nfsd4: fix share mode permissions
[safe/jmp/linux-2.6] / kernel / sched_fair.c
index 3ac096e..37087a7 100644 (file)
  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  */
 
+#include <linux/latencytop.h>
+
 /*
  * Targeted preemption latency for CPU-bound tasks:
- * (default: 20ms, units: nanoseconds)
+ * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
  *
  * NOTE: this latency value is not the same as the concept of
- * 'timeslice length' - timeslices in CFS are of variable length.
- * (to see the precise effective timeslice length of your workload,
- *  run vmstat and monitor the context-switches field)
+ * 'timeslice length' - timeslices in CFS are of variable length
+ * and have no persistent notion like in traditional, time-slice
+ * based scheduling concepts.
  *
- * On SMP systems the value of this is multiplied by the log2 of the
- * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
- * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
- * Targeted preemption latency for CPU-bound tasks:
+ * (to see the precise effective timeslice length of your workload,
+ *  run vmstat and monitor the context-switches (cs) field)
  */
-const_debug unsigned int sysctl_sched_latency = 20000000ULL;
+unsigned int sysctl_sched_latency = 5000000ULL;
 
 /*
- * After fork, child runs first. (default) If set to 0 then
- * parent will (try to) run first.
+ * Minimal preemption granularity for CPU-bound tasks:
+ * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  */
-const_debug unsigned int sysctl_sched_child_runs_first = 1;
+unsigned int sysctl_sched_min_granularity = 1000000ULL;
 
 /*
- * Minimal preemption granularity for CPU-bound tasks:
- * (default: 2 msec, units: nanoseconds)
+ * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
+ */
+static unsigned int sched_nr_latency = 5;
+
+/*
+ * After fork, child runs first. If set to 0 (default) then
+ * parent will (try to) run first.
  */
-const_debug unsigned int sysctl_sched_nr_latency = 20;
+unsigned int sysctl_sched_child_runs_first __read_mostly;
 
 /*
  * sys_sched_yield() compat mode
@@ -57,24 +62,18 @@ const_debug unsigned int sysctl_sched_nr_latency = 20;
 unsigned int __read_mostly sysctl_sched_compat_yield;
 
 /*
- * SCHED_BATCH wake-up granularity.
- * (default: 10 msec, units: nanoseconds)
- *
- * This option delays the preemption effects of decoupled workloads
- * and reduces their over-scheduling. Synchronous workloads will still
- * have immediate wakeup/sleep latencies.
- */
-const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
-
-/*
  * SCHED_OTHER wake-up granularity.
- * (default: 10 msec, units: nanoseconds)
+ * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  *
  * This option delays the preemption effects of decoupled workloads
  * and reduces their over-scheduling. Synchronous workloads will still
  * have immediate wakeup/sleep latencies.
  */
-const_debug unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
+unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
+
+const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
+
+static const struct sched_class fair_sched_class;
 
 /**************************************************************
  * CFS operations on generic schedulable entities:
@@ -91,7 +90,111 @@ static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 /* An entity is a task if it doesn't "own" a runqueue */
 #define entity_is_task(se)     (!se->my_q)
 
-#else  /* CONFIG_FAIR_GROUP_SCHED */
+static inline struct task_struct *task_of(struct sched_entity *se)
+{
+#ifdef CONFIG_SCHED_DEBUG
+       WARN_ON_ONCE(!entity_is_task(se));
+#endif
+       return container_of(se, struct task_struct, se);
+}
+
+/* Walk up scheduling entities hierarchy */
+#define for_each_sched_entity(se) \
+               for (; se; se = se->parent)
+
+static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
+{
+       return p->se.cfs_rq;
+}
+
+/* runqueue on which this entity is (to be) queued */
+static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
+{
+       return se->cfs_rq;
+}
+
+/* runqueue "owned" by this group */
+static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
+{
+       return grp->my_q;
+}
+
+/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
+ * another cpu ('this_cpu')
+ */
+static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
+{
+       return cfs_rq->tg->cfs_rq[this_cpu];
+}
+
+/* Iterate thr' all leaf cfs_rq's on a runqueue */
+#define for_each_leaf_cfs_rq(rq, cfs_rq) \
+       list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
+
+/* Do the two (enqueued) entities belong to the same group ? */
+static inline int
+is_same_group(struct sched_entity *se, struct sched_entity *pse)
+{
+       if (se->cfs_rq == pse->cfs_rq)
+               return 1;
+
+       return 0;
+}
+
+static inline struct sched_entity *parent_entity(struct sched_entity *se)
+{
+       return se->parent;
+}
+
+/* return depth at which a sched entity is present in the hierarchy */
+static inline int depth_se(struct sched_entity *se)
+{
+       int depth = 0;
+
+       for_each_sched_entity(se)
+               depth++;
+
+       return depth;
+}
+
+static void
+find_matching_se(struct sched_entity **se, struct sched_entity **pse)
+{
+       int se_depth, pse_depth;
+
+       /*
+        * preemption test can be made between sibling entities who are in the
+        * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
+        * both tasks until we find their ancestors who are siblings of common
+        * parent.
+        */
+
+       /* First walk up until both entities are at same depth */
+       se_depth = depth_se(*se);
+       pse_depth = depth_se(*pse);
+
+       while (se_depth > pse_depth) {
+               se_depth--;
+               *se = parent_entity(*se);
+       }
+
+       while (pse_depth > se_depth) {
+               pse_depth--;
+               *pse = parent_entity(*pse);
+       }
+
+       while (!is_same_group(*se, *pse)) {
+               *se = parent_entity(*se);
+               *pse = parent_entity(*pse);
+       }
+}
+
+#else  /* !CONFIG_FAIR_GROUP_SCHED */
+
+static inline struct task_struct *task_of(struct sched_entity *se)
+{
+       return container_of(se, struct task_struct, se);
+}
 
 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 {
@@ -100,13 +203,54 @@ static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 
 #define entity_is_task(se)     1
 
-#endif /* CONFIG_FAIR_GROUP_SCHED */
+#define for_each_sched_entity(se) \
+               for (; se; se = NULL)
 
-static inline struct task_struct *task_of(struct sched_entity *se)
+static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
+{
+       return &task_rq(p)->cfs;
+}
+
+static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
+{
+       struct task_struct *p = task_of(se);
+       struct rq *rq = task_rq(p);
+
+       return &rq->cfs;
+}
+
+/* runqueue "owned" by this group */
+static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
+{
+       return NULL;
+}
+
+static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
+{
+       return &cpu_rq(this_cpu)->cfs;
+}
+
+#define for_each_leaf_cfs_rq(rq, cfs_rq) \
+               for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
+
+static inline int
+is_same_group(struct sched_entity *se, struct sched_entity *pse)
+{
+       return 1;
+}
+
+static inline struct sched_entity *parent_entity(struct sched_entity *se)
+{
+       return NULL;
+}
+
+static inline void
+find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 {
-       return container_of(se, struct task_struct, se);
 }
 
+#endif /* CONFIG_FAIR_GROUP_SCHED */
+
 
 /**************************************************************
  * Scheduling class tree data structure manipulation methods:
@@ -130,11 +274,38 @@ static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
        return min_vruntime;
 }
 
+static inline int entity_before(struct sched_entity *a,
+                               struct sched_entity *b)
+{
+       return (s64)(a->vruntime - b->vruntime) < 0;
+}
+
 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
        return se->vruntime - cfs_rq->min_vruntime;
 }
 
