libertas: fix use-before-check violation
[safe/jmp/linux-2.6] / mm / hugetlb.c
index c9b4336..51c9e2c 100644 (file)
 #include <linux/highmem.h>
 #include <linux/nodemask.h>
 #include <linux/pagemap.h>
+#include <linux/mempolicy.h>
+#include <linux/cpuset.h>
+#include <linux/mutex.h>
+
 #include <asm/page.h>
 #include <asm/pgtable.h>
 
 #include <linux/hugetlb.h>
+#include "internal.h"
 
 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
-static unsigned long nr_huge_pages, free_huge_pages;
+static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
+static unsigned long surplus_huge_pages;
+static unsigned long nr_overcommit_huge_pages;
 unsigned long max_huge_pages;
+unsigned long sysctl_overcommit_huge_pages;
 static struct list_head hugepage_freelists[MAX_NUMNODES];
 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
 static unsigned int free_huge_pages_node[MAX_NUMNODES];
+static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
+static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
+unsigned long hugepages_treat_as_movable;
+static int hugetlb_next_nid;
+
+/*
+ * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
+ */
 static DEFINE_SPINLOCK(hugetlb_lock);
 
+static void clear_huge_page(struct page *page, unsigned long addr)
+{
+       int i;
+
+       might_sleep();
+       for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
+               cond_resched();
+               clear_user_highpage(page + i, addr + i * PAGE_SIZE);
+       }
+}
+
+static void copy_huge_page(struct page *dst, struct page *src,
+                          unsigned long addr, struct vm_area_struct *vma)
+{
+       int i;
+
+       might_sleep();
+       for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
+               cond_resched();
+               copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
+       }
+}
+
 static void enqueue_huge_page(struct page *page)
 {
        int nid = page_to_nid(page);
@@ -34,85 +73,437 @@ static void enqueue_huge_page(struct page *page)
 
 static struct page *dequeue_huge_page(void)
 {
-       int nid = numa_node_id();
+       int nid;
        struct page *page = NULL;
 
-       if (list_empty(&hugepage_freelists[nid])) {
-               for (nid = 0; nid < MAX_NUMNODES; ++nid)
-                       if (!list_empty(&hugepage_freelists[nid]))
-                               break;
+       for (nid = 0; nid < MAX_NUMNODES; ++nid) {
+               if (!list_empty(&hugepage_freelists[nid])) {
+                       page = list_entry(hugepage_freelists[nid].next,
+                                         struct page, lru);
+                       list_del(&page->lru);
+                       free_huge_pages--;
+                       free_huge_pages_node[nid]--;
+                       break;
+               }
        }
-       if (nid >= 0 && nid < MAX_NUMNODES &&
-           !list_empty(&hugepage_freelists[nid])) {
-               page = list_entry(hugepage_freelists[nid].next,
-                                 struct page, lru);
-               list_del(&page->lru);
-               free_huge_pages--;
-               free_huge_pages_node[nid]--;
+       return page;
+}
+
+static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
+                               unsigned long address)
+{
+       int nid;
+       struct page *page = NULL;
+       struct mempolicy *mpol;
+       struct zonelist *zonelist = huge_zonelist(vma, address,
+                                       htlb_alloc_mask, &mpol);
+       struct zone **z;
+
+       for (z = zonelist->zones; *z; z++) {
+               nid = zone_to_nid(*z);
+               if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) &&
+                   !list_empty(&hugepage_freelists[nid])) {
+                       page = list_entry(hugepage_freelists[nid].next,
+                                         struct page, lru);
+                       list_del(&page->lru);
+                       free_huge_pages--;
+                       free_huge_pages_node[nid]--;
+                       if (vma && vma->vm_flags & VM_MAYSHARE)
+                               resv_huge_pages--;
+                       break;
+               }
        }
+       mpol_free(mpol);        /* unref if mpol !NULL */
        return page;
 }
 
-static struct page *alloc_fresh_huge_page(void)
+static void update_and_free_page(struct page *page)
+{
+       int i;
+       nr_huge_pages--;
+       nr_huge_pages_node[page_to_nid(page)]--;
+       for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
+               page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
+                               1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
+                               1 << PG_private | 1<< PG_writeback);
+       }
+       set_compound_page_dtor(page, NULL);
+       set_page_refcounted(page);
+       __free_pages(page, HUGETLB_PAGE_ORDER);
+}
+
+static void free_huge_page(struct page *page)
+{
+       int nid = page_to_nid(page);
+       struct address_space *mapping;
+
+       mapping = (struct address_space *) page_private(page);
+       set_page_private(page, 0);
+       BUG_ON(page_count(page));
+       INIT_LIST_HEAD(&page->lru);
+
+       spin_lock(&hugetlb_lock);
+       if (surplus_huge_pages_node[nid]) {
+               update_and_free_page(page);
+               surplus_huge_pages--;
+               surplus_huge_pages_node[nid]--;
+       } else {
+               enqueue_huge_page(page);
+       }
+       spin_unlock(&hugetlb_lock);
+       if (mapping)
+               hugetlb_put_quota(mapping, 1);
+}
+
+/*
+ * Increment or decrement surplus_huge_pages.  Keep node-specific counters
+ * balanced by operating on them in a round-robin fashion.
+ * Returns 1 if an adjustment was made.
+ */
+static int adjust_pool_surplus(int delta)
+{
+       static int prev_nid;
+       int nid = prev_nid;
+       int ret = 0;
+
+       VM_BUG_ON(delta != -1 && delta != 1);
+       do {
+               nid = next_node(nid, node_online_map);
+               if (nid == MAX_NUMNODES)
+                       nid = first_node(node_online_map);
+
+               /* To shrink on this node, there must be a surplus page */
+               if (delta < 0 && !surplus_huge_pages_node[nid])
+                       continue;
+               /* Surplus cannot exceed the total number of pages */
+               if (delta > 0 && surplus_huge_pages_node[nid] >=
+                                               nr_huge_pages_node[nid])
+                       continue;
+
+               surplus_huge_pages += delta;
+               surplus_huge_pages_node[nid] += delta;
+               ret = 1;
+               break;
+       } while (nid != prev_nid);
+
+       prev_nid = nid;
+       return ret;
+}
+
+static struct page *alloc_fresh_huge_page_node(int nid)
 {
-       static int nid = 0;
        struct page *page;
-       page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
-                                       HUGETLB_PAGE_ORDER);
-       nid = (nid + 1) % num_online_nodes();
+
+       page = alloc_pages_node(nid,
+               htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
+               HUGETLB_PAGE_ORDER);
        if (page) {
+               set_compound_page_dtor(page, free_huge_page);
+               spin_lock(&hugetlb_lock);
                nr_huge_pages++;
-               nr_huge_pages_node[page_to_nid(page)]++;
+               nr_huge_pages_node[nid]++;
+               spin_unlock(&hugetlb_lock);
+               put_page(page); /* free it into the hugepage allocator */
        }
+
        return page;
 }
 
