lockd: Support non-AF_INET addresses in nlm_lookup_host()
[safe/jmp/linux-2.6] / kernel / sched_fair.c
index 2d2be02..fb8994c 100644 (file)
@@ -62,24 +62,14 @@ const_debug unsigned int sysctl_sched_child_runs_first = 1;
 unsigned int __read_mostly sysctl_sched_compat_yield;
 
 /*
- * SCHED_BATCH wake-up granularity.
- * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
- *
- * This option delays the preemption effects of decoupled workloads
- * and reduces their over-scheduling. Synchronous workloads will still
- * have immediate wakeup/sleep latencies.
- */
-unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
-
-/*
  * SCHED_OTHER wake-up granularity.
- * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
+ * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
  *
  * This option delays the preemption effects of decoupled workloads
  * and reduces their over-scheduling. Synchronous workloads will still
  * have immediate wakeup/sleep latencies.
  */
-unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
+unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
 
 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
 
@@ -87,6 +77,11 @@ const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  * CFS operations on generic schedulable entities:
  */
 
+static inline struct task_struct *task_of(struct sched_entity *se)
+{
+       return container_of(se, struct task_struct, se);
+}
+
 #ifdef CONFIG_FAIR_GROUP_SCHED
 
 /* cpu runqueue to which this cfs_rq is attached */
@@ -98,6 +93,54 @@ static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 /* An entity is a task if it doesn't "own" a runqueue */
 #define entity_is_task(se)     (!se->my_q)
 
+/* Walk up scheduling entities hierarchy */
+#define for_each_sched_entity(se) \
+               for (; se; se = se->parent)
+
+static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
+{
+       return p->se.cfs_rq;
+}
+
+/* runqueue on which this entity is (to be) queued */
+static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
+{
+       return se->cfs_rq;
+}
+
+/* runqueue "owned" by this group */
+static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
+{
+       return grp->my_q;
+}
+
+/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
+ * another cpu ('this_cpu')
+ */
+static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
+{
+       return cfs_rq->tg->cfs_rq[this_cpu];
+}
+
+/* Iterate thr' all leaf cfs_rq's on a runqueue */
+#define for_each_leaf_cfs_rq(rq, cfs_rq) \
+       list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
+
+/* Do the two (enqueued) entities belong to the same group ? */
+static inline int
+is_same_group(struct sched_entity *se, struct sched_entity *pse)
+{
+       if (se->cfs_rq == pse->cfs_rq)
+               return 1;
+
+       return 0;
+}
+
+static inline struct sched_entity *parent_entity(struct sched_entity *se)
+{
+       return se->parent;
+}
+
 #else  /* CONFIG_FAIR_GROUP_SCHED */
 
 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
@@ -107,13 +150,49 @@ static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 
 #define entity_is_task(se)     1
 
-#endif /* CONFIG_FAIR_GROUP_SCHED */
+#define for_each_sched_entity(se) \
+               for (; se; se = NULL)
 
-static inline struct task_struct *task_of(struct sched_entity *se)
+static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 {
-       return container_of(se, struct task_struct, se);
+       return &task_rq(p)->cfs;
 }
 
+static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
+{
+       struct task_struct *p = task_of(se);
+       struct rq *rq = task_rq(p);
+
+       return &rq->cfs;
+}
+
+/* runqueue "owned" by this group */
+static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
+{
+       return NULL;
+}
+
+static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
+{
+       return &cpu_rq(this_cpu)->cfs;
+}
+
+#define for_each_leaf_cfs_rq(rq, cfs_rq) \
+               for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
+
+static inline int
+is_same_group(struct sched_entity *se, struct sched_entity *pse)
+{
+       return 1;
+}
+
+static inline struct sched_entity *parent_entity(struct sched_entity *se)
+{
+       return NULL;
+}
+
+#endif /* CONFIG_FAIR_GROUP_SCHED */
+
 
 /**************************************************************
  * Scheduling class tree data structure manipulation methods:
@@ -255,6 +334,34 @@ int sched_nr_latency_handler(struct ctl_table *table, int write,
 #endif
 