+static void update_min_vruntime(struct cfs_rq *cfs_rq)
+{
+       u64 vruntime = cfs_rq->min_vruntime;
+
+       if (cfs_rq->curr)
+               vruntime = cfs_rq->curr->vruntime;
+
+       if (cfs_rq->rb_leftmost) {
+               struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
+                                                  struct sched_entity,
+                                                  run_node);
+
+               if (!cfs_rq->curr)
+                       vruntime = se->vruntime;
+               else
+                       vruntime = min_vruntime(vruntime, se->vruntime);
+       }
+
+       cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
+}
+
 /*
  * Enqueue an entity into the rb-tree:
  */
@@ -177,41 +348,68 @@ static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 
 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
-       if (cfs_rq->rb_leftmost == &se->run_node)
-               cfs_rq->rb_leftmost = rb_next(&se->run_node);
+       if (cfs_rq->rb_leftmost == &se->run_node) {
+               struct rb_node *next_node;
 
-       rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
-}
+               next_node = rb_next(&se->run_node);
+               cfs_rq->rb_leftmost = next_node;
+       }
 
-static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
-{
-       return cfs_rq->rb_leftmost;
+       rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
 }
 
 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
 {
-       return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
+       struct rb_node *left = cfs_rq->rb_leftmost;
+
+       if (!left)
+               return NULL;
+
+       return rb_entry(left, struct sched_entity, run_node);
 }
 
-static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
+static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
 {
-       struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
-       struct sched_entity *se = NULL;
-       struct rb_node *parent;
+       struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
 
-       while (*link) {
-               parent = *link;
-               se = rb_entry(parent, struct sched_entity, run_node);
-               link = &parent->rb_right;
-       }
+       if (!last)
+               return NULL;
 
-       return se;
+       return rb_entry(last, struct sched_entity, run_node);
 }
 
 /**************************************************************
  * Scheduling class statistics methods:
  */
 
+#ifdef CONFIG_SCHED_DEBUG
+int sched_nr_latency_handler(struct ctl_table *table, int write,
+               void __user *buffer, size_t *lenp,
+               loff_t *ppos)
+{
+       int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
+
+       if (ret || !write)
+               return ret;
+
+       sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
+                                       sysctl_sched_min_granularity);
+
+       return 0;
+}
+#endif
+
+/*
+ * delta /= w
+ */
+static inline unsigned long
+calc_delta_fair(unsigned long delta, struct sched_entity *se)
+{
+       if (unlikely(se->load.weight != NICE_0_LOAD))
+               delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
+
+       return delta;
+}
 
 /*
  * The idea is to set a period in which each task runs once.
@@ -224,11 +422,11 @@ static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
 static u64 __sched_period(unsigned long nr_running)
 {
        u64 period = sysctl_sched_latency;
-       unsigned long nr_latency = sysctl_sched_nr_latency;
+       unsigned long nr_latency = sched_nr_latency;
 
        if (unlikely(nr_running > nr_latency)) {
+               period = sysctl_sched_min_granularity;
                period *= nr_running;
-               do_div(period, nr_latency);
        }
 
        return period;
@@ -238,41 +436,38 @@ static u64 __sched_period(unsigned long nr_running)
  * We calculate the wall-time slice from the period by taking a part
  * proportional to the weight.
  *
- * s = p*w/rw
+ * s = p*P[w/rw]
  */
 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
-       u64 slice = __sched_period(cfs_rq->nr_running);
+       u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
+
+       for_each_sched_entity(se) {
+               struct load_weight *load;
+               struct load_weight lw;
+
+               cfs_rq = cfs_rq_of(se);
+               load = &cfs_rq->load;
 
-       slice *= se->load.weight;
-       do_div(slice, cfs_rq->load.weight);
+               if (unlikely(!se->on_rq)) {
+                       lw = cfs_rq->load;
 
+                       update_load_add(&lw, se->load.weight);
+                       load = &lw;
+               }
+               slice = calc_delta_mine(slice, se->load.weight, load);
+       }
        return slice;
 }
 
 /*
- * We calculate the vruntime slice.
+ * We calculate the vruntime slice of a to be inserted task
  *
- * vs = s/w = p/rw
+ * vs = s/w
  */
-static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
-{
-       u64 vslice = __sched_period(nr_running);
-
-       do_div(vslice, rq_weight);
-
-       return vslice;
-}
-
-static u64 sched_vslice(struct cfs_rq *cfs_rq)
+static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
-       return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
-}
-
-static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
-{
-       return __sched_vslice(cfs_rq->load.weight + se->load.weight,
-                       cfs_rq->nr_running + 1);
+       return calc_delta_fair(sched_slice(cfs_rq, se), se);
 }
 
 /*
@@ -284,31 +479,14 @@ __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
              unsigned long delta_exec)
 {
        unsigned long delta_exec_weighted;
-       u64 vruntime;
 
        schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
 
        curr->sum_exec_runtime += delta_exec;
        schedstat_add(cfs_rq, exec_clock, delta_exec);
-       delta_exec_weighted = delta_exec;
-       if (unlikely(curr->load.weight != NICE_0_LOAD)) {
-               delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
-                                                       &curr->load);
-       }
+       delta_exec_weighted = calc_delta_fair(delta_exec, curr);
        curr->vruntime += delta_exec_weighted;
-
-       /*
-        * maintain cfs_rq->min_vruntime to be a monotonic increasing
-        * value tracking the leftmost vruntime in the tree.
-        */
-       if (first_fair(cfs_rq)) {
-               vruntime = min_vruntime(curr->vruntime,
-                               __pick_next_entity(cfs_rq)->vruntime);
-       } else
-               vruntime = curr->vruntime;
-
-       cfs_rq->min_vruntime =
-               max_vruntime(cfs_rq->min_vruntime, vruntime);
+       update_min_vruntime(cfs_rq);
 }
 
 static void update_curr(struct cfs_rq *cfs_rq)
@@ -326,9 +504,19 @@ static void update_curr(struct cfs_rq *cfs_rq)
         * overflow on 32 bits):
         */
        delta_exec = (unsigned long)(now - curr->exec_start);
+       if (!delta_exec)
+               return;
 
        __update_curr(cfs_rq, curr, delta_exec);
        curr->exec_start = now;
+
+       if (entity_is_task(curr)) {
+               struct task_struct *curtask = task_of(curr);
+
+               trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
+               cpuacct_charge(curtask, delta_exec);
+               account_group_exec_runtime(curtask, delta_exec);
+       }
 }
 
 static inline void
@@ -355,6 +543,15 @@ update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
        schedstat_set(se->wait_max, max(se->wait_max,
                        rq_of(cfs_rq)->clock - se->wait_start));
+       schedstat_set(se->wait_count, se->wait_count + 1);
+       schedstat_set(se->wait_sum, se->wait_sum +
+                       rq_of(cfs_rq)->clock - se->wait_start);
+#ifdef CONFIG_SCHEDSTATS
+       if (entity_is_task(se)) {
+               trace_sched_stat_wait(task_of(se),
+                       rq_of(cfs_rq)->clock - se->wait_start);
+       }
+#endif
        schedstat_set(se->wait_start, 0);
 }
 
@@ -381,23 +578,33 @@ update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
        se->exec_start = rq_of(cfs_rq)->clock;
 }
 
