[PATCH] mm: slab: eliminate lock_cpu_hotplug from slab
[safe/jmp/linux-2.6] / mm / slab.c
index 6a3760e..3318252 100644 (file)
--- a/mm/slab.c
+++ b/mm/slab.c
@@ -86,9 +86,9 @@
  *     All object allocations for a node occur from node specific slab lists.
  */
 
-#include       <linux/config.h>
 #include       <linux/slab.h>
 #include       <linux/mm.h>
+#include       <linux/poison.h>
 #include       <linux/swap.h>
 #include       <linux/cache.h>
 #include       <linux/interrupt.h>
 #include       <linux/nodemask.h>
 #include       <linux/mempolicy.h>
 #include       <linux/mutex.h>
+#include       <linux/rtmutex.h>
 
 #include       <asm/uaccess.h>
 #include       <asm/cacheflush.h>
@@ -207,11 +208,6 @@ typedef unsigned int kmem_bufctl_t;
 #define        BUFCTL_ACTIVE   (((kmem_bufctl_t)(~0U))-2)
 #define        SLAB_LIMIT      (((kmem_bufctl_t)(~0U))-3)
 
-/* Max number of objs-per-slab for caches which use off-slab slabs.
- * Needed to avoid a possible looping condition in cache_grow().
- */
-static unsigned long offslab_limit;
-
 /*
  * struct slab
  *
@@ -312,6 +308,13 @@ struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
 #define        SIZE_AC 1
 #define        SIZE_L3 (1 + MAX_NUMNODES)
 
+static int drain_freelist(struct kmem_cache *cache,
+                       struct kmem_list3 *l3, int tofree);
+static void free_block(struct kmem_cache *cachep, void **objpp, int len,
+                       int node);
+static int enable_cpucache(struct kmem_cache *cachep);
+static void cache_reap(struct work_struct *unused);
+
 /*
  * This function must be completely optimized away if a constant is passed to
  * it.  Mostly the same as what is in linux/slab.h except it returns an index.
@@ -336,6 +339,8 @@ static __always_inline int index_of(const size_t size)
        return 0;
 }
 
+static int slab_early_init = 1;
+
 #define INDEX_AC index_of(sizeof(struct arraycache_init))
 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
 
@@ -420,6 +425,7 @@ struct kmem_cache {
        unsigned long max_freeable;
        unsigned long node_allocs;
        unsigned long node_frees;
+       unsigned long node_overflow;
        atomic_t allochit;
        atomic_t allocmiss;
        atomic_t freehit;
@@ -456,7 +462,7 @@ struct kmem_cache {
 #define        STATS_DEC_ACTIVE(x)     ((x)->num_active--)
 #define        STATS_INC_ALLOCED(x)    ((x)->num_allocations++)
 #define        STATS_INC_GROWN(x)      ((x)->grown++)
-#define        STATS_INC_REAPED(x)     ((x)->reaped++)
+#define        STATS_ADD_REAPED(x,y)   ((x)->reaped += (y))
 #define        STATS_SET_HIGH(x)                                               \
        do {                                                            \
                if ((x)->num_active > (x)->high_mark)                   \
@@ -465,6 +471,7 @@ struct kmem_cache {
 #define        STATS_INC_ERR(x)        ((x)->errors++)
 #define        STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
 #define        STATS_INC_NODEFREES(x)  ((x)->node_frees++)
+#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
 #define        STATS_SET_FREEABLE(x, i)                                        \
        do {                                                            \
                if ((x)->max_freeable < i)                              \
@@ -479,11 +486,12 @@ struct kmem_cache {
 #define        STATS_DEC_ACTIVE(x)     do { } while (0)
 #define        STATS_INC_ALLOCED(x)    do { } while (0)
 #define        STATS_INC_GROWN(x)      do { } while (0)
-#define        STATS_INC_REAPED(x)     do { } while (0)
+#define        STATS_ADD_REAPED(x,y)   do { } while (0)
 #define        STATS_SET_HIGH(x)       do { } while (0)
 #define        STATS_INC_ERR(x)        do { } while (0)
 #define        STATS_INC_NODEALLOCS(x) do { } while (0)
 #define        STATS_INC_NODEFREES(x)  do { } while (0)
+#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
 #define        STATS_SET_FREEABLE(x, i) do { } while (0)
 #define STATS_INC_ALLOCHIT(x)  do { } while (0)
 #define STATS_INC_ALLOCMISS(x) do { } while (0)
@@ -492,17 +500,6 @@ struct kmem_cache {
 #endif
 
 #if DEBUG
-/*
- * Magic nums for obj red zoning.
- * Placed in the first word before and the first word after an obj.
- */
-#define        RED_INACTIVE    0x5A2CF071UL    /* when obj is inactive */
-#define        RED_ACTIVE      0x170FC2A5UL    /* when obj is active */
-
-/* ...and for poisoning */
-#define        POISON_INUSE    0x5a    /* for use-uninitialised poisoning */
-#define POISON_FREE    0x6b    /* for use-after-free poisoning */
-#define        POISON_END      0xa5    /* end-byte of poisoning */
 
 /*
  * memory layout of objects:
@@ -594,6 +591,7 @@ static inline struct kmem_cache *page_get_cache(struct page *page)
 {
        if (unlikely(PageCompound(page)))
                page = (struct page *)page_private(page);
+       BUG_ON(!PageSlab(page));
        return (struct kmem_cache *)page->lru.next;
 }
 
@@ -606,6 +604,7 @@ static inline struct slab *page_get_slab(struct page *page)
 {
        if (unlikely(PageCompound(page)))
                page = (struct page *)page_private(page);
+       BUG_ON(!PageSlab(page));
        return (struct slab *)page->lru.prev;
 }
 
@@ -674,17 +673,69 @@ static struct kmem_cache cache_cache = {
 #endif
 };
 
-/* Guard access to the cache-chain. */
-static DEFINE_MUTEX(cache_chain_mutex);
-static struct list_head cache_chain;
+#define BAD_ALIEN_MAGIC 0x01020304ul
+
+#ifdef CONFIG_LOCKDEP
 
 /*
- * vm_enough_memory() looks at this to determine how many slab-allocated pages
- * are possibly freeable under pressure
+ * Slab sometimes uses the kmalloc slabs to store the slab headers
+ * for other slabs "off slab".
+ * The locking for this is tricky in that it nests within the locks
+ * of all other slabs in a few places; to deal with this special
+ * locking we put on-slab caches into a separate lock-class.
  *
- * SLAB_RECLAIM_ACCOUNT turns this on per-slab
+ * We set lock class for alien array caches which are up during init.
+ * The lock annotation will be lost if all cpus of a node goes down and
+ * then comes back up during hotplug
+ */
+static struct lock_class_key on_slab_l3_key;
+static struct lock_class_key on_slab_alc_key;
+
+static inline void init_lock_keys(void)
+
+{
+       int q;
+       struct cache_sizes *s = malloc_sizes;
+
+       while (s->cs_size != ULONG_MAX) {
+               for_each_node(q) {
+                       struct array_cache **alc;
+                       int r;
+                       struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
+                       if (!l3 || OFF_SLAB(s->cs_cachep))
+                               continue;
+                       lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
+                       alc = l3->alien;
+                       /*
+                        * FIXME: This check for BAD_ALIEN_MAGIC
+                        * should go away when common slab code is taught to
+                        * work even without alien caches.
+                        * Currently, non NUMA code returns BAD_ALIEN_MAGIC
+                        * for alloc_alien_cache,
+                        */
+                       if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
+                               continue;
+                       for_each_node(r) {
+                               if (alc[r])
+                                       lockdep_set_class(&alc[r]->lock,
+                                            &on_slab_alc_key);
+                       }
+               }
+               s++;
+       }
+}
+#else
+static inline void init_lock_keys(void)
+{
+}
+#endif
+
+/*
+ * 1. Guard access to the cache-chain.
+ * 2. Protect sanity of cpu_online_map against cpu hotplug events
  */
-atomic_t slab_reclaim_pages;
+static DEFINE_MUTEX(cache_chain_mutex);
+static struct list_head cache_chain;
 
 /*
  * chicken and egg problem: delay the per-cpu array allocation
@@ -697,13 +748,15 @@ static enum {
        FULL
 } g_cpucache_up;
 
-static DEFINE_PER_CPU(struct work_struct, reap_work);
+/*
+ * used by boot code to determine if it can use slab based allocator
+ */
+int slab_is_available(void)
+{
+       return g_cpucache_up == FULL;
+}
 
-static void free_block(struct kmem_cache *cachep, void **objpp, int len,
-                       int node);
-static void enable_cpucache(struct kmem_cache *cachep);
-static void cache_reap(void *unused);
-static int __node_shrink(struct kmem_cache *cachep, int node);
+static DEFINE_PER_CPU(struct delayed_work, reap_work);
 