 /*
+ * delta *= w / rw
+ */
+static inline unsigned long
+calc_delta_weight(unsigned long delta, struct sched_entity *se)
+{
+       for_each_sched_entity(se) {
+               delta = calc_delta_mine(delta,
+                               se->load.weight, &cfs_rq_of(se)->load);
+       }
+
+       return delta;
+}
+
+/*
+ * delta *= rw / w
+ */
+static inline unsigned long
+calc_delta_fair(unsigned long delta, struct sched_entity *se)
+{
+       for_each_sched_entity(se) {
+               delta = calc_delta_mine(delta,
+                               cfs_rq_of(se)->load.weight, &se->load);
+       }
+
+       return delta;
+}
+
+/*
  * The idea is to set a period in which each task runs once.
  *
  * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
@@ -283,34 +390,80 @@ static u64 __sched_period(unsigned long nr_running)
  */
 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
-       return calc_delta_mine(__sched_period(cfs_rq->nr_running),
-                              se->load.weight, &cfs_rq->load);
+       return calc_delta_weight(__sched_period(cfs_rq->nr_running), se);
 }
 
 /*
- * We calculate the vruntime slice.
+ * We calculate the vruntime slice of a to be inserted task
  *
- * vs = s/w = p/rw
+ * vs = s*rw/w = p
  */
-static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
+static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
-       u64 vslice = __sched_period(nr_running);
+       unsigned long nr_running = cfs_rq->nr_running;
 
-       vslice *= NICE_0_LOAD;
-       do_div(vslice, rq_weight);
+       if (!se->on_rq)
+               nr_running++;
 
-       return vslice;
+       return __sched_period(nr_running);
 }
 
-static u64 sched_vslice(struct cfs_rq *cfs_rq)
+/*
+ * The goal of calc_delta_asym() is to be asymmetrically around NICE_0_LOAD, in
+ * that it favours >=0 over <0.
+ *
+ *   -20         |
+ *               |
+ *     0 --------+-------
+ *             .'
+ *    19     .'
+ *
+ */
+static unsigned long
+calc_delta_asym(unsigned long delta, struct sched_entity *se)
 {
-       return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
-}
+       struct load_weight lw = {
+               .weight = NICE_0_LOAD,
+               .inv_weight = 1UL << (WMULT_SHIFT-NICE_0_SHIFT)
+       };
 
-static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
-{
-       return __sched_vslice(cfs_rq->load.weight + se->load.weight,
-                       cfs_rq->nr_running + 1);
+       for_each_sched_entity(se) {
+               struct load_weight *se_lw = &se->load;
+               unsigned long rw = cfs_rq_of(se)->load.weight;
+
+#ifdef CONFIG_FAIR_SCHED_GROUP
+               struct cfs_rq *cfs_rq = se->my_q;
+               struct task_group *tg = NULL
+
+               if (cfs_rq)
+                       tg = cfs_rq->tg;
+
+               if (tg && tg->shares < NICE_0_LOAD) {
+                       /*
+                        * scale shares to what it would have been had
+                        * tg->weight been NICE_0_LOAD:
+                        *
+                        *   weight = 1024 * shares / tg->weight
+                        */
+                       lw.weight *= se->load.weight;
+                       lw.weight /= tg->shares;
+
+                       lw.inv_weight = 0;
+
+                       se_lw = &lw;
+                       rw += lw.weight - se->load.weight;
+               } else
+#endif
+
+               if (se->load.weight < NICE_0_LOAD) {
+                       se_lw = &lw;
+                       rw += NICE_0_LOAD - se->load.weight;
+               }
+
+               delta = calc_delta_mine(delta, rw, se_lw);
+       }
+
+       return delta;
 }
 
 /*
@@ -327,11 +480,7 @@ __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
 
        curr->sum_exec_runtime += delta_exec;
        schedstat_add(cfs_rq, exec_clock, delta_exec);
-       delta_exec_weighted = delta_exec;
-       if (unlikely(curr->load.weight != NICE_0_LOAD)) {
-               delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
-                                                       &curr->load);
-       }
+       delta_exec_weighted = calc_delta_fair(delta_exec, curr);
        curr->vruntime += delta_exec_weighted;
 }
 
@@ -418,20 +567,43 @@ update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  * Scheduling class queueing methods:
  */
 