-/*
- * We are descheduling a task - update its stats:
+/**************************************************
+ * Scheduling class queueing methods:
  */
+
+#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
+static void
+add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
+{
+       cfs_rq->task_weight += weight;
+}
+#else
 static inline void
-update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
+add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
 {
-       se->exec_start = 0;
 }
-
-/**************************************************
- * Scheduling class queueing methods:
- */
+#endif
 
 static void
 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
        update_load_add(&cfs_rq->load, se->load.weight);
+       if (!parent_entity(se))
+               inc_cpu_load(rq_of(cfs_rq), se->load.weight);
+       if (entity_is_task(se)) {
+               add_cfs_task_weight(cfs_rq, se->load.weight);
+               list_add(&se->group_node, &cfs_rq->tasks);
+       }
        cfs_rq->nr_running++;
        se->on_rq = 1;
 }
@@ -406,6 +613,12 @@ static void
 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
        update_load_sub(&cfs_rq->load, se->load.weight);
+       if (!parent_entity(se))
+               dec_cpu_load(rq_of(cfs_rq), se->load.weight);
+       if (entity_is_task(se)) {
+               add_cfs_task_weight(cfs_rq, -se->load.weight);
+               list_del_init(&se->group_node);
+       }
        cfs_rq->nr_running--;
        se->on_rq = 0;
 }
@@ -413,6 +626,11 @@ account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
 #ifdef CONFIG_SCHEDSTATS
+       struct task_struct *tsk = NULL;
+
+       if (entity_is_task(se))
+               tsk = task_of(se);
+
        if (se->sleep_start) {
                u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
 
@@ -424,6 +642,11 @@ static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
 
                se->sleep_start = 0;
                se->sum_sleep_runtime += delta;
+
+               if (tsk) {
+                       account_scheduler_latency(tsk, delta >> 10, 1);
+                       trace_sched_stat_sleep(tsk, delta);
+               }
        }
        if (se->block_start) {
                u64 delta = rq_of(cfs_rq)->clock - se->block_start;
@@ -437,16 +660,24 @@ static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
                se->block_start = 0;
                se->sum_sleep_runtime += delta;
 
-               /*
-                * Blocking time is in units of nanosecs, so shift by 20 to
-                * get a milliseconds-range estimation of the amount of
-                * time that the task spent sleeping:
-                */
-               if (unlikely(prof_on == SLEEP_PROFILING)) {
-                       struct task_struct *tsk = task_of(se);
-
-                       profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
-                                    delta >> 20);
+               if (tsk) {
+                       if (tsk->in_iowait) {
+                               se->iowait_sum += delta;
+                               se->iowait_count++;
+                               trace_sched_stat_iowait(tsk, delta);
+                       }
+
+                       /*
+                        * Blocking time is in units of nanosecs, so shift by
+                        * 20 to get a milliseconds-range estimation of the
+                        * amount of time that the task spent sleeping:
+                        */
+                       if (unlikely(prof_on == SLEEP_PROFILING)) {
+                               profile_hits(SLEEP_PROFILING,
+                                               (void *)get_wchan(tsk),
+                                               delta >> 20);
+                       }
+                       account_scheduler_latency(tsk, delta >> 10, 0);
                }
        }
 #endif
@@ -468,32 +699,45 @@ static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
 static void
 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
 {
-       u64 vruntime;
+       u64 vruntime = cfs_rq->min_vruntime;
 
-       vruntime = cfs_rq->min_vruntime;
+       /*
+        * The 'current' period is already promised to the current tasks,
+        * however the extra weight of the new task will slow them down a
+        * little, place the new task so that it fits in the slot that
+        * stays open at the end.
+        */
+       if (initial && sched_feat(START_DEBIT))
+               vruntime += sched_vslice(cfs_rq, se);
 
-       if (sched_feat(TREE_AVG)) {
-               struct sched_entity *last = __pick_last_entity(cfs_rq);
-               if (last) {
-                       vruntime += last->vruntime;
-                       vruntime >>= 1;
-               }
-       } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
-               vruntime += sched_vslice(cfs_rq)/2;
+       /* sleeps up to a single latency don't count. */
+       if (!initial && sched_feat(FAIR_SLEEPERS)) {
+               unsigned long thresh = sysctl_sched_latency;
 
-       if (initial && sched_feat(START_DEBIT))
-               vruntime += sched_vslice_add(cfs_rq, se);
+               /*
+                * Convert the sleeper threshold into virtual time.
+                * SCHED_IDLE is a special sub-class.  We care about
+                * fairness only relative to other SCHED_IDLE tasks,
+                * all of which have the same weight.
+                */
+               if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
+                                task_of(se)->policy != SCHED_IDLE))
+                       thresh = calc_delta_fair(thresh, se);
 
-       if (!initial) {
-               if (sched_feat(NEW_FAIR_SLEEPERS) && entity_is_task(se) &&
-                               task_of(se)->policy != SCHED_BATCH)
-                       vruntime -= sysctl_sched_latency;
+               /*
+                * Halve their sleep time's effect, to allow
+                * for a gentler effect of sleepers:
+                */
+               if (sched_feat(GENTLE_FAIR_SLEEPERS))
+                       thresh >>= 1;
 
-               vruntime = max_t(s64, vruntime, se->vruntime);
+               vruntime -= thresh;
        }
 
-       se->vruntime = vruntime;
+       /* ensure we never gain time by being placed backwards. */
+       vruntime = max_vruntime(se->vruntime, vruntime);
 
+       se->vruntime = vruntime;
 }
 
 static void
@@ -503,6 +747,7 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
         * Update run-time statistics of the 'current'.
         */
        update_curr(cfs_rq);
+       account_entity_enqueue(cfs_rq, se);
 
        if (wakeup) {
                place_entity(cfs_rq, se, 0);
@@ -513,7 +758,21 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
        check_spread(cfs_rq, se);
        if (se != cfs_rq->curr)
                __enqueue_entity(cfs_rq, se);
-       account_entity_enqueue(cfs_rq, se);
+}
+
+static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+       if (!se || cfs_rq->last == se)
+               cfs_rq->last = NULL;
+
+       if (!se || cfs_rq->next == se)
+               cfs_rq->next = NULL;
+}
+
+static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+       for_each_sched_entity(se)
+               __clear_buddies(cfs_rq_of(se), se);
 }
 
 static void
@@ -538,9 +797,12 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
 #endif
        }
 
+       clear_buddies(cfs_rq, se);
+
        if (se != cfs_rq->curr)
                __dequeue_entity(cfs_rq, se);
        account_entity_dequeue(cfs_rq, se);
+       update_min_vruntime(cfs_rq);
 }
 
 /*
@@ -553,8 +815,34 @@ check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
 
        ideal_runtime = sched_slice(cfs_rq, curr);
        delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
-       if (delta_exec > ideal_runtime)
+       if (delta_exec > ideal_runtime) {
                resched_task(rq_of(cfs_rq)->curr);
+               /*
+                * The current task ran long enough, ensure it doesn't get
+                * re-elected due to buddy favours.
+                */
+               clear_buddies(cfs_rq, curr);
+               return;
+       }
+
+       /*
+        * Ensure that a task that missed wakeup preemption by a
+        * narrow margin doesn't have to wait for a full slice.
+        * This also mitigates buddy induced latencies under load.
+        */
+       if (!sched_feat(WAKEUP_PREEMPT))
+               return;
+
+       if (delta_exec < sysctl_sched_min_granularity)
+               return;
+
+       if (cfs_rq->nr_running > 1) {
+               struct sched_entity *se = __pick_next_entity(cfs_rq);
+               s64 delta = curr->vruntime - se->vruntime;
+
+               if (delta > ideal_runtime)
+                       resched_task(rq_of(cfs_rq)->curr);
+       }
 }
 
 static void
@@ -587,14 +875,24 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
        se->prev_sum_exec_runtime = se->sum_exec_runtime;
 }
 