 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 {
@@ -735,11 +788,10 @@ static inline struct kmem_cache *__find_general_cachep(size_t size,
        return csizep->cs_cachep;
 }
 
-struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
+static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
 {
        return __find_general_cachep(size, gfpflags);
 }
-EXPORT_SYMBOL(kmem_find_general_cachep);
 
 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
 {
@@ -834,7 +886,7 @@ static void init_reap_node(int cpu)
        if (node == MAX_NUMNODES)
                node = first_node(node_online_map);
 
-       __get_cpu_var(reap_node) = node;
+       per_cpu(reap_node, cpu) = node;
 }
 
 static void next_reap_node(void)
@@ -867,16 +919,16 @@ static void next_reap_node(void)
  */
 static void __devinit start_cpu_timer(int cpu)
 {
-       struct work_struct *reap_work = &per_cpu(reap_work, cpu);
+       struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
 
        /*
         * When this gets called from do_initcalls via cpucache_init(),
         * init_workqueues() has already run, so keventd will be setup
         * at that time.
         */
-       if (keventd_up() && reap_work->func == NULL) {
+       if (keventd_up() && reap_work->work.func == NULL) {
                init_reap_node(cpu);
-               INIT_WORK(reap_work, cache_reap, NULL);
+               INIT_DELAYED_WORK(reap_work, cache_reap);
                schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
        }
 }
@@ -898,7 +950,63 @@ static struct array_cache *alloc_arraycache(int node, int entries,
        return nc;
 }
 
-#ifdef CONFIG_NUMA
+/*
+ * Transfer objects in one arraycache to another.
+ * Locking must be handled by the caller.
+ *
+ * Return the number of entries transferred.
+ */
+static int transfer_objects(struct array_cache *to,
+               struct array_cache *from, unsigned int max)
+{
+       /* Figure out how many entries to transfer */
+       int nr = min(min(from->avail, max), to->limit - to->avail);
+
+       if (!nr)
+               return 0;
+
+       memcpy(to->entry + to->avail, from->entry + from->avail -nr,
+                       sizeof(void *) *nr);
+
+       from->avail -= nr;
+       to->avail += nr;
+       to->touched = 1;
+       return nr;
+}
+
+#ifndef CONFIG_NUMA
+
+#define drain_alien_cache(cachep, alien) do { } while (0)
+#define reap_alien(cachep, l3) do { } while (0)
+
+static inline struct array_cache **alloc_alien_cache(int node, int limit)
+{
+       return (struct array_cache **)BAD_ALIEN_MAGIC;
+}
+
+static inline void free_alien_cache(struct array_cache **ac_ptr)
+{
+}
+
+static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
+{
+       return 0;
+}
+
+static inline void *alternate_node_alloc(struct kmem_cache *cachep,
+               gfp_t flags)
+{
+       return NULL;
+}
+
+static inline void *__cache_alloc_node(struct kmem_cache *cachep,
+                gfp_t flags, int nodeid)
+{
+       return NULL;
+}
+
+#else  /* CONFIG_NUMA */
+
 static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
 
@@ -947,6 +1055,14 @@ static void __drain_alien_cache(struct kmem_cache *cachep,
 
        if (ac->avail) {
                spin_lock(&rl3->list_lock);
+               /*
+                * Stuff objects into the remote nodes shared array first.
+                * That way we could avoid the overhead of putting the objects
+                * into the free lists and getting them back later.
+                */
+               if (rl3->shared)
+                       transfer_objects(rl3->shared, ac, ac->limit);
+
                free_block(cachep, ac->entry, ac->avail, node);
                ac->avail = 0;
                spin_unlock(&rl3->list_lock);
@@ -962,8 +1078,8 @@ static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
 
        if (l3->alien) {
                struct array_cache *ac = l3->alien[node];
-               if (ac && ac->avail) {
-                       spin_lock_irq(&ac->lock);
+
+               if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
                        __drain_alien_cache(cachep, ac, node);
                        spin_unlock_irq(&ac->lock);
                }
@@ -986,23 +1102,45 @@ static void drain_alien_cache(struct kmem_cache *cachep,
                }
        }
 }
-#else
 
-#define drain_alien_cache(cachep, alien) do { } while (0)
-#define reap_alien(cachep, l3) do { } while (0)
-
-static inline struct array_cache **alloc_alien_cache(int node, int limit)
+static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 {
-       return (struct array_cache **) 0x01020304ul;
-}
+       struct slab *slabp = virt_to_slab(objp);
+       int nodeid = slabp->nodeid;
+       struct kmem_list3 *l3;
+       struct array_cache *alien = NULL;
+       int node;
 
-static inline void free_alien_cache(struct array_cache **ac_ptr)
-{
-}
+       node = numa_node_id();
+
+       /*
+        * Make sure we are not freeing a object from another node to the array
+        * cache on this cpu.
+        */
+       if (likely(slabp->nodeid == node))
+               return 0;
 
+       l3 = cachep->nodelists[node];
+       STATS_INC_NODEFREES(cachep);
+       if (l3->alien && l3->alien[nodeid]) {
+               alien = l3->alien[nodeid];
+               spin_lock(&alien->lock);
+               if (unlikely(alien->avail == alien->limit)) {
+                       STATS_INC_ACOVERFLOW(cachep);
+                       __drain_alien_cache(cachep, alien, nodeid);
+               }
+               alien->entry[alien->avail++] = objp;
+               spin_unlock(&alien->lock);
+       } else {
+               spin_lock(&(cachep->nodelists[nodeid])->list_lock);
+               free_block(cachep, &objp, 1, nodeid);
+               spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
+       }
+       return 1;
+}
 #endif
 
-static int __devinit cpuup_callback(struct notifier_block *nfb,
+static int __cpuinit cpuup_callback(struct notifier_block *nfb,
                                    unsigned long action, void *hcpu)
 {
        long cpu = (long)hcpu;
@@ -1095,12 +1233,18 @@ static int __devinit cpuup_callback(struct notifier_block *nfb,
                        kfree(shared);
                        free_alien_cache(alien);
                }
-               mutex_unlock(&cache_chain_mutex);
                break;
        case CPU_ONLINE:
+               mutex_unlock(&cache_chain_mutex);
                start_cpu_timer(cpu);
                break;
 #ifdef CONFIG_HOTPLUG_CPU
+       case CPU_DOWN_PREPARE:
+               mutex_lock(&cache_chain_mutex);
+               break;
+       case CPU_DOWN_FAILED:
+               mutex_unlock(&cache_chain_mutex);
+               break;
        case CPU_DEAD:
                /*
                 * Even if all the cpus of a node are down, we don't free the
@@ -1111,8 +1255,8 @@ static int __devinit cpuup_callback(struct notifier_block *nfb,
                 * gets destroyed at kmem_cache_destroy().
                 */
                /* fall thru */
+#endif
        case CPU_UP_CANCELED:
-               mutex_lock(&cache_chain_mutex);
                list_for_each_entry(cachep, &cache_chain, next) {
                        struct array_cache *nc;
                        struct array_cache *shared;
@@ -1169,22 +1313,19 @@ free_array_cache:
                        l3 = cachep->nodelists[node];
                        if (!l3)
                                continue;
-                       spin_lock_irq(&l3->list_lock);
-                       /* free slabs belonging to this node */
-                       __node_shrink(cachep, node);
-                       spin_unlock_irq(&l3->list_lock);
+                       drain_freelist(cachep, l3, l3->free_objects);
                }
                mutex_unlock(&cache_chain_mutex);
                break;
-#endif
        }
        return NOTIFY_OK;
 bad:
-       mutex_unlock(&cache_chain_mutex);
        return NOTIFY_BAD;
 }
 
-static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
+static struct notifier_block __cpuinitdata cpucache_notifier = {
+       &cpuup_callback, NULL, 0
+};
 
 /*
  * swap the static kmem_list3 with kmalloced memory
@@ -1194,12 +1335,16 @@ static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
 {
        struct kmem_list3 *ptr;
 
-       BUG_ON(cachep->nodelists[nodeid] != list);
        ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
        BUG_ON(!ptr);
 
        local_irq_disable();
        memcpy(ptr, list, sizeof(struct kmem_list3));
+       /*
+        * Do not assume that spinlocks can be initialized via memcpy:
+        */
+       spin_lock_init(&ptr->list_lock);
+
        MAKE_ALL_LISTS(cachep, ptr, nodeid);
        cachep->nodelists[nodeid] = ptr;
        local_irq_enable();
@@ -1216,6 +1361,7 @@ void __init kmem_cache_init(void)
        struct cache_names *names;
        int i;
        int order;
+       int node;
 
        for (i = 0; i < NUM_INIT_LISTS; i++) {
                kmem_list3_init(&initkmem_list3[i]);
@@ -1250,12 +1396,14 @@ void __init kmem_cache_init(void)
         * 6) Resize the head arrays of the kmalloc caches to their final sizes.
         */
 