+#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
+static void
+add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
+{
+       cfs_rq->task_weight += weight;
+}
+#else
+static inline void
+add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
+{
+}
+#endif
+
 static void
 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
        update_load_add(&cfs_rq->load, se->load.weight);
+       if (!parent_entity(se))
+               inc_cpu_load(rq_of(cfs_rq), se->load.weight);
+       if (entity_is_task(se))
+               add_cfs_task_weight(cfs_rq, se->load.weight);
        cfs_rq->nr_running++;
        se->on_rq = 1;
+       list_add(&se->group_node, &cfs_rq->tasks);
 }
 
 static void
 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
        update_load_sub(&cfs_rq->load, se->load.weight);
+       if (!parent_entity(se))
+               dec_cpu_load(rq_of(cfs_rq), se->load.weight);
+       if (entity_is_task(se))
+               add_cfs_task_weight(cfs_rq, -se->load.weight);
        cfs_rq->nr_running--;
        se->on_rq = 0;
+       list_del_init(&se->group_node);
 }
 
 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
@@ -504,15 +676,6 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
        } else
                vruntime = cfs_rq->min_vruntime;
 
-       if (sched_feat(TREE_AVG)) {
-               struct sched_entity *last = __pick_last_entity(cfs_rq);
-               if (last) {
-                       vruntime += last->vruntime;
-                       vruntime >>= 1;
-               }
-       } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
-               vruntime += sched_vslice(cfs_rq)/2;
-
        /*
         * The 'current' period is already promised to the current tasks,
         * however the extra weight of the new task will slow them down a
@@ -525,8 +688,15 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
        if (!initial) {
                /* sleeps upto a single latency don't count. */
                if (sched_feat(NEW_FAIR_SLEEPERS)) {
-                       vruntime -= calc_delta_fair(sysctl_sched_latency,
-                                                   &cfs_rq->load);
+                       unsigned long thresh = sysctl_sched_latency;
+
+                       /*
+                        * convert the sleeper threshold into virtual time
+                        */
+                       if (sched_feat(NORMALIZED_SLEEPER))
+                               thresh = calc_delta_fair(thresh, se);
+
+                       vruntime -= thresh;
                }
 
                /* ensure we never gain time by being placed backwards. */
@@ -543,6 +713,7 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
         * Update run-time statistics of the 'current'.
         */
        update_curr(cfs_rq);
+       account_entity_enqueue(cfs_rq, se);
 
        if (wakeup) {
                place_entity(cfs_rq, se, 0);
@@ -553,7 +724,6 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
        check_spread(cfs_rq, se);
        if (se != cfs_rq->curr)
                __enqueue_entity(cfs_rq, se);
-       account_entity_enqueue(cfs_rq, se);
 }
 
 static void
@@ -630,18 +800,13 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 static struct sched_entity *
 pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
-       s64 diff, gran;
-
-       if (!cfs_rq->next)
-               return se;
-
-       diff = cfs_rq->next->vruntime - se->vruntime;
-       if (diff < 0)
-               return se;
+       struct rq *rq = rq_of(cfs_rq);
+       u64 pair_slice = rq->clock - cfs_rq->pair_start;
 
-       gran = calc_delta_fair(sysctl_sched_wakeup_granularity, &cfs_rq->load);
-       if (diff > gran)
+       if (!cfs_rq->next || pair_slice > sched_slice(cfs_rq, cfs_rq->next)) {
+               cfs_rq->pair_start = rq->clock;
                return se;
+       }
 
        return cfs_rq->next;
 }
@@ -690,8 +855,10 @@ entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
         * queued ticks are scheduled to match the slice, so don't bother
         * validating it and just reschedule.
         */
-       if (queued)
-               return resched_task(rq_of(cfs_rq)->curr);
+       if (queued) {
+               resched_task(rq_of(cfs_rq)->curr);
+               return;
+       }
        /*
         * don't let the period tick interfere with the hrtick preemption
         */
@@ -708,105 +875,9 @@ entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  * CFS operations on tasks:
  */
 