+static int
+wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
+
 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
 {
-       struct sched_entity *se = NULL;
+       struct sched_entity *se = __pick_next_entity(cfs_rq);
+       struct sched_entity *left = se;
 
-       if (first_fair(cfs_rq)) {
-               se = __pick_next_entity(cfs_rq);
-               set_next_entity(cfs_rq, se);
-       }
+       if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
+               se = cfs_rq->next;
+
+       /*
+        * Prefer last buddy, try to return the CPU to a preempted task.
+        */
+       if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
+               se = cfs_rq->last;
+
+       clear_buddies(cfs_rq, se);
 
        return se;
 }
@@ -608,8 +906,6 @@ static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
        if (prev->on_rq)
                update_curr(cfs_rq);
 
-       update_stats_curr_end(cfs_rq, prev);
-
        check_spread(cfs_rq, prev);
        if (prev->on_rq) {
                update_stats_wait_start(cfs_rq, prev);
@@ -619,14 +915,32 @@ static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
        cfs_rq->curr = NULL;
 }
 
-static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
+static void
+entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
 {
        /*
         * Update run-time statistics of the 'current'.
         */
        update_curr(cfs_rq);
 
-       if (cfs_rq->nr_running > 1)
+#ifdef CONFIG_SCHED_HRTICK
+       /*
+        * queued ticks are scheduled to match the slice, so don't bother
+        * validating it and just reschedule.
+        */
+       if (queued) {
+               resched_task(rq_of(cfs_rq)->curr);
+               return;
+       }
+       /*
+        * don't let the period tick interfere with the hrtick preemption
+        */
+       if (!sched_feat(DOUBLE_TICK) &&
+                       hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
+               return;
+#endif
+
+       if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
                check_preempt_tick(cfs_rq, curr);
 }
 
@@ -634,100 +948,61 @@ static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  * CFS operations on tasks:
  */
 
-#ifdef CONFIG_FAIR_GROUP_SCHED
-
-/* Walk up scheduling entities hierarchy */
-#define for_each_sched_entity(se) \
-               for (; se; se = se->parent)
-
-static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
-{
-       return p->se.cfs_rq;
-}
-
-/* runqueue on which this entity is (to be) queued */
-static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
-{
-       return se->cfs_rq;
-}
-
-/* runqueue "owned" by this group */
-static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
-{
-       return grp->my_q;
-}
-
-/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
- * another cpu ('this_cpu')
- */
-static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
-{
-       return cfs_rq->tg->cfs_rq[this_cpu];
-}
-
-/* Iterate thr' all leaf cfs_rq's on a runqueue */
-#define for_each_leaf_cfs_rq(rq, cfs_rq) \
-       list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
-
-/* Do the two (enqueued) entities belong to the same group ? */
-static inline int
-is_same_group(struct sched_entity *se, struct sched_entity *pse)
+#ifdef CONFIG_SCHED_HRTICK
+static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
 {
-       if (se->cfs_rq == pse->cfs_rq)
-               return 1;
+       struct sched_entity *se = &p->se;
+       struct cfs_rq *cfs_rq = cfs_rq_of(se);
 
-       return 0;
-}
+       WARN_ON(task_rq(p) != rq);
 
-static inline struct sched_entity *parent_entity(struct sched_entity *se)
-{
-       return se->parent;
-}
+       if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
+               u64 slice = sched_slice(cfs_rq, se);
+               u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
+               s64 delta = slice - ran;
 
-#else  /* CONFIG_FAIR_GROUP_SCHED */
+               if (delta < 0) {
+                       if (rq->curr == p)
+                               resched_task(p);
+                       return;
+               }
 
-#define for_each_sched_entity(se) \
-               for (; se; se = NULL)
+               /*
+                * Don't schedule slices shorter than 10000ns, that just
+                * doesn't make sense. Rely on vruntime for fairness.
+                */
+               if (rq->curr != p)
+                       delta = max_t(s64, 10000LL, delta);
 
-static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
-{
-       return &task_rq(p)->cfs;
+               hrtick_start(rq, delta);
+       }
 }
 
-static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
+/*
+ * called from enqueue/dequeue and updates the hrtick when the
+ * current task is from our class and nr_running is low enough
+ * to matter.
+ */
+static void hrtick_update(struct rq *rq)
 {
-       struct task_struct *p = task_of(se);
-       struct rq *rq = task_rq(p);
-
-       return &rq->cfs;
-}
+       struct task_struct *curr = rq->curr;
 
-/* runqueue "owned" by this group */
-static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
-{
-       return NULL;
-}
+       if (curr->sched_class != &fair_sched_class)
+               return;
 
-static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
-{
-       return &cpu_rq(this_cpu)->cfs;
+       if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
+               hrtick_start_fair(rq, curr);
 }
-
-#define for_each_leaf_cfs_rq(rq, cfs_rq) \
-               for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
-
-static inline int
-is_same_group(struct sched_entity *se, struct sched_entity *pse)
+#else /* !CONFIG_SCHED_HRTICK */
+static inline void
+hrtick_start_fair(struct rq *rq, struct task_struct *p)
 {
-       return 1;
 }
 
-static inline struct sched_entity *parent_entity(struct sched_entity *se)
+static inline void hrtick_update(struct rq *rq)
 {
-       return NULL;
 }
-
-#endif /* CONFIG_FAIR_GROUP_SCHED */
+#endif
 
 /*
  * The enqueue_task method is called before nr_running is
@@ -746,6 +1021,8 @@ static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
                enqueue_entity(cfs_rq, se, wakeup);
                wakeup = 1;
        }
+
+       hrtick_update(rq);
 }
 
 /*
@@ -766,6 +1043,8 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
                        break;
                sleep = 1;
        }
+
+       hrtick_update(rq);
 }
 
 /*
@@ -775,8 +1054,9 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
  */
 static void yield_task_fair(struct rq *rq)
 {
-       struct cfs_rq *cfs_rq = task_cfs_rq(rq->curr);
-       struct sched_entity *rightmost, *se = &rq->curr->se;
+       struct task_struct *curr = rq->curr;
+       struct cfs_rq *cfs_rq = task_cfs_rq(curr);
+       struct sched_entity *rightmost, *se = &curr->se;
 
        /*
         * Are we the only task in the tree?
@@ -784,8 +1064,10 @@ static void yield_task_fair(struct rq *rq)
        if (unlikely(cfs_rq->nr_running == 1))
                return;
 
-       if (likely(!sysctl_sched_compat_yield)) {
-               __update_rq_clock(rq);
+       clear_buddies(cfs_rq, se);
+
+       if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
+               update_rq_clock(rq);
                /*
                 * Update run-time statistics of the 'current'.
                 */
@@ -800,7 +1082,7 @@ static void yield_task_fair(struct rq *rq)
        /*
         * Already in the rightmost position?
         */
-       if (unlikely(rightmost->vruntime < se->vruntime))
+       if (unlikely(!rightmost || entity_before(rightmost, se)))
                return;
 