-void free_huge_page(struct page *page)
+static int alloc_fresh_huge_page(void)
 {
-       BUG_ON(page_count(page));
+       struct page *page;
+       int start_nid;
+       int next_nid;
+       int ret = 0;
 
-       INIT_LIST_HEAD(&page->lru);
-       page[1].mapping = NULL;
+       start_nid = hugetlb_next_nid;
 
-       spin_lock(&hugetlb_lock);
-       enqueue_huge_page(page);
-       spin_unlock(&hugetlb_lock);
+       do {
+               page = alloc_fresh_huge_page_node(hugetlb_next_nid);
+               if (page)
+                       ret = 1;
+               /*
+                * Use a helper variable to find the next node and then
+                * copy it back to hugetlb_next_nid afterwards:
+                * otherwise there's a window in which a racer might
+                * pass invalid nid MAX_NUMNODES to alloc_pages_node.
+                * But we don't need to use a spin_lock here: it really
+                * doesn't matter if occasionally a racer chooses the
+                * same nid as we do.  Move nid forward in the mask even
+                * if we just successfully allocated a hugepage so that
+                * the next caller gets hugepages on the next node.
+                */
+               next_nid = next_node(hugetlb_next_nid, node_online_map);
+               if (next_nid == MAX_NUMNODES)
+                       next_nid = first_node(node_online_map);
+               hugetlb_next_nid = next_nid;
+       } while (!page && hugetlb_next_nid != start_nid);
+
+       return ret;
 }
 
-struct page *alloc_huge_page(void)
+static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
+                                               unsigned long address)
 {
        struct page *page;
-       int i;
+       unsigned int nid;
 