-#ifdef CONFIG_FAIR_GROUP_SCHED
-
-/* Walk up scheduling entities hierarchy */
-#define for_each_sched_entity(se) \
-               for (; se; se = se->parent)
-
-static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
-{
-       return p->se.cfs_rq;
-}
-
-/* runqueue on which this entity is (to be) queued */
-static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
-{
-       return se->cfs_rq;
-}
-
-/* runqueue "owned" by this group */
-static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
-{
-       return grp->my_q;
-}
-
-/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
- * another cpu ('this_cpu')
- */
-static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
-{
-       return cfs_rq->tg->cfs_rq[this_cpu];
-}
-
-/* Iterate thr' all leaf cfs_rq's on a runqueue */
-#define for_each_leaf_cfs_rq(rq, cfs_rq) \
-       list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
-
-/* Do the two (enqueued) entities belong to the same group ? */
-static inline int
-is_same_group(struct sched_entity *se, struct sched_entity *pse)
-{
-       if (se->cfs_rq == pse->cfs_rq)
-               return 1;
-
-       return 0;
-}
-
-static inline struct sched_entity *parent_entity(struct sched_entity *se)
-{
-       return se->parent;
-}
-
-#else  /* CONFIG_FAIR_GROUP_SCHED */
-
-#define for_each_sched_entity(se) \
-               for (; se; se = NULL)
-
-static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
-{
-       return &task_rq(p)->cfs;
-}
-
-static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
-{
-       struct task_struct *p = task_of(se);
-       struct rq *rq = task_rq(p);
-
-       return &rq->cfs;
-}
-
-/* runqueue "owned" by this group */
-static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
-{
-       return NULL;
-}
-
-static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
-{
-       return &cpu_rq(this_cpu)->cfs;
-}
-
-#define for_each_leaf_cfs_rq(rq, cfs_rq) \
-               for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
-
-static inline int
-is_same_group(struct sched_entity *se, struct sched_entity *pse)
-{
-       return 1;
-}
-
-static inline struct sched_entity *parent_entity(struct sched_entity *se)
-{
-       return NULL;
-}
-
-#endif /* CONFIG_FAIR_GROUP_SCHED */
-
 #ifdef CONFIG_SCHED_HRTICK
 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
 {
-       int requeue = rq->curr == p;
        struct sched_entity *se = &p->se;
        struct cfs_rq *cfs_rq = cfs_rq_of(se);
 
@@ -827,13 +898,13 @@ static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
                 * Don't schedule slices shorter than 10000ns, that just
                 * doesn't make sense. Rely on vruntime for fairness.
                 */
-               if (!requeue)
-                       delta = max(10000LL, delta);
+               if (rq->curr != p)
+                       delta = max_t(s64, 10000LL, delta);
 
-               hrtick_start(rq, delta, requeue);
+               hrtick_start(rq, delta);
        }
 }
-#else
+#else /* !CONFIG_SCHED_HRTICK */
 static inline void
 hrtick_start_fair(struct rq *rq, struct task_struct *p)
 {
@@ -901,7 +972,7 @@ static void yield_task_fair(struct rq *rq)
                return;
 
        if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
-               __update_rq_clock(rq);
+               update_rq_clock(rq);
                /*
                 * Update run-time statistics of the 'current'.
                 */
@@ -916,7 +987,7 @@ static void yield_task_fair(struct rq *rq)
        /*
         * Already in the rightmost position?
         */
-       if (unlikely(rightmost->vruntime < se->vruntime))
+       if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
                return;
 
        /*
@@ -932,6 +1003,8 @@ static void yield_task_fair(struct rq *rq)
  * not idle and an idle cpu is available.  The span of cpus to
  * search starts with cpus closest then further out as needed,
  * so we always favor a closer, idle cpu.
+ * Domains may include CPUs that are not usable for migration,
+ * hence we need to mask them out (cpu_active_map)
  *
  * Returns the CPU we should wake onto.
  */
@@ -951,13 +1024,16 @@ static int wake_idle(int cpu, struct task_struct *p)
         * sibling runqueue info. This will avoid the checks and cache miss
         * penalities associated with that.
         */
-       if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
+       if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
                return cpu;
 
        for_each_domain(cpu, sd) {
-               if (sd->flags & SD_WAKE_IDLE) {
+               if ((sd->flags & SD_WAKE_IDLE)
+                   || ((sd->flags & SD_WAKE_IDLE_FAR)
+                       && !task_hot(p, task_rq(p)->clock, sd))) {
                        cpus_and(tmp, sd->span, p->cpus_allowed);
-                       for_each_cpu_mask(i, tmp) {
+                       cpus_and(tmp, tmp, cpu_active_map);
+                       for_each_cpu_mask_nr(i, tmp) {
                                if (idle_cpu(i)) {
                                        if (i != task_cpu(p)) {
                                                schedstat_inc(p,
@@ -972,7 +1048,7 @@ static int wake_idle(int cpu, struct task_struct *p)
        }
        return cpu;
 }
-#else
+#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
 static inline int wake_idle(int cpu, struct task_struct *p)
 {
        return cpu;
@@ -981,37 +1057,142 @@ static inline int wake_idle(int cpu, struct task_struct *p)
 