        /*
@@ -811,39 +1093,589 @@ static void yield_task_fair(struct rq *rq)
        se->vruntime = rightmost->vruntime + 1;
 }
 
+#ifdef CONFIG_SMP
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+/*
+ * effective_load() calculates the load change as seen from the root_task_group
+ *
+ * Adding load to a group doesn't make a group heavier, but can cause movement
+ * of group shares between cpus. Assuming the shares were perfectly aligned one
+ * can calculate the shift in shares.
+ *
+ * The problem is that perfectly aligning the shares is rather expensive, hence
+ * we try to avoid doing that too often - see update_shares(), which ratelimits
+ * this change.
+ *
+ * We compensate this by not only taking the current delta into account, but
+ * also considering the delta between when the shares were last adjusted and
+ * now.
+ *
+ * We still saw a performance dip, some tracing learned us that between
+ * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
+ * significantly. Therefore try to bias the error in direction of failing
+ * the affine wakeup.
+ *
+ */
+static long effective_load(struct task_group *tg, int cpu,
+               long wl, long wg)
+{
+       struct sched_entity *se = tg->se[cpu];
+
+       if (!tg->parent)
+               return wl;
+
+       /*
+        * By not taking the decrease of shares on the other cpu into
+        * account our error leans towards reducing the affine wakeups.
+        */
+       if (!wl && sched_feat(ASYM_EFF_LOAD))
+               return wl;
+
+       for_each_sched_entity(se) {
+               long S, rw, s, a, b;
+               long more_w;
+
+               /*
+                * Instead of using this increment, also add the difference
+                * between when the shares were last updated and now.
+                */
+               more_w = se->my_q->load.weight - se->my_q->rq_weight;
+               wl += more_w;
+               wg += more_w;
+
+               S = se->my_q->tg->shares;
+               s = se->my_q->shares;
+               rw = se->my_q->rq_weight;
+
+               a = S*(rw + wl);
+               b = S*rw + s*wg;
+
+               wl = s*(a-b);
+
+               if (likely(b))
+                       wl /= b;
+
+               /*
+                * Assume the group is already running and will
+                * thus already be accounted for in the weight.
+                *
+                * That is, moving shares between CPUs, does not
+                * alter the group weight.
+                */
+               wg = 0;
+       }
+
+       return wl;
+}
+
+#else
+
+static inline unsigned long effective_load(struct task_group *tg, int cpu,
+               unsigned long wl, unsigned long wg)
+{
+       return wl;
+}
+
+#endif
+
+static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
+{
+       struct task_struct *curr = current;
+       unsigned long this_load, load;
+       int idx, this_cpu, prev_cpu;
+       unsigned long tl_per_task;
+       unsigned int imbalance;
+       struct task_group *tg;
+       unsigned long weight;
+       int balanced;
+
+       idx       = sd->wake_idx;
+       this_cpu  = smp_processor_id();
+       prev_cpu  = task_cpu(p);
+       load      = source_load(prev_cpu, idx);
+       this_load = target_load(this_cpu, idx);
+
+       if (sync) {
+              if (sched_feat(SYNC_LESS) &&
+                  (curr->se.avg_overlap > sysctl_sched_migration_cost ||
+                   p->se.avg_overlap > sysctl_sched_migration_cost))
+                      sync = 0;
+       } else {
+               if (sched_feat(SYNC_MORE) &&
+                   (curr->se.avg_overlap < sysctl_sched_migration_cost &&
+                    p->se.avg_overlap < sysctl_sched_migration_cost))
+                       sync = 1;
+       }
+
+       /*
+        * If sync wakeup then subtract the (maximum possible)
+        * effect of the currently running task from the load
+        * of the current CPU:
+        */
+       if (sync) {
+               tg = task_group(current);
+               weight = current->se.load.weight;
+
+               this_load += effective_load(tg, this_cpu, -weight, -weight);
+               load += effective_load(tg, prev_cpu, 0, -weight);
+       }
+
+       tg = task_group(p);
+       weight = p->se.load.weight;
+
+       imbalance = 100 + (sd->imbalance_pct - 100) / 2;
+
+       /*
+        * In low-load situations, where prev_cpu is idle and this_cpu is idle
+        * due to the sync cause above having dropped this_load to 0, we'll
+        * always have an imbalance, but there's really nothing you can do
+        * about that, so that's good too.
+        *
+        * Otherwise check if either cpus are near enough in load to allow this
+        * task to be woken on this_cpu.
+        */
+       balanced = !this_load ||
+               100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
+               imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
+
+       /*
+        * If the currently running task will sleep within
+        * a reasonable amount of time then attract this newly
+        * woken task:
+        */
+       if (sync && balanced)
+               return 1;
+
+       schedstat_inc(p, se.nr_wakeups_affine_attempts);
+       tl_per_task = cpu_avg_load_per_task(this_cpu);
+
+       if (balanced ||
+           (this_load <= load &&
+            this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
+               /*
+                * This domain has SD_WAKE_AFFINE and
+                * p is cache cold in this domain, and
+                * there is no bad imbalance.
+                */
+               schedstat_inc(sd, ttwu_move_affine);
+               schedstat_inc(p, se.nr_wakeups_affine);
+
+               return 1;
+       }
+       return 0;
+}
+
+/*
+ * find_idlest_group finds and returns the least busy CPU group within the
+ * domain.
+ */
+static struct sched_group *
+find_idlest_group(struct sched_domain *sd, struct task_struct *p,
+                 int this_cpu, int load_idx)
+{
+       struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
+       unsigned long min_load = ULONG_MAX, this_load = 0;
+       int imbalance = 100 + (sd->imbalance_pct-100)/2;
+
+       do {
+               unsigned long load, avg_load;
+               int local_group;
+               int i;
+
+               /* Skip over this group if it has no CPUs allowed */
+               if (!cpumask_intersects(sched_group_cpus(group),
+                                       &p->cpus_allowed))
+                       continue;
+
+               local_group = cpumask_test_cpu(this_cpu,
+                                              sched_group_cpus(group));
+
+               /* Tally up the load of all CPUs in the group */
+               avg_load = 0;
+
+               for_each_cpu(i, sched_group_cpus(group)) {
+                       /* Bias balancing toward cpus of our domain */
+                       if (local_group)
+                               load = source_load(i, load_idx);
+                       else
+                               load = target_load(i, load_idx);
+
+                       avg_load += load;
+               }
+
+               /* Adjust by relative CPU power of the group */
+               avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
+
+               if (local_group) {
+                       this_load = avg_load;
+                       this = group;
+               } else if (avg_load < min_load) {
+                       min_load = avg_load;
+                       idlest = group;
+               }
+       } while (group = group->next, group != sd->groups);
+
+       if (!idlest || 100*this_load < imbalance*min_load)
+               return NULL;
+       return idlest;
+}
+
+/*
+ * find_idlest_cpu - find the idlest cpu among the cpus in group.
+ */
+static int
+find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
+{
+       unsigned long load, min_load = ULONG_MAX;
+       int idlest = -1;
+       int i;
+
+       /* Traverse only the allowed CPUs */
+       for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
+               load = weighted_cpuload(i);
+
+               if (load < min_load || (load == min_load && i == this_cpu)) {
+                       min_load = load;
+                       idlest = i;
+               }
+       }
+
+       return idlest;
+}
+
+/*