+       /*
+        * Assume we will successfully allocate the surplus page to
+        * prevent racing processes from causing the surplus to exceed
+        * overcommit
+        *
+        * This however introduces a different race, where a process B
+        * tries to grow the static hugepage pool while alloc_pages() is
+        * called by process A. B will only examine the per-node
+        * counters in determining if surplus huge pages can be
+        * converted to normal huge pages in adjust_pool_surplus(). A
+        * won't be able to increment the per-node counter, until the
+        * lock is dropped by B, but B doesn't drop hugetlb_lock until
+        * no more huge pages can be converted from surplus to normal
+        * state (and doesn't try to convert again). Thus, we have a
+        * case where a surplus huge page exists, the pool is grown, and
+        * the surplus huge page still exists after, even though it
+        * should just have been converted to a normal huge page. This
+        * does not leak memory, though, as the hugepage will be freed
+        * once it is out of use. It also does not allow the counters to
+        * go out of whack in adjust_pool_surplus() as we don't modify
+        * the node values until we've gotten the hugepage and only the
+        * per-node value is checked there.
+        */
        spin_lock(&hugetlb_lock);
-       page = dequeue_huge_page();
-       if (!page) {
+       if (surplus_huge_pages >= nr_overcommit_huge_pages) {
                spin_unlock(&hugetlb_lock);
                return NULL;
+       } else {
+               nr_huge_pages++;
+               surplus_huge_pages++;
+       }
+       spin_unlock(&hugetlb_lock);
+
+       page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
+                                       HUGETLB_PAGE_ORDER);
+
+       spin_lock(&hugetlb_lock);
+       if (page) {
+               /*
+                * This page is now managed by the hugetlb allocator and has
+                * no users -- drop the buddy allocator's reference.
+                */
+               put_page_testzero(page);
+               VM_BUG_ON(page_count(page));
+               nid = page_to_nid(page);
+               set_compound_page_dtor(page, free_huge_page);
+               /*
+                * We incremented the global counters already
+                */
+               nr_huge_pages_node[nid]++;
+               surplus_huge_pages_node[nid]++;
+       } else {
+               nr_huge_pages--;
+               surplus_huge_pages--;
+       }
+       spin_unlock(&hugetlb_lock);
+
+       return page;
+}
+
+/*
+ * Increase the hugetlb pool such that it can accomodate a reservation
+ * of size 'delta'.
+ */
+static int gather_surplus_pages(int delta)
+{
+       struct list_head surplus_list;
+       struct page *page, *tmp;
+       int ret, i;
+       int needed, allocated;
+
+       needed = (resv_huge_pages + delta) - free_huge_pages;
+       if (needed <= 0) {
+               resv_huge_pages += delta;
+               return 0;
+       }
+
+       allocated = 0;
+       INIT_LIST_HEAD(&surplus_list);
+
+       ret = -ENOMEM;
+retry:
+       spin_unlock(&hugetlb_lock);
+       for (i = 0; i < needed; i++) {
+               page = alloc_buddy_huge_page(NULL, 0);
+               if (!page) {
+                       /*
+                        * We were not able to allocate enough pages to
+                        * satisfy the entire reservation so we free what
+                        * we've allocated so far.
+                        */
+                       spin_lock(&hugetlb_lock);
+                       needed = 0;
+                       goto free;
+               }
+
+               list_add(&page->lru, &surplus_list);
+       }
+       allocated += needed;
+
+       /*
+        * After retaking hugetlb_lock, we need to recalculate 'needed'
+        * because either resv_huge_pages or free_huge_pages may have changed.
+        */
+       spin_lock(&hugetlb_lock);
+       needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
+       if (needed > 0)
+               goto retry;
+
+       /*
+        * The surplus_list now contains _at_least_ the number of extra pages
+        * needed to accomodate the reservation.  Add the appropriate number
+        * of pages to the hugetlb pool and free the extras back to the buddy
+        * allocator.  Commit the entire reservation here to prevent another
+        * process from stealing the pages as they are added to the pool but
+        * before they are reserved.
+        */
+       needed += allocated;
+       resv_huge_pages += delta;
+       ret = 0;
+free:
+       list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
+               list_del(&page->lru);
+               if ((--needed) >= 0)
+                       enqueue_huge_page(page);
+               else {
+                       /*
+                        * The page has a reference count of zero already, so
+                        * call free_huge_page directly instead of using
+                        * put_page.  This must be done with hugetlb_lock
+                        * unlocked which is safe because free_huge_page takes
+                        * hugetlb_lock before deciding how to free the page.
+                        */
+                       spin_unlock(&hugetlb_lock);
+                       free_huge_page(page);
+                       spin_lock(&hugetlb_lock);
+               }
+       }
+
+       return ret;
+}
+
+/*
+ * When releasing a hugetlb pool reservation, any surplus pages that were
+ * allocated to satisfy the reservation must be explicitly freed if they were
+ * never used.
+ */
+static void return_unused_surplus_pages(unsigned long unused_resv_pages)
+{
+       static int nid = -1;
+       struct page *page;
+       unsigned long nr_pages;
+
+       /*
+        * We want to release as many surplus pages as possible, spread
+        * evenly across all nodes. Iterate across all nodes until we
+        * can no longer free unreserved surplus pages. This occurs when
+        * the nodes with surplus pages have no free pages.
+        */
+       unsigned long remaining_iterations = num_online_nodes();
+
+       /* Uncommit the reservation */
+       resv_huge_pages -= unused_resv_pages;
+
+       nr_pages = min(unused_resv_pages, surplus_huge_pages);
+
+       while (remaining_iterations-- && nr_pages) {
+               nid = next_node(nid, node_online_map);
+               if (nid == MAX_NUMNODES)
+                       nid = first_node(node_online_map);
+
+               if (!surplus_huge_pages_node[nid])
+                       continue;
+
+               if (!list_empty(&hugepage_freelists[nid])) {
+                       page = list_entry(hugepage_freelists[nid].next,
+                                         struct page, lru);
+                       list_del(&page->lru);
+                       update_and_free_page(page);
+                       free_huge_pages--;
+                       free_huge_pages_node[nid]--;
+                       surplus_huge_pages--;
+                       surplus_huge_pages_node[nid]--;
+                       nr_pages--;
+                       remaining_iterations = num_online_nodes();
+               }
        }
+}
+
+
+static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
+                                               unsigned long addr)
+{
+       struct page *page;
+
+       spin_lock(&hugetlb_lock);
+       page = dequeue_huge_page_vma(vma, addr);
+       spin_unlock(&hugetlb_lock);
+       return page ? page : ERR_PTR(-VM_FAULT_OOM);
+}
+
+static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
+                                               unsigned long addr)
+{
+       struct page *page = NULL;
+
+       if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
+               return ERR_PTR(-VM_FAULT_SIGBUS);
+
+       spin_lock(&hugetlb_lock);
+       if (free_huge_pages > resv_huge_pages)
+               page = dequeue_huge_page_vma(vma, addr);
        spin_unlock(&hugetlb_lock);
-       set_page_count(page, 1);
-       page[1].mapping = (void *)free_huge_page;
-       for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); ++i)
-               clear_highpage(&page[i]);
+       if (!page) {
+               page = alloc_buddy_huge_page(vma, addr);
+               if (!page) {
+                       hugetlb_put_quota(vma->vm_file->f_mapping, 1);
+                       return ERR_PTR(-VM_FAULT_OOM);
+               }
+       }
+       return page;
+}
+
+static struct page *alloc_huge_page(struct vm_area_struct *vma,
+                                   unsigned long addr)
+{
+       struct page *page;
+       struct address_space *mapping = vma->vm_file->f_mapping;
+
+       if (vma->vm_flags & VM_MAYSHARE)
+               page = alloc_huge_page_shared(vma, addr);
+       else
+               page = alloc_huge_page_private(vma, addr);
+
+       if (!IS_ERR(page)) {
+               set_page_refcounted(page);
+               set_page_private(page, (unsigned long) mapping);
+       }
        return page;
 }
 
 static int __init hugetlb_init(void)
 {
        unsigned long i;
-       struct page *page;
+
+       if (HPAGE_SHIFT == 0)
+               return 0;
 
        for (i = 0; i < MAX_NUMNODES; ++i)
                INIT_LIST_HEAD(&hugepage_freelists[i]);
 
