsize);
-       s = create_kmalloc_cache(x, text, realsize, flags);
-       down_write(&slub_lock);
-       if (!kmalloc_caches_dma[index]) {
-               kmalloc_caches_dma[index] = s;
-               up_write(&slub_lock);
-               return s;
+       text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
+       s = kmalloc(kmem_size, flags & ~SLUB_DMA);
+
+       if (!s || !text || !kmem_cache_open(s, flags, text,
+                       realsize, ARCH_KMALLOC_MINALIGN,
+                       SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
+               kfree(s);
+               kfree(text);
+               goto unlock_out;
        }
+
+       list_add(&s->list, &slab_caches);
+       kmalloc_caches_dma[index] = s;
+
+       schedule_work(&sysfs_add_work);
+
+unlock_out:
        up_write(&slub_lock);
-       kmem_cache_destroy(s);
+out:
        return kmalloc_caches_dma[index];
 }
 #endif
@@ -2345,12 +2502,8 @@ static struct kmem_cache *get_slab(size_t size, gfp_t flags)
                        return ZERO_SIZE_PTR;
 
                index = size_index[(size - 1) / 8];
-       } else {
-               if (size > KMALLOC_MAX_SIZE)
-                       return NULL;
-
+       } else
                index = fls(size - 1);
-       }
 
 #ifdef CONFIG_ZONE_DMA
        if (unlikely((flags & SLUB_DMA)))
@@ -2362,9 +2515,15 @@ static struct kmem_cache *get_slab(size_t size, gfp_t flags)
 
 void *__kmalloc(size_t size, gfp_t flags)
 {
-       struct kmem_cache *s = get_slab(size, flags);
+       struct kmem_cache *s;
+
+       if (unlikely(size > PAGE_SIZE / 2))
+               return (void *)__get_free_pages(flags | __GFP_COMP,
+                                                       get_order(size));
 
-       if (ZERO_OR_NULL_PTR(s))
+       s = get_slab(size, flags);
+
+       if (unlikely(ZERO_OR_NULL_PTR(s)))
                return s;
 
        return slab_alloc(s, flags, -1, __builtin_return_address(0));
@@ -2374,9 +2533,15 @@ EXPORT_SYMBOL(__kmalloc);
 #ifdef CONFIG_NUMA
 void *__kmalloc_node(size_t size, gfp_t flags, int node)
 {
-       struct kmem_cache *s = get_slab(size, flags);
+       struct kmem_cache *s;
+
+       if (unlikely(size > PAGE_SIZE / 2))
+               return (void *)__get_free_pages(flags | __GFP_COMP,
+                                                       get_order(size));
 
-       if (ZERO_OR_NULL_PTR(s))
+       s = get_slab(size, flags);
+
+       if (unlikely(ZERO_OR_NULL_PTR(s)))
                return s;
 
        return slab_alloc(s, flags, node, __builtin_return_address(0));
@@ -2389,11 +2554,16 @@ size_t ksize(const void *object)
        struct page *page;
        struct kmem_cache *s;
 
-       if (object == ZERO_SIZE_PTR)
+       BUG_ON(!object);
+       if (unlikely(object == ZERO_SIZE_PTR))
                return 0;
 
-       page = get_object_page(object);
+       page = virt_to_head_page(object);
        BUG_ON(!page);
+
+       if (unlikely(!PageSlab(page)))
+               return PAGE_SIZE << compound_order(page);
+
        s = page->slab;
        BUG_ON(!s);
 
@@ -2421,22 +2591,17 @@ EXPORT_SYMBOL(ksize);
 
 void kfree(const void *x)
 {
-       struct kmem_cache *s;
        struct page *page;
 
-       /*
-        * This has to be an unsigned comparison. According to Linus
-        * some gcc version treat a pointer as a signed entity. Then
-        * this comparison would be true for all "negative" pointers
-        * (which would cover the whole upper half of the address space).
-        */
-       if (ZERO_OR_NULL_PTR(x))
+       if (unlikely(ZERO_OR_NULL_PTR(x)))
                return;
 
        page = virt_to_head_page(x);
-       s = page->slab;
-
-       slab_free(s, page, (void *)x, __builtin_return_address(0));
+       if (unlikely(!PageSlab(page))) {
+               put_page(page);
+               return;
+       }
+       slab_free(page->slab, page, (void *)x, __builtin_return_address(0));
 }
 EXPORT_SYMBOL(kfree);
 