+       node = numa_node_id();
+
        /* 1) create the cache_cache */
        INIT_LIST_HEAD(&cache_chain);
        list_add(&cache_cache.next, &cache_chain);
        cache_cache.colour_off = cache_line_size();
        cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
-       cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
+       cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
 
        cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
                                        cache_line_size());
@@ -1266,8 +1414,7 @@ void __init kmem_cache_init(void)
                if (cache_cache.num)
                        break;
        }
-       if (!cache_cache.num)
-               BUG();
+       BUG_ON(!cache_cache.num);
        cache_cache.gfporder = order;
        cache_cache.colour = left_over / cache_cache.colour_off;
        cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
@@ -1298,6 +1445,8 @@ void __init kmem_cache_init(void)
                                NULL, NULL);
        }
 
+       slab_early_init = 0;
+
        while (sizes->cs_size != ULONG_MAX) {
                /*
                 * For performance, all the general caches are L1 aligned.
@@ -1314,12 +1463,6 @@ void __init kmem_cache_init(void)
                                        NULL, NULL);
                }
 
-               /* Inc off-slab bufctl limit until the ceiling is hit. */
-               if (!(OFF_SLAB(sizes->cs_cachep))) {
-                       offslab_limit = sizes->cs_size - sizeof(struct slab);
-                       offslab_limit /= sizeof(kmem_bufctl_t);
-               }
-
                sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
                                        sizes->cs_size,
                                        ARCH_KMALLOC_MINALIGN,
@@ -1331,7 +1474,7 @@ void __init kmem_cache_init(void)
        }
        /* 4) Replace the bootstrap head arrays */
        {
-               void *ptr;
+               struct array_cache *ptr;
 
                ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
 
@@ -1339,6 +1482,11 @@ void __init kmem_cache_init(void)
                BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
                memcpy(ptr, cpu_cache_get(&cache_cache),
                       sizeof(struct arraycache_init));
+               /*
+                * Do not assume that spinlocks can be initialized via memcpy:
+                */
+               spin_lock_init(&ptr->lock);
+
                cache_cache.array[smp_processor_id()] = ptr;
                local_irq_enable();
 
@@ -1349,25 +1497,29 @@ void __init kmem_cache_init(void)
                       != &initarray_generic.cache);
                memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
                       sizeof(struct arraycache_init));
+               /*
+                * Do not assume that spinlocks can be initialized via memcpy:
+                */
+               spin_lock_init(&ptr->lock);
+
                malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
                    ptr;
                local_irq_enable();
        }
        /* 5) Replace the bootstrap kmem_list3's */
        {
-               int node;
+               int nid;
+
                /* Replace the static kmem_list3 structures for the boot cpu */
-               init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
-                         numa_node_id());
+               init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
 
-               for_each_online_node(node) {
+               for_each_online_node(nid) {
                        init_list(malloc_sizes[INDEX_AC].cs_cachep,
-                                 &initkmem_list3[SIZE_AC + node], node);
+                                 &initkmem_list3[SIZE_AC + nid], nid);
 
                        if (INDEX_AC != INDEX_L3) {
                                init_list(malloc_sizes[INDEX_L3].cs_cachep,
-                                         &initkmem_list3[SIZE_L3 + node],
-                                         node);
+                                         &initkmem_list3[SIZE_L3 + nid], nid);
                        }
                }
        }
@@ -1377,10 +1529,15 @@ void __init kmem_cache_init(void)
                struct kmem_cache *cachep;
                mutex_lock(&cache_chain_mutex);
                list_for_each_entry(cachep, &cache_chain, next)
-                       enable_cpucache(cachep);
+                       if (enable_cpucache(cachep))
+                               BUG();
                mutex_unlock(&cache_chain_mutex);
        }
 
+       /* Annotate slab for lockdep -- annotate the malloc caches */
+       init_lock_keys();
+
+
        /* Done! */
        g_cpucache_up = FULL;
 
@@ -1419,24 +1576,38 @@ __initcall(cpucache_init);
 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
 {
        struct page *page;
-       void *addr;
+       int nr_pages;
        int i;
 
-       flags |= cachep->gfpflags;
+#ifndef CONFIG_MMU
+       /*
+        * Nommu uses slab's for process anonymous memory allocations, and thus
+        * requires __GFP_COMP to properly refcount higher order allocations
+        */
+       flags |= __GFP_COMP;
+#endif
+
+       /*
+        * Under NUMA we want memory on the indicated node. We will handle
+        * the needed fallback ourselves since we want to serve from our
+        * per node object lists first for other nodes.
+        */
+       flags |= cachep->gfpflags | GFP_THISNODE;
+
        page = alloc_pages_node(nodeid, flags, cachep->gfporder);
        if (!page)
                return NULL;
-       addr = page_address(page);
 
-       i = (1 << cachep->gfporder);
+       nr_pages = (1 << cachep->gfporder);
        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
-               atomic_add(i, &slab_reclaim_pages);
-       add_page_state(nr_slab, i);
-       while (i--) {
-               __SetPageSlab(page);
-               page++;
-       }
-       return addr;
+               add_zone_page_state(page_zone(page),
+                       NR_SLAB_RECLAIMABLE, nr_pages);
+       else
+               add_zone_page_state(page_zone(page),
+                       NR_SLAB_UNRECLAIMABLE, nr_pages);
+       for (i = 0; i < nr_pages; i++)
+               __SetPageSlab(page + i);
+       return page_address(page);
 }
 
 /*
@@ -1448,17 +1619,20 @@ static void kmem_freepages(struct kmem_cache *cachep, void *addr)
        struct page *page = virt_to_page(addr);
        const unsigned long nr_freed = i;
 
+       if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
+               sub_zone_page_state(page_zone(page),
+                               NR_SLAB_RECLAIMABLE, nr_freed);
+       else
+               sub_zone_page_state(page_zone(page),
+                               NR_SLAB_UNRECLAIMABLE, nr_freed);
        while (i--) {
                BUG_ON(!PageSlab(page));
                __ClearPageSlab(page);
                page++;
        }
-       sub_page_state(nr_slab, nr_freed);
        if (current->reclaim_state)
                current->reclaim_state->reclaimed_slab += nr_freed;
        free_pages((unsigned long)addr, cachep->gfporder);
-       if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
-               atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
 }
 
 static void kmem_rcu_free(struct rcu_head *head)
@@ -1519,10 +1693,32 @@ static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
 static void dump_line(char *data, int offset, int limit)
 {
        int i;
+       unsigned char error = 0;
+       int bad_count = 0;
+
        printk(KERN_ERR "%03x:", offset);
-       for (i = 0; i < limit; i++)
+       for (i = 0; i < limit; i++) {
+               if (data[offset + i] != POISON_FREE) {
+                       error = data[offset + i];
+                       bad_count++;
+               }
                printk(" %02x", (unsigned char)data[offset + i]);
+       }
        printk("\n");
+
+       if (bad_count == 1) {
+               error ^= POISON_FREE;
+               if (!(error & (error - 1))) {
+                       printk(KERN_ERR "Single bit error detected. Probably "
+                                       "bad RAM.\n");
+#ifdef CONFIG_X86
+                       printk(KERN_ERR "Run memtest86+ or a similar memory "
+                                       "test tool.\n");
+#else
+                       printk(KERN_ERR "Run a memory test tool.\n");
+#endif
+               }
+       }
 }
 #endif
 
@@ -1715,6 +1911,27 @@ static void set_up_list3s(struct kmem_cache *cachep, int index)
        }
 }
 
+static void __kmem_cache_destroy(struct kmem_cache *cachep)
+{
+       int i;
+       struct kmem_list3 *l3;
+
+       for_each_online_cpu(i)
+           kfree(cachep->array[i]);
+
+       /* NUMA: free the list3 structures */
+       for_each_online_node(i) {
+               l3 = cachep->nodelists[i];
+               if (l3) {
+                       kfree(l3->shared);
+                       free_alien_cache(l3->alien);
+                       kfree(l3);
+               }
+       }
+       kmem_cache_free(&cache_cache, cachep);
+}
+
+
 /**
  * calculate_slab_order - calculate size (page order) of slabs
  * @cachep: pointer to the cache that is being created
@@ -1731,6 +1948,7 @@ static void set_up_list3s(struct kmem_cache *cachep, int index)
 static size_t calculate_slab_order(struct kmem_cache *cachep,
                        size_t size, size_t align, unsigned long flags)
 {
+       unsigned long offslab_limit;
        size_t left_over = 0;
        int gfporder;
 