+       hugetlb_next_nid = first_node(node_online_map);
+
        for (i = 0; i < max_huge_pages; ++i) {
-               page = alloc_fresh_huge_page();
-               if (!page)
+               if (!alloc_fresh_huge_page())
                        break;
-               spin_lock(&hugetlb_lock);
-               enqueue_huge_page(page);
-               spin_unlock(&hugetlb_lock);
        }
        max_huge_pages = free_huge_pages = nr_huge_pages = i;
        printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
@@ -128,38 +519,34 @@ static int __init hugetlb_setup(char *s)
 }
 __setup("hugepages=", hugetlb_setup);
 
-#ifdef CONFIG_SYSCTL
-static void update_and_free_page(struct page *page)
+static unsigned int cpuset_mems_nr(unsigned int *array)
 {
-       int i;
-       nr_huge_pages--;
-       nr_huge_pages_node[page_zone(page)->zone_pgdat->node_id]--;
-       for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
-               page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
-                               1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
-                               1 << PG_private | 1<< PG_writeback);
-               set_page_count(&page[i], 0);
-       }
-       set_page_count(page, 1);
-       __free_pages(page, HUGETLB_PAGE_ORDER);
+       int node;
+       unsigned int nr = 0;
+
+       for_each_node_mask(node, cpuset_current_mems_allowed)
+               nr += array[node];
+
+       return nr;
 }
 
+#ifdef CONFIG_SYSCTL
 #ifdef CONFIG_HIGHMEM
 static void try_to_free_low(unsigned long count)
 {
-       int i, nid;
+       int i;
+
        for (i = 0; i < MAX_NUMNODES; ++i) {
                struct page *page, *next;
                list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
+                       if (count >= nr_huge_pages)
+                               return;
                        if (PageHighMem(page))
                                continue;
                        list_del(&page->lru);
                        update_and_free_page(page);
-                       nid = page_zone(page)->zone_pgdat->node_id;
                        free_huge_pages--;
-                       free_huge_pages_node[nid]--;
-                       if (count >= nr_huge_pages)
-                               return;
+                       free_huge_pages_node[page_to_nid(page)]--;
                }
        }
 }
@@ -169,29 +556,75 @@ static inline void try_to_free_low(unsigned long count)
 }
 #endif
 
+#define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
 static unsigned long set_max_huge_pages(unsigned long count)
 {
-       while (count > nr_huge_pages) {
-               struct page *page = alloc_fresh_huge_page();
-               if (!page)
-                       return nr_huge_pages;
-               spin_lock(&hugetlb_lock);
-               enqueue_huge_page(page);
+       unsigned long min_count, ret;
+
+       /*
+        * Increase the pool size
+        * First take pages out of surplus state.  Then make up the
+        * remaining difference by allocating fresh huge pages.
+        *
+        * We might race with alloc_buddy_huge_page() here and be unable
+        * to convert a surplus huge page to a normal huge page. That is
+        * not critical, though, it just means the overall size of the
+        * pool might be one hugepage larger than it needs to be, but
+        * within all the constraints specified by the sysctls.
+        */
+       spin_lock(&hugetlb_lock);
+       while (surplus_huge_pages && count > persistent_huge_pages) {
+               if (!adjust_pool_surplus(-1))
+                       break;
+       }
+
+       while (count > persistent_huge_pages) {
+               int ret;
+               /*
+                * If this allocation races such that we no longer need the
+                * page, free_huge_page will handle it by freeing the page
+                * and reducing the surplus.
+                */
                spin_unlock(&hugetlb_lock);
+               ret = alloc_fresh_huge_page();
+               spin_lock(&hugetlb_lock);
+               if (!ret)
+                       goto out;
+
        }
-       if (count >= nr_huge_pages)
-               return nr_huge_pages;
 
-       spin_lock(&hugetlb_lock);
-       try_to_free_low(count);
-       while (count < nr_huge_pages) {
+       /*
+        * Decrease the pool size
+        * First return free pages to the buddy allocator (being careful
+        * to keep enough around to satisfy reservations).  Then place
+        * pages into surplus state as needed so the pool will shrink
+        * to the desired size as pages become free.
+        *
+        * By placing pages into the surplus state independent of the
+        * overcommit value, we are allowing the surplus pool size to
+        * exceed overcommit. There are few sane options here. Since
+        * alloc_buddy_huge_page() is checking the global counter,
+        * though, we'll note that we're not allowed to exceed surplus
+        * and won't grow the pool anywhere else. Not until one of the
+        * sysctls are changed, or the surplus pages go out of use.
+        */
+       min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
+       min_count = max(count, min_count);
+       try_to_free_low(min_count);
+       while (min_count < persistent_huge_pages) {
                struct page *page = dequeue_huge_page();
                if (!page)
                        break;
                update_and_free_page(page);
        }
+       while (count < persistent_huge_pages) {
+               if (!adjust_pool_surplus(1))
+                       break;
+       }
+out:
+       ret = persistent_huge_pages;
        spin_unlock(&hugetlb_lock);
-       return nr_huge_pages;
+       return ret;
 }
 