@@ -2465,7 +2630,7 @@ int kmem_cache_shrink(struct kmem_cache *s)
                return -ENOMEM;
 
        flush_all(s);
-       for_each_online_node(node) {
+       for_each_node_state(node, N_NORMAL_MEMORY) {
                n = get_node(s, node);
 
                if (!n->nr_partial)
@@ -2494,15 +2659,11 @@ int kmem_cache_shrink(struct kmem_cache *s)
                                slab_unlock(page);
                                discard_slab(s, page);
                        } else {
-                               if (n->nr_partial > MAX_PARTIAL)
-                                       list_move(&page->lru,
-                                       slabs_by_inuse + page->inuse);
+                               list_move(&page->lru,
+                               slabs_by_inuse + page->inuse);
                        }
                }
 
-               if (n->nr_partial <= MAX_PARTIAL)
-                       goto out;
-
                /*
                 * Rebuild the partial list with the slabs filled up most
                 * first and the least used slabs at the end.
@@ -2510,7 +2671,6 @@ int kmem_cache_shrink(struct kmem_cache *s)
                for (i = s->objects - 1; i >= 0; i--)
                        list_splice(slabs_by_inuse + i, n->partial.prev);
 
-       out:
                spin_unlock_irqrestore(&n->list_lock, flags);
        }
 
@@ -2519,6 +2679,121 @@ int kmem_cache_shrink(struct kmem_cache *s)
 }
 EXPORT_SYMBOL(kmem_cache_shrink);
 
+#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
+static int slab_mem_going_offline_callback(void *arg)
+{
+       struct kmem_cache *s;
+
+       down_read(&slub_lock);
+       list_for_each_entry(s, &slab_caches, list)
+               kmem_cache_shrink(s);
+       up_read(&slub_lock);
+
+       return 0;
+}
+
+static void slab_mem_offline_callback(void *arg)
+{
+       struct kmem_cache_node *n;
+       struct kmem_cache *s;
+       struct memory_notify *marg = arg;
+       int offline_node;
+
+       offline_node = marg->status_change_nid;
+
+       /*
+        * If the node still has available memory. we need kmem_cache_node
+        * for it yet.
+        */
+       if (offline_node < 0)
+               return;
+
+       down_read(&slub_lock);
+       list_for_each_entry(s, &slab_caches, list) {
+               n = get_node(s, offline_node);
+               if (n) {
+                       /*
+                        * if n->nr_slabs > 0, slabs still exist on the node
+                        * that is going down. We were unable to free them,
+                        * and offline_pages() function shoudn't call this
+                        * callback. So, we must fail.
+                        */
+                       BUG_ON(atomic_long_read(&n->nr_slabs));
+
+                       s->node[offline_node] = NULL;
+                       kmem_cache_free(kmalloc_caches, n);
+               }
+       }
+       up_read(&slub_lock);
+}
+
+static int slab_mem_going_online_callback(void *arg)
+{
+       struct kmem_cache_node *n;
+       struct kmem_cache *s;
+       struct memory_notify *marg = arg;
+       int nid = marg->status_change_nid;
+       int ret = 0;
+
+       /*
+        * If the node's memory is already available, then kmem_cache_node is
+        * already created. Nothing to do.
+        */
+       if (nid < 0)
+               return 0;
+
+       /*
+        * We are bringing a node online. No memory is availabe yet. We must
+        * allocate a kmem_cache_node structure in order to bring the node
+        * online.
+        */
+       down_read(&slub_lock);
+       list_for_each_entry(s, &slab_caches, list) {
+               /*
+                * XXX: kmem_cache_alloc_node will fallback to other nodes
+                *      since memory is not yet available from the node that
+                *      is brought up.
+                */
+               n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
+               if (!n) {
+                       ret = -ENOMEM;
+                       goto out;
+               }
+               init_kmem_cache_node(n);
+               s->node[nid] = n;
+       }
+out:
+       up_read(&slub_lock);
+       return ret;
+}
+
+static int slab_memory_callback(struct notifier_block *self,
+                               unsigned long action, void *arg)
+{
+       int ret = 0;
+
+       switch (action) {
+       case MEM_GOING_ONLINE:
+               ret = slab_mem_going_online_callback(arg);
+               break;
+       case MEM_GOING_OFFLINE:
+               ret = slab_mem_going_offline_callback(arg);
+               break;
+       case MEM_OFFLINE:
+       case MEM_CANCEL_ONLINE:
+               slab_mem_offline_callback(arg);
+               break;
+       case MEM_ONLINE:
+       case MEM_CANCEL_OFFLINE:
+               break;
+       }
+
+       ret = notifier_from_errno(ret);
+       return ret;
+}
+
+#endif /* CONFIG_MEMORY_HOTPLUG */
+
 /********************************************************************
  *                     Basic setup of slabs
  *******************************************************************/
@@ -2528,6 +2803,8 @@ void __init kmem_cache_init(void)
        int i;
        int caches = 0;
 