@@ -1742,9 +1960,18 @@ static size_t calculate_slab_order(struct kmem_cache *cachep,
                if (!num)
                        continue;
 
-               /* More than offslab_limit objects will cause problems */
-               if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
-                       break;
+               if (flags & CFLGS_OFF_SLAB) {
+                       /*
+                        * Max number of objs-per-slab for caches which
+                        * use off-slab slabs. Needed to avoid a possible
+                        * looping condition in cache_grow().
+                        */
+                       offslab_limit = size - sizeof(struct slab);
+                       offslab_limit /= sizeof(kmem_bufctl_t);
+
+                       if (num > offslab_limit)
+                               break;
+               }
 
                /* Found something acceptable - save it away */
                cachep->num = num;
@@ -1775,12 +2002,11 @@ static size_t calculate_slab_order(struct kmem_cache *cachep,
        return left_over;
 }
 
-static void setup_cpu_cache(struct kmem_cache *cachep)
+static int setup_cpu_cache(struct kmem_cache *cachep)
 {
-       if (g_cpucache_up == FULL) {
-               enable_cpucache(cachep);
-               return;
-       }
+       if (g_cpucache_up == FULL)
+               return enable_cpucache(cachep);
+
        if (g_cpucache_up == NONE) {
                /*
                 * Note: the first kmem_cache_create must create the cache
@@ -1827,6 +2053,7 @@ static void setup_cpu_cache(struct kmem_cache *cachep)
        cpu_cache_get(cachep)->touched = 0;
        cachep->batchcount = 1;
        cachep->limit = BOOT_CPUCACHE_ENTRIES;
+       return 0;
 }
 
 /**
@@ -1865,8 +2092,7 @@ kmem_cache_create (const char *name, size_t size, size_t align,
        void (*dtor)(void*, struct kmem_cache *, unsigned long))
 {
        size_t left_over, slab_size, ralign;
-       struct kmem_cache *cachep = NULL;
-       struct list_head *p;
+       struct kmem_cache *cachep = NULL, *pc;
 
        /*
         * Sanity checks... these are all serious usage bugs.
@@ -1879,15 +2105,12 @@ kmem_cache_create (const char *name, size_t size, size_t align,
        }
 
        /*
-        * Prevent CPUs from coming and going.
-        * lock_cpu_hotplug() nests outside cache_chain_mutex
+        * We use cache_chain_mutex to ensure a consistent view of
+        * cpu_online_map as well.  Please see cpuup_callback
         */
-       lock_cpu_hotplug();
-
        mutex_lock(&cache_chain_mutex);
 
-       list_for_each(p, &cache_chain) {
-               struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
+       list_for_each_entry(pc, &cache_chain, next) {
                mm_segment_t old_fs = get_fs();
                char tmp;
                int res;
@@ -1943,8 +2166,7 @@ kmem_cache_create (const char *name, size_t size, size_t align,
         * Always checks flags, a caller might be expecting debug support which
         * isn't available.
         */
-       if (flags & ~CREATE_MASK)
-               BUG();
+       BUG_ON(flags & ~CREATE_MASK);
 
        /*
         * Check that size is in terms of words.  This is needed to avoid
@@ -1971,21 +2193,28 @@ kmem_cache_create (const char *name, size_t size, size_t align,
        } else {
                ralign = BYTES_PER_WORD;
        }
-       /* 2) arch mandated alignment: disables debug if necessary */
+
+       /*
+        * Redzoning and user store require word alignment. Note this will be
+        * overridden by architecture or caller mandated alignment if either
+        * is greater than BYTES_PER_WORD.
+        */
+       if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
+               ralign = BYTES_PER_WORD;
+
+       /* 2) arch mandated alignment */
        if (ralign < ARCH_SLAB_MINALIGN) {
                ralign = ARCH_SLAB_MINALIGN;
-               if (ralign > BYTES_PER_WORD)
-                       flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
        }
-       /* 3) caller mandated alignment: disables debug if necessary */
+       /* 3) caller mandated alignment */
        if (ralign < align) {
                ralign = align;
-               if (ralign > BYTES_PER_WORD)
-                       flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
        }
+       /* disable debug if necessary */
+       if (ralign > BYTES_PER_WORD)
+               flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
        /*
-        * 4) Store it. Note that the debug code below can reduce
-        *    the alignment to BYTES_PER_WORD.
+        * 4) Store it.
         */
        align = ralign;
 
@@ -1997,20 +2226,19 @@ kmem_cache_create (const char *name, size_t size, size_t align,
 #if DEBUG
        cachep->obj_size = size;
 
+       /*
+        * Both debugging options require word-alignment which is calculated
+        * into align above.
+        */
        if (flags & SLAB_RED_ZONE) {
-               /* redzoning only works with word aligned caches */
-               align = BYTES_PER_WORD;
-
                /* add space for red zone words */
                cachep->obj_offset += BYTES_PER_WORD;
                size += 2 * BYTES_PER_WORD;
        }
        if (flags & SLAB_STORE_USER) {
-               /* user store requires word alignment and
-                * one word storage behind the end of the real
-                * object.
+               /* user store requires one word storage behind the end of
+                * the real object.
                 */
-               align = BYTES_PER_WORD;
                size += BYTES_PER_WORD;
        }
 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
@@ -2022,8 +2250,12 @@ kmem_cache_create (const char *name, size_t size, size_t align,
 #endif
 #endif
 
-       /* Determine if the slab management is 'on' or 'off' slab. */
-       if (size >= (PAGE_SIZE >> 3))
+       /*
+        * Determine if the slab management is 'on' or 'off' slab.
+        * (bootstrapping cannot cope with offslab caches so don't do
+        * it too early on.)
+        */
+       if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
                /*
                 * Size is large, assume best to place the slab management obj
                 * off-slab (should allow better packing of objs).
@@ -2070,14 +2302,26 @@ kmem_cache_create (const char *name, size_t size, size_t align,
                cachep->gfpflags |= GFP_DMA;
        cachep->buffer_size = size;
 
-       if (flags & CFLGS_OFF_SLAB)
+       if (flags & CFLGS_OFF_SLAB) {
                cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
+               /*
+                * This is a possibility for one of the malloc_sizes caches.
+                * But since we go off slab only for object size greater than
+                * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
+                * this should not happen at all.
+                * But leave a BUG_ON for some lucky dude.
+                */
+               BUG_ON(!cachep->slabp_cache);
+       }
        cachep->ctor = ctor;
        cachep->dtor = dtor;
        cachep->name = name;
 
-
-       setup_cpu_cache(cachep);
+       if (setup_cpu_cache(cachep)) {
+               __kmem_cache_destroy(cachep);
+               cachep = NULL;
+               goto oops;
+       }
 
        /* cache setup completed, link it into the list */
        list_add(&cachep->next, &cache_chain);
@@ -2086,7 +2330,6 @@ oops:
                panic("kmem_cache_create(): failed to create slab `%s'\n",
                      name);
        mutex_unlock(&cache_chain_mutex);
-       unlock_cpu_hotplug();
        return cachep;
 }
 EXPORT_SYMBOL(kmem_cache_create);
@@ -2152,43 +2395,59 @@ static void drain_cpu_caches(struct kmem_cache *cachep)
        check_irq_on();
        for_each_online_node(node) {
                l3 = cachep->nodelists[node];
-               if (l3) {
+               if (l3 && l3->alien)
+                       drain_alien_cache(cachep, l3->alien);
+       }
+
+       for_each_online_node(node) {
+               l3 = cachep->nodelists[node];
+               if (l3)
                        drain_array(cachep, l3, l3->shared, 1, node);
-                       if (l3->alien)
-                               drain_alien_cache(cachep, l3->alien);
-               }
        }
 }
 
-static int __node_shrink(struct kmem_cache *cachep, int node)
+/*
+ * Remove slabs from the list of free slabs.
+ * Specify the number of slabs to drain in tofree.
+ *
+ * Returns the actual number of slabs released.
+ */
+static int drain_freelist(struct kmem_cache *cache,
+                       struct kmem_list3 *l3, int tofree)
 {
+       struct list_head *p;
+       int nr_freed;
        struct slab *slabp;
-       struct kmem_list3 *l3 = cachep->nodelists[node];
-       int ret;
 
-       for (;;) {
-               struct list_head *p;
+       nr_freed = 0;
+       while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
 
+               spin_lock_irq(&l3->list_lock);
                p = l3->slabs_free.prev;
-               if (p == &l3->slabs_free)
-                       break;
+               if (p == &l3->slabs_free) {
+                       spin_unlock_irq(&l3->list_lock);
+                       goto out;
+               }
 