+ * sched_balance_self: balance the current task (running on cpu) in domains
+ * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
+ * SD_BALANCE_EXEC.
+ *
+ * Balance, ie. select the least loaded group.
+ *
+ * Returns the target CPU number, or the same CPU if no balancing is needed.
+ *
+ * preempt must be disabled.
+ */
+static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
+{
+       struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
+       int cpu = smp_processor_id();
+       int prev_cpu = task_cpu(p);
+       int new_cpu = cpu;
+       int want_affine = 0;
+       int want_sd = 1;
+       int sync = wake_flags & WF_SYNC;
+
+       if (sd_flag & SD_BALANCE_WAKE) {
+               if (sched_feat(AFFINE_WAKEUPS) &&
+                   cpumask_test_cpu(cpu, &p->cpus_allowed))
+                       want_affine = 1;
+               new_cpu = prev_cpu;
+       }
+
+       rcu_read_lock();
+       for_each_domain(cpu, tmp) {
+               /*
+                * If power savings logic is enabled for a domain, see if we
+                * are not overloaded, if so, don't balance wider.
+                */
+               if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
+                       unsigned long power = 0;
+                       unsigned long nr_running = 0;
+                       unsigned long capacity;
+                       int i;
+
+                       for_each_cpu(i, sched_domain_span(tmp)) {
+                               power += power_of(i);
+                               nr_running += cpu_rq(i)->cfs.nr_running;
+                       }
+
+                       capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
+
+                       if (tmp->flags & SD_POWERSAVINGS_BALANCE)
+                               nr_running /= 2;
+
+                       if (nr_running < capacity)
+                               want_sd = 0;
+               }
+
+               if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
+                   cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
+
+                       affine_sd = tmp;
+                       want_affine = 0;
+               }
+
+               if (!want_sd && !want_affine)
+                       break;
+
+               if (!(tmp->flags & sd_flag))
+                       continue;
+
+               if (want_sd)
+                       sd = tmp;
+       }
+
+       if (sched_feat(LB_SHARES_UPDATE)) {
+               /*
+                * Pick the largest domain to update shares over
+                */
+               tmp = sd;
+               if (affine_sd && (!tmp ||
+                                 cpumask_weight(sched_domain_span(affine_sd)) >
+                                 cpumask_weight(sched_domain_span(sd))))
+                       tmp = affine_sd;
+
+               if (tmp)
+                       update_shares(tmp);
+       }
+
+       if (affine_sd && wake_affine(affine_sd, p, sync)) {
+               new_cpu = cpu;
+               goto out;
+       }
+
+       while (sd) {
+               int load_idx = sd->forkexec_idx;
+               struct sched_group *group;
+               int weight;
+
+               if (!(sd->flags & sd_flag)) {
+                       sd = sd->child;
+                       continue;
+               }
+
+               if (sd_flag & SD_BALANCE_WAKE)
+                       load_idx = sd->wake_idx;
+
+               group = find_idlest_group(sd, p, cpu, load_idx);
+               if (!group) {
+                       sd = sd->child;
+                       continue;
+               }
+
+               new_cpu = find_idlest_cpu(group, p, cpu);
+               if (new_cpu == -1 || new_cpu == cpu) {
+                       /* Now try balancing at a lower domain level of cpu */
+                       sd = sd->child;
+                       continue;
+               }
+
+               /* Now try balancing at a lower domain level of new_cpu */
+               cpu = new_cpu;
+               weight = cpumask_weight(sched_domain_span(sd));
+               sd = NULL;
+               for_each_domain(cpu, tmp) {
+                       if (weight <= cpumask_weight(sched_domain_span(tmp)))
+                               break;
+                       if (tmp->flags & sd_flag)
+                               sd = tmp;
+               }
+               /* while loop will break here if sd == NULL */
+       }
+
+out:
+       rcu_read_unlock();
+       return new_cpu;
+}
+#endif /* CONFIG_SMP */
+
+/*
+ * Adaptive granularity
+ *
+ * se->avg_wakeup gives the average time a task runs until it does a wakeup,
+ * with the limit of wakeup_gran -- when it never does a wakeup.
+ *
+ * So the smaller avg_wakeup is the faster we want this task to preempt,
+ * but we don't want to treat the preemptee unfairly and therefore allow it
+ * to run for at least the amount of time we'd like to run.
+ *
+ * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
+ *
+ * NOTE: we use *nr_running to scale with load, this nicely matches the
+ *       degrading latency on load.
+ */
+static unsigned long
+adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
+{
+       u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
+       u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
+       u64 gran = 0;
+
+       if (this_run < expected_wakeup)
+               gran = expected_wakeup - this_run;
+
+       return min_t(s64, gran, sysctl_sched_wakeup_granularity);
+}
+
+static unsigned long
+wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
+{
+       unsigned long gran = sysctl_sched_wakeup_granularity;
+
+       if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
+               gran = adaptive_gran(curr, se);
+
+       /*
+        * Since its curr running now, convert the gran from real-time
+        * to virtual-time in his units.
+        */
+       if (sched_feat(ASYM_GRAN)) {
+               /*
+                * By using 'se' instead of 'curr' we penalize light tasks, so
+                * they get preempted easier. That is, if 'se' < 'curr' then
+                * the resulting gran will be larger, therefore penalizing the
+                * lighter, if otoh 'se' > 'curr' then the resulting gran will
+                * be smaller, again penalizing the lighter task.
+                *
+                * This is especially important for buddies when the leftmost
+                * task is higher priority than the buddy.
+                */
+               if (unlikely(se->load.weight != NICE_0_LOAD))
+                       gran = calc_delta_fair(gran, se);
+       } else {
+               if (unlikely(curr->load.weight != NICE_0_LOAD))
+                       gran = calc_delta_fair(gran, curr);
+       }
+
+       return gran;
+}
+
+/*
+ * Should 'se' preempt 'curr'.
+ *
+ *             |s1
+ *        |s2
+ *   |s3
+ *         g
+ *      |<--->|c
+ *
+ *  w(c, s1) = -1
+ *  w(c, s2) =  0
+ *  w(c, s3) =  1
+ *
+ */
+static int
+wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
+{
+       s64 gran, vdiff = curr->vruntime - se->vruntime;
+
+       if (vdiff <= 0)
+               return -1;
+
+       gran = wakeup_gran(curr, se);
+       if (vdiff > gran)
+               return 1;
+
+       return 0;
+}
+
+static void set_last_buddy(struct sched_entity *se)
+{
+       if (likely(task_of(se)->policy != SCHED_IDLE)) {
+               for_each_sched_entity(se)
+                       cfs_rq_of(se)->last = se;
+       }
+}
+
+static void set_next_buddy(struct sched_entity *se)
+{
+       if (likely(task_of(se)->policy != SCHED_IDLE)) {
+               for_each_sched_entity(se)
+                       cfs_rq_of(se)->next = se;
+       }
+}
+
 /*
  * Preempt the current task with a newly woken task if needed:
  */
-static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
+static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
 {
        struct task_struct *curr = rq->curr;
-       struct cfs_rq *cfs_rq = task_cfs_rq(curr);
        struct sched_entity *se = &curr->se, *pse = &p->se;
-       s64 delta, gran;
+       struct cfs_rq *cfs_rq = task_cfs_rq(curr);
+       int sync = wake_flags & WF_SYNC;
+       int scale = cfs_rq->nr_running >= sched_nr_latency;
+
+       update_curr(cfs_rq);
 
        if (unlikely(rt_prio(p->prio))) {
-               update_rq_clock(rq);
-               update_curr(cfs_rq);
                resched_task(curr);
                return;
        }
 