 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
@@ -202,6 +635,30 @@ int hugetlb_sysctl_handler(struct ctl_table *table, int write,
        max_huge_pages = set_max_huge_pages(max_huge_pages);
        return 0;
 }
+
+int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
+                       struct file *file, void __user *buffer,
+                       size_t *length, loff_t *ppos)
+{
+       proc_dointvec(table, write, file, buffer, length, ppos);
+       if (hugepages_treat_as_movable)
+               htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
+       else
+               htlb_alloc_mask = GFP_HIGHUSER;
+       return 0;
+}
+
+int hugetlb_overcommit_handler(struct ctl_table *table, int write,
+                       struct file *file, void __user *buffer,
+                       size_t *length, loff_t *ppos)
+{
+       proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
+       spin_lock(&hugetlb_lock);
+       nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
+       spin_unlock(&hugetlb_lock);
+       return 0;
+}
+
 #endif /* CONFIG_SYSCTL */
 
 int hugetlb_report_meminfo(char *buf)
@@ -209,9 +666,13 @@ int hugetlb_report_meminfo(char *buf)
        return sprintf(buf,
                        "HugePages_Total: %5lu\n"
                        "HugePages_Free:  %5lu\n"
+                       "HugePages_Rsvd:  %5lu\n"
+                       "HugePages_Surp:  %5lu\n"
                        "Hugepagesize:    %5lu kB\n",
                        nr_huge_pages,
                        free_huge_pages,
+                       resv_huge_pages,
+                       surplus_huge_pages,
                        HPAGE_SIZE/1024);
 }
 
@@ -219,14 +680,11 @@ int hugetlb_report_node_meminfo(int nid, char *buf)
 {
        return sprintf(buf,
                "Node %d HugePages_Total: %5u\n"
-               "Node %d HugePages_Free:  %5u\n",
+               "Node %d HugePages_Free:  %5u\n"
+               "Node %d HugePages_Surp:  %5u\n",
                nid, nr_huge_pages_node[nid],
-               nid, free_huge_pages_node[nid]);
-}
-
-int is_hugepage_mem_enough(size_t size)
-{
-       return (size + ~HPAGE_MASK)/HPAGE_SIZE <= free_huge_pages;
+               nid, free_huge_pages_node[nid],
+               nid, surplus_huge_pages_node[nid]);
 }
 
 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
@@ -234,7 +692,6 @@ unsigned long hugetlb_total_pages(void)
 {
        return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
 }
-EXPORT_SYMBOL(hugetlb_total_pages);
 
 /*
  * We cannot handle pagefaults against hugetlb pages at all.  They cause
@@ -242,22 +699,22 @@ EXPORT_SYMBOL(hugetlb_total_pages);
  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
  * this far.
  */
-static struct page *hugetlb_nopage(struct vm_area_struct *vma,
-                               unsigned long address, int *unused)
+static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
 {
        BUG();
-       return NULL;
+       return 0;
 }
 
 struct vm_operations_struct hugetlb_vm_ops = {
-       .nopage = hugetlb_nopage,
+       .fault = hugetlb_vm_op_fault,
 };
 
-static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page)
+static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
+                               int writable)
 {
        pte_t entry;
 
-       if (vma->vm_flags & VM_WRITE) {
+       if (writable) {
                entry =
                    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
        } else {
@@ -269,12 +726,27 @@ static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page)
        return entry;
 }
 
+static void set_huge_ptep_writable(struct vm_area_struct *vma,
+                                  unsigned long address, pte_t *ptep)
+{
+       pte_t entry;
+
+       entry = pte_mkwrite(pte_mkdirty(*ptep));
+       if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
+               update_mmu_cache(vma, address, entry);
+       }
+}
+
+
 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
                            struct vm_area_struct *vma)
 {
        pte_t *src_pte, *dst_pte, entry;
        struct page *ptepage;
        unsigned long addr;
+       int cow;
+
+       cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
 
        for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
                src_pte = huge_pte_offset(src, addr);
@@ -283,13 +755,19 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
                dst_pte = huge_pte_alloc(dst, addr);
                if (!dst_pte)
                        goto nomem;
+
+               /* If the pagetables are shared don't copy or take references */
+               if (dst_pte == src_pte)
+                       continue;
+
                spin_lock(&dst->page_table_lock);
                spin_lock(&src->page_table_lock);
                if (!pte_none(*src_pte)) {
+                       if (cow)
+                               ptep_set_wrprotect(src, addr, src_pte);
                        entry = *src_pte;
                        ptepage = pte_page(entry);
                        get_page(ptepage);
-                       add_mm_counter(dst, file_rss, HPAGE_SIZE / PAGE_SIZE);
                        set_huge_pte_at(dst, addr, dst_pte, entry);
                }
                spin_unlock(&src->page_table_lock);
@@ -301,93 +779,121 @@ nomem:
        return -ENOMEM;
 }
 
-void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
-                         unsigned long end)
+void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
+                           unsigned long end)
 {
        struct mm_struct *mm = vma->vm_mm;
        unsigned long address;
        pte_t *ptep;
        pte_t pte;
        struct page *page;
+       struct page *tmp;
+       /*
+        * A page gathering list, protected by per file i_mmap_lock. The
+        * lock is used to avoid list corruption from multiple unmapping
+        * of the same page since we are using page->lru.
+        */
+       LIST_HEAD(page_list);
 