 #ifdef CONFIG_SMP
 
+static const struct sched_class fair_sched_class;
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+/*
+ * effective_load() calculates the load change as seen from the root_task_group
+ *
+ * Adding load to a group doesn't make a group heavier, but can cause movement
+ * of group shares between cpus. Assuming the shares were perfectly aligned one
+ * can calculate the shift in shares.
+ *
+ * The problem is that perfectly aligning the shares is rather expensive, hence
+ * we try to avoid doing that too often - see update_shares(), which ratelimits
+ * this change.
+ *
+ * We compensate this by not only taking the current delta into account, but
+ * also considering the delta between when the shares were last adjusted and
+ * now.
+ *
+ * We still saw a performance dip, some tracing learned us that between
+ * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
+ * significantly. Therefore try to bias the error in direction of failing
+ * the affine wakeup.
+ *
+ */
+static long effective_load(struct task_group *tg, int cpu,
+               long wl, long wg)
+{
+       struct sched_entity *se = tg->se[cpu];
+       long more_w;
+
+       if (!tg->parent)
+               return wl;
+
+       /*
+        * By not taking the decrease of shares on the other cpu into
+        * account our error leans towards reducing the affine wakeups.
+        */
+       if (!wl && sched_feat(ASYM_EFF_LOAD))
+               return wl;
+
+       /*
+        * Instead of using this increment, also add the difference
+        * between when the shares were last updated and now.
+        */
+       more_w = se->my_q->load.weight - se->my_q->rq_weight;
+       wl += more_w;
+       wg += more_w;
+
+       for_each_sched_entity(se) {
+#define D(n) (likely(n) ? (n) : 1)
+
+               long S, rw, s, a, b;
+
+               S = se->my_q->tg->shares;
+               s = se->my_q->shares;
+               rw = se->my_q->rq_weight;
+
+               a = S*(rw + wl);
+               b = S*rw + s*wg;
+
+               wl = s*(a-b)/D(b);
+               /*
+                * Assume the group is already running and will
+                * thus already be accounted for in the weight.
+                *
+                * That is, moving shares between CPUs, does not
+                * alter the group weight.
+                */
+               wg = 0;
+#undef D
+       }
+
+       return wl;
+}
+
+#else
+
+static inline unsigned long effective_load(struct task_group *tg, int cpu,
+               unsigned long wl, unsigned long wg)
+{
+       return wl;
+}
+
+#endif
+
 static int
-wake_affine(struct rq *rq, struct sched_domain *this_sd, struct task_struct *p,
-           int prev_cpu, int this_cpu, int sync, int idx,
-           unsigned long load, unsigned long this_load,
+wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
+           struct task_struct *p, int prev_cpu, int this_cpu, int sync,
+           int idx, unsigned long load, unsigned long this_load,
            unsigned int imbalance)
 {
+       struct task_struct *curr = this_rq->curr;
+       struct task_group *tg;
        unsigned long tl = this_load;
        unsigned long tl_per_task;
+       unsigned long weight;
+       int balanced;
 
-       if (!(this_sd->flags & SD_WAKE_AFFINE))
+       if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
                return 0;
 
        /*
-        * Attract cache-cold tasks on sync wakeups:
+        * If sync wakeup then subtract the (maximum possible)
+        * effect of the currently running task from the load
+        * of the current CPU:
         */
-       if (sync && !task_hot(p, rq->clock, this_sd))
-               return 1;
+       if (sync) {
+               tg = task_group(current);
+               weight = current->se.load.weight;
 