-               slabp = list_entry(l3->slabs_free.prev, struct slab, list);
+               slabp = list_entry(p, struct slab, list);
 #if DEBUG
-               if (slabp->inuse)
-                       BUG();
+               BUG_ON(slabp->inuse);
 #endif
                list_del(&slabp->list);
-
-               l3->free_objects -= cachep->num;
+               /*
+                * Safe to drop the lock. The slab is no longer linked
+                * to the cache.
+                */
+               l3->free_objects -= cache->num;
                spin_unlock_irq(&l3->list_lock);
-               slab_destroy(cachep, slabp);
-               spin_lock_irq(&l3->list_lock);
+               slab_destroy(cache, slabp);
+               nr_freed++;
        }
-       ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
-       return ret;
+out:
+       return nr_freed;
 }
 
+/* Called with cache_chain_mutex held to protect against cpu hotplug */
 static int __cache_shrink(struct kmem_cache *cachep)
 {
        int ret = 0, i = 0;
@@ -2199,11 +2458,13 @@ static int __cache_shrink(struct kmem_cache *cachep)
        check_irq_on();
        for_each_online_node(i) {
                l3 = cachep->nodelists[i];
-               if (l3) {
-                       spin_lock_irq(&l3->list_lock);
-                       ret += __node_shrink(cachep, i);
-                       spin_unlock_irq(&l3->list_lock);
-               }
+               if (!l3)
+                       continue;
+
+               drain_freelist(cachep, l3, l3->free_objects);
+
+               ret += !list_empty(&l3->slabs_full) ||
+                       !list_empty(&l3->slabs_partial);
        }
        return (ret ? 1 : 0);
 }
@@ -2217,10 +2478,13 @@ static int __cache_shrink(struct kmem_cache *cachep)
  */
 int kmem_cache_shrink(struct kmem_cache *cachep)
 {
-       if (!cachep || in_interrupt())
-               BUG();
+       int ret;
+       BUG_ON(!cachep || in_interrupt());
 
-       return __cache_shrink(cachep);
+       mutex_lock(&cache_chain_mutex);
+       ret = __cache_shrink(cachep);
+       mutex_unlock(&cache_chain_mutex);
+       return ret;
 }
 EXPORT_SYMBOL(kmem_cache_shrink);
 
@@ -2229,7 +2493,6 @@ EXPORT_SYMBOL(kmem_cache_shrink);
  * @cachep: the cache to destroy
  *
  * Remove a struct kmem_cache object from the slab cache.
- * Returns 0 on success.
  *
  * It is expected this function will be called by a module when it is
  * unloaded.  This will remove the cache completely, and avoid a duplicate
@@ -2241,16 +2504,9 @@ EXPORT_SYMBOL(kmem_cache_shrink);
  * The caller must guarantee that noone will allocate memory from the cache
  * during the kmem_cache_destroy().
  */
-int kmem_cache_destroy(struct kmem_cache *cachep)
+void kmem_cache_destroy(struct kmem_cache *cachep)
 {
-       int i;
-       struct kmem_list3 *l3;
-
-       if (!cachep || in_interrupt())
-               BUG();
-
-       /* Don't let CPUs to come and go */
-       lock_cpu_hotplug();
+       BUG_ON(!cachep || in_interrupt());
 
        /* Find the cache in the chain of caches. */
        mutex_lock(&cache_chain_mutex);
@@ -2258,47 +2514,42 @@ int kmem_cache_destroy(struct kmem_cache *cachep)
         * the chain is never empty, cache_cache is never destroyed
         */
        list_del(&cachep->next);
-       mutex_unlock(&cache_chain_mutex);
-
        if (__cache_shrink(cachep)) {
                slab_error(cachep, "Can't free all objects");
-               mutex_lock(&cache_chain_mutex);
                list_add(&cachep->next, &cache_chain);
                mutex_unlock(&cache_chain_mutex);
-               unlock_cpu_hotplug();
-               return 1;
+               return;
        }
 
        if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
                synchronize_rcu();
 
-       for_each_online_cpu(i)
-           kfree(cachep->array[i]);
-
-       /* NUMA: free the list3 structures */
-       for_each_online_node(i) {
-               l3 = cachep->nodelists[i];
-               if (l3) {
-                       kfree(l3->shared);
-                       free_alien_cache(l3->alien);
-                       kfree(l3);
-               }
-       }
-       kmem_cache_free(&cache_cache, cachep);
-       unlock_cpu_hotplug();
-       return 0;
+       __kmem_cache_destroy(cachep);
+       mutex_unlock(&cache_chain_mutex);
 }
 EXPORT_SYMBOL(kmem_cache_destroy);
 
-/* Get the memory for a slab management obj. */
+/*
+ * Get the memory for a slab management obj.
+ * For a slab cache when the slab descriptor is off-slab, slab descriptors
+ * always come from malloc_sizes caches.  The slab descriptor cannot
+ * come from the same cache which is getting created because,
+ * when we are searching for an appropriate cache for these
+ * descriptors in kmem_cache_create, we search through the malloc_sizes array.
+ * If we are creating a malloc_sizes cache here it would not be visible to
+ * kmem_find_general_cachep till the initialization is complete.
+ * Hence we cannot have slabp_cache same as the original cache.
+ */
 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
-                                  int colour_off, gfp_t local_flags)
+                                  int colour_off, gfp_t local_flags,
+                                  int nodeid)
 {
        struct slab *slabp;
 
        if (OFF_SLAB(cachep)) {
                /* Slab management obj is off-slab. */
-               slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
+               slabp = kmem_cache_alloc_node(cachep->slabp_cache,
+                                             local_flags, nodeid);
                if (!slabp)
                        return NULL;
        } else {
@@ -2308,6 +2559,7 @@ static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
        slabp->inuse = 0;
        slabp->colouroff = colour_off;
        slabp->s_mem = objp + colour_off;
+       slabp->nodeid = nodeid;
        return slabp;
 }
 
@@ -2410,23 +2662,28 @@ static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
        slabp->inuse--;
 }
 
-static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
-                       void *objp)
+/*
+ * Map pages beginning at addr to the given cache and slab. This is required
+ * for the slab allocator to be able to lookup the cache and slab of a
+ * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
+ */
+static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
+                          void *addr)
 {
-       int i;
+       int nr_pages;
        struct page *page;
 
-       /* Nasty!!!!!! I hope this is OK. */
-       page = virt_to_page(objp);
+       page = virt_to_page(addr);
 
-       i = 1;
+       nr_pages = 1;
        if (likely(!PageCompound(page)))
-               i <<= cachep->gfporder;
+               nr_pages <<= cache->gfporder;
+
        do {
-               page_set_cache(page, cachep);
-               page_set_slab(page, slabp);
+               page_set_cache(page, cache);
+               page_set_slab(page, slab);
                page++;
-       } while (--i);
+       } while (--nr_pages);
 }
 
 /*
@@ -2446,8 +2703,7 @@ static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
         * Be lazy and only check for valid flags here,  keeping it out of the
         * critical path in kmem_cache_alloc().
         */
-       if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
-               BUG();
+       BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
        if (flags & SLAB_NO_GROW)
                return 0;
 
@@ -2494,12 +2750,12 @@ static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
                goto failed;
 
        /* Get slab management. */
-       slabp = alloc_slabmgmt(cachep, objp, offset, local_flags);
+       slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
        if (!slabp)
                goto opps1;
 
        slabp->nodeid = nodeid;
-       set_slab_attr(cachep, slabp, objp);
+       slab_map_pages(cachep, slabp, objp);
 
        cache_init_objs(cachep, slabp, ctor_flags);
 
@@ -2547,6 +2803,28 @@ static void kfree_debugcheck(const void *objp)
        }
 }
 
+static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
+{
+       unsigned long redzone1, redzone2;
+
+       redzone1 = *dbg_redzone1(cache, obj);
+       redzone2 = *dbg_redzone2(cache, obj);
+
+       /*
+        * Redzone is ok.
+        */
+       if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
+               return;
+
+       if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
+               slab_error(cache, "double free detected");
+       else
+               slab_error(cache, "memory outside object was overwritten");
+
+       printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
+                       obj, redzone1, redzone2);
+}
+
 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
                                   void *caller)
 {
@@ -2558,27 +2836,10 @@ static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
        kfree_debugcheck(objp);
        page = virt_to_page(objp);
 