+       init_alloc_cpu();
+
 #ifdef CONFIG_NUMA
        /*
         * Must first have the slab cache available for the allocations of the
@@ -2538,6 +2815,8 @@ void __init kmem_cache_init(void)
                sizeof(struct kmem_cache_node), GFP_KERNEL);
        kmalloc_caches[0].refcount = -1;
        caches++;
+
+       hotplug_memory_notifier(slab_memory_callback, 1);
 #endif
 
        /* Able to allocate the per node structures */
@@ -2555,7 +2834,7 @@ void __init kmem_cache_init(void)
                caches++;
        }
 
-       for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
+       for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
                create_kmalloc_cache(&kmalloc_caches[i],
                        "kmalloc", 1 << i, GFP_KERNEL);
                caches++;
@@ -2582,16 +2861,18 @@ void __init kmem_cache_init(void)
        slab_state = UP;
 
        /* Provide the correct kmalloc names now that the caches are up */
-       for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
+       for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
                kmalloc_caches[i]. name =
                        kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
 
 #ifdef CONFIG_SMP
        register_cpu_notifier(&slab_notifier);
+       kmem_size = offsetof(struct kmem_cache, cpu_slab) +
+                               nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
+#else
+       kmem_size = sizeof(struct kmem_cache);
 #endif
 
-       kmem_size = offsetof(struct kmem_cache, cpu_slab) +
-                               nr_cpu_ids * sizeof(struct page *);
 
        printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
                " CPUs=%d, Nodes=%d\n",
@@ -2621,8 +2902,8 @@ static int slab_unmergeable(struct kmem_cache *s)
 }
 
 static struct kmem_cache *find_mergeable(size_t size,
-               size_t align, unsigned long flags,
-               void (*ctor)(void *, struct kmem_cache *, unsigned long))
+               size_t align, unsigned long flags, const char *name,
+               void (*ctor)(struct kmem_cache *, void *))
 {
        struct kmem_cache *s;
 
@@ -2635,6 +2916,7 @@ static struct kmem_cache *find_mergeable(size_t size,
        size = ALIGN(size, sizeof(void *));
        align = calculate_alignment(flags, align, size);
        size = ALIGN(size, align);
+       flags = kmem_cache_flags(size, flags, name, NULL);
 
        list_for_each_entry(s, &slab_caches, list) {
                if (slab_unmergeable(s))
@@ -2643,8 +2925,7 @@ static struct kmem_cache *find_mergeable(size_t size,
                if (size > s->size)
                        continue;
 
-               if (((flags | slub_debug) & SLUB_MERGE_SAME) !=
-                       (s->flags & SLUB_MERGE_SAME))
+               if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
                                continue;
                /*
                 * Check if alignment is compatible.
@@ -2663,41 +2944,49 @@ static struct kmem_cache *find_mergeable(size_t size,
 
 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
                size_t align, unsigned long flags,
-               void (*ctor)(void *, struct kmem_cache *, unsigned long),
-               void (*dtor)(void *, struct kmem_cache *, unsigned long))
+               void (*ctor)(struct kmem_cache *, void *))
 {
        struct kmem_cache *s;
 