-       schedstat_inc(p, se.nr_wakeups_affine_attempts);
-       tl_per_task = cpu_avg_load_per_task(this_cpu);
+               tl += effective_load(tg, this_cpu, -weight, -weight);
+               load += effective_load(tg, prev_cpu, 0, -weight);
+       }
+
+       tg = task_group(p);
+       weight = p->se.load.weight;
+
+       balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
+               imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
 
        /*
-        * If sync wakeup then subtract the (maximum possible)
-        * effect of the currently running task from the load
-        * of the current CPU:
+        * If the currently running task will sleep within
+        * a reasonable amount of time then attract this newly
+        * woken task:
         */
-       if (sync)
-               tl -= current->se.load.weight;
+       if (sync && balanced) {
+               if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
+                   p->se.avg_overlap < sysctl_sched_migration_cost)
+                       return 1;
+       }
+
+       schedstat_inc(p, se.nr_wakeups_affine_attempts);
+       tl_per_task = cpu_avg_load_per_task(this_cpu);
 
        if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
-                       100*(tl + p->se.load.weight) <= imbalance*load) {
+                       balanced) {
                /*
                 * This domain has SD_WAKE_AFFINE and
                 * p is cache cold in this domain, and
@@ -1030,18 +1211,16 @@ static int select_task_rq_fair(struct task_struct *p, int sync)
        struct sched_domain *sd, *this_sd = NULL;
        int prev_cpu, this_cpu, new_cpu;
        unsigned long load, this_load;
+       struct rq *rq, *this_rq;
        unsigned int imbalance;
-       struct rq *rq;
        int idx;
 
        prev_cpu        = task_cpu(p);
        rq              = task_rq(p);
        this_cpu        = smp_processor_id();
+       this_rq         = cpu_rq(this_cpu);
        new_cpu         = prev_cpu;
 
-       if (prev_cpu == this_cpu)
-               goto out_set_cpu;
-
        /*
         * 'this_sd' is the first domain that both
         * this_cpu and prev_cpu are present in:
@@ -1054,13 +1233,13 @@ static int select_task_rq_fair(struct task_struct *p, int sync)
        }
 
        if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
-               goto out_set_cpu;
+               goto out;
 
        /*
         * Check for affine wakeup and passive balancing possibilities.
         */
        if (!this_sd)
-               goto out_keep_cpu;
+               goto out;
 
        idx = this_sd->wake_idx;
 
@@ -1069,11 +1248,12 @@ static int select_task_rq_fair(struct task_struct *p, int sync)
        load = source_load(prev_cpu, idx);
        this_load = target_load(this_cpu, idx);
 
-       new_cpu = this_cpu; /* Wake to this CPU if we can */
-
-       if (wake_affine(rq, this_sd, p, prev_cpu, this_cpu, sync, idx,
+       if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
                                     load, this_load, imbalance))
-               goto out_set_cpu;
+               return this_cpu;
+
+       if (prev_cpu == this_cpu)
+               goto out;
 
        /*
         * Start passive balancing when half the imbalance_pct
@@ -1083,21 +1263,70 @@ static int select_task_rq_fair(struct task_struct *p, int sync)
                if (imbalance*this_load <= 100*load) {
                        schedstat_inc(this_sd, ttwu_move_balance);
                        schedstat_inc(p, se.nr_wakeups_passive);
-                       goto out_set_cpu;
+                       return this_cpu;
                }
        }
 
-out_keep_cpu:
-       /*
-        * Could not wake to this_cpu.
-        * Wake to the previous cpu instead:
-        */
-       new_cpu = prev_cpu;
-out_set_cpu:
+out:
        return wake_idle(new_cpu, p);
 }
 #endif /* CONFIG_SMP */
 
