Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
[safe/jmp/linux-2.6] / kernel / sched.c
index f5a204b..6c10fa7 100644 (file)
  *             by Davide Libenzi, preemptible kernel bits by Robert Love.
  *  2003-09-03 Interactivity tuning by Con Kolivas.
  *  2004-04-02 Scheduler domains code by Nick Piggin
+ *  2007-04-15  Work begun on replacing all interactivity tuning with a
+ *              fair scheduling design by Con Kolivas.
+ *  2007-05-05  Load balancing (smp-nice) and other improvements
+ *              by Peter Williams
+ *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
+ *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
  */
 
 #include <linux/mm.h>
 #include <linux/module.h>
 #include <linux/nmi.h>
 #include <linux/init.h>
-#include <asm/uaccess.h>
+#include <linux/uaccess.h>
 #include <linux/highmem.h>
 #include <linux/smp_lock.h>
 #include <asm/mmu_context.h>
 #include <linux/percpu.h>
 #include <linux/kthread.h>
 #include <linux/seq_file.h>
+#include <linux/sysctl.h>
 #include <linux/syscalls.h>
 #include <linux/times.h>
 #include <linux/tsacct_kern.h>
 #include <linux/kprobes.h>
 #include <linux/delayacct.h>
 #include <linux/reciprocal_div.h>
+#include <linux/unistd.h>
+#include <linux/pagemap.h>
 
 #include <asm/tlb.h>
-#include <asm/unistd.h>
 
 /*
  * Scheduler clock - returns current time in nanosec units.
@@ -103,87 +111,6 @@ unsigned long long __attribute__((weak)) sched_clock(void)
  */
 #define MIN_TIMESLICE          max(5 * HZ / 1000, 1)
 #define DEF_TIMESLICE          (100 * HZ / 1000)
-#define ON_RUNQUEUE_WEIGHT      30
-#define CHILD_PENALTY           95
-#define PARENT_PENALTY         100
-#define EXIT_WEIGHT              3
-#define PRIO_BONUS_RATIO        25
-#define MAX_BONUS              (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
-#define INTERACTIVE_DELTA        2
-#define MAX_SLEEP_AVG          (DEF_TIMESLICE * MAX_BONUS)
-#define STARVATION_LIMIT       (MAX_SLEEP_AVG)
-#define NS_MAX_SLEEP_AVG       (JIFFIES_TO_NS(MAX_SLEEP_AVG))
-
-/*
- * If a task is 'interactive' then we reinsert it in the active
- * array after it has expired its current timeslice. (it will not
- * continue to run immediately, it will still roundrobin with
- * other interactive tasks.)
- *
- * This part scales the interactivity limit depending on niceness.
- *
- * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
- * Here are a few examples of different nice levels:
- *
- *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
- *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
- *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0]
- *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
- *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
- *
- * (the X axis represents the possible -5 ... 0 ... +5 dynamic
- *  priority range a task can explore, a value of '1' means the
- *  task is rated interactive.)
- *
- * Ie. nice +19 tasks can never get 'interactive' enough to be
- * reinserted into the active array. And only heavily CPU-hog nice -20
- * tasks will be expired. Default nice 0 tasks are somewhere between,
- * it takes some effort for them to get interactive, but it's not
- * too hard.
- */
-
-#define CURRENT_BONUS(p) \
-       (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
-               MAX_SLEEP_AVG)
-
-#define GRANULARITY    (10 * HZ / 1000 ? : 1)
-
-#ifdef CONFIG_SMP
-#define TIMESLICE_GRANULARITY(p)       (GRANULARITY * \
-               (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
-                       num_online_cpus())
-#else
-#define TIMESLICE_GRANULARITY(p)       (GRANULARITY * \
-               (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
-#endif
-
-#define SCALE(v1,v1_max,v2_max) \
-       (v1) * (v2_max) / (v1_max)
-
-#define DELTA(p) \
-       (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
-               INTERACTIVE_DELTA)
-
-#define TASK_INTERACTIVE(p) \
-       ((p)->prio <= (p)->static_prio - DELTA(p))
-
-#define INTERACTIVE_SLEEP(p) \
-       (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
-               (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
-
-#define TASK_PREEMPTS_CURR(p, rq) \
-       ((p)->prio < (rq)->curr->prio)
-
-#define SCALE_PRIO(x, prio) \
-       max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
-
-static unsigned int static_prio_timeslice(int static_prio)
-{
-       if (static_prio < NICE_TO_PRIO(0))
-               return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
-       else
-               return SCALE_PRIO(DEF_TIMESLICE, static_prio);
-}
 
 #ifdef CONFIG_SMP
 /*
@@ -206,18 +133,22 @@ static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
 }
 #endif
 
+#define SCALE_PRIO(x, prio) \
+       max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
+
 /*
- * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
+ * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  * to time slice values: [800ms ... 100ms ... 5ms]
- *
- * The higher a thread's priority, the bigger timeslices
- * it gets during one round of execution. But even the lowest
- * priority thread gets MIN_TIMESLICE worth of execution time.
  */
-
-static inline unsigned int task_timeslice(struct task_struct *p)
+static unsigned int static_prio_timeslice(int static_prio)
 {
-       return static_prio_timeslice(p->static_prio);
+       if (static_prio == NICE_TO_PRIO(19))
+               return 1;
+
+       if (static_prio < NICE_TO_PRIO(0))
+               return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
+       else
+               return SCALE_PRIO(DEF_TIMESLICE, static_prio);
 }
 
 static inline int rt_policy(int policy)
@@ -286,15 +217,6 @@ struct rt_rq {
 };
 
 /*
- * The prio-array type of the old scheduler:
- */
-struct prio_array {
-       unsigned int nr_active;
-       DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
-       struct list_head queue[MAX_PRIO];
-};
-
-/*
  * This is the main, per-CPU runqueue data structure.
  *
  * Locking rule: those places that want to lock multiple runqueues
@@ -309,7 +231,6 @@ struct rq {
         * remote CPUs use both these fields when doing load calculation.
         */
        unsigned long nr_running;
-       unsigned long raw_weighted_load;
        #define CPU_LOAD_IDX_MAX 5
        unsigned long cpu_load[CPU_LOAD_IDX_MAX];
        unsigned char idle_at_tick;
@@ -334,23 +255,17 @@ struct rq {
         */
        unsigned long nr_uninterruptible;
 
-       unsigned long expired_timestamp;
-       unsigned long long most_recent_timestamp;
-
        struct task_struct *curr, *idle;
        unsigned long next_balance;
        struct mm_struct *prev_mm;
 
-       struct prio_array *active, *expired, arrays[2];
-       int best_expired_prio;
-
        u64 clock, prev_clock_raw;
        s64 clock_max_delta;
 
        unsigned int clock_warps, clock_overflows;
-       unsigned int clock_unstable_events;
-
-       struct sched_class *load_balance_class;
+       u64 idle_clock;
+       unsigned int clock_deep_idle_events;
+       u64 tick_timestamp;
 
        atomic_t nr_iowait;
 
@@ -388,9 +303,14 @@ struct rq {
        struct lock_class_key rq_lock_key;
 };
 
-static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
+static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
 static DEFINE_MUTEX(sched_hotcpu_mutex);
 
+static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
+{
+       rq->curr->sched_class->check_preempt_curr(rq, p);
+}
+
 static inline int cpu_of(struct rq *rq)
 {
 #ifdef CONFIG_SMP
@@ -401,15 +321,19 @@ static inline int cpu_of(struct rq *rq)
 }
 
 /*
- * Per-runqueue clock, as finegrained as the platform can give us:
+ * Update the per-runqueue clock, as finegrained as the platform can give
+ * us, but without assuming monotonicity, etc.:
  */
-static unsigned long long __rq_clock(struct rq *rq)
+static void __update_rq_clock(struct rq *rq)
 {
        u64 prev_raw = rq->prev_clock_raw;
        u64 now = sched_clock();
        s64 delta = now - prev_raw;
        u64 clock = rq->clock;
 
+#ifdef CONFIG_SCHED_DEBUG
+       WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
+#endif
        /*
         * Protect against sched_clock() occasionally going backwards:
         */
@@ -420,8 +344,11 @@ static unsigned long long __rq_clock(struct rq *rq)
                /*
                 * Catch too large forward jumps too:
                 */
-               if (unlikely(delta > 2*TICK_NSEC)) {
-                       clock++;
+               if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
+                       if (clock < rq->tick_timestamp + TICK_NSEC)
+                               clock = rq->tick_timestamp + TICK_NSEC;
+                       else
+                               clock++;
                        rq->clock_overflows++;
                } else {
                        if (unlikely(delta > rq->clock_max_delta))
@@ -432,18 +359,12 @@ static unsigned long long __rq_clock(struct rq *rq)
 
        rq->prev_clock_raw = now;
        rq->clock = clock;
-
-       return clock;
 }
 
-static inline unsigned long long rq_clock(struct rq *rq)
+static void update_rq_clock(struct rq *rq)
 {
-       int this_cpu = smp_processor_id();
-
-       if (this_cpu == cpu_of(rq))
-               return __rq_clock(rq);
-
-       return rq->clock;
+       if (likely(smp_processor_id() == cpu_of(rq)))
+               __update_rq_clock(rq);
 }
 
 /*
@@ -461,6 +382,25 @@ static inline unsigned long long rq_clock(struct rq *rq)
 #define task_rq(p)             cpu_rq(task_cpu(p))
 #define cpu_curr(cpu)          (cpu_rq(cpu)->curr)
 
+/*
+ * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
+ * clock constructed from sched_clock():
+ */
+unsigned long long cpu_clock(int cpu)
+{
+       unsigned long long now;
+       unsigned long flags;
+       struct rq *rq;
+
+       local_irq_save(flags);
+       rq = cpu_rq(cpu);
+       update_rq_clock(rq);
+       now = rq->clock;
+       local_irq_restore(flags);
+
+       return now;
+}
+
 #ifdef CONFIG_FAIR_GROUP_SCHED
 /* Change a task's ->cfs_rq if it moves across CPUs */
 static inline void set_task_cfs_rq(struct task_struct *p)
@@ -618,6 +558,42 @@ static inline struct rq *this_rq_lock(void)
 }
 
 /*
+ * We are going deep-idle (irqs are disabled):
+ */
+void sched_clock_idle_sleep_event(void)
+{
+       struct rq *rq = cpu_rq(smp_processor_id());
+
+       spin_lock(&rq->lock);
+       __update_rq_clock(rq);
+       spin_unlock(&rq->lock);
+       rq->clock_deep_idle_events++;
+}
+EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
+
+/*
+ * We just idled delta nanoseconds (called with irqs disabled):
+ */
+void sched_clock_idle_wakeup_event(u64 delta_ns)
+{
+       struct rq *rq = cpu_rq(smp_processor_id());
+       u64 now = sched_clock();
+
+       rq->idle_clock += delta_ns;
+       /*
+        * Override the previous timestamp and ignore all
+        * sched_clock() deltas that occured while we idled,
+        * and use the PM-provided delta_ns to advance the
+        * rq clock:
+        */
+       spin_lock(&rq->lock);
+       rq->prev_clock_raw = now;
+       rq->clock += delta_ns;
+       spin_unlock(&rq->lock);
+}
+EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
+
+/*
  * resched_task - mark a task 'to be rescheduled now'.
  *
  * On UP this means the setting of the need_resched flag, on SMP it
@@ -669,8 +645,6 @@ static inline void resched_task(struct task_struct *p)
 }
 #endif
 