-       while (!is_same_group(se, pse)) {
-               se = parent_entity(se);
-               pse = parent_entity(pse);
+       if (unlikely(p->sched_class != &fair_sched_class))
+               return;
+
+       if (unlikely(se == pse))
+               return;
+
+       if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
+               set_next_buddy(pse);
+
+       /*
+        * We can come here with TIF_NEED_RESCHED already set from new task
+        * wake up path.
+        */
+       if (test_tsk_need_resched(curr))
+               return;
+
+       /*
+        * Batch and idle tasks do not preempt (their preemption is driven by
+        * the tick):
+        */
+       if (unlikely(p->policy != SCHED_NORMAL))
+               return;
+
+       /* Idle tasks are by definition preempted by everybody. */
+       if (unlikely(curr->policy == SCHED_IDLE)) {
+               resched_task(curr);
+               return;
+       }
+
+       if ((sched_feat(WAKEUP_SYNC) && sync) ||
+           (sched_feat(WAKEUP_OVERLAP) &&
+            (se->avg_overlap < sysctl_sched_migration_cost &&
+             pse->avg_overlap < sysctl_sched_migration_cost))) {
+               resched_task(curr);
+               return;
        }
 
-       delta = se->vruntime - pse->vruntime;
-       gran = sysctl_sched_wakeup_granularity;
-       if (unlikely(se->load.weight != NICE_0_LOAD))
-               gran = calc_delta_fair(gran, &se->load);
+       if (sched_feat(WAKEUP_RUNNING)) {
+               if (pse->avg_running < se->avg_running) {
+                       set_next_buddy(pse);
+                       resched_task(curr);
+                       return;
+               }
+       }
 
-       if (delta > gran)
+       if (!sched_feat(WAKEUP_PREEMPT))
+               return;
+
+       find_matching_se(&se, &pse);
+
+       BUG_ON(!pse);
+
+       if (wakeup_preempt_entity(se, pse) == 1) {
                resched_task(curr);
+               /*
+                * Only set the backward buddy when the current task is still
+                * on the rq. This can happen when a wakeup gets interleaved
+                * with schedule on the ->pre_schedule() or idle_balance()
+                * point, either of which can * drop the rq lock.
+                *
+                * Also, during early boot the idle thread is in the fair class,
+                * for obvious reasons its a bad idea to schedule back to it.
+                */
+               if (unlikely(!se->on_rq || curr == rq->idle))
+                       return;
+               if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
+                       set_last_buddy(se);
+       }
 }
 
 static struct task_struct *pick_next_task_fair(struct rq *rq)
 {
+       struct task_struct *p;
        struct cfs_rq *cfs_rq = &rq->cfs;
        struct sched_entity *se;
 
@@ -852,10 +1684,14 @@ static struct task_struct *pick_next_task_fair(struct rq *rq)
 
        do {
                se = pick_next_entity(cfs_rq);
+               set_next_entity(cfs_rq, se);
                cfs_rq = group_cfs_rq(se);
        } while (cfs_rq);
 
-       return task_of(se);
+       p = task_of(se);
+       hrtick_start_fair(rq, p);
+
+       return p;
 }
 
 /*
@@ -872,6 +1708,7 @@ static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
        }
 }
 
+#ifdef CONFIG_SMP
 /**************************************************
  * Fair scheduling class load-balancing methods:
  */
@@ -884,15 +1721,17 @@ static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  * the current task:
  */
 static struct task_struct *
-__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
+__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
 {
-       struct task_struct *p;
+       struct task_struct *p = NULL;
+       struct sched_entity *se;
 
-       if (!curr)
+       if (next == &cfs_rq->tasks)
                return NULL;
 
-       p = rb_entry(curr, struct task_struct, se.run_node);
-       cfs_rq->rb_load_balance_curr = rb_next(curr);
+       se = list_entry(next, struct sched_entity, group_node);
+       p = task_of(se);
+       cfs_rq->balance_iterator = next->next;
 
        return p;
 }
@@ -901,105 +1740,132 @@ static struct task_struct *load_balance_start_fair(void *arg)
 {
        struct cfs_rq *cfs_rq = arg;
 
-       return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
+       return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
 }
 
 static struct task_struct *load_balance_next_fair(void *arg)
 {
        struct cfs_rq *cfs_rq = arg;
 
-       return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
+       return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
 }
 
-#ifdef CONFIG_FAIR_GROUP_SCHED
-static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
+static unsigned long
+__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
+               unsigned long max_load_move, struct sched_domain *sd,
+               enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
+               struct cfs_rq *cfs_rq)
 {
-       struct sched_entity *curr;
-       struct task_struct *p;
-
-       if (!cfs_rq->nr_running)
-               return MAX_PRIO;
-
-       curr = cfs_rq->curr;
-       if (!curr)
-               curr = __pick_next_entity(cfs_rq);
+       struct rq_iterator cfs_rq_iterator;
 
-       p = task_of(curr);
+       cfs_rq_iterator.start = load_balance_start_fair;
+       cfs_rq_iterator.next = load_balance_next_fair;
+       cfs_rq_iterator.arg = cfs_rq;
 
-       return p->prio;
+       return balance_tasks(this_rq, this_cpu, busiest,
+                       max_load_move, sd, idle, all_pinned,
+                       this_best_prio, &cfs_rq_iterator);
 }
-#endif
 
+#ifdef CONFIG_FAIR_GROUP_SCHED
 static unsigned long
 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
-                 unsigned long max_nr_move, unsigned long max_load_move,
+                 unsigned long max_load_move,
                  struct sched_domain *sd, enum cpu_idle_type idle,
                  int *all_pinned, int *this_best_prio)
 {
-       struct cfs_rq *busy_cfs_rq;
-       unsigned long load_moved, total_nr_moved = 0, nr_moved;
        long rem_load_move = max_load_move;
-       struct rq_iterator cfs_rq_iterator;
+       int busiest_cpu = cpu_of(busiest);
+       struct task_group *tg;
 
-       cfs_rq_iterator.start = load_balance_start_fair;
-       cfs_rq_iterator.next = load_balance_next_fair;
+       rcu_read_lock();
+       update_h_load(busiest_cpu);
 
-       for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
-#ifdef CONFIG_FAIR_GROUP_SCHED
-               struct cfs_rq *this_cfs_rq;
-               long imbalance;
-               unsigned long maxload;
+       list_for_each_entry_rcu(tg, &task_groups, list) {
+               struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
+               unsigned long busiest_h_load = busiest_cfs_rq->h_load;
+               unsigned long busiest_weight = busiest_cfs_rq->load.weight;
+               u64 rem_load, moved_load;
 
-               this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
+               /*
+                * empty group
+                */
+               if (!busiest_cfs_rq->task_weight)
+                       continue;
 