+static unsigned long wakeup_gran(struct sched_entity *se)
+{
+       unsigned long gran = sysctl_sched_wakeup_granularity;
+
+       /*
+        * More easily preempt - nice tasks, while not making it harder for
+        * + nice tasks.
+        */
+       if (sched_feat(ASYM_GRAN))
+               gran = calc_delta_asym(sysctl_sched_wakeup_granularity, se);
+       else
+               gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
+
+       return gran;
+}
+
+/*
+ * Should 'se' preempt 'curr'.
+ *
+ *             |s1
+ *        |s2
+ *   |s3
+ *         g
+ *      |<--->|c
+ *
+ *  w(c, s1) = -1
+ *  w(c, s2) =  0
+ *  w(c, s3) =  1
+ *
+ */
+static int
+wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
+{
+       s64 gran, vdiff = curr->vruntime - se->vruntime;
+
+       if (vdiff < 0)
+               return -1;
+
+       gran = wakeup_gran(curr);
+       if (vdiff > gran)
+               return 1;
+
+       return 0;
+}
+
+/* return depth at which a sched entity is present in the hierarchy */
+static inline int depth_se(struct sched_entity *se)
+{
+       int depth = 0;
+
+       for_each_sched_entity(se)
+               depth++;
+
+       return depth;
+}
 
 /*
  * Preempt the current task with a newly woken task if needed:
@@ -1107,7 +1336,7 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
        struct task_struct *curr = rq->curr;
        struct cfs_rq *cfs_rq = task_cfs_rq(curr);
        struct sched_entity *se = &curr->se, *pse = &p->se;
-       unsigned long gran;
+       int se_depth, pse_depth;
 
        if (unlikely(rt_prio(p->prio))) {
                update_rq_clock(rq);
@@ -1116,6 +1345,9 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
                return;
        }
 
+       if (unlikely(se == pse))
+               return;
+
        cfs_rq_of(pse)->next = pse;
 
        /*
@@ -1128,20 +1360,33 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
        if (!sched_feat(WAKEUP_PREEMPT))
                return;
 
-       while (!is_same_group(se, pse)) {
+       /*
+        * preemption test can be made between sibling entities who are in the
+        * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
+        * both tasks until we find their ancestors who are siblings of common
+        * parent.
+        */
+
+       /* First walk up until both entities are at same depth */
+       se_depth = depth_se(se);
+       pse_depth = depth_se(pse);
+
+       while (se_depth > pse_depth) {
+               se_depth--;
                se = parent_entity(se);
+       }
+
+       while (pse_depth > se_depth) {
+               pse_depth--;
                pse = parent_entity(pse);
        }
 
-       gran = sysctl_sched_wakeup_granularity;
-       /*
-        * More easily preempt - nice tasks, while not making
-        * it harder for + nice tasks.
-        */
-       if (unlikely(se->load.weight > NICE_0_LOAD))
-               gran = calc_delta_fair(gran, &se->load);
+       while (!is_same_group(se, pse)) {
+               se = parent_entity(se);
+               pse = parent_entity(pse);
+       }
 
-       if (pse->vruntime + gran < se->vruntime)
+       if (wakeup_preempt_entity(se, pse) == 1)
                resched_task(curr);
 }
 
@@ -1192,15 +1437,27 @@ static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  * the current task:
  */
 static struct task_struct *
-__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
+__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
 {
-       struct task_struct *p;
+       struct task_struct *p = NULL;
+       struct sched_entity *se;
 
-       if (!curr)
+       if (next == &cfs_rq->tasks)
                return NULL;
 
-       p = rb_entry(curr, struct task_struct, se.run_node);
-       cfs_rq->rb_load_balance_curr = rb_next(curr);
+       /* Skip over entities that are not tasks */
+       do {
+               se = list_entry(next, struct sched_entity, group_node);
+               next = next->next;
+       } while (next != &cfs_rq->tasks && !entity_is_task(se));
+
+       if (next == &cfs_rq->tasks)
+               return NULL;
+
+       cfs_rq->balance_iterator = next;
+
+       if (entity_is_task(se))
+               p = task_of(se);
 
        return p;
 }
@@ -1209,85 +1466,92 @@ static struct task_struct *load_balance_start_fair(void *arg)
 {
        struct cfs_rq *cfs_rq = arg;
 
-       return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
+       return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
 }
 
 static struct task_struct *load_balance_next_fair(void *arg)
 {
        struct cfs_rq *cfs_rq = arg;
 
-       return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
+       return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
 }
 
-#ifdef CONFIG_FAIR_GROUP_SCHED
-static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
+static unsigned long
+__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
+               unsigned long max_load_move, struct sched_domain *sd,
+               enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
+               struct cfs_rq *cfs_rq)
 {
-       struct sched_entity *curr;
-       struct task_struct *p;
-
-       if (!cfs_rq->nr_running || !first_fair(cfs_rq))
-               return MAX_PRIO;
-
-       curr = cfs_rq->curr;
-       if (!curr)
-               curr = __pick_next_entity(cfs_rq);
+       struct rq_iterator cfs_rq_iterator;
 