-#include "sched_stats.h"
-
 static u64 div64_likely32(u64 divident, unsigned long divisor)
 {
 #if BITS_PER_LONG == 32
@@ -692,27 +666,31 @@ static u64 div64_likely32(u64 divident, unsigned long divisor)
 
 #define WMULT_SHIFT    32
 
-static inline unsigned long
+/*
+ * Shift right and round:
+ */
+#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
+
+static unsigned long
 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
                struct load_weight *lw)
 {
        u64 tmp;
 
        if (unlikely(!lw->inv_weight))
-               lw->inv_weight = WMULT_CONST / lw->weight;
+               lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
 
        tmp = (u64)delta_exec * weight;
        /*
         * Check whether we'd overflow the 64-bit multiplication:
         */
-       if (unlikely(tmp > WMULT_CONST)) {
-               tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
-                               >> (WMULT_SHIFT/2);
-       } else {
-               tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
-       }
+       if (unlikely(tmp > WMULT_CONST))
+               tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
+                       WMULT_SHIFT/2);
+       else
+               tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
 
-       return (unsigned long)min(tmp, (u64)sysctl_sched_runtime_limit);
+       return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
 }
 
 static inline unsigned long
@@ -733,6 +711,88 @@ static void update_load_sub(struct load_weight *lw, unsigned long dec)
        lw->inv_weight = 0;
 }
 
+/*
+ * To aid in avoiding the subversion of "niceness" due to uneven distribution
+ * of tasks with abnormal "nice" values across CPUs the contribution that
+ * each task makes to its run queue's load is weighted according to its
+ * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
+ * scaled version of the new time slice allocation that they receive on time
+ * slice expiry etc.
+ */
+
+#define WEIGHT_IDLEPRIO                2
+#define WMULT_IDLEPRIO         (1 << 31)
+
+/*
+ * Nice levels are multiplicative, with a gentle 10% change for every
+ * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
+ * nice 1, it will get ~10% less CPU time than another CPU-bound task
+ * that remained on nice 0.
+ *
+ * The "10% effect" is relative and cumulative: from _any_ nice level,
+ * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
+ * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
+ * If a task goes up by ~10% and another task goes down by ~10% then
+ * the relative distance between them is ~25%.)
+ */
+static const int prio_to_weight[40] = {
+ /* -20 */     88761,     71755,     56483,     46273,     36291,
+ /* -15 */     29154,     23254,     18705,     14949,     11916,
+ /* -10 */      9548,      7620,      6100,      4904,      3906,
+ /*  -5 */      3121,      2501,      1991,      1586,      1277,
+ /*   0 */      1024,       820,       655,       526,       423,
+ /*   5 */       335,       272,       215,       172,       137,
+ /*  10 */       110,        87,        70,        56,        45,
+ /*  15 */        36,        29,        23,        18,        15,
+};
+
+/*
+ * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
+ *
+ * In cases where the weight does not change often, we can use the
+ * precalculated inverse to speed up arithmetics by turning divisions
+ * into multiplications:
+ */
+static const u32 prio_to_wmult[40] = {
+ /* -20 */     48388,     59856,     76040,     92818,    118348,
+ /* -15 */    147320,    184698,    229616,    287308,    360437,
+ /* -10 */    449829,    563644,    704093,    875809,   1099582,
+ /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
+ /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
+ /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
+ /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
+ /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
+};
+
+static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
+
+/*
+ * runqueue iterator, to support SMP load-balancing between different
+ * scheduling classes, without having to expose their internal data
+ * structures to the load-balancing proper:
+ */
+struct rq_iterator {
+       void *arg;
+       struct task_struct *(*start)(void *);
+       struct task_struct *(*next)(void *);
+};
+
+static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
+                     unsigned long max_nr_move, unsigned long max_load_move,
+                     struct sched_domain *sd, enum cpu_idle_type idle,
+                     int *all_pinned, unsigned long *load_moved,
+                     int *this_best_prio, struct rq_iterator *iterator);
+
+#include "sched_stats.h"
+#include "sched_rt.c"
+#include "sched_fair.c"
+#include "sched_idletask.c"
+#ifdef CONFIG_SCHED_DEBUG
+# include "sched_debug.c"
+#endif
+
+#define sched_class_highest (&rt_sched_class)
+
 static void __update_curr_load(struct rq *rq, struct load_stat *ls)
 {
        if (rq->curr != rq->idle && ls->load.weight) {
@@ -757,14 +817,14 @@ static void __update_curr_load(struct rq *rq, struct load_stat *ls)
  * This function is called /before/ updating rq->ls.load
  * and when switching tasks.
  */
-static void update_curr_load(struct rq *rq, u64 now)
+static void update_curr_load(struct rq *rq)
 {
        struct load_stat *ls = &rq->ls;
        u64 start;
 
        start = ls->load_update_start;
-       ls->load_update_start = now;
-       ls->delta_stat += now - start;
+       ls->load_update_start = rq->clock;
+       ls->delta_stat += rq->clock - start;
        /*
         * Stagger updates to ls->delta_fair. Very frequent updates
         * can be expensive.
@@ -773,135 +833,72 @@ static void update_curr_load(struct rq *rq, u64 now)
                __update_curr_load(rq, ls);
 }
 
-/*
- * To aid in avoiding the subversion of "niceness" due to uneven distribution
- * of tasks with abnormal "nice" values across CPUs the contribution that
- * each task makes to its run queue's load is weighted according to its
- * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
- * scaled version of the new time slice allocation that they receive on time
- * slice expiry etc.
- */
-
-/*
- * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
- * If static_prio_timeslice() is ever changed to break this assumption then
- * this code will need modification
- */
-#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
-#define LOAD_WEIGHT(lp) \
-       (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
-#define PRIO_TO_LOAD_WEIGHT(prio) \
-       LOAD_WEIGHT(static_prio_timeslice(prio))
-#define RTPRIO_TO_LOAD_WEIGHT(rp) \
-       (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
-
-static inline void
-inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
+static inline void inc_load(struct rq *rq, const struct task_struct *p)
 {
-       rq->raw_weighted_load += p->load_weight;
+       update_curr_load(rq);
+       update_load_add(&rq->ls.load, p->se.load.weight);
 }
 
-static inline void
-dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
+static inline void dec_load(struct rq *rq, const struct task_struct *p)
 {
-       rq->raw_weighted_load -= p->load_weight;
+       update_curr_load(rq);
+       update_load_sub(&rq->ls.load, p->se.load.weight);
 }
 
-static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
+static void inc_nr_running(struct task_struct *p, struct rq *rq)
 {
        rq->nr_running++;
-       inc_raw_weighted_load(rq, p);
+       inc_load(rq, p);
 }
 
-static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
+static void dec_nr_running(struct task_struct *p, struct rq *rq)
 {
        rq->nr_running--;
-       dec_raw_weighted_load(rq, p);
+       dec_load(rq, p);
 }
 
 static void set_load_weight(struct task_struct *p)
 {
+       p->se.wait_runtime = 0;
+
        if (task_has_rt_policy(p)) {
-#ifdef CONFIG_SMP
-               if (p == task_rq(p)->migration_thread)
-                       /*
-                        * The migration thread does the actual balancing.
-                        * Giving its load any weight will skew balancing
-                        * adversely.
-                        */
-                       p->load_weight = 0;
-               else
-#endif
-                       p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
-       } else
-               p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
-}
+               p->se.load.weight = prio_to_weight[0] * 2;
+               p->se.load.inv_weight = prio_to_wmult[0] >> 1;
+               return;
+       }
 
-/*
- * Adding/removing a task to/from a priority array:
- */
-static void dequeue_task(struct task_struct *p, struct prio_array *array)
-{
-       array->nr_active--;
-       list_del(&p->run_list);
-       if (list_empty(array->queue + p->prio))
-               __clear_bit(p->prio, array->bitmap);
-}
+       /*
+        * SCHED_IDLE tasks get minimal weight:
+        */
+       if (p->policy == SCHED_IDLE) {
+               p->se.load.weight = WEIGHT_IDLEPRIO;
+               p->se.load.inv_weight = WMULT_IDLEPRIO;
+               return;
+       }
 
-static void enqueue_task(struct task_struct *p, struct prio_array *array)
-{
-       sched_info_queued(p);
-       list_add_tail(&p->run_list, array->queue + p->prio);
-       __set_bit(p->prio, array->bitmap);
-       array->nr_active++;
-       p->array = array;
+       p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
+       p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
 }
 
-/*
- * Put task to the end of the run list without the overhead of dequeue
- * followed by enqueue.
- */
-static void requeue_task(struct task_struct *p, struct prio_array *array)
+static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
 {
-       list_move_tail(&p->run_list, array->queue + p->prio);
+       sched_info_queued(p);
+       p->sched_class->enqueue_task(rq, p, wakeup);
+       p->se.on_rq = 1;
 }
 
-static inline void
-enqueue_task_head(struct task_struct *p, struct prio_array *array)
+static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
 {
-       list_add(&p->run_list, array->queue + p->prio);
-       __set_bit(p->prio, array->bitmap);
-       array->nr_active++;
-       p->array = array;
+       p->sched_class->dequeue_task(rq, p, sleep);
+       p->se.on_rq = 0;
 }
 
 /*
- * __normal_prio - return the priority that is based on the static
- * priority but is modified by bonuses/penalties.
- *
- * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
- * into the -5 ... 0 ... +5 bonus/penalty range.
- *
- * We use 25% of the full 0...39 priority range so that:
- *
- * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
- * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
- *
- * Both properties are important to certain workloads.
+ * __normal_prio - return the priority that is based on the static prio
  */
-
 static inline int __normal_prio(struct task_struct *p)
 {
-       int bonus, prio;
-
-       bonus = 0;
-
-       prio = p->static_prio - bonus;
-       if (prio < MAX_RT_PRIO)
-               prio = MAX_RT_PRIO;
-       if (prio > MAX_PRIO-1)
-               prio = MAX_PRIO-1;
-       return prio;
+       return p->static_prio;
 }
 
 /*
@@ -943,84 +940,41 @@ static int effective_prio(struct task_struct *p)
 }
 
 /*
- * __activate_task - move a task to the runqueue.
+ * activate_task - move a task to the runqueue.
  */
-static void __activate_task(struct task_struct *p, struct rq *rq)
+static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
 {
-       struct prio_array *target = rq->active;
-
-       if (batch_task(p))
-               target = rq->expired;
-       enqueue_task(p, target);
-       inc_nr_running(p, rq);
-}
+       if (p->state == TASK_UNINTERRUPTIBLE)
+               rq->nr_uninterruptible--;
 
-/*
- * __activate_idle_task - move idle task to the _front_ of runqueue.
- */
-static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
-{
-       enqueue_task_head(p, rq->active);
+       enqueue_task(rq, p, wakeup);
        inc_nr_running(p, rq);
 }
 