        WARN_ON(!is_vm_hugetlb_page(vma));
        BUG_ON(start & ~HPAGE_MASK);
        BUG_ON(end & ~HPAGE_MASK);
 
        spin_lock(&mm->page_table_lock);
-
-       /* Update high watermark before we lower rss */
-       update_hiwater_rss(mm);
-
        for (address = start; address < end; address += HPAGE_SIZE) {
                ptep = huge_pte_offset(mm, address);
                if (!ptep)
                        continue;
 
+               if (huge_pmd_unshare(mm, &address, ptep))
+                       continue;
+
                pte = huge_ptep_get_and_clear(mm, address, ptep);
                if (pte_none(pte))
                        continue;
 
                page = pte_page(pte);
-               put_page(page);
-               add_mm_counter(mm, file_rss, (int) -(HPAGE_SIZE / PAGE_SIZE));
+               if (pte_dirty(pte))
+                       set_page_dirty(page);
+               list_add(&page->lru, &page_list);
        }
-
        spin_unlock(&mm->page_table_lock);
        flush_tlb_range(vma, start, end);
+       list_for_each_entry_safe(page, tmp, &page_list, lru) {
+               list_del(&page->lru);
+               put_page(page);
+       }
 }
 
-static struct page *find_lock_huge_page(struct address_space *mapping,
-                       unsigned long idx)
+void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
+                         unsigned long end)
 {
-       struct page *page;
-       int err;
-       struct inode *inode = mapping->host;
-       unsigned long size;
+       /*
+        * It is undesirable to test vma->vm_file as it should be non-null
+        * for valid hugetlb area. However, vm_file will be NULL in the error
+        * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
+        * do_mmap_pgoff() nullifies vma->vm_file before calling this function
+        * to clean up. Since no pte has actually been setup, it is safe to
+        * do nothing in this case.
+        */
+       if (vma->vm_file) {
+               spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
+               __unmap_hugepage_range(vma, start, end);
+               spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
+       }
+}
 
-retry:
-       page = find_lock_page(mapping, idx);
-       if (page)
-               goto out;
+static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
+                       unsigned long address, pte_t *ptep, pte_t pte)
+{
+       struct page *old_page, *new_page;
+       int avoidcopy;
 
-       /* Check to make sure the mapping hasn't been truncated */
-       size = i_size_read(inode) >> HPAGE_SHIFT;
-       if (idx >= size)
-               goto out;
+       old_page = pte_page(pte);
 
-       if (hugetlb_get_quota(mapping))
-               goto out;
-       page = alloc_huge_page();
-       if (!page) {
-               hugetlb_put_quota(mapping);
-               goto out;
+       /* If no-one else is actually using this page, avoid the copy
+        * and just make the page writable */
+       avoidcopy = (page_count(old_page) == 1);
+       if (avoidcopy) {
+               set_huge_ptep_writable(vma, address, ptep);
+               return 0;
        }
 
-       err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
-       if (err) {
-               put_page(page);
-               hugetlb_put_quota(mapping);
-               if (err == -EEXIST)
-                       goto retry;
-               page = NULL;
+       page_cache_get(old_page);
+       new_page = alloc_huge_page(vma, address);
+
+       if (IS_ERR(new_page)) {
+               page_cache_release(old_page);
+               return -PTR_ERR(new_page);
        }
-out:
-       return page;
+
+       spin_unlock(&mm->page_table_lock);
+       copy_huge_page(new_page, old_page, address, vma);
+       __SetPageUptodate(new_page);
+       spin_lock(&mm->page_table_lock);
+
+       ptep = huge_pte_offset(mm, address & HPAGE_MASK);
+       if (likely(pte_same(*ptep, pte))) {
+               /* Break COW */
+               set_huge_pte_at(mm, address, ptep,
+                               make_huge_pte(vma, new_page, 1));
+               /* Make the old page be freed below */
+               new_page = old_page;
+       }
+       page_cache_release(new_page);
+       page_cache_release(old_page);
+       return 0;
 }
 
-int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
-                       unsigned long address, int write_access)
+static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
+                       unsigned long address, pte_t *ptep, int write_access)
 {
        int ret = VM_FAULT_SIGBUS;
        unsigned long idx;
        unsigned long size;
-       pte_t *pte;
        struct page *page;
        struct address_space *mapping;
-
-       pte = huge_pte_alloc(mm, address);
-       if (!pte)
-               goto out;
+       pte_t new_pte;
 
        mapping = vma->vm_file->f_mapping;
        idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
@@ -397,21 +903,57 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
         * Use page lock to guard against racing truncation
         * before we get page_table_lock.
         */
-       page = find_lock_huge_page(mapping, idx);
-       if (!page)
-               goto out;
+retry:
+       page = find_lock_page(mapping, idx);
+       if (!page) {
+               size = i_size_read(mapping->host) >> HPAGE_SHIFT;
+               if (idx >= size)
+                       goto out;
+               page = alloc_huge_page(vma, address);
+               if (IS_ERR(page)) {
+                       ret = -PTR_ERR(page);
+                       goto out;
+               }
+               clear_huge_page(page, address);
+               __SetPageUptodate(page);
+
+               if (vma->vm_flags & VM_SHARED) {
+                       int err;
+                       struct inode *inode = mapping->host;
+
+                       err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
+                       if (err) {
+                               put_page(page);
+                               if (err == -EEXIST)
+                                       goto retry;
+                               goto out;
+                       }
+
+                       spin_lock(&inode->i_lock);
+                       inode->i_blocks += BLOCKS_PER_HUGEPAGE;
+                       spin_unlock(&inode->i_lock);
+               } else
+                       lock_page(page);
+       }
 
        spin_lock(&mm->page_table_lock);
        size = i_size_read(mapping->host) >> HPAGE_SHIFT;
        if (idx >= size)
                goto backout;
 