-       BUG_ON(dtor);
        down_write(&slub_lock);
-       s = find_mergeable(size, align, flags, ctor);
+       s = find_mergeable(size, align, flags, name, ctor);
        if (s) {
+               int cpu;
+
                s->refcount++;
                /*
                 * Adjust the object sizes so that we clear
                 * the complete object on kzalloc.
                 */
                s->objsize = max(s->objsize, (int)size);
+
+               /*
+                * And then we need to update the object size in the
+                * per cpu structures
+                */
+               for_each_online_cpu(cpu)
+                       get_cpu_slab(s, cpu)->objsize = s->objsize;
                s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
+               up_write(&slub_lock);
                if (sysfs_slab_alias(s, name))
                        goto err;
-       } else {
-               s = kmalloc(kmem_size, GFP_KERNEL);
-               if (s && kmem_cache_open(s, GFP_KERNEL, name,
+               return s;
+       }
+       s = kmalloc(kmem_size, GFP_KERNEL);
+       if (s) {
+               if (kmem_cache_open(s, GFP_KERNEL, name,
                                size, align, flags, ctor)) {
-                       if (sysfs_slab_add(s)) {
-                               kfree(s);
-                               goto err;
-                       }
                        list_add(&s->list, &slab_caches);
-               } else
-                       kfree(s);
+                       up_write(&slub_lock);
+                       if (sysfs_slab_add(s))
+                               goto err;
+                       return s;
+               }
+               kfree(s);
        }
        up_write(&slub_lock);
-       return s;
 
 err:
-       up_write(&slub_lock);
        if (flags & SLAB_PANIC)
                panic("Cannot create slabcache %s\n", name);
        else
@@ -2719,15 +3008,29 @@ static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
        unsigned long flags;
 
        switch (action) {
+       case CPU_UP_PREPARE:
+       case CPU_UP_PREPARE_FROZEN:
+               init_alloc_cpu_cpu(cpu);
+               down_read(&slub_lock);
+               list_for_each_entry(s, &slab_caches, list)
+                       s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
+                                                       GFP_KERNEL);
+               up_read(&slub_lock);
+               break;
+
        case CPU_UP_CANCELED:
        case CPU_UP_CANCELED_FROZEN:
        case CPU_DEAD:
        case CPU_DEAD_FROZEN:
                down_read(&slub_lock);
                list_for_each_entry(s, &slab_caches, list) {
+                       struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
+
                        local_irq_save(flags);
                        __flush_cpu_slab(s, cpu);
                        local_irq_restore(flags);
+                       free_kmem_cache_cpu(c, cpu);
+                       s->cpu_slab[cpu] = NULL;
                }
                up_read(&slub_lock);
                break;
@@ -2744,9 +3047,14 @@ static struct notifier_block __cpuinitdata slab_notifier =
 
 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
 {
-       struct kmem_cache *s = get_slab(size, gfpflags);
+       struct kmem_cache *s;
+
+       if (unlikely(size > PAGE_SIZE / 2))
+               return (void *)__get_free_pages(gfpflags | __GFP_COMP,
+                                                       get_order(size));
+       s = get_slab(size, gfpflags);
 
-       if (ZERO_OR_NULL_PTR(s))
+       if (unlikely(ZERO_OR_NULL_PTR(s)))
                return s;
 
        return slab_alloc(s, gfpflags, -1, caller);
@@ -2755,20 +3063,38 @@ void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
                                        int node, void *caller)
 {
-       struct kmem_cache *s = get_slab(size, gfpflags);
+       struct kmem_cache *s;
+
+       if (unlikely(size > PAGE_SIZE / 2))
+               return (void *)__get_free_pages(gfpflags | __GFP_COMP,
+                                                       get_order(size));
+       s = get_slab(size, gfpflags);
 