 /*
- * Recalculate p->normal_prio and p->prio after having slept,
- * updating the sleep-average too:
+ * activate_idle_task - move idle task to the _front_ of runqueue.
  */
-static int recalc_task_prio(struct task_struct *p, unsigned long long now)
+static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
 {
-       return effective_prio(p);
-}
-
-/*
- * activate_task - move a task to the runqueue and do priority recalculation
- *
- * Update all the scheduling statistics stuff. (sleep average
- * calculation, priority modifiers, etc.)
- */
-static void activate_task(struct task_struct *p, struct rq *rq, int local)
-{
-       unsigned long long now;
-
-       if (rt_task(p))
-               goto out;
+       update_rq_clock(rq);
 
-       now = sched_clock();
-#ifdef CONFIG_SMP
-       if (!local) {
-               /* Compensate for drifting sched_clock */
-               struct rq *this_rq = this_rq();
-               now = (now - this_rq->most_recent_timestamp)
-                       + rq->most_recent_timestamp;
-       }
-#endif
-
-       /*
-        * Sleep time is in units of nanosecs, so shift by 20 to get a
-        * milliseconds-range estimation of the amount of time that the task
-        * spent sleeping:
-        */
-       if (unlikely(prof_on == SLEEP_PROFILING)) {
-               if (p->state == TASK_UNINTERRUPTIBLE)
-                       profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
-                                    (now - p->timestamp) >> 20);
-       }
+       if (p->state == TASK_UNINTERRUPTIBLE)
+               rq->nr_uninterruptible--;
 
-       p->prio = recalc_task_prio(p, now);
-       p->timestamp = now;
-out:
-       __activate_task(p, rq);
+       enqueue_task(rq, p, 0);
+       inc_nr_running(p, rq);
 }
 
 /*
  * deactivate_task - remove a task from the runqueue.
  */
-static void deactivate_task(struct task_struct *p, struct rq *rq)
+static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
 {
+       if (p->state == TASK_UNINTERRUPTIBLE)
+               rq->nr_uninterruptible++;
+
+       dequeue_task(rq, p, sleep);
        dec_nr_running(p, rq);
-       dequeue_task(p, p->array);
-       p->array = NULL;
 }
 
 /**
@@ -1035,14 +989,43 @@ inline int task_curr(const struct task_struct *p)
 /* Used instead of source_load when we know the type == 0 */
 unsigned long weighted_cpuload(const int cpu)
 {
-       return cpu_rq(cpu)->raw_weighted_load;
+       return cpu_rq(cpu)->ls.load.weight;
+}
+
+static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
+{
+#ifdef CONFIG_SMP
+       task_thread_info(p)->cpu = cpu;
+       set_task_cfs_rq(p);
+#endif
 }
 
 #ifdef CONFIG_SMP
 
-void set_task_cpu(struct task_struct *p, unsigned int cpu)
+void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
 {
-       task_thread_info(p)->cpu = cpu;
+       int old_cpu = task_cpu(p);
+       struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
+       u64 clock_offset, fair_clock_offset;
+
+       clock_offset = old_rq->clock - new_rq->clock;
+       fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
+
+       if (p->se.wait_start_fair)
+               p->se.wait_start_fair -= fair_clock_offset;
+       if (p->se.sleep_start_fair)
+               p->se.sleep_start_fair -= fair_clock_offset;
+
+#ifdef CONFIG_SCHEDSTATS
+       if (p->se.wait_start)
+               p->se.wait_start -= clock_offset;
+       if (p->se.sleep_start)
+               p->se.sleep_start -= clock_offset;
+       if (p->se.block_start)
+               p->se.block_start -= clock_offset;
+#endif
+
+       __set_task_cpu(p, new_cpu);
 }
 
 struct migration_req {
@@ -1067,7 +1050,7 @@ migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
         * If the task is not on a runqueue (and not running), then
         * it is sufficient to simply update the task's cpu field.
         */
-       if (!p->array && !task_running(rq, p)) {
+       if (!p->se.on_rq && !task_running(rq, p)) {
                set_task_cpu(p, dest_cpu);
                return 0;
        }
@@ -1092,9 +1075,8 @@ migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
 void wait_task_inactive(struct task_struct *p)
 {
        unsigned long flags;
+       int running, on_rq;
        struct rq *rq;
-       struct prio_array *array;
-       int running;
 
 repeat:
        /*
@@ -1126,7 +1108,7 @@ repeat:
         */
        rq = task_rq_lock(p, &flags);
        running = task_running(rq, p);
-       array = p->array;
+       on_rq = p->se.on_rq;
        task_rq_unlock(rq, &flags);
 
        /*
@@ -1149,7 +1131,7 @@ repeat:
         * running right now), it's preempted, and we should
         * yield - it could be a while.
         */
-       if (unlikely(array)) {
+       if (unlikely(on_rq)) {
                yield();
                goto repeat;
        }
@@ -1195,11 +1177,12 @@ void kick_process(struct task_struct *p)
 static inline unsigned long source_load(int cpu, int type)
 {
        struct rq *rq = cpu_rq(cpu);
+       unsigned long total = weighted_cpuload(cpu);
 
        if (type == 0)
-               return rq->raw_weighted_load;
+               return total;
 
-       return min(rq->cpu_load[type-1], rq->raw_weighted_load);
+       return min(rq->cpu_load[type-1], total);
 }
 
 /*
@@ -1209,11 +1192,12 @@ static inline unsigned long source_load(int cpu, int type)
 static inline unsigned long target_load(int cpu, int type)
 {
        struct rq *rq = cpu_rq(cpu);
+       unsigned long total = weighted_cpuload(cpu);
 
        if (type == 0)
-               return rq->raw_weighted_load;
+               return total;
 
-       return max(rq->cpu_load[type-1], rq->raw_weighted_load);
+       return max(rq->cpu_load[type-1], total);
 }
 
 /*
@@ -1222,9 +1206,10 @@ static inline unsigned long target_load(int cpu, int type)
 static inline unsigned long cpu_avg_load_per_task(int cpu)
 {
        struct rq *rq = cpu_rq(cpu);
+       unsigned long total = weighted_cpuload(cpu);
        unsigned long n = rq->nr_running;
 
-       return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
+       return n ? total / n : SCHED_LOAD_SCALE;
 }
 
 /*
@@ -1326,9 +1311,9 @@ static int sched_balance_self(int cpu, int flag)
        struct sched_domain *tmp, *sd = NULL;
 
        for_each_domain(cpu, tmp) {
-               /*
-                * If power savings logic is enabled for a domain, stop there.
-                */
+               /*
+                * If power savings logic is enabled for a domain, stop there.
+                */
                if (tmp->flags & SD_POWERSAVINGS_BALANCE)
                        break;
                if (tmp->flags & flag)
@@ -1411,9 +1396,9 @@ static int wake_idle(int cpu, struct task_struct *p)
                                if (idle_cpu(i))
                                        return i;
                        }
-               }
-               else
+               } else {
                        break;
+               }
        }
        return cpu;
 }
@@ -1455,7 +1440,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
        if (!(old_state & state))
                goto out;
 
-       if (p->array)
+       if (p->se.on_rq)
                goto out_running;
 
        cpu = task_cpu(p);
@@ -1510,11 +1495,11 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
                         * of the current CPU:
                         */
                        if (sync)
-                               tl -= current->load_weight;
+                               tl -= current->se.load.weight;
 
                        if ((tl <= load &&
                                tl + target_load(cpu, idx) <= tl_per_task) ||
-                               100*(tl + p->load_weight) <= imbalance*load) {
+                              100*(tl + p->se.load.weight) <= imbalance*load) {
                                /*
                                 * This domain has SD_WAKE_AFFINE and
                                 * p is cache cold in this domain, and
@@ -1548,7 +1533,7 @@ out_set_cpu:
                old_state = p->state;
                if (!(old_state & state))
                        goto out;
-               if (p->array)
+               if (p->se.on_rq)
                        goto out_running;
 
                this_cpu = smp_processor_id();
@@ -1557,10 +1542,8 @@ out_set_cpu:
 
 out_activate:
 #endif /* CONFIG_SMP */
-       if (old_state == TASK_UNINTERRUPTIBLE)
-               rq->nr_uninterruptible--;
-
-       activate_task(p, rq, cpu == this_cpu);
+       update_rq_clock(rq);
+       activate_task(rq, p, 1);
        /*
         * Sync wakeups (i.e. those types of wakeups where the waker
         * has indicated that it will leave the CPU in short order)
@@ -1569,10 +1552,8 @@ out_activate:
         * the waker guarantees that the freshly woken up task is going
         * to be considered on this CPU.)
         */
-       if (!sync || cpu != this_cpu) {
-               if (TASK_PREEMPTS_CURR(p, rq))
-                       resched_task(rq->curr);
-       }
+       if (!sync || cpu != this_cpu)
+               check_preempt_curr(rq, p);
        success = 1;
 
 out_running:
@@ -1595,19 +1576,44 @@ int fastcall wake_up_state(struct task_struct *p, unsigned int state)
        return try_to_wake_up(p, state, 0);
 }
 
-static void task_running_tick(struct rq *rq, struct task_struct *p);
 /*
  * Perform scheduler related setup for a newly forked process p.
  * p is forked by current.
+ *
+ * __sched_fork() is basic setup used by init_idle() too:
  */
-void fastcall sched_fork(struct task_struct *p, int clone_flags)
+static void __sched_fork(struct task_struct *p)
 {
-       int cpu = get_cpu();
+       p->se.wait_start_fair           = 0;
+       p->se.exec_start                = 0;
+       p->se.sum_exec_runtime          = 0;
+       p->se.prev_sum_exec_runtime     = 0;
+       p->se.delta_exec                = 0;
+       p->se.delta_fair_run            = 0;
+       p->se.delta_fair_sleep          = 0;
+       p->se.wait_runtime              = 0;
+       p->se.sleep_start_fair          = 0;
 
-#ifdef CONFIG_SMP
-       cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
+#ifdef CONFIG_SCHEDSTATS
+       p->se.wait_start                = 0;
+       p->se.sum_wait_runtime          = 0;
+       p->se.sum_sleep_runtime         = 0;
+       p->se.sleep_start               = 0;
+       p->se.block_start               = 0;
+       p->se.sleep_max                 = 0;
+       p->se.block_max                 = 0;
+       p->se.exec_max                  = 0;
+       p->se.wait_max                  = 0;
+       p->se.wait_runtime_overruns     = 0;
+       p->se.wait_runtime_underruns    = 0;
+#endif
+
+       INIT_LIST_HEAD(&p->run_list);
+       p->se.on_rq = 0;
+
+#ifdef CONFIG_PREEMPT_NOTIFIERS
+       INIT_HLIST_HEAD(&p->preempt_notifiers);
 #endif
-       set_task_cpu(p, cpu);
 
        /*
         * We mark the process as running here, but have not actually
@@ -1616,16 +1622,29 @@ void fastcall sched_fork(struct task_struct *p, int clone_flags)
         * event cannot wake it up and insert it on the runqueue either.
         */
        p->state = TASK_RUNNING;
+}
+
+/*
+ * fork()/clone()-time setup:
+ */
+void sched_fork(struct task_struct *p, int clone_flags)
+{
+       int cpu = get_cpu();
+
+       __sched_fork(p);
+
+#ifdef CONFIG_SMP
+       cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
+#endif
+       __set_task_cpu(p, cpu);
 