-       ret = VM_FAULT_MINOR;
-       if (!pte_none(*pte))
+       ret = 0;
+       if (!pte_none(*ptep))
                goto backout;
 
-       add_mm_counter(mm, file_rss, HPAGE_SIZE / PAGE_SIZE);
-       set_huge_pte_at(mm, address, pte, make_huge_pte(vma, page));
+       new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
+                               && (vma->vm_flags & VM_SHARED)));
+       set_huge_pte_at(mm, address, ptep, new_pte);
+
+       if (write_access && !(vma->vm_flags & VM_SHARED)) {
+               /* Optimization, do the COW without a second fault */
+               ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
+       }
+
        spin_unlock(&mm->page_table_lock);
        unlock_page(page);
 out:
@@ -419,20 +961,58 @@ out:
 
 backout:
        spin_unlock(&mm->page_table_lock);
-       hugetlb_put_quota(mapping);
        unlock_page(page);
        put_page(page);
        goto out;
 }
 
+int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
+                       unsigned long address, int write_access)
+{
+       pte_t *ptep;
+       pte_t entry;
+       int ret;
+       static DEFINE_MUTEX(hugetlb_instantiation_mutex);
+
+       ptep = huge_pte_alloc(mm, address);
+       if (!ptep)
+               return VM_FAULT_OOM;
+
+       /*
+        * Serialize hugepage allocation and instantiation, so that we don't
+        * get spurious allocation failures if two CPUs race to instantiate
+        * the same page in the page cache.
+        */
+       mutex_lock(&hugetlb_instantiation_mutex);
+       entry = *ptep;
+       if (pte_none(entry)) {
+               ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
+               mutex_unlock(&hugetlb_instantiation_mutex);
+               return ret;
+       }
+
+       ret = 0;
+
+       spin_lock(&mm->page_table_lock);
+       /* Check for a racing update before calling hugetlb_cow */
+       if (likely(pte_same(entry, *ptep)))
+               if (write_access && !pte_write(entry))
+                       ret = hugetlb_cow(mm, vma, address, ptep, entry);
+       spin_unlock(&mm->page_table_lock);
+       mutex_unlock(&hugetlb_instantiation_mutex);
+
+       return ret;
+}
+
 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
                        struct page **pages, struct vm_area_struct **vmas,
-                       unsigned long *position, int *length, int i)
+                       unsigned long *position, int *length, int i,
+                       int write)
 {
-       unsigned long vpfn, vaddr = *position;
+       unsigned long pfn_offset;
+       unsigned long vaddr = *position;
        int remainder = *length;
 
-       vpfn = vaddr/PAGE_SIZE;
        spin_lock(&mm->page_table_lock);
        while (vaddr < vma->vm_end && remainder) {
                pte_t *pte;
@@ -445,13 +1025,13 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
                 */
                pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
 
-               if (!pte || pte_none(*pte)) {
+               if (!pte || pte_none(*pte) || (write && !pte_write(*pte))) {
                        int ret;
 
                        spin_unlock(&mm->page_table_lock);
-                       ret = hugetlb_fault(mm, vma, vaddr, 0);
+                       ret = hugetlb_fault(mm, vma, vaddr, write);
                        spin_lock(&mm->page_table_lock);
-                       if (ret == VM_FAULT_MINOR)
+                       if (!(ret & VM_FAULT_ERROR))
                                continue;
 
                        remainder = 0;
@@ -460,19 +1040,29 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
                        break;
                }
 
+               pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
+               page = pte_page(*pte);
+same_page:
                if (pages) {
-                       page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
                        get_page(page);
-                       pages[i] = page;
+                       pages[i] = page + pfn_offset;
                }
 
                if (vmas)
                        vmas[i] = vma;
 
                vaddr += PAGE_SIZE;
-               ++vpfn;
+               ++pfn_offset;
                --remainder;
                ++i;
+               if (vaddr < vma->vm_end && remainder &&
+                               pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
+                       /*
+                        * We use pfn_offset to avoid touching the pageframes
+                        * of this compound page.
+                        */
+                       goto same_page;
+               }
        }
        spin_unlock(&mm->page_table_lock);
        *length = remainder;
@@ -480,3 +1070,227 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
 