-       if (page_get_cache(page) != cachep) {
-               printk(KERN_ERR "mismatch in kmem_cache_free: expected "
-                               "cache %p, got %p\n",
-                      page_get_cache(page), cachep);
-               printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
-               printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
-                      page_get_cache(page)->name);
-               WARN_ON(1);
-       }
        slabp = page_get_slab(page);
 
        if (cachep->flags & SLAB_RED_ZONE) {
-               if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
-                               *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
-                       slab_error(cachep, "double free, or memory outside"
-                                               " object was overwritten");
-                       printk(KERN_ERR "%p: redzone 1:0x%lx, "
-                                       "redzone 2:0x%lx.\n",
-                              objp, *dbg_redzone1(cachep, objp),
-                              *dbg_redzone2(cachep, objp));
-               }
+               verify_redzone_free(cachep, objp);
                *dbg_redzone1(cachep, objp) = RED_INACTIVE;
                *dbg_redzone2(cachep, objp) = RED_INACTIVE;
        }
@@ -2662,6 +2923,9 @@ static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
        int batchcount;
        struct kmem_list3 *l3;
        struct array_cache *ac;
+       int node;
+
+       node = numa_node_id();
 
        check_irq_off();
        ac = cpu_cache_get(cachep);
@@ -2675,25 +2939,15 @@ retry:
                 */
                batchcount = BATCHREFILL_LIMIT;
        }
-       l3 = cachep->nodelists[numa_node_id()];
+       l3 = cachep->nodelists[node];
 
        BUG_ON(ac->avail > 0 || !l3);
        spin_lock(&l3->list_lock);
 
-       if (l3->shared) {
-               struct array_cache *shared_array = l3->shared;
-               if (shared_array->avail) {
-                       if (batchcount > shared_array->avail)
-                               batchcount = shared_array->avail;
-                       shared_array->avail -= batchcount;
-                       ac->avail = batchcount;
-                       memcpy(ac->entry,
-                              &(shared_array->entry[shared_array->avail]),
-                              sizeof(void *) * batchcount);
-                       shared_array->touched = 1;
-                       goto alloc_done;
-               }
-       }
+       /* See if we can refill from the shared array */
+       if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
+               goto alloc_done;
+
        while (batchcount > 0) {
                struct list_head *entry;
                struct slab *slabp;
@@ -2715,7 +2969,7 @@ retry:
                        STATS_SET_HIGH(cachep);
 
                        ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
-                                                           numa_node_id());
+                                                           node);
                }
                check_slabp(cachep, slabp);
 
@@ -2734,7 +2988,7 @@ alloc_done:
 
        if (unlikely(!ac->avail)) {
                int x;
-               x = cache_grow(cachep, flags, numa_node_id());
+               x = cache_grow(cachep, flags, node);
 
                /* cache_grow can reenable interrupts, then ac could change. */
                ac = cpu_cache_get(cachep);
@@ -2810,6 +3064,12 @@ static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
 
                cachep->ctor(objp, cachep, ctor_flags);
        }
+#if ARCH_SLAB_MINALIGN
+       if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
+               printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
+                      objp, ARCH_SLAB_MINALIGN);
+       }
+#endif
        return objp;
 }
 #else
@@ -2821,14 +3081,6 @@ static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
        void *objp;
        struct array_cache *ac;
 
-#ifdef CONFIG_NUMA
-       if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
-               objp = alternate_node_alloc(cachep, flags);
-               if (objp != NULL)
-                       return objp;
-       }
-#endif
-
        check_irq_off();
        ac = cpu_cache_get(cachep);
        if (likely(ac->avail)) {
@@ -2846,12 +3098,24 @@ static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
                                                gfp_t flags, void *caller)
 {
        unsigned long save_flags;
-       void *objp;
+       void *objp = NULL;
 
        cache_alloc_debugcheck_before(cachep, flags);
 
        local_irq_save(save_flags);
-       objp = ____cache_alloc(cachep, flags);
+
+       if (unlikely(NUMA_BUILD &&
+                       current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY)))
+               objp = alternate_node_alloc(cachep, flags);
+
+       if (!objp)
+               objp = ____cache_alloc(cachep, flags);
+       /*
+        * We may just have run out of memory on the local node.
+        * __cache_alloc_node() knows how to locate memory on other nodes
+        */
+       if (NUMA_BUILD && !objp)
+               objp = __cache_alloc_node(cachep, flags, numa_node_id());
        local_irq_restore(save_flags);
        objp = cache_alloc_debugcheck_after(cachep, flags, objp,
                                            caller);
@@ -2870,7 +3134,7 @@ static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
 {
        int nid_alloc, nid_here;
 
-       if (in_interrupt())
+       if (in_interrupt() || (flags & __GFP_THISNODE))
                return NULL;
        nid_alloc = nid_here = numa_node_id();
        if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
@@ -2883,6 +3147,31 @@ static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
 }
 
 /*
+ * Fallback function if there was no memory available and no objects on a
+ * certain node and we are allowed to fall back. We mimick the behavior of
+ * the page allocator. We fall back according to a zonelist determined by
+ * the policy layer while obeying cpuset constraints.
+ */
+void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
+{
+       struct zonelist *zonelist = &NODE_DATA(slab_node(current->mempolicy))
+                                       ->node_zonelists[gfp_zone(flags)];
+       struct zone **z;
+       void *obj = NULL;
+
+       for (z = zonelist->zones; *z && !obj; z++) {
+               int nid = zone_to_nid(*z);
+
+               if (zone_idx(*z) <= ZONE_NORMAL &&
+                               cpuset_zone_allowed(*z, flags) &&
+                               cache->nodelists[nid])
+                       obj = __cache_alloc_node(cache,
+                                       flags | __GFP_THISNODE, nid);
+       }
+       return obj;
+}
+
+/*
  * A interface to enable slab creation on nodeid
  */
 static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
@@ -2935,11 +3224,15 @@ retry:
 must_grow:
        spin_unlock(&l3->list_lock);
        x = cache_grow(cachep, flags, nodeid);
+       if (x)
+               goto retry;
 
-       if (!x)
-               return NULL;
+       if (!(flags & __GFP_THISNODE))
+               /* Unable to grow the cache. Fall back to other nodes. */
+               return fallback_alloc(cachep, flags);
+
+       return NULL;
 
-       goto retry;
 done:
        return obj;
 }
@@ -2972,6 +3265,12 @@ static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
                if (slabp->inuse == 0) {
                        if (l3->free_objects > l3->free_limit) {
                                l3->free_objects -= cachep->num;
+                               /* No need to drop any previously held
+                                * lock here, even if we have a off-slab slab
+                                * descriptor it is guaranteed to come from
+                                * a different cache, refer to comments before
+                                * alloc_slabmgmt.
+                                */
                                slab_destroy(cachep, slabp);
                        } else {
                                list_add(&slabp->list, &l3->slabs_free);
@@ -3048,39 +3347,9 @@ static inline void __cache_free(struct kmem_cache *cachep, void *objp)
        check_irq_off();
        objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
 
-       /* Make sure we are not freeing a object from another
-        * node to the array cache on this cpu.
-        */
-#ifdef CONFIG_NUMA
-       {
-               struct slab *slabp;
-               slabp = virt_to_slab(objp);
-               if (unlikely(slabp->nodeid != numa_node_id())) {
-                       struct array_cache *alien = NULL;
-                       int nodeid = slabp->nodeid;
-                       struct kmem_list3 *l3;
-
-                       l3 = cachep->nodelists[numa_node_id()];
-                       STATS_INC_NODEFREES(cachep);
-                       if (l3->alien && l3->alien[nodeid]) {
-                               alien = l3->alien[nodeid];
-                               spin_lock(&alien->lock);
-                               if (unlikely(alien->avail == alien->limit))
-                                       __drain_alien_cache(cachep,
-                                                           alien, nodeid);
-                               alien->entry[alien->avail++] = objp;
-                               spin_unlock(&alien->lock);
-                       } else {
-                               spin_lock(&(cachep->nodelists[nodeid])->
-                                         list_lock);
-                               free_block(cachep, &objp, 1, nodeid);
-                               spin_unlock(&(cachep->nodelists[nodeid])->
-                                           list_lock);
-                       }
-                       return;
-               }
-       }
-#endif
+       if (cache_free_alien(cachep, objp))
+               return;
+
        if (likely(ac->avail < ac->limit)) {
                STATS_INC_FREEHIT(cachep);
                ac->entry[ac->avail++] = objp;
@@ -3107,7 +3376,7 @@ void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
 EXPORT_SYMBOL(kmem_cache_alloc);
 
 /**
- * kmem_cache_alloc - Allocate an object. The memory is set to zero.
+ * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
  * @cache: The cache to allocate from.
  * @flags: See kmalloc().
  *
@@ -3200,7 +3469,7 @@ void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
 }
 EXPORT_SYMBOL(kmem_cache_alloc_node);
 
-void *kmalloc_node(size_t size, gfp_t flags, int node)
+void *__kmalloc_node(size_t size, gfp_t flags, int node)
 {
        struct kmem_cache *cachep;
 