        /*
         * Make sure we do not leak PI boosting priority to the child:
         */
        p->prio = current->normal_prio;
 
-       INIT_LIST_HEAD(&p->run_list);
-       p->array = NULL;
 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
-       if (unlikely(sched_info_on()))
+       if (likely(sched_info_on()))
                memset(&p->sched_info, 0, sizeof(p->sched_info));
 #endif
 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
@@ -1635,34 +1654,16 @@ void fastcall sched_fork(struct task_struct *p, int clone_flags)
        /* Want to start with kernel preemption disabled. */
        task_thread_info(p)->preempt_count = 1;
 #endif
-       /*
-        * Share the timeslice between parent and child, thus the
-        * total amount of pending timeslices in the system doesn't change,
-        * resulting in more scheduling fairness.
-        */
-       local_irq_disable();
-       p->time_slice = (current->time_slice + 1) >> 1;
-       /*
-        * The remainder of the first timeslice might be recovered by
-        * the parent if the child exits early enough.
-        */
-       p->first_time_slice = 1;
-       current->time_slice >>= 1;
-       p->timestamp = sched_clock();
-       if (unlikely(!current->time_slice)) {
-               /*
-                * This case is rare, it happens when the parent has only
-                * a single jiffy left from its timeslice. Taking the
-                * runqueue lock is not a problem.
-                */
-               current->time_slice = 1;
-               task_running_tick(cpu_rq(cpu), current);
-       }
-       local_irq_enable();
        put_cpu();
 }
 
 /*
+ * After fork, child runs first. (default) If set to 0 then
+ * parent will (try to) run first.
+ */
+unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
+
+/*
  * wake_up_new_task - wake up a newly created task for the first time.
  *
  * This function will do some initial scheduler statistics housekeeping
@@ -1671,82 +1672,101 @@ void fastcall sched_fork(struct task_struct *p, int clone_flags)
  */
 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
 {
-       struct rq *rq, *this_rq;
        unsigned long flags;
-       int this_cpu, cpu;
+       struct rq *rq;
+       int this_cpu;
 
        rq = task_rq_lock(p, &flags);
        BUG_ON(p->state != TASK_RUNNING);
-       this_cpu = smp_processor_id();
-       cpu = task_cpu(p);
-
-       /*
-        * We decrease the sleep average of forking parents
-        * and children as well, to keep max-interactive tasks
-        * from forking tasks that are max-interactive. The parent
-        * (current) is done further down, under its lock.
-        */
-       p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
-               CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
+       this_cpu = smp_processor_id(); /* parent's CPU */
+       update_rq_clock(rq);
 
        p->prio = effective_prio(p);
 
-       if (likely(cpu == this_cpu)) {
-               if (!(clone_flags & CLONE_VM)) {
-                       /*
-                        * The VM isn't cloned, so we're in a good position to
-                        * do child-runs-first in anticipation of an exec. This
-                        * usually avoids a lot of COW overhead.
-                        */
-                       if (unlikely(!current->array))
-                               __activate_task(p, rq);
-                       else {
-                               p->prio = current->prio;
-                               p->normal_prio = current->normal_prio;
-                               list_add_tail(&p->run_list, &current->run_list);
-                               p->array = current->array;
-                               p->array->nr_active++;
-                               inc_nr_running(p, rq);
-                       }
-                       set_need_resched();
-               } else
-                       /* Run child last */
-                       __activate_task(p, rq);
-               /*
-                * We skip the following code due to cpu == this_cpu
-                *
-                *   task_rq_unlock(rq, &flags);
-                *   this_rq = task_rq_lock(current, &flags);
-                */
-               this_rq = rq;
-       } else {
-               this_rq = cpu_rq(this_cpu);
+       if (rt_prio(p->prio))
+               p->sched_class = &rt_sched_class;
+       else
+               p->sched_class = &fair_sched_class;
 
-               /*
-                * Not the local CPU - must adjust timestamp. This should
-                * get optimised away in the !CONFIG_SMP case.
-                */
-               p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
-                                       + rq->most_recent_timestamp;
-               __activate_task(p, rq);
-               if (TASK_PREEMPTS_CURR(p, rq))
-                       resched_task(rq->curr);
+       if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
+                       (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
+                       !current->se.on_rq) {
 
+               activate_task(rq, p, 0);
+       } else {
                /*
-                * Parent and child are on different CPUs, now get the
-                * parent runqueue to update the parent's ->sleep_avg:
+                * Let the scheduling class do new task startup
+                * management (if any):
                 */
-               task_rq_unlock(rq, &flags);
-               this_rq = task_rq_lock(current, &flags);
+               p->sched_class->task_new(rq, p);
+               inc_nr_running(p, rq);
        }
-       current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
-               PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
-       task_rq_unlock(this_rq, &flags);
+       check_preempt_curr(rq, p);
+       task_rq_unlock(rq, &flags);
+}
+
+#ifdef CONFIG_PREEMPT_NOTIFIERS
+
+/**
+ * preempt_notifier_register - tell me when current is being being preempted & rescheduled
+ * @notifier: notifier struct to register
+ */
+void preempt_notifier_register(struct preempt_notifier *notifier)
+{
+       hlist_add_head(&notifier->link, &current->preempt_notifiers);
+}
+EXPORT_SYMBOL_GPL(preempt_notifier_register);
+
+/**
+ * preempt_notifier_unregister - no longer interested in preemption notifications
+ * @notifier: notifier struct to unregister
+ *
+ * This is safe to call from within a preemption notifier.
+ */
+void preempt_notifier_unregister(struct preempt_notifier *notifier)
+{
+       hlist_del(&notifier->link);
+}
+EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
+
+static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
+{
+       struct preempt_notifier *notifier;
+       struct hlist_node *node;
+
+       hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
+               notifier->ops->sched_in(notifier, raw_smp_processor_id());
+}
+
+static void
+fire_sched_out_preempt_notifiers(struct task_struct *curr,
+                                struct task_struct *next)
+{
+       struct preempt_notifier *notifier;
+       struct hlist_node *node;
+
+       hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
+               notifier->ops->sched_out(notifier, next);
+}
+
+#else
+
+static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
+{
+}
+
+static void
+fire_sched_out_preempt_notifiers(struct task_struct *curr,
+                                struct task_struct *next)
+{
 }
 
+#endif
+
 /**
  * prepare_task_switch - prepare to switch tasks
  * @rq: the runqueue preparing to switch
+ * @prev: the current task that is being switched out
  * @next: the task we are going to switch to.
  *
  * This is called with the rq lock held and interrupts off. It must
@@ -1756,8 +1776,11 @@ void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  * prepare_task_switch sets up locking and calls architecture specific
  * hooks.
  */
-static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
+static inline void
+prepare_task_switch(struct rq *rq, struct task_struct *prev,
+                   struct task_struct *next)
 {
+       fire_sched_out_preempt_notifiers(prev, next);
        prepare_lock_switch(rq, next);
        prepare_arch_switch(next);
 }
@@ -1799,13 +1822,14 @@ static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
        prev_state = prev->state;
        finish_arch_switch(prev);
        finish_lock_switch(rq, prev);
+       fire_sched_in_preempt_notifiers(current);
        if (mm)
                mmdrop(mm);
        if (unlikely(prev_state == TASK_DEAD)) {
                /*
                 * Remove function-return probe instances associated with this
                 * task and put them back on the free list.
-                */
+                */
                kprobe_flush_task(prev);
                put_task_struct(prev);
        }
@@ -1833,13 +1857,15 @@ asmlinkage void schedule_tail(struct task_struct *prev)
  * context_switch - switch to the new MM and the new
  * thread's register state.
  */
-static inline struct task_struct *
+static inline void
 context_switch(struct rq *rq, struct task_struct *prev,
               struct task_struct *next)
 {
-       struct mm_struct *mm = next->mm;
-       struct mm_struct *oldmm = prev->active_mm;
+       struct mm_struct *mm, *oldmm;
 
+       prepare_task_switch(rq, prev, next);
+       mm = next->mm;
+       oldmm = prev->active_mm;
        /*
         * For paravirt, this is coupled with an exit in switch_to to
         * combine the page table reload and the switch backend into
@@ -1847,16 +1873,15 @@ context_switch(struct rq *rq, struct task_struct *prev,
         */
        arch_enter_lazy_cpu_mode();
 
-       if (!mm) {
+       if (unlikely(!mm)) {
                next->active_mm = oldmm;
                atomic_inc(&oldmm->mm_count);
                enter_lazy_tlb(oldmm, next);
        } else
                switch_mm(oldmm, mm, next);
 
-       if (!prev->mm) {
+       if (unlikely(!prev->mm)) {
                prev->active_mm = NULL;
-               WARN_ON(rq->prev_mm);
                rq->prev_mm = oldmm;
        }
        /*
@@ -1872,7 +1897,13 @@ context_switch(struct rq *rq, struct task_struct *prev,
        /* Here we just switch the register state and the stack. */
        switch_to(prev, next, prev);
 
-       return prev;
+       barrier();
+       /*
+        * this_rq must be evaluated again because prev may have moved
+        * CPUs since it called schedule(), thus the 'rq' on its stack
+        * frame will be invalid.
+        */
+       finish_task_switch(this_rq(), prev);
 }
 
 /*
@@ -1945,17 +1976,64 @@ unsigned long nr_active(void)
        return running + uninterruptible;
 }
 
-#ifdef CONFIG_SMP
-
 /*
- * Is this task likely cache-hot:
+ * Update rq->cpu_load[] statistics. This function is usually called every
+ * scheduler tick (TICK_NSEC).
  */
-static inline int
-task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
+static void update_cpu_load(struct rq *this_rq)
 {
-       return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
+       u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
+       unsigned long total_load = this_rq->ls.load.weight;
+       unsigned long this_load =  total_load;
+       struct load_stat *ls = &this_rq->ls;
+       int i, scale;
+
+       this_rq->nr_load_updates++;
+       if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
+               goto do_avg;
+
+       /* Update delta_fair/delta_exec fields first */
+       update_curr_load(this_rq);
+
+       fair_delta64 = ls->delta_fair + 1;
+       ls->delta_fair = 0;
+
+       exec_delta64 = ls->delta_exec + 1;
+       ls->delta_exec = 0;
+
+       sample_interval64 = this_rq->clock - ls->load_update_last;
+       ls->load_update_last = this_rq->clock;
+
+       if ((s64)sample_interval64 < (s64)TICK_NSEC)
+               sample_interval64 = TICK_NSEC;
+
+       if (exec_delta64 > sample_interval64)
+               exec_delta64 = sample_interval64;
+
+       idle_delta64 = sample_interval64 - exec_delta64;
+
+       tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
+       tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
+
+       this_load = (unsigned long)tmp64;
+
+do_avg:
+
+       /* Update our load: */
+       for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
+               unsigned long old_load, new_load;
+
+               /* scale is effectively 1 << i now, and >> i divides by scale */
+
+               old_load = this_rq->cpu_load[i];
+               new_load = this_load;
+
+               this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
+       }
 }
 
+#ifdef CONFIG_SMP
+
 /*
  * double_rq_lock - safely lock two runqueues
  *
@@ -1979,6 +2057,8 @@ static void double_rq_lock(struct rq *rq1, struct rq *rq2)
                        spin_lock(&rq1->lock);
                }
        }
+       update_rq_clock(rq1);
+       update_rq_clock(rq2);
 }
 