-       if (ZERO_OR_NULL_PTR(s))
+       if (unlikely(ZERO_OR_NULL_PTR(s)))
                return s;
 
        return slab_alloc(s, gfpflags, node, caller);
 }
 
+static unsigned long count_partial(struct kmem_cache_node *n)
+{
+       unsigned long flags;
+       unsigned long x = 0;
+       struct page *page;
+
+       spin_lock_irqsave(&n->list_lock, flags);
+       list_for_each_entry(page, &n->partial, lru)
+               x += page->inuse;
+       spin_unlock_irqrestore(&n->list_lock, flags);
+       return x;
+}
+
 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
-static int validate_slab(struct kmem_cache *s, struct page *page)
+static int validate_slab(struct kmem_cache *s, struct page *page,
+                                               unsigned long *map)
 {
        void *p;
        void *addr = page_address(page);
-       DECLARE_BITMAP(map, s->objects);
 
        if (!check_slab(s, page) ||
                        !on_freelist(s, page, NULL))
@@ -2790,10 +3116,11 @@ static int validate_slab(struct kmem_cache *s, struct page *page)
        return 1;
 }
 
-static void validate_slab_slab(struct kmem_cache *s, struct page *page)
+static void validate_slab_slab(struct kmem_cache *s, struct page *page,
+                                               unsigned long *map)
 {
        if (slab_trylock(page)) {
-               validate_slab(s, page);
+               validate_slab(s, page, map);
                slab_unlock(page);
        } else
                printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
@@ -2810,7 +3137,8 @@ static void validate_slab_slab(struct kmem_cache *s, struct page *page)
        }
 }
 
-static int validate_slab_node(struct kmem_cache *s, struct kmem_cache_node *n)
+static int validate_slab_node(struct kmem_cache *s,
+               struct kmem_cache_node *n, unsigned long *map)
 {
        unsigned long count = 0;
        struct page *page;
@@ -2819,7 +3147,7 @@ static int validate_slab_node(struct kmem_cache *s, struct kmem_cache_node *n)
        spin_lock_irqsave(&n->list_lock, flags);
 
        list_for_each_entry(page, &n->partial, lru) {
-               validate_slab_slab(s, page);
+               validate_slab_slab(s, page, map);
                count++;
        }
        if (count != n->nr_partial)
@@ -2830,7 +3158,7 @@ static int validate_slab_node(struct kmem_cache *s, struct kmem_cache_node *n)
                goto out;
 
        list_for_each_entry(page, &n->full, lru) {
-               validate_slab_slab(s, page);
+               validate_slab_slab(s, page, map);
                count++;
        }
        if (count != atomic_long_read(&n->nr_slabs))
@@ -2843,17 +3171,23 @@ out:
        return count;
 }
 
-static unsigned long validate_slab_cache(struct kmem_cache *s)
+static long validate_slab_cache(struct kmem_cache *s)
 {
        int node;
        unsigned long count = 0;
+       unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
+                               sizeof(unsigned long), GFP_KERNEL);
+
+       if (!map)
+               return -ENOMEM;
 
        flush_all(s);
-       for_each_online_node(node) {
+       for_each_node_state(node, N_NORMAL_MEMORY) {
                struct kmem_cache_node *n = get_node(s, node);
 
-               count += validate_slab_node(s, n);
+               count += validate_slab_node(s, n, map);
        }
+       kfree(map);
        return count;
 }
 
@@ -3062,18 +3396,18 @@ static int list_locations(struct kmem_cache *s, char *buf,
        int node;
 
        if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
-                       GFP_KERNEL))
+                       GFP_TEMPORARY))
                return sprintf(buf, "Out of memory\n");
 
        /* Push back cpu slabs */
        flush_all(s);
 
-       for_each_online_node(node) {
+       for_each_node_state(node, N_NORMAL_MEMORY) {
                struct kmem_cache_node *n = get_node(s, node);
                unsigned long flags;
                struct page *page;
 
-               if (!atomic_read(&n->nr_slabs))
+               if (!atomic_long_read(&n->nr_slabs))
                        continue;
 
                spin_lock_irqsave(&n->list_lock, flags);
@@ -3137,19 +3471,6 @@ static int list_locations(struct kmem_cache *s, char *buf,
        return n;
 }
 