@@ -3209,30 +3478,14 @@ void *kmalloc_node(size_t size, gfp_t flags, int node)
                return NULL;
        return kmem_cache_alloc_node(cachep, flags, node);
 }
-EXPORT_SYMBOL(kmalloc_node);
+EXPORT_SYMBOL(__kmalloc_node);
 #endif
 
 /**
- * kmalloc - allocate memory
+ * __do_kmalloc - allocate memory
  * @size: how many bytes of memory are required.
- * @flags: the type of memory to allocate.
+ * @flags: the type of memory to allocate (see kmalloc).
  * @caller: function caller for debug tracking of the caller
- *
- * kmalloc is the normal method of allocating memory
- * in the kernel.
- *
- * The @flags argument may be one of:
- *
- * %GFP_USER - Allocate memory on behalf of user.  May sleep.
- *
- * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
- *
- * %GFP_ATOMIC - Allocation will not sleep.  Use inside interrupt handlers.
- *
- * Additionally, the %GFP_DMA flag may be set to indicate the memory
- * must be suitable for DMA.  This can mean different things on different
- * platforms.  For example, on i386, it means that the memory must come
- * from the first 16MB.
  */
 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
                                          void *caller)
@@ -3251,71 +3504,25 @@ static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
 }
 
 
+#ifdef CONFIG_DEBUG_SLAB
 void *__kmalloc(size_t size, gfp_t flags)
 {
-#ifndef CONFIG_DEBUG_SLAB
-       return __do_kmalloc(size, flags, NULL);
-#else
        return __do_kmalloc(size, flags, __builtin_return_address(0));
-#endif
 }
 EXPORT_SYMBOL(__kmalloc);
 
-#ifdef CONFIG_DEBUG_SLAB
 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
 {
        return __do_kmalloc(size, flags, caller);
 }
 EXPORT_SYMBOL(__kmalloc_track_caller);
-#endif
 
-#ifdef CONFIG_SMP
-/**
- * __alloc_percpu - allocate one copy of the object for every present
- * cpu in the system, zeroing them.
- * Objects should be dereferenced using the per_cpu_ptr macro only.
- *
- * @size: how many bytes of memory are required.
- */
-void *__alloc_percpu(size_t size)
+#else
+void *__kmalloc(size_t size, gfp_t flags)
 {
-       int i;
-       struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
-
-       if (!pdata)
-               return NULL;
-
-       /*
-        * Cannot use for_each_online_cpu since a cpu may come online
-        * and we have no way of figuring out how to fix the array
-        * that we have allocated then....
-        */
-       for_each_cpu(i) {
-               int node = cpu_to_node(i);
-
-               if (node_online(node))
-                       pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
-               else
-                       pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
-
-               if (!pdata->ptrs[i])
-                       goto unwind_oom;
-               memset(pdata->ptrs[i], 0, size);
-       }
-
-       /* Catch derefs w/o wrappers */
-       return (void *)(~(unsigned long)pdata);
-
-unwind_oom:
-       while (--i >= 0) {
-               if (!cpu_possible(i))
-                       continue;
-               kfree(pdata->ptrs[i]);
-       }
-       kfree(pdata);
-       return NULL;
+       return __do_kmalloc(size, flags, NULL);
 }
-EXPORT_SYMBOL(__alloc_percpu);
+EXPORT_SYMBOL(__kmalloc);
 #endif
 
 /**
@@ -3330,6 +3537,8 @@ void kmem_cache_free(struct kmem_cache *cachep, void *objp)
 {
        unsigned long flags;
 
+       BUG_ON(virt_to_cache(objp) != cachep);
+
        local_irq_save(flags);
        __cache_free(cachep, objp);
        local_irq_restore(flags);
@@ -3355,35 +3564,12 @@ void kfree(const void *objp)
        local_irq_save(flags);
        kfree_debugcheck(objp);
        c = virt_to_cache(objp);
-       mutex_debug_check_no_locks_freed(objp, obj_size(c));
+       debug_check_no_locks_freed(objp, obj_size(c));
        __cache_free(c, (void *)objp);
        local_irq_restore(flags);
 }
 EXPORT_SYMBOL(kfree);
 
-#ifdef CONFIG_SMP
-/**
- * free_percpu - free previously allocated percpu memory
- * @objp: pointer returned by alloc_percpu.
- *
- * Don't free memory not originally allocated by alloc_percpu()
- * The complemented objp is to check for that.
- */
-void free_percpu(const void *objp)
-{
-       int i;
-       struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
-
-       /*
-        * We allocate for all cpus so we cannot use for online cpu here.
-        */
-       for_each_cpu(i)
-           kfree(p->ptrs[i]);
-       kfree(p);
-}
-EXPORT_SYMBOL(free_percpu);
-#endif
-
 unsigned int kmem_cache_size(struct kmem_cache *cachep)
 {
        return obj_size(cachep);
@@ -3397,63 +3583,86 @@ const char *kmem_cache_name(struct kmem_cache *cachep)
 EXPORT_SYMBOL_GPL(kmem_cache_name);
 
 /*
- * This initializes kmem_list3 for all nodes.
+ * This initializes kmem_list3 or resizes varioius caches for all nodes.
  */
 static int alloc_kmemlist(struct kmem_cache *cachep)
 {
        int node;
        struct kmem_list3 *l3;
-       int err = 0;
+       struct array_cache *new_shared;
+       struct array_cache **new_alien;
 
        for_each_online_node(node) {
-               struct array_cache *nc = NULL, *new;
-               struct array_cache **new_alien = NULL;
-#ifdef CONFIG_NUMA
+
                new_alien = alloc_alien_cache(node, cachep->limit);
                if (!new_alien)
                        goto fail;
-#endif
-               new = alloc_arraycache(node, cachep->shared*cachep->batchcount,
+
+               new_shared = alloc_arraycache(node,
+                               cachep->shared*cachep->batchcount,
                                        0xbaadf00d);
-               if (!new)
+               if (!new_shared) {
+                       free_alien_cache(new_alien);
                        goto fail;
+               }
+
                l3 = cachep->nodelists[node];
                if (l3) {
+                       struct array_cache *shared = l3->shared;
+
                        spin_lock_irq(&l3->list_lock);
 
-                       nc = cachep->nodelists[node]->shared;
-                       if (nc)
-                               free_block(cachep, nc->entry, nc->avail, node);
+                       if (shared)
+                               free_block(cachep, shared->entry,
+                                               shared->avail, node);
 
-                       l3->shared = new;
-                       if (!cachep->nodelists[node]->alien) {
+                       l3->shared = new_shared;
+                       if (!l3->alien) {
                                l3->alien = new_alien;
                                new_alien = NULL;
                        }
                        l3->free_limit = (1 + nr_cpus_node(node)) *
                                        cachep->batchcount + cachep->num;
                        spin_unlock_irq(&l3->list_lock);
-                       kfree(nc);
+                       kfree(shared);
                        free_alien_cache(new_alien);
                        continue;
                }
                l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
-               if (!l3)
+               if (!l3) {
+                       free_alien_cache(new_alien);
+                       kfree(new_shared);
                        goto fail;
+               }
 
                kmem_list3_init(l3);
                l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
                                ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
-               l3->shared = new;
+               l3->shared = new_shared;
                l3->alien = new_alien;
                l3->free_limit = (1 + nr_cpus_node(node)) *
                                        cachep->batchcount + cachep->num;
                cachep->nodelists[node] = l3;
        }
-       return err;
+       return 0;
+
 fail:
-       err = -ENOMEM;
-       return err;
+       if (!cachep->next.next) {
+               /* Cache is not active yet. Roll back what we did */
+               node--;
+               while (node >= 0) {
+                       if (cachep->nodelists[node]) {
+                               l3 = cachep->nodelists[node];
+
+                               kfree(l3->shared);
+                               free_alien_cache(l3->alien);
+                               kfree(l3);
+                               cachep->nodelists[node] = NULL;
+                       }
+                       node--;
+               }
+       }
+       return -ENOMEM;
 }
 
 struct ccupdate_struct {
@@ -3477,22 +3686,26 @@ static void do_ccupdate_local(void *info)
 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
                                int batchcount, int shared)
 {
-       struct ccupdate_struct new;
-       int i, err;
+       struct ccupdate_struct *new;
+       int i;
+
+       new = kzalloc(sizeof(*new), GFP_KERNEL);
+       if (!new)
+               return -ENOMEM;
 