 /*
@@ -2072,23 +2152,17 @@ void sched_exec(void)
  * pull_task - move a task from a remote runqueue to the local runqueue.
  * Both runqueues must be locked.
  */
-static void pull_task(struct rq *src_rq, struct prio_array *src_array,
-                     struct task_struct *p, struct rq *this_rq,
-                     struct prio_array *this_array, int this_cpu)
+static void pull_task(struct rq *src_rq, struct task_struct *p,
+                     struct rq *this_rq, int this_cpu)
 {
-       dequeue_task(p, src_array);
-       dec_nr_running(p, src_rq);
+       deactivate_task(src_rq, p, 0);
        set_task_cpu(p, this_cpu);
-       inc_nr_running(p, this_rq);
-       enqueue_task(p, this_array);
-       p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
-                               + this_rq->most_recent_timestamp;
+       activate_task(this_rq, p, 0);
        /*
         * Note that idle threads have a prio of MAX_PRIO, for this test
         * to be always true for them.
         */
-       if (TASK_PREEMPTS_CURR(p, this_rq))
-               resched_task(this_rq->curr);
+       check_preempt_curr(this_rq, p);
 }
 
 /*
@@ -2112,133 +2186,57 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
        if (task_running(rq, p))
                return 0;
 
-       /*
-        * Aggressive migration if:
-        * 1) task is cache cold, or
-        * 2) too many balance attempts have failed.
-        */
-
-       if (sd->nr_balance_failed > sd->cache_nice_tries) {
-#ifdef CONFIG_SCHEDSTATS
-               if (task_hot(p, rq->most_recent_timestamp, sd))
-                       schedstat_inc(sd, lb_hot_gained[idle]);
-#endif
-               return 1;
-       }
-
-       if (task_hot(p, rq->most_recent_timestamp, sd))
-               return 0;
        return 1;
 }
 
-#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
-
-/*
- * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
- * load from busiest to this_rq, as part of a balancing operation within
- * "domain". Returns the number of tasks moved.
- *
- * Called with both runqueues locked.
- */
-static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
+static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
                      unsigned long max_nr_move, unsigned long max_load_move,
                      struct sched_domain *sd, enum cpu_idle_type idle,
-                     int *all_pinned)
+                     int *all_pinned, unsigned long *load_moved,
+                     int *this_best_prio, struct rq_iterator *iterator)
 {
-       int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
-           best_prio_seen, skip_for_load;
-       struct prio_array *array, *dst_array;
-       struct list_head *head, *curr;
-       struct task_struct *tmp;
-       long rem_load_move;
+       int pulled = 0, pinned = 0, skip_for_load;
+       struct task_struct *p;
+       long rem_load_move = max_load_move;
 
        if (max_nr_move == 0 || max_load_move == 0)
                goto out;
 
-       rem_load_move = max_load_move;
        pinned = 1;
-       this_best_prio = rq_best_prio(this_rq);
-       best_prio = rq_best_prio(busiest);
-       /*
-        * Enable handling of the case where there is more than one task
-        * with the best priority.   If the current running task is one
-        * of those with prio==best_prio we know it won't be moved
-        * and therefore it's safe to override the skip (based on load) of
-        * any task we find with that prio.
-        */
-       best_prio_seen = best_prio == busiest->curr->prio;
 
        /*
-        * We first consider expired tasks. Those will likely not be
-        * executed in the near future, and they are most likely to
-        * be cache-cold, thus switching CPUs has the least effect
-        * on them.
+        * Start the load-balancing iterator:
         */
-       if (busiest->expired->nr_active) {
-               array = busiest->expired;
-               dst_array = this_rq->expired;
-       } else {
-               array = busiest->active;
-               dst_array = this_rq->active;
-       }
-
-new_array:
-       /* Start searching at priority 0: */
-       idx = 0;
-skip_bitmap:
-       if (!idx)
-               idx = sched_find_first_bit(array->bitmap);
-       else
-               idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
-       if (idx >= MAX_PRIO) {
-               if (array == busiest->expired && busiest->active->nr_active) {
-                       array = busiest->active;
-                       dst_array = this_rq->active;
-                       goto new_array;
-               }
+       p = iterator->start(iterator->arg);
+next:
+       if (!p)
                goto out;
-       }
-
-       head = array->queue + idx;
-       curr = head->prev;
-skip_queue:
-       tmp = list_entry(curr, struct task_struct, run_list);
-
-       curr = curr->prev;
-
        /*
         * To help distribute high priority tasks accross CPUs we don't
         * skip a task if it will be the highest priority task (i.e. smallest
         * prio value) on its new queue regardless of its load weight
         */
-       skip_for_load = tmp->load_weight > rem_load_move;
-       if (skip_for_load && idx < this_best_prio)
-               skip_for_load = !best_prio_seen && idx == best_prio;
-       if (skip_for_load ||
-           !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
-
-               best_prio_seen |= idx == best_prio;
-               if (curr != head)
-                       goto skip_queue;
-               idx++;
-               goto skip_bitmap;
+       skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
+                                                        SCHED_LOAD_SCALE_FUZZ;
+       if ((skip_for_load && p->prio >= *this_best_prio) ||
+           !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
+               p = iterator->next(iterator->arg);
+               goto next;
        }
 
-       pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
+       pull_task(busiest, p, this_rq, this_cpu);
        pulled++;
-       rem_load_move -= tmp->load_weight;
+       rem_load_move -= p->se.load.weight;
 
        /*
         * We only want to steal up to the prescribed number of tasks
         * and the prescribed amount of weighted load.
         */
        if (pulled < max_nr_move && rem_load_move > 0) {
-               if (idx < this_best_prio)
-                       this_best_prio = idx;
-               if (curr != head)
-                       goto skip_queue;
-               idx++;
-               goto skip_bitmap;
+               if (p->prio < *this_best_prio)
+                       *this_best_prio = p->prio;
+               p = iterator->next(iterator->arg);
+               goto next;
        }
 out:
        /*
@@ -2250,18 +2248,68 @@ out:
 
        if (all_pinned)
                *all_pinned = pinned;
+       *load_moved = max_load_move - rem_load_move;
        return pulled;
 }
 
 /*
+ * move_tasks tries to move up to max_load_move weighted load from busiest to
+ * this_rq, as part of a balancing operation within domain "sd".
+ * Returns 1 if successful and 0 otherwise.
+ *
+ * Called with both runqueues locked.
+ */
+static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
+                     unsigned long max_load_move,
+                     struct sched_domain *sd, enum cpu_idle_type idle,
+                     int *all_pinned)
+{
+       struct sched_class *class = sched_class_highest;
+       unsigned long total_load_moved = 0;
+       int this_best_prio = this_rq->curr->prio;
+
+       do {
+               total_load_moved +=
+                       class->load_balance(this_rq, this_cpu, busiest,
+                               ULONG_MAX, max_load_move - total_load_moved,
+                               sd, idle, all_pinned, &this_best_prio);
+               class = class->next;
+       } while (class && max_load_move > total_load_moved);
+
+       return total_load_moved > 0;
+}
+
+/*
+ * move_one_task tries to move exactly one task from busiest to this_rq, as
+ * part of active balancing operations within "domain".
+ * Returns 1 if successful and 0 otherwise.
+ *
+ * Called with both runqueues locked.
+ */
+static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
+                        struct sched_domain *sd, enum cpu_idle_type idle)
+{
+       struct sched_class *class;
+       int this_best_prio = MAX_PRIO;
+
+       for (class = sched_class_highest; class; class = class->next)
+               if (class->load_balance(this_rq, this_cpu, busiest,
+                                       1, ULONG_MAX, sd, idle, NULL,
+                                       &this_best_prio))
+                       return 1;
+
+       return 0;
+}
+
+/*
  * find_busiest_group finds and returns the busiest CPU group within the
  * domain. It calculates and returns the amount of weighted load which
  * should be moved to restore balance via the imbalance parameter.
  */
 static struct sched_group *
 find_busiest_group(struct sched_domain *sd, int this_cpu,
-                  unsigned long *imbalance, enum cpu_idle_type idle, int *sd_idle,
-                  cpumask_t *cpus, int *balance)
+                  unsigned long *imbalance, enum cpu_idle_type idle,
+                  int *sd_idle, cpumask_t *cpus, int *balance)
 {
        struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
        unsigned long max_load, avg_load, total_load, this_load, total_pwr;
@@ -2309,7 +2357,7 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
 
                        rq = cpu_rq(i);
 
-                       if (*sd_idle && !idle_cpu(i))
+                       if (*sd_idle && rq->nr_running)
                                *sd_idle = 0;
 
                        /* Bias balancing toward cpus of our domain */
@@ -2325,15 +2373,17 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
 
                        avg_load += load;
                        sum_nr_running += rq->nr_running;
-                       sum_weighted_load += rq->raw_weighted_load;
+                       sum_weighted_load += weighted_cpuload(i);
                }
 
                /*
                 * First idle cpu or the first cpu(busiest) in this sched group
                 * is eligible for doing load balancing at this and above
-                * domains.
+                * domains. In the newly idle case, we will allow all the cpu's
+                * to do the newly idle load balance.
                 */
-               if (local_group && balance_cpu != this_cpu && balance) {
+               if (idle != CPU_NEWLY_IDLE && local_group &&
+                   balance_cpu != this_cpu && balance) {
                        *balance = 0;
                        goto ret;
                }
@@ -2365,8 +2415,9 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
                 * Busy processors will not participate in power savings
                 * balance.
                 */
-               if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
-                       goto group_next;
+               if (idle == CPU_NOT_IDLE ||
+                               !(sd->flags & SD_POWERSAVINGS_BALANCE))
+                       goto group_next;
 
                /*
                 * If the local group is idle or completely loaded
@@ -2376,42 +2427,42 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
                                    !this_nr_running))
                        power_savings_balance = 0;
 
-               /*
+               /*
                 * If a group is already running at full capacity or idle,
                 * don't include that group in power savings calculations
-                */
-               if (!power_savings_balance || sum_nr_running >= group_capacity
+                */
+               if (!power_savings_balance || sum_nr_running >= group_capacity
                    || !sum_nr_running)
-                       goto group_next;
+                       goto group_next;
 
-               /*
+               /*
                 * Calculate the group which has the least non-idle load.
-                * This is the group from where we need to pick up the load
-                * for saving power
-                */
-               if ((sum_nr_running < min_nr_running) ||
-                   (sum_nr_running == min_nr_running &&
+                * This is the group from where we need to pick up the load
+                * for saving power
+                */
+               if ((sum_nr_running < min_nr_running) ||
+                   (sum_nr_running == min_nr_running &&
                     first_cpu(group->cpumask) <
                     first_cpu(group_min->cpumask))) {
-                       group_min = group;
-                       min_nr_running = sum_nr_running;
+                       group_min = group;
+                       min_nr_running = sum_nr_running;
                        min_load_per_task = sum_weighted_load /
                                                sum_nr_running;
-               }
+               }
 