-static unsigned long count_partial(struct kmem_cache_node *n)
-{
-       unsigned long flags;
-       unsigned long x = 0;
-       struct page *page;
-
-       spin_lock_irqsave(&n->list_lock, flags);
-       list_for_each_entry(page, &n->partial, lru)
-               x += page->inuse;
-       spin_unlock_irqrestore(&n->list_lock, flags);
-       return x;
-}
-
 enum slab_stat_type {
        SL_FULL,
        SL_PARTIAL,
@@ -3176,11 +3497,18 @@ static unsigned long slab_objects(struct kmem_cache *s,
        per_cpu = nodes + nr_node_ids;
 
        for_each_possible_cpu(cpu) {
-               struct page *page = s->cpu_slab[cpu];
+               struct page *page;
                int node;
+               struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
+
+               if (!c)
+                       continue;
 
+               page = c->page;
+               node = c->node;
+               if (node < 0)
+                       continue;
                if (page) {
-                       node = page_to_nid(page);
                        if (flags & SO_CPU) {
                                int x = 0;
 
@@ -3195,7 +3523,7 @@ static unsigned long slab_objects(struct kmem_cache *s,
                }
        }
 
-       for_each_online_node(node) {
+       for_each_node_state(node, N_NORMAL_MEMORY) {
                struct kmem_cache_node *n = get_node(s, node);
 
                if (flags & SO_PARTIAL) {
@@ -3208,7 +3536,7 @@ static unsigned long slab_objects(struct kmem_cache *s,
                }
 
                if (flags & SO_FULL) {
-                       int full_slabs = atomic_read(&n->nr_slabs)
+                       int full_slabs = atomic_long_read(&n->nr_slabs)
                                        - per_cpu[node]
                                        - n->nr_partial;
 
@@ -3223,7 +3551,7 @@ static unsigned long slab_objects(struct kmem_cache *s,
 
        x = sprintf(buf, "%lu", total);
 #ifdef CONFIG_NUMA
-       for_each_online_node(node)
+       for_each_node_state(node, N_NORMAL_MEMORY)
                if (nodes[node])
                        x += sprintf(buf + x, " N%d=%lu",
                                        node, nodes[node]);
@@ -3237,14 +3565,20 @@ static int any_slab_objects(struct kmem_cache *s)
        int node;
        int cpu;
 
-       for_each_possible_cpu(cpu)
-               if (s->cpu_slab[cpu])
+       for_each_possible_cpu(cpu) {
+               struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
+
+               if (c && c->page)
                        return 1;
+       }
 
-       for_each_node(node) {
+       for_each_online_node(node) {
                struct kmem_cache_node *n = get_node(s, node);
 
-               if (n->nr_partial || atomic_read(&n->nr_slabs))
+               if (!n)
+                       continue;
+
+               if (n->nr_partial || atomic_long_read(&n->nr_slabs))
                        return 1;
        }
        return 0;
@@ -3467,11 +3801,14 @@ static ssize_t validate_show(struct kmem_cache *s, char *buf)
 static ssize_t validate_store(struct kmem_cache *s,
                        const char *buf, size_t length)
 {
-       if (buf[0] == '1')
-               validate_slab_cache(s);
-       else
-               return -EINVAL;
-       return length;
+       int ret = -EINVAL;
+
+       if (buf[0] == '1') {
+               ret = validate_slab_cache(s);
+               if (ret >= 0)
+                       ret = length;
+       }
+       return ret;
 }
 SLAB_ATTR(validate);
 
@@ -3625,7 +3962,7 @@ static struct kset_uevent_ops slab_uevent_ops = {
        .filter = uevent_filter,
 };
 
-static decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
+static struct kset *slab_kset;
 
 #define ID_STR_LENGTH 64
 
@@ -3678,7 +4015,7 @@ static int sysfs_slab_add(struct kmem_cache *s)
                 * This is typically the case for debug situations. In that
                 * case we can catch duplicate names easily.
                 */
-               sysfs_remove_link(&slab_subsys.kobj, s->name);
+               sysfs_remove_link(&slab_kset->kobj, s->name);
                name = s->name;
        } else {
                /*
@@ -3688,12 +4025,12 @@ static int sysfs_slab_add(struct kmem_cache *s)
                name = create_unique_id(s);
        }
 