-       memset(&new.new, 0, sizeof(new.new));
        for_each_online_cpu(i) {
-               new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
+               new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
                                                batchcount);
-               if (!new.new[i]) {
+               if (!new->new[i]) {
                        for (i--; i >= 0; i--)
-                               kfree(new.new[i]);
+                               kfree(new->new[i]);
+                       kfree(new);
                        return -ENOMEM;
                }
        }
-       new.cachep = cachep;
+       new->cachep = cachep;
 
-       on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
+       on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
 
        check_irq_on();
        cachep->batchcount = batchcount;
@@ -3500,7 +3713,7 @@ static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
        cachep->shared = shared;
 
        for_each_online_cpu(i) {
-               struct array_cache *ccold = new.new[i];
+               struct array_cache *ccold = new->new[i];
                if (!ccold)
                        continue;
                spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
@@ -3508,18 +3721,12 @@ static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
                spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
                kfree(ccold);
        }
-
-       err = alloc_kmemlist(cachep);
-       if (err) {
-               printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
-                      cachep->name, -err);
-               BUG();
-       }
-       return 0;
+       kfree(new);
+       return alloc_kmemlist(cachep);
 }
 
 /* Called with cache_chain_mutex held always */
-static void enable_cpucache(struct kmem_cache *cachep)
+static int enable_cpucache(struct kmem_cache *cachep)
 {
        int err;
        int limit, shared;
@@ -3571,6 +3778,7 @@ static void enable_cpucache(struct kmem_cache *cachep)
        if (err)
                printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
                       cachep->name, -err);
+       return err;
 }
 
 /*
@@ -3614,9 +3822,9 @@ void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  * If we cannot acquire the cache chain mutex then just give up - we'll try
  * again on the next iteration.
  */
-static void cache_reap(void *unused)
+static void cache_reap(struct work_struct *unused)
 {
-       struct list_head *walk;
+       struct kmem_cache *searchp;
        struct kmem_list3 *l3;
        int node = numa_node_id();
 
@@ -3627,13 +3835,7 @@ static void cache_reap(void *unused)
                return;
        }
 
-       list_for_each(walk, &cache_chain) {
-               struct kmem_cache *searchp;
-               struct list_head *p;
-               int tofree;
-               struct slab *slabp;
-
-               searchp = list_entry(walk, struct kmem_cache, next);
+       list_for_each_entry(searchp, &cache_chain, next) {
                check_irq_on();
 
                /*
@@ -3658,47 +3860,22 @@ static void cache_reap(void *unused)
 
                drain_array(searchp, l3, l3->shared, 0, node);
 
-               if (l3->free_touched) {
+               if (l3->free_touched)
                        l3->free_touched = 0;
-                       goto next;
-               }
-
-               tofree = (l3->free_limit + 5 * searchp->num - 1) /
-                               (5 * searchp->num);
-               do {
-                       /*
-                        * Do not lock if there are no free blocks.
-                        */
-                       if (list_empty(&l3->slabs_free))
-                               break;
+               else {
+                       int freed;
 
-                       spin_lock_irq(&l3->list_lock);
-                       p = l3->slabs_free.next;
-                       if (p == &(l3->slabs_free)) {
-                               spin_unlock_irq(&l3->list_lock);
-                               break;
-                       }
-
-                       slabp = list_entry(p, struct slab, list);
-                       BUG_ON(slabp->inuse);
-                       list_del(&slabp->list);
-                       STATS_INC_REAPED(searchp);
-
-                       /*
-                        * Safe to drop the lock. The slab is no longer linked
-                        * to the cache. searchp cannot disappear, we hold
-                        * cache_chain_lock
-                        */
-                       l3->free_objects -= searchp->num;
-                       spin_unlock_irq(&l3->list_lock);
-                       slab_destroy(searchp, slabp);
-               } while (--tofree > 0);
+                       freed = drain_freelist(searchp, l3, (l3->free_limit +
+                               5 * searchp->num - 1) / (5 * searchp->num));
+                       STATS_ADD_REAPED(searchp, freed);
+               }
 next:
                cond_resched();
        }
        check_irq_on();
        mutex_unlock(&cache_chain_mutex);
        next_reap_node();
+       refresh_cpu_vm_stats(smp_processor_id());
        /* Set up the next iteration */
        schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
 }
@@ -3722,7 +3899,7 @@ static void print_slabinfo_header(struct seq_file *m)
        seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
 #if STATS
        seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
-                "<error> <maxfreeable> <nodeallocs> <remotefrees>");
+                "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
        seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
 #endif
        seq_putc(m, '\n');
@@ -3761,7 +3938,6 @@ static void s_stop(struct seq_file *m, void *p)
 static int s_show(struct seq_file *m, void *p)
 {
        struct kmem_cache *cachep = p;
-       struct list_head *q;
        struct slab *slabp;
        unsigned long active_objs;
        unsigned long num_objs;
@@ -3782,15 +3958,13 @@ static int s_show(struct seq_file *m, void *p)
                check_irq_on();
                spin_lock_irq(&l3->list_lock);
 
-               list_for_each(q, &l3->slabs_full) {
-                       slabp = list_entry(q, struct slab, list);
+               list_for_each_entry(slabp, &l3->slabs_full, list) {
                        if (slabp->inuse != cachep->num && !error)
                                error = "slabs_full accounting error";
                        active_objs += cachep->num;
                        active_slabs++;
                }
-               list_for_each(q, &l3->slabs_partial) {
-                       slabp = list_entry(q, struct slab, list);
+               list_for_each_entry(slabp, &l3->slabs_partial, list) {
                        if (slabp->inuse == cachep->num && !error)
                                error = "slabs_partial inuse accounting error";
                        if (!slabp->inuse && !error)
@@ -3798,8 +3972,7 @@ static int s_show(struct seq_file *m, void *p)
                        active_objs += slabp->inuse;
                        active_slabs++;
                }
-               list_for_each(q, &l3->slabs_free) {
-                       slabp = list_entry(q, struct slab, list);
+               list_for_each_entry(slabp, &l3->slabs_free, list) {
                        if (slabp->inuse && !error)
                                error = "slabs_free/inuse accounting error";
                        num_slabs++;
@@ -3836,11 +4009,12 @@ static int s_show(struct seq_file *m, void *p)
                unsigned long max_freeable = cachep->max_freeable;
                unsigned long node_allocs = cachep->node_allocs;
                unsigned long node_frees = cachep->node_frees;
+               unsigned long overflows = cachep->node_overflow;
 
                seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
-                               %4lu %4lu %4lu %4lu", allocs, high, grown,
+                               %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
                                reaped, errors, max_freeable, node_allocs,
-                               node_frees);
+                               node_frees, overflows);
        }
        /* cpu stats */
        {
@@ -3891,7 +4065,7 @@ ssize_t slabinfo_write(struct file *file, const char __user * buffer,
 {
        char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
        int limit, batchcount, shared, res;
-       struct list_head *p;
+       struct kmem_cache *cachep;
 
        if (count > MAX_SLABINFO_WRITE)
                return -EINVAL;
@@ -3910,10 +4084,7 @@ ssize_t slabinfo_write(struct file *file, const char __user * buffer,
        /* Find the cache in the chain of caches. */
        mutex_lock(&cache_chain_mutex);
        res = -EINVAL;
-       list_for_each(p, &cache_chain) {
-               struct kmem_cache *cachep;
-
-               cachep = list_entry(p, struct kmem_cache, next);
+       list_for_each_entry(cachep, &cache_chain, next) {
                if (!strcmp(cachep->name, kbuf)) {
                        if (limit < 1 || batchcount < 1 ||
                                        batchcount > limit || shared < 0) {
@@ -4015,7 +4186,6 @@ static void show_symbol(struct seq_file *m, unsigned long address)
 static int leaks_show(struct seq_file *m, void *p)
 {
        struct kmem_cache *cachep = p;
-       struct list_head *q;
        struct slab *slabp;
        struct kmem_list3 *l3;
        const char *name;
@@ -4040,14 +4210,10 @@ static int leaks_show(struct seq_file *m, void *p)
                check_irq_on();
                spin_lock_irq(&l3->list_lock);
 
-               list_for_each(q, &l3->slabs_full) {
-                       slabp = list_entry(q, struct slab, list);
+               list_for_each_entry(slabp, &l3->slabs_full, list)
                        handle_slab(n, cachep, slabp);
-               }
-               list_for_each(q, &l3->slabs_partial) {
-                       slabp = list_entry(q, struct slab, list);
+               list_for_each_entry(slabp, &l3->slabs_partial, list)
                        handle_slab(n, cachep, slabp);
-               }
                spin_unlock_irq(&l3->list_lock);
        }
        name = cachep->name;
@@ -4073,6 +4239,7 @@ static int leaks_show(struct seq_file *m, void *p)
                show_symbol(m, n[2*i+2]);
                seq_putc(m, '\n');
        }
+
        return 0;
 }