-               /*
+               /*
                 * Calculate the group which is almost near its
-                * capacity but still has some space to pick up some load
-                * from other group and save more power
-                */
-               if (sum_nr_running <= group_capacity - 1) {
-                       if (sum_nr_running > leader_nr_running ||
-                           (sum_nr_running == leader_nr_running &&
-                            first_cpu(group->cpumask) >
-                             first_cpu(group_leader->cpumask))) {
-                               group_leader = group;
-                               leader_nr_running = sum_nr_running;
-                       }
+                * capacity but still has some space to pick up some load
+                * from other group and save more power
+                */
+               if (sum_nr_running <= group_capacity - 1) {
+                       if (sum_nr_running > leader_nr_running ||
+                           (sum_nr_running == leader_nr_running &&
+                            first_cpu(group->cpumask) >
+                             first_cpu(group_leader->cpumask))) {
+                               group_leader = group;
+                               leader_nr_running = sum_nr_running;
+                       }
                }
 group_next:
 #endif
@@ -2480,7 +2531,8 @@ small_imbalance:
                } else
                        this_load_per_task = SCHED_LOAD_SCALE;
 
-               if (max_load - this_load >= busiest_load_per_task * imbn) {
+               if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
+                                       busiest_load_per_task * imbn) {
                        *imbalance = busiest_load_per_task;
                        return busiest;
                }
@@ -2517,10 +2569,8 @@ small_imbalance:
                pwr_move /= SCHED_LOAD_SCALE;
 
                /* Move if we gain throughput */
-               if (pwr_move <= pwr_now)
-                       goto out_balanced;
-
-               *imbalance = busiest_load_per_task;
+               if (pwr_move > pwr_now)
+                       *imbalance = busiest_load_per_task;
        }
 
        return busiest;
@@ -2552,17 +2602,19 @@ find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
        int i;
 
        for_each_cpu_mask(i, group->cpumask) {
+               unsigned long wl;
 
                if (!cpu_isset(i, *cpus))
                        continue;
 
                rq = cpu_rq(i);
+               wl = weighted_cpuload(i);
 
-               if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
+               if (rq->nr_running == 1 && wl > imbalance)
                        continue;
 
-               if (rq->raw_weighted_load > max_load) {
-                       max_load = rq->raw_weighted_load;
+               if (wl > max_load) {
+                       max_load = wl;
                        busiest = rq;
                }
        }
@@ -2576,11 +2628,6 @@ find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  */
 #define MAX_PINNED_INTERVAL    512
 
-static inline unsigned long minus_1_or_zero(unsigned long n)
-{
-       return n > 0 ? n - 1 : 0;
-}
-
 /*
  * Check this_cpu to ensure it is balanced within domain. Attempt to move
  * tasks if there is an imbalance.
@@ -2589,7 +2636,7 @@ static int load_balance(int this_cpu, struct rq *this_rq,
                        struct sched_domain *sd, enum cpu_idle_type idle,
                        int *balance)
 {
-       int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
+       int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
        struct sched_group *group;
        unsigned long imbalance;
        struct rq *busiest;
@@ -2599,7 +2646,7 @@ static int load_balance(int this_cpu, struct rq *this_rq,
        /*
         * When power savings policy is enabled for the parent domain, idle
         * sibling can pick up load irrespective of busy siblings. In this case,
-        * let the state of idle sibling percolate up as IDLE, instead of
+        * let the state of idle sibling percolate up as CPU_IDLE, instead of
         * portraying it as CPU_NOT_IDLE.
         */
        if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
@@ -2630,18 +2677,17 @@ redo:
 
        schedstat_add(sd, lb_imbalance[idle], imbalance);
 
-       nr_moved = 0;
+       ld_moved = 0;
        if (busiest->nr_running > 1) {
                /*
                 * Attempt to move tasks. If find_busiest_group has found
                 * an imbalance but busiest->nr_running <= 1, the group is
-                * still unbalanced. nr_moved simply stays zero, so it is
+                * still unbalanced. ld_moved simply stays zero, so it is
                 * correctly treated as an imbalance.
                 */
                local_irq_save(flags);
                double_rq_lock(this_rq, busiest);
-               nr_moved = move_tasks(this_rq, this_cpu, busiest,
-                                     minus_1_or_zero(busiest->nr_running),
+               ld_moved = move_tasks(this_rq, this_cpu, busiest,
                                      imbalance, sd, idle, &all_pinned);
                double_rq_unlock(this_rq, busiest);
                local_irq_restore(flags);
@@ -2649,7 +2695,7 @@ redo:
                /*
                 * some other cpu did the load balance for us.
                 */
-               if (nr_moved && this_cpu != smp_processor_id())
+               if (ld_moved && this_cpu != smp_processor_id())
                        resched_cpu(this_cpu);
 
                /* All tasks on this runqueue were pinned by CPU affinity */
@@ -2661,7 +2707,7 @@ redo:
                }
        }
 
-       if (!nr_moved) {
+       if (!ld_moved) {
                schedstat_inc(sd, lb_failed[idle]);
                sd->nr_balance_failed++;
 
@@ -2710,10 +2756,10 @@ redo:
                        sd->balance_interval *= 2;
        }
 
-       if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
+       if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
            !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
                return -1;
-       return nr_moved;
+       return ld_moved;
 
 out_balanced:
        schedstat_inc(sd, lb_balanced[idle]);
@@ -2745,8 +2791,9 @@ load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
        struct sched_group *group;
        struct rq *busiest = NULL;
        unsigned long imbalance;
-       int nr_moved = 0;
+       int ld_moved = 0;
        int sd_idle = 0;
+       int all_pinned = 0;
        cpumask_t cpus = CPU_MASK_ALL;
 
        /*
@@ -2779,23 +2826,25 @@ redo:
 
        schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
 
-       nr_moved = 0;
+       ld_moved = 0;
        if (busiest->nr_running > 1) {
                /* Attempt to move tasks */
                double_lock_balance(this_rq, busiest);
-               nr_moved = move_tasks(this_rq, this_cpu, busiest,
-                                       minus_1_or_zero(busiest->nr_running),
-                                       imbalance, sd, CPU_NEWLY_IDLE, NULL);
+               /* this_rq->clock is already updated */
+               update_rq_clock(busiest);
+               ld_moved = move_tasks(this_rq, this_cpu, busiest,
+                                       imbalance, sd, CPU_NEWLY_IDLE,
+                                       &all_pinned);
                spin_unlock(&busiest->lock);
 
-               if (!nr_moved) {
+               if (unlikely(all_pinned)) {
                        cpu_clear(cpu_of(busiest), cpus);
                        if (!cpus_empty(cpus))
                                goto redo;
                }
        }
 
-       if (!nr_moved) {
+       if (!ld_moved) {
                schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
                if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
                    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
@@ -2803,7 +2852,7 @@ redo:
        } else
                sd->nr_balance_failed = 0;
 
-       return nr_moved;
+       return ld_moved;
 
 out_balanced:
        schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
@@ -2822,8 +2871,8 @@ out_balanced:
 static void idle_balance(int this_cpu, struct rq *this_rq)
 {
        struct sched_domain *sd;
-       int pulled_task = 0;
-       unsigned long next_balance = jiffies + 60 *  HZ;
+       int pulled_task = -1;
+       unsigned long next_balance = jiffies + HZ;
 
        for_each_domain(this_cpu, sd) {
                unsigned long interval;
@@ -2842,12 +2891,13 @@ static void idle_balance(int this_cpu, struct rq *this_rq)
                if (pulled_task)
                        break;
        }
-       if (!pulled_task)
+       if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
                /*
                 * We are going idle. next_balance may be set based on
                 * a busy processor. So reset next_balance.
                 */
                this_rq->next_balance = next_balance;
+       }
 }
 
 /*
@@ -2879,6 +2929,8 @@ static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
 
        /* move a task from busiest_rq to target_rq */
        double_lock_balance(busiest_rq, target_rq);
+       update_rq_clock(busiest_rq);
+       update_rq_clock(target_rq);
 
        /* Search for an sd spanning us and the target CPU. */
        for_each_domain(target_cpu, sd) {
@@ -2890,9 +2942,8 @@ static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
        if (likely(sd)) {
                schedstat_inc(sd, alb_cnt);
 
-               if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
-                              RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
-                              NULL))
+               if (move_one_task(target_rq, target_cpu, busiest_rq,
+                                 sd, CPU_IDLE))
                        schedstat_inc(sd, alb_pushed);
                else
                        schedstat_inc(sd, alb_failed);
@@ -2900,32 +2951,6 @@ static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
        spin_unlock(&target_rq->lock);
 }
 
-static void update_load(struct rq *this_rq)
-{
-       unsigned long this_load;
-       unsigned int i, scale;
-
-       this_load = this_rq->raw_weighted_load;
-
-       /* Update our load: */
-       for (i = 0, scale = 1; i < 3; i++, scale += scale) {
-               unsigned long old_load, new_load;
-
-               /* scale is effectively 1 << i now, and >> i divides by scale */
-
-               old_load = this_rq->cpu_load[i];
-               new_load = this_load;
-               /*
-                * Round up the averaging division if load is increasing. This
-                * prevents us from getting stuck on 9 if the load is 10, for
-                * example.
-                */
-               if (new_load > old_load)
-                       new_load += scale-1;
-               this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
-       }
-}
-
 #ifdef CONFIG_NO_HZ
 static struct {
        atomic_t load_balancer;
@@ -3016,6 +3041,7 @@ static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
        struct sched_domain *sd;
        /* Earliest time when we have to do rebalance again */
        unsigned long next_balance = jiffies + 60*HZ;
+       int update_next_balance = 0;
 
        for_each_domain(cpu, sd) {
                if (!(sd->flags & SD_LOAD_BALANCE))
@@ -3029,6 +3055,9 @@ static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
                interval = msecs_to_jiffies(interval);
                if (unlikely(!interval))
                        interval = 1;
+               if (interval > HZ*NR_CPUS/10)
+                       interval = HZ*NR_CPUS/10;
+
 
                if (sd->flags & SD_SERIALIZE) {
                        if (!spin_trylock(&balancing))
@@ -3049,8 +3078,10 @@ static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
                if (sd->flags & SD_SERIALIZE)
                        spin_unlock(&balancing);
 out:
-               if (time_after(next_balance, sd->last_balance + interval))
+               if (time_after(next_balance, sd->last_balance + interval)) {
                        next_balance = sd->last_balance + interval;
+                       update_next_balance = 1;
+               }
 
                /*
                 * Stop the load balance at this level. There is another
@@ -3060,7 +3091,14 @@ out:
                if (!balance)
                        break;
        }
-       rq->next_balance = next_balance;
+
+       /*
+        * next_balance will be updated only when there is a need.
+        * When the cpu is attached to null domain for ex, it will not be
+        * updated.
+        */
+       if (likely(update_next_balance))
+               rq->next_balance = next_balance;
 }
 
 /*
@@ -3070,11 +3108,12 @@ out:
  */
 static void run_rebalance_domains(struct softirq_action *h)
 {
-       int local_cpu = smp_processor_id();
-       struct rq *local_rq = cpu_rq(local_cpu);
-       enum cpu_idle_type idle = local_rq->idle_at_tick ? CPU_IDLE : CPU_NOT_IDLE;
+       int this_cpu = smp_processor_id();
+       struct rq *this_rq = cpu_rq(this_cpu);
+       enum cpu_idle_type idle = this_rq->idle_at_tick ?
+                                               CPU_IDLE : CPU_NOT_IDLE;
 