-       kobj_set_kset_s(s, slab_subsys);
-       kobject_set_name(&s->kobj, name);
-       kobject_init(&s->kobj);
-       err = kobject_add(&s->kobj);
-       if (err)
+       s->kobj.kset = slab_kset;
+       err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
+       if (err) {
+               kobject_put(&s->kobj);
                return err;
+       }
 
        err = sysfs_create_group(&s->kobj, &slab_attr_group);
        if (err)
@@ -3733,9 +4070,8 @@ static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
                /*
                 * If we have a leftover link then remove it.
                 */
-               sysfs_remove_link(&slab_subsys.kobj, name);
-               return sysfs_create_link(&slab_subsys.kobj,
-                                               &s->kobj, name);
+               sysfs_remove_link(&slab_kset->kobj, name);
+               return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
        }
 
        al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
@@ -3754,8 +4090,8 @@ static int __init slab_sysfs_init(void)
        struct kmem_cache *s;
        int err;
 
-       err = subsystem_register(&slab_subsys);
-       if (err) {
+       slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
+       if (!slab_kset) {
                printk(KERN_ERR "Cannot register slab subsystem.\n");
                return -ENOSYS;
        }
@@ -3764,7 +4100,9 @@ static int __init slab_sysfs_init(void)
 
        list_for_each_entry(s, &slab_caches, list) {
                err = sysfs_slab_add(s);
-               BUG_ON(err);
+               if (err)
+                       printk(KERN_ERR "SLUB: Unable to add boot slab %s"
+                                               " to sysfs\n", s->name);
        }
 
        while (alias_list) {
@@ -3772,7 +4110,9 @@ static int __init slab_sysfs_init(void)
 
                alias_list = alias_list->next;
                err = sysfs_slab_alias(al->s, al->name);
-               BUG_ON(err);
+               if (err)
+                       printk(KERN_ERR "SLUB: Unable to add boot slab alias"
+                                       " %s to sysfs\n", s->name);
                kfree(al);
        }
 
@@ -3782,3 +4122,89 @@ static int __init slab_sysfs_init(void)
 
 __initcall(slab_sysfs_init);
 #endif
+
+/*
+ * The /proc/slabinfo ABI
+ */
+#ifdef CONFIG_SLABINFO
+
+ssize_t slabinfo_write(struct file *file, const char __user * buffer,
+                       size_t count, loff_t *ppos)
+{
+       return -EINVAL;
+}
+
+
+static void print_slabinfo_header(struct seq_file *m)
+{
+       seq_puts(m, "slabinfo - version: 2.1\n");
+       seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
+                "<objperslab> <pagesperslab>");
+       seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
+       seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
+       seq_putc(m, '\n');
+}
+
+static void *s_start(struct seq_file *m, loff_t *pos)
+{
+       loff_t n = *pos;
+
+       down_read(&slub_lock);
+       if (!n)
+               print_slabinfo_header(m);
+
+       return seq_list_start(&slab_caches, *pos);
+}
+
+static void *s_next(struct seq_file *m, void *p, loff_t *pos)
+{
+       return seq_list_next(p, &slab_caches, pos);
+}
+
+static void s_stop(struct seq_file *m, void *p)
+{
+       up_read(&slub_lock);
+}
+
+static int s_show(struct seq_file *m, void *p)
+{
+       unsigned long nr_partials = 0;
+       unsigned long nr_slabs = 0;
+       unsigned long nr_inuse = 0;
+       unsigned long nr_objs;
+       struct kmem_cache *s;
+       int node;
+
+       s = list_entry(p, struct kmem_cache, list);
+
+       for_each_online_node(node) {
+               struct kmem_cache_node *n = get_node(s, node);
+
+               if (!n)
+                       continue;
+
+               nr_partials += n->nr_partial;
+               nr_slabs += atomic_long_read(&n->nr_slabs);
+               nr_inuse += count_partial(n);
+       }
+
+       nr_objs = nr_slabs * s->objects;
+       nr_inuse += (nr_slabs - nr_partials) * s->objects;
+
+       seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
+                  nr_objs, s->size, s->objects, (1 << s->order));
+       seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
+       seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
+                  0UL);
+       seq_putc(m, '\n');
+       return 0;
+}
+
+const struct seq_operations slabinfo_op = {
+       .start = s_start,
+       .next = s_next,
+       .stop = s_stop,
+       .show = s_show,
+};
+
+#endif /* CONFIG_SLABINFO */