-               imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
-               /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
-               if (imbalance <= 0)
+               rem_load = (u64)rem_load_move * busiest_weight;
+               rem_load = div_u64(rem_load, busiest_h_load + 1);
+
+               moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
+                               rem_load, sd, idle, all_pinned, this_best_prio,
+                               tg->cfs_rq[busiest_cpu]);
+
+               if (!moved_load)
                        continue;
 
-               /* Don't pull more than imbalance/2 */
-               imbalance /= 2;
-               maxload = min(rem_load_move, imbalance);
+               moved_load *= busiest_h_load;
+               moved_load = div_u64(moved_load, busiest_weight + 1);
 
-               *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
+               rem_load_move -= moved_load;
+               if (rem_load_move < 0)
+                       break;
+       }
+       rcu_read_unlock();
+
+       return max_load_move - rem_load_move;
+}
 #else
-# define maxload rem_load_move
+static unsigned long
+load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
+                 unsigned long max_load_move,
+                 struct sched_domain *sd, enum cpu_idle_type idle,
+                 int *all_pinned, int *this_best_prio)
+{
+       return __load_balance_fair(this_rq, this_cpu, busiest,
+                       max_load_move, sd, idle, all_pinned,
+                       this_best_prio, &busiest->cfs);
+}
 #endif
-               /* pass busy_cfs_rq argument into
+
+static int
+move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
+                  struct sched_domain *sd, enum cpu_idle_type idle)
+{
+       struct cfs_rq *busy_cfs_rq;
+       struct rq_iterator cfs_rq_iterator;
+
+       cfs_rq_iterator.start = load_balance_start_fair;
+       cfs_rq_iterator.next = load_balance_next_fair;
+
+       for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
+               /*
+                * pass busy_cfs_rq argument into
                 * load_balance_[start|next]_fair iterators
                 */
                cfs_rq_iterator.arg = busy_cfs_rq;
-               nr_moved = balance_tasks(this_rq, this_cpu, busiest,
-                               max_nr_move, maxload, sd, idle, all_pinned,
-                               &load_moved, this_best_prio, &cfs_rq_iterator);
-
-               total_nr_moved += nr_moved;
-               max_nr_move -= nr_moved;
-               rem_load_move -= load_moved;
-
-               if (max_nr_move <= 0 || rem_load_move <= 0)
-                       break;
+               if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
+                                      &cfs_rq_iterator))
+                   return 1;
        }
 
-       return max_load_move - rem_load_move;
+       return 0;
 }
+#endif /* CONFIG_SMP */
 
 /*
  * scheduler tick hitting a task of our scheduling class:
  */
-static void task_tick_fair(struct rq *rq, struct task_struct *curr)
+static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
 {
        struct cfs_rq *cfs_rq;
        struct sched_entity *se = &curr->se;
 
        for_each_sched_entity(se) {
                cfs_rq = cfs_rq_of(se);
-               entity_tick(cfs_rq, se);
+               entity_tick(cfs_rq, se, queued);
        }
 }
 
-#define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
-
 /*
  * Share the fairness runtime between parent and child, thus the
  * total amount of pressure for CPU stays equal - new tasks
@@ -1016,23 +1882,58 @@ static void task_new_fair(struct rq *rq, struct task_struct *p)
        sched_info_queued(p);
 
        update_curr(cfs_rq);
+       if (curr)
+               se->vruntime = curr->vruntime;
        place_entity(cfs_rq, se, 1);
 
+       /* 'curr' will be NULL if the child belongs to a different group */
        if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
-                       curr->vruntime < se->vruntime) {
+                       curr && entity_before(curr, se)) {
                /*
                 * Upon rescheduling, sched_class::put_prev_task() will place
                 * 'current' within the tree based on its new key value.
                 */
                swap(curr->vruntime, se->vruntime);
+               resched_task(rq->curr);
        }
 
-       update_stats_enqueue(cfs_rq, se);
-       check_spread(cfs_rq, se);
-       check_spread(cfs_rq, curr);
-       __enqueue_entity(cfs_rq, se);
-       account_entity_enqueue(cfs_rq, se);
-       resched_task(rq->curr);
+       enqueue_task_fair(rq, p, 0);
+}
+
+/*
+ * Priority of the task has changed. Check to see if we preempt
+ * the current task.
+ */
+static void prio_changed_fair(struct rq *rq, struct task_struct *p,
+                             int oldprio, int running)
+{
+       /*
+        * Reschedule if we are currently running on this runqueue and
+        * our priority decreased, or if we are not currently running on
+        * this runqueue and our priority is higher than the current's
+        */
+       if (running) {
+               if (p->prio > oldprio)
+                       resched_task(rq->curr);
+       } else
+               check_preempt_curr(rq, p, 0);
+}
+
+/*
+ * We switched to the sched_fair class.
+ */
+static void switched_to_fair(struct rq *rq, struct task_struct *p,
+                            int running)
+{
+       /*
+        * We were most likely switched from sched_rt, so
+        * kick off the schedule if running, otherwise just see
+        * if we can still preempt the current task.
+        */
+       if (running)
+               resched_task(rq->curr);
+       else
+               check_preempt_curr(rq, p, 0);
 }
 
 /* Account for a task changing its policy or group.
@@ -1048,6 +1949,35 @@ static void set_curr_task_fair(struct rq *rq)
                set_next_entity(cfs_rq_of(se), se);
 }
 
+#ifdef CONFIG_FAIR_GROUP_SCHED
+static void moved_group_fair(struct task_struct *p)
+{
+       struct cfs_rq *cfs_rq = task_cfs_rq(p);
+
+       update_curr(cfs_rq);
+       place_entity(cfs_rq, &p->se, 1);
+}
+#endif
+
+unsigned int get_rr_interval_fair(struct task_struct *task)
+{
+       struct sched_entity *se = &task->se;
+       unsigned long flags;
+       struct rq *rq;
+       unsigned int rr_interval = 0;
+
+       /*
+        * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
+        * idle runqueue:
+        */
+       rq = task_rq_lock(task, &flags);
+       if (rq->cfs.load.weight)
+               rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
+       task_rq_unlock(rq, &flags);
+
+       return rr_interval;
+}
+
 /*
  * All the scheduling class methods:
  */
@@ -1062,11 +1992,25 @@ static const struct sched_class fair_sched_class = {
        .pick_next_task         = pick_next_task_fair,
        .put_prev_task          = put_prev_task_fair,
 
+#ifdef CONFIG_SMP
+       .select_task_rq         = select_task_rq_fair,
+
        .load_balance           = load_balance_fair,
+       .move_one_task          = move_one_task_fair,
+#endif
 
        .set_curr_task          = set_curr_task_fair,
        .task_tick              = task_tick_fair,
        .task_new               = task_new_fair,
+
+       .prio_changed           = prio_changed_fair,
+       .switched_to            = switched_to_fair,
+
+       .get_rr_interval        = get_rr_interval_fair,
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+       .moved_group            = moved_group_fair,
+#endif
 };
 
 #ifdef CONFIG_SCHED_DEBUG
@@ -1074,10 +2018,9 @@ static void print_cfs_stats(struct seq_file *m, int cpu)
 {
        struct cfs_rq *cfs_rq;
 
-#ifdef CONFIG_FAIR_GROUP_SCHED
-       print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
-#endif
+       rcu_read_lock();
        for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
                print_cfs_rq(m, cpu, cfs_rq);
+       rcu_read_unlock();
 }
 #endif