-       rebalance_domains(local_cpu, idle);
+       rebalance_domains(this_cpu, idle);
 
 #ifdef CONFIG_NO_HZ
        /*
@@ -3082,13 +3121,13 @@ static void run_rebalance_domains(struct softirq_action *h)
         * balancing on behalf of the other idle cpus whose ticks are
         * stopped.
         */
-       if (local_rq->idle_at_tick &&
-           atomic_read(&nohz.load_balancer) == local_cpu) {
+       if (this_rq->idle_at_tick &&
+           atomic_read(&nohz.load_balancer) == this_cpu) {
                cpumask_t cpus = nohz.cpu_mask;
                struct rq *rq;
                int balance_cpu;
 
-               cpu_clear(local_cpu, cpus);
+               cpu_clear(this_cpu, cpus);
                for_each_cpu_mask(balance_cpu, cpus) {
                        /*
                         * If this cpu gets work to do, stop the load balancing
@@ -3101,8 +3140,8 @@ static void run_rebalance_domains(struct softirq_action *h)
                        rebalance_domains(balance_cpu, CPU_IDLE);
 
                        rq = cpu_rq(balance_cpu);
-                       if (time_after(local_rq->next_balance, rq->next_balance))
-                               local_rq->next_balance = rq->next_balance;
+                       if (time_after(this_rq->next_balance, rq->next_balance))
+                               this_rq->next_balance = rq->next_balance;
                }
        }
 #endif
@@ -3115,9 +3154,8 @@ static void run_rebalance_domains(struct softirq_action *h)
  * idle load balancing owner or decide to stop the periodic load balancing,
  * if the whole system is idle.
  */
-static inline void trigger_load_balance(int cpu)
+static inline void trigger_load_balance(struct rq *rq, int cpu)
 {
-       struct rq *rq = cpu_rq(cpu);
 #ifdef CONFIG_NO_HZ
        /*
         * If we were in the nohz mode recently and busy at the current
@@ -3169,13 +3207,28 @@ static inline void trigger_load_balance(int cpu)
        if (time_after_eq(jiffies, rq->next_balance))
                raise_softirq(SCHED_SOFTIRQ);
 }
-#else
+
+#else  /* CONFIG_SMP */
+
 /*
  * on UP we do not need to balance between CPUs:
  */
 static inline void idle_balance(int cpu, struct rq *rq)
 {
 }
+
+/* Avoid "used but not defined" warning on UP */
+static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
+                     unsigned long max_nr_move, unsigned long max_load_move,
+                     struct sched_domain *sd, enum cpu_idle_type idle,
+                     int *all_pinned, unsigned long *load_moved,
+                     int *this_best_prio, struct rq_iterator *iterator)
+{
+       *load_moved = 0;
+
+       return 0;
+}
+
 #endif
 
 DEFINE_PER_CPU(struct kernel_stat, kstat);
@@ -3195,7 +3248,8 @@ unsigned long long task_sched_runtime(struct task_struct *p)
        rq = task_rq_lock(p, &flags);
        ns = p->se.sum_exec_runtime;
        if (rq->curr == p) {
-               delta_exec = rq_clock(rq) - p->se.exec_start;
+               update_rq_clock(rq);
+               delta_exec = rq->clock - p->se.exec_start;
                if ((s64)delta_exec > 0)
                        ns += delta_exec;
        }
@@ -3277,81 +3331,6 @@ void account_steal_time(struct task_struct *p, cputime_t steal)
                cpustat->steal = cputime64_add(cpustat->steal, tmp);
 }
 
-static void task_running_tick(struct rq *rq, struct task_struct *p)
-{
-       if (p->array != rq->active) {
-               /* Task has expired but was not scheduled yet */
-               set_tsk_need_resched(p);
-               return;
-       }
-       spin_lock(&rq->lock);
-       /*
-        * The task was running during this tick - update the
-        * time slice counter. Note: we do not update a thread's
-        * priority until it either goes to sleep or uses up its
-        * timeslice. This makes it possible for interactive tasks
-        * to use up their timeslices at their highest priority levels.
-        */
-       if (rt_task(p)) {
-               /*
-                * RR tasks need a special form of timeslice management.
-                * FIFO tasks have no timeslices.
-                */
-               if ((p->policy == SCHED_RR) && !--p->time_slice) {
-                       p->time_slice = task_timeslice(p);
-                       p->first_time_slice = 0;
-                       set_tsk_need_resched(p);
-
-                       /* put it at the end of the queue: */
-                       requeue_task(p, rq->active);
-               }
-               goto out_unlock;
-       }
-       if (!--p->time_slice) {
-               dequeue_task(p, rq->active);
-               set_tsk_need_resched(p);
-               p->prio = effective_prio(p);
-               p->time_slice = task_timeslice(p);
-               p->first_time_slice = 0;
-
-               if (!rq->expired_timestamp)
-                       rq->expired_timestamp = jiffies;
-               if (!TASK_INTERACTIVE(p)) {
-                       enqueue_task(p, rq->expired);
-                       if (p->static_prio < rq->best_expired_prio)
-                               rq->best_expired_prio = p->static_prio;
-               } else
-                       enqueue_task(p, rq->active);
-       } else {
-               /*
-                * Prevent a too long timeslice allowing a task to monopolize
-                * the CPU. We do this by splitting up the timeslice into
-                * smaller pieces.
-                *
-                * Note: this does not mean the task's timeslices expire or
-                * get lost in any way, they just might be preempted by
-                * another task of equal priority. (one with higher
-                * priority would have preempted this task already.) We
-                * requeue this task to the end of the list on this priority
-                * level, which is in essence a round-robin of tasks with
-                * equal priority.
-                *
-                * This only applies to tasks in the interactive
-                * delta range with at least TIMESLICE_GRANULARITY to requeue.
-                */
-               if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
-                       p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
-                       (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
-                       (p->array == rq->active)) {
-
-                       requeue_task(p, rq->active);
-                       set_tsk_need_resched(p);
-               }
-       }
-out_unlock:
-       spin_unlock(&rq->lock);
-}
-
 /*
  * This function gets called by the timer code, with HZ frequency.
  * We call it with interrupts disabled.
@@ -3361,17 +3340,27 @@ out_unlock:
  */
 void scheduler_tick(void)
 {
-       struct task_struct *p = current;
        int cpu = smp_processor_id();
-       int idle_at_tick = idle_cpu(cpu);
        struct rq *rq = cpu_rq(cpu);
+       struct task_struct *curr = rq->curr;
+       u64 next_tick = rq->tick_timestamp + TICK_NSEC;
+
+       spin_lock(&rq->lock);
+       __update_rq_clock(rq);
+       /*
+        * Let rq->clock advance by at least TICK_NSEC:
+        */
+       if (unlikely(rq->clock < next_tick))
+               rq->clock = next_tick;
+       rq->tick_timestamp = rq->clock;
+       update_cpu_load(rq);
+       if (curr != rq->idle) /* FIXME: needed? */
+               curr->sched_class->task_tick(rq, curr);
+       spin_unlock(&rq->lock);
 
-       if (!idle_at_tick)
-               task_running_tick(rq, p);
 #ifdef CONFIG_SMP
-       update_load(rq);
-       rq->idle_at_tick = idle_at_tick;
-       trigger_load_balance(cpu);
+       rq->idle_at_tick = idle_cpu(cpu);
+       trigger_load_balance(rq, cpu);
 #endif
 }
 
@@ -3401,17 +3390,80 @@ void fastcall sub_preempt_count(int val)
        if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
                return;
        /*
-        * Is the spinlock portion underflowing?
+        * Is the spinlock portion underflowing?
+        */
+       if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
+                       !(preempt_count() & PREEMPT_MASK)))
+               return;
+
+       preempt_count() -= val;
+}
+EXPORT_SYMBOL(sub_preempt_count);
+
+#endif
+
+/*
+ * Print scheduling while atomic bug:
+ */
+static noinline void __schedule_bug(struct task_struct *prev)
+{
+       printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
+               prev->comm, preempt_count(), prev->pid);
+       debug_show_held_locks(prev);
+       if (irqs_disabled())
+               print_irqtrace_events(prev);
+       dump_stack();
+}
+
+/*
+ * Various schedule()-time debugging checks and statistics:
+ */
+static inline void schedule_debug(struct task_struct *prev)
+{
+       /*
+        * Test if we are atomic.  Since do_exit() needs to call into
+        * schedule() atomically, we ignore that path for now.
+        * Otherwise, whine if we are scheduling when we should not be.
+        */
+       if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
+               __schedule_bug(prev);
+
+       profile_hit(SCHED_PROFILING, __builtin_return_address(0));
+
+       schedstat_inc(this_rq(), sched_cnt);
+}
+
+/*
+ * Pick up the highest-prio task:
+ */
+static inline struct task_struct *
+pick_next_task(struct rq *rq, struct task_struct *prev)
+{
+       struct sched_class *class;
+       struct task_struct *p;
+
+       /*
+        * Optimization: we know that if all tasks are in
+        * the fair class we can call that function directly:
         */
-       if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
-                       !(preempt_count() & PREEMPT_MASK)))
-               return;
+       if (likely(rq->nr_running == rq->cfs.nr_running)) {
+               p = fair_sched_class.pick_next_task(rq);
+               if (likely(p))
+                       return p;
+       }
 
-       preempt_count() -= val;
+       class = sched_class_highest;
+       for ( ; ; ) {
+               p = class->pick_next_task(rq);
+               if (p)
+                       return p;
+               /*
+                * Will never be NULL as the idle class always
+                * returns a non-NULL p:
+                */
+               class = class->next;
+       }
 }
-EXPORT_SYMBOL(sub_preempt_count);
-
-#endif
 
 /*
  * schedule() is the main scheduler function.
@@ -3419,135 +3471,59 @@ EXPORT_SYMBOL(sub_preempt_count);
 asmlinkage void __sched schedule(void)
 {
        struct task_struct *prev, *next;
-       struct prio_array *array;
-       struct list_head *queue;
-       unsigned long long now;
-       unsigned long run_time;
-       int cpu, idx;
        long *switch_count;
        struct rq *rq;
-
-       /*
-        * Test if we are atomic.  Since do_exit() needs to call into
-        * schedule() atomically, we ignore that path for now.
-        * Otherwise, whine if we are scheduling when we should not be.
-        */
-       if (unlikely(in_atomic() && !current->exit_state)) {
-               printk(KERN_ERR "BUG: scheduling while atomic: "
-                       "%s/0x%08x/%d\n",
-                       current->comm, preempt_count(), current->pid);
-               debug_show_held_locks(current);
-               if (irqs_disabled())
-                       print_irqtrace_events(current);
-               dump_stack();
-       }
-       profile_hit(SCHED_PROFILING, __builtin_return_address(0));
+       int cpu;
 
 need_resched:
        preempt_disable();
-       prev = current;
+       cpu = smp_processor_id();
+       rq = cpu_rq(cpu);
+       rcu_qsctr_inc(cpu);
+       prev = rq->curr;
+       switch_count = &prev->nivcsw;
+
        release_kernel_lock(prev);
 need_resched_nonpreemptible:
-       rq = this_rq();
-
-       /*
-        * The idle thread is not allowed to schedule!
-        * Remove this check after it has been exercised a bit.
-        */
-       if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
-               printk(KERN_ERR "bad: scheduling from the idle thread!\n");
-               dump_stack();
-       }
-
-       schedstat_inc(rq, sched_cnt);
-       now = sched_clock();
-       if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
-               run_time = now - prev->timestamp;
-               if (unlikely((long long)(now - prev->timestamp) < 0))
-                       run_time = 0;
-       } else
-               run_time = NS_MAX_SLEEP_AVG;
 