        return i;
 }
+
+void hugetlb_change_protection(struct vm_area_struct *vma,
+               unsigned long address, unsigned long end, pgprot_t newprot)
+{
+       struct mm_struct *mm = vma->vm_mm;
+       unsigned long start = address;
+       pte_t *ptep;
+       pte_t pte;
+
+       BUG_ON(address >= end);
+       flush_cache_range(vma, address, end);
+
+       spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
+       spin_lock(&mm->page_table_lock);
+       for (; address < end; address += HPAGE_SIZE) {
+               ptep = huge_pte_offset(mm, address);
+               if (!ptep)
+                       continue;
+               if (huge_pmd_unshare(mm, &address, ptep))
+                       continue;
+               if (!pte_none(*ptep)) {
+                       pte = huge_ptep_get_and_clear(mm, address, ptep);
+                       pte = pte_mkhuge(pte_modify(pte, newprot));
+                       set_huge_pte_at(mm, address, ptep, pte);
+               }
+       }
+       spin_unlock(&mm->page_table_lock);
+       spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
+
+       flush_tlb_range(vma, start, end);
+}
+
+struct file_region {
+       struct list_head link;
+       long from;
+       long to;
+};
+
+static long region_add(struct list_head *head, long f, long t)
+{
+       struct file_region *rg, *nrg, *trg;
+
+       /* Locate the region we are either in or before. */
+       list_for_each_entry(rg, head, link)
+               if (f <= rg->to)
+                       break;
+
+       /* Round our left edge to the current segment if it encloses us. */
+       if (f > rg->from)
+               f = rg->from;
+
+       /* Check for and consume any regions we now overlap with. */
+       nrg = rg;
+       list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
+               if (&rg->link == head)
+                       break;
+               if (rg->from > t)
+                       break;
+
+               /* If this area reaches higher then extend our area to
+                * include it completely.  If this is not the first area
+                * which we intend to reuse, free it. */
+               if (rg->to > t)
+                       t = rg->to;
+               if (rg != nrg) {
+                       list_del(&rg->link);
+                       kfree(rg);
+               }
+       }
+       nrg->from = f;
+       nrg->to = t;
+       return 0;
+}
+
+static long region_chg(struct list_head *head, long f, long t)
+{
+       struct file_region *rg, *nrg;
+       long chg = 0;
+
+       /* Locate the region we are before or in. */
+       list_for_each_entry(rg, head, link)
+               if (f <= rg->to)
+                       break;
+
+       /* If we are below the current region then a new region is required.
+        * Subtle, allocate a new region at the position but make it zero
+        * size such that we can guarantee to record the reservation. */
+       if (&rg->link == head || t < rg->from) {
+               nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
+               if (!nrg)
+                       return -ENOMEM;
+               nrg->from = f;
+               nrg->to   = f;
+               INIT_LIST_HEAD(&nrg->link);
+               list_add(&nrg->link, rg->link.prev);
+
+               return t - f;
+       }
+
+       /* Round our left edge to the current segment if it encloses us. */
+       if (f > rg->from)
+               f = rg->from;
+       chg = t - f;
+
+       /* Check for and consume any regions we now overlap with. */
+       list_for_each_entry(rg, rg->link.prev, link) {
+               if (&rg->link == head)
+                       break;
+               if (rg->from > t)
+                       return chg;
+
+               /* We overlap with this area, if it extends futher than
+                * us then we must extend ourselves.  Account for its
+                * existing reservation. */
+               if (rg->to > t) {
+                       chg += rg->to - t;
+                       t = rg->to;
+               }
+               chg -= rg->to - rg->from;
+       }
+       return chg;
+}
+
+static long region_truncate(struct list_head *head, long end)
+{
+       struct file_region *rg, *trg;
+       long chg = 0;
+
+       /* Locate the region we are either in or before. */
+       list_for_each_entry(rg, head, link)
+               if (end <= rg->to)
+                       break;
+       if (&rg->link == head)
+               return 0;
+
+       /* If we are in the middle of a region then adjust it. */
+       if (end > rg->from) {
+               chg = rg->to - end;
+               rg->to = end;
+               rg = list_entry(rg->link.next, typeof(*rg), link);
+       }
+
+       /* Drop any remaining regions. */
+       list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
+               if (&rg->link == head)
+                       break;
+               chg += rg->to - rg->from;
+               list_del(&rg->link);
+               kfree(rg);
+       }
+       return chg;
+}
+
+static int hugetlb_acct_memory(long delta)
+{
+       int ret = -ENOMEM;
+
+       spin_lock(&hugetlb_lock);
+       /*
+        * When cpuset is configured, it breaks the strict hugetlb page
+        * reservation as the accounting is done on a global variable. Such
+        * reservation is completely rubbish in the presence of cpuset because
+        * the reservation is not checked against page availability for the
+        * current cpuset. Application can still potentially OOM'ed by kernel
+        * with lack of free htlb page in cpuset that the task is in.
+        * Attempt to enforce strict accounting with cpuset is almost
+        * impossible (or too ugly) because cpuset is too fluid that
+        * task or memory node can be dynamically moved between cpusets.
+        *
+        * The change of semantics for shared hugetlb mapping with cpuset is
+        * undesirable. However, in order to preserve some of the semantics,
+        * we fall back to check against current free page availability as
+        * a best attempt and hopefully to minimize the impact of changing
+        * semantics that cpuset has.
+        */
+       if (delta > 0) {
+               if (gather_surplus_pages(delta) < 0)
+                       goto out;
+
+               if (delta > cpuset_mems_nr(free_huge_pages_node)) {
+                       return_unused_surplus_pages(delta);
+                       goto out;
+               }
+       }
+
+       ret = 0;
+       if (delta < 0)
+               return_unused_surplus_pages((unsigned long) -delta);
+
+out:
+       spin_unlock(&hugetlb_lock);
+       return ret;
+}
+
+int hugetlb_reserve_pages(struct inode *inode, long from, long to)
+{
+       long ret, chg;
+
+       chg = region_chg(&inode->i_mapping->private_list, from, to);
+       if (chg < 0)
+               return chg;
+
+       if (hugetlb_get_quota(inode->i_mapping, chg))
+               return -ENOSPC;
+       ret = hugetlb_acct_memory(chg);
+       if (ret < 0) {
+               hugetlb_put_quota(inode->i_mapping, chg);
+               return ret;
+       }
+       region_add(&inode->i_mapping->private_list, from, to);
+       return 0;
+}
+
+void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
+{
+       long chg = region_truncate(&inode->i_mapping->private_list, offset);
+
+       spin_lock(&inode->i_lock);
+       inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
+       spin_unlock(&inode->i_lock);
+
+       hugetlb_put_quota(inode->i_mapping, (chg - freed));
+       hugetlb_acct_memory(-(chg - freed));
+}