-       p = task_of(curr);
+       cfs_rq_iterator.start = load_balance_start_fair;
+       cfs_rq_iterator.next = load_balance_next_fair;
+       cfs_rq_iterator.arg = cfs_rq;
 
-       return p->prio;
+       return balance_tasks(this_rq, this_cpu, busiest,
+                       max_load_move, sd, idle, all_pinned,
+                       this_best_prio, &cfs_rq_iterator);
 }
-#endif
 
+#ifdef CONFIG_FAIR_GROUP_SCHED
 static unsigned long
 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
                  unsigned long max_load_move,
                  struct sched_domain *sd, enum cpu_idle_type idle,
                  int *all_pinned, int *this_best_prio)
 {
-       struct cfs_rq *busy_cfs_rq;
        long rem_load_move = max_load_move;
-       struct rq_iterator cfs_rq_iterator;
+       int busiest_cpu = cpu_of(busiest);
+       struct task_group *tg;
 
-       cfs_rq_iterator.start = load_balance_start_fair;
-       cfs_rq_iterator.next = load_balance_next_fair;
-
-       for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
-#ifdef CONFIG_FAIR_GROUP_SCHED
-               struct cfs_rq *this_cfs_rq;
-               long imbalance;
-               unsigned long maxload;
+       rcu_read_lock();
+       update_h_load(busiest_cpu);
 
-               this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
+       list_for_each_entry(tg, &task_groups, list) {
+               struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
+               unsigned long busiest_h_load = busiest_cfs_rq->h_load;
+               unsigned long busiest_weight = busiest_cfs_rq->load.weight;
+               u64 rem_load, moved_load;
 
-               imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
-               /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
-               if (imbalance <= 0)
+               /*
+                * empty group
+                */
+               if (!busiest_cfs_rq->task_weight)
                        continue;
 
-               /* Don't pull more than imbalance/2 */
-               imbalance /= 2;
-               maxload = min(rem_load_move, imbalance);
+               rem_load = (u64)rem_load_move * busiest_weight;
+               rem_load = div_u64(rem_load, busiest_h_load + 1);
 
-               *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
-#else
-# define maxload rem_load_move
-#endif
-               /*
-                * pass busy_cfs_rq argument into
-                * load_balance_[start|next]_fair iterators
-                */
-               cfs_rq_iterator.arg = busy_cfs_rq;
-               rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
-                                              maxload, sd, idle, all_pinned,
-                                              this_best_prio,
-                                              &cfs_rq_iterator);
+               moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
+                               rem_load, sd, idle, all_pinned, this_best_prio,
+                               tg->cfs_rq[busiest_cpu]);
+
+               if (!moved_load)
+                       continue;
 
-               if (rem_load_move <= 0)
+               moved_load *= busiest_h_load;
+               moved_load = div_u64(moved_load, busiest_weight + 1);
+
+               rem_load_move -= moved_load;
+               if (rem_load_move < 0)
                        break;
        }
+       rcu_read_unlock();
 
        return max_load_move - rem_load_move;
 }
+#else
+static unsigned long
+load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
+                 unsigned long max_load_move,
+                 struct sched_domain *sd, enum cpu_idle_type idle,
+                 int *all_pinned, int *this_best_prio)
+{
+       return __load_balance_fair(this_rq, this_cpu, busiest,
+                       max_load_move, sd, idle, all_pinned,
+                       this_best_prio, &busiest->cfs);
+}
+#endif
 
 static int
 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
@@ -1312,7 +1576,7 @@ move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
 
        return 0;
 }
-#endif
+#endif /* CONFIG_SMP */
 
 /*
  * scheduler tick hitting a task of our scheduling class:
@@ -1460,9 +1724,6 @@ static void print_cfs_stats(struct seq_file *m, int cpu)
 {
        struct cfs_rq *cfs_rq;
 
-#ifdef CONFIG_FAIR_GROUP_SCHED
-       print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
-#endif
        rcu_read_lock();
        for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
                print_cfs_rq(m, cpu, cfs_rq);