-       /*
-        * Tasks charged proportionately less run_time at high sleep_avg to
-        * delay them losing their interactive status
-        */
-       run_time /= (CURRENT_BONUS(prev) ? : 1);
+       schedule_debug(prev);
 
        spin_lock_irq(&rq->lock);
+       clear_tsk_need_resched(prev);
+       __update_rq_clock(rq);
 
-       switch_count = &prev->nivcsw;
        if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
-               switch_count = &prev->nvcsw;
                if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
-                               unlikely(signal_pending(prev))))
+                               unlikely(signal_pending(prev)))) {
                        prev->state = TASK_RUNNING;
-               else {
-                       if (prev->state == TASK_UNINTERRUPTIBLE)
-                               rq->nr_uninterruptible++;
-                       deactivate_task(prev, rq);
+               } else {
+                       deactivate_task(rq, prev, 1);
                }
+               switch_count = &prev->nvcsw;
        }
 
-       cpu = smp_processor_id();
-       if (unlikely(!rq->nr_running)) {
+       if (unlikely(!rq->nr_running))
                idle_balance(cpu, rq);
-               if (!rq->nr_running) {
-                       next = rq->idle;
-                       rq->expired_timestamp = 0;
-                       goto switch_tasks;
-               }
-       }
-
-       array = rq->active;
-       if (unlikely(!array->nr_active)) {
-               /*
-                * Switch the active and expired arrays.
-                */
-               schedstat_inc(rq, sched_switch);
-               rq->active = rq->expired;
-               rq->expired = array;
-               array = rq->active;
-               rq->expired_timestamp = 0;
-               rq->best_expired_prio = MAX_PRIO;
-       }
-
-       idx = sched_find_first_bit(array->bitmap);
-       queue = array->queue + idx;
-       next = list_entry(queue->next, struct task_struct, run_list);
 
-switch_tasks:
-       if (next == rq->idle)
-               schedstat_inc(rq, sched_goidle);
-       prefetch(next);
-       prefetch_stack(next);
-       clear_tsk_need_resched(prev);
-       rcu_qsctr_inc(task_cpu(prev));
-
-       prev->timestamp = prev->last_ran = now;
+       prev->sched_class->put_prev_task(rq, prev);
+       next = pick_next_task(rq, prev);
 
        sched_info_switch(prev, next);
+
        if (likely(prev != next)) {
-               next->timestamp = next->last_ran = now;
                rq->nr_switches++;
                rq->curr = next;
                ++*switch_count;
 
-               prepare_task_switch(rq, next);
-               prev = context_switch(rq, prev, next);
-               barrier();
-               /*
-                * this_rq must be evaluated again because prev may have moved
-                * CPUs since it called schedule(), thus the 'rq' on its stack
-                * frame will be invalid.
-                */
-               finish_task_switch(this_rq(), prev);
+               context_switch(rq, prev, next); /* unlocks the rq */
        } else
                spin_unlock_irq(&rq->lock);
 
-       prev = current;
-       if (unlikely(reacquire_kernel_lock(prev) < 0))
+       if (unlikely(reacquire_kernel_lock(current) < 0)) {
+               cpu = smp_processor_id();
+               rq = cpu_rq(cpu);
                goto need_resched_nonpreemptible;
+       }
        preempt_enable_no_resched();
        if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
                goto need_resched;
@@ -3875,74 +3851,85 @@ out:
 }
 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
 
-
-#define        SLEEP_ON_VAR                                    \
-       unsigned long flags;                            \
-       wait_queue_t wait;                              \
-       init_waitqueue_entry(&wait, current);
-
-#define SLEEP_ON_HEAD                                  \
-       spin_lock_irqsave(&q->lock,flags);              \
-       __add_wait_queue(q, &wait);                     \
+static inline void
+sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
+{
+       spin_lock_irqsave(&q->lock, *flags);
+       __add_wait_queue(q, wait);
        spin_unlock(&q->lock);
+}
 
-#define        SLEEP_ON_TAIL                                   \
-       spin_lock_irq(&q->lock);                        \
-       __remove_wait_queue(q, &wait);                  \
-       spin_unlock_irqrestore(&q->lock, flags);
+static inline void
+sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
+{
+       spin_lock_irq(&q->lock);
+       __remove_wait_queue(q, wait);
+       spin_unlock_irqrestore(&q->lock, *flags);
+}
 
-void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
+void __sched interruptible_sleep_on(wait_queue_head_t *q)
 {
-       SLEEP_ON_VAR
+       unsigned long flags;
+       wait_queue_t wait;
+
+       init_waitqueue_entry(&wait, current);
 
        current->state = TASK_INTERRUPTIBLE;
 
-       SLEEP_ON_HEAD
+       sleep_on_head(q, &wait, &flags);
        schedule();
-       SLEEP_ON_TAIL
+       sleep_on_tail(q, &wait, &flags);
 }
 EXPORT_SYMBOL(interruptible_sleep_on);
 
-long fastcall __sched
+long __sched
 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
 {
-       SLEEP_ON_VAR
+       unsigned long flags;
+       wait_queue_t wait;
+
+       init_waitqueue_entry(&wait, current);
 
        current->state = TASK_INTERRUPTIBLE;
 
-       SLEEP_ON_HEAD
+       sleep_on_head(q, &wait, &flags);
        timeout = schedule_timeout(timeout);
-       SLEEP_ON_TAIL
+       sleep_on_tail(q, &wait, &flags);
 
        return timeout;
 }
 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
 
-void fastcall __sched sleep_on(wait_queue_head_t *q)
+void __sched sleep_on(wait_queue_head_t *q)
 {
-       SLEEP_ON_VAR
+       unsigned long flags;
+       wait_queue_t wait;
+
+       init_waitqueue_entry(&wait, current);
 
        current->state = TASK_UNINTERRUPTIBLE;
 
-       SLEEP_ON_HEAD
+       sleep_on_head(q, &wait, &flags);
        schedule();
-       SLEEP_ON_TAIL
+       sleep_on_tail(q, &wait, &flags);
 }
 EXPORT_SYMBOL(sleep_on);
 
-long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
+long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
 {
-       SLEEP_ON_VAR
+       unsigned long flags;
+       wait_queue_t wait;
+
+       init_waitqueue_entry(&wait, current);
 
        current->state = TASK_UNINTERRUPTIBLE;
 
-       SLEEP_ON_HEAD
+       sleep_on_head(q, &wait, &flags);
        timeout = schedule_timeout(timeout);
-       SLEEP_ON_TAIL
+       sleep_on_tail(q, &wait, &flags);
 
        return timeout;
 }
-
 EXPORT_SYMBOL(sleep_on_timeout);
 
 #ifdef CONFIG_RT_MUTEXES
@@ -3959,29 +3946,29 @@ EXPORT_SYMBOL(sleep_on_timeout);
  */
 void rt_mutex_setprio(struct task_struct *p, int prio)
 {
-       struct prio_array *array;
        unsigned long flags;
+       int oldprio, on_rq;
        struct rq *rq;
-       int oldprio;
 
        BUG_ON(prio < 0 || prio > MAX_PRIO);
 
        rq = task_rq_lock(p, &flags);
+       update_rq_clock(rq);
 
        oldprio = p->prio;
-       array = p->array;
-       if (array)
-               dequeue_task(p, array);
+       on_rq = p->se.on_rq;
+       if (on_rq)
+               dequeue_task(rq, p, 0);
+
+       if (rt_prio(prio))
+               p->sched_class = &rt_sched_class;
+       else
+               p->sched_class = &fair_sched_class;
+
        p->prio = prio;
 
-       if (array) {
-               /*
-                * If changing to an RT priority then queue it
-                * in the active array!
-                */
-               if (rt_task(p))
-                       array = rq->active;
-               enqueue_task(p, array);
+       if (on_rq) {
+               enqueue_task(rq, p, 0);
                /*
                 * Reschedule if we are currently running on this runqueue and
                 * our priority decreased, or if we are not currently running on
@@ -3990,8 +3977,9 @@ void rt_mutex_setprio(struct task_struct *p, int prio)
                if (task_running(rq, p)) {
                        if (p->prio > oldprio)
                                resched_task(rq->curr);
-               } else if (TASK_PREEMPTS_CURR(p, rq))
-                       resched_task(rq->curr);
+               } else {
+                       check_preempt_curr(rq, p);
+               }
        }
        task_rq_unlock(rq, &flags);
 }
@@ -4000,8 +3988,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio)
 
 void set_user_nice(struct task_struct *p, long nice)
 {
-       struct prio_array *array;
-       int old_prio, delta;
+       int old_prio, delta, on_rq;
        unsigned long flags;
        struct rq *rq;
 
@@ -4012,20 +3999,21 @@ void set_user_nice(struct task_struct *p, long nice)
         * the task might be in the middle of scheduling on another CPU.
         */
        rq = task_rq_lock(p, &flags);
+       update_rq_clock(rq);
        /*
         * The RT priorities are set via sched_setscheduler(), but we still
         * allow the 'normal' nice value to be set - but as expected
         * it wont have any effect on scheduling until the task is
-        * not SCHED_NORMAL/SCHED_BATCH:
+        * SCHED_FIFO/SCHED_RR:
         */
        if (task_has_rt_policy(p)) {
                p->static_prio = NICE_TO_PRIO(nice);
                goto out_unlock;
        }
-       array = p->array;
-       if (array) {
-               dequeue_task(p, array);
-               dec_raw_weighted_load(rq, p);
+       on_rq = p->se.on_rq;
+       if (on_rq) {
+               dequeue_task(rq, p, 0);
+               dec_load(rq, p);
        }
 
        p->static_prio = NICE_TO_PRIO(nice);
@@ -4034,9 +4022,9 @@ void set_user_nice(struct task_struct *p, long nice)
        p->prio = effective_prio(p);
        delta = p->prio - old_prio;
 
-       if (array) {
-               enqueue_task(p, array);
-               inc_raw_weighted_load(rq, p);
+       if (on_rq) {
+               enqueue_task(rq, p, 0);
+               inc_load(rq, p);
                /*
                 * If the task increased its priority or is running and
                 * lowered its priority, then reschedule its CPU:
@@ -4156,11 +4144,24 @@ static inline struct task_struct *find_process_by_pid(pid_t pid)
 }
 
 /* Actually do priority change: must hold rq lock. */
-static void __setscheduler(struct task_struct *p, int policy, int prio)
+static void
+__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
 {
-       BUG_ON(p->array);
+       BUG_ON(p->se.on_rq);
 
        p->policy = policy;
+       switch (p->policy) {
+       case SCHED_NORMAL:
+       case SCHED_BATCH:
+       case SCHED_IDLE:
+               p->sched_class = &fair_sched_class;
+               break;
+       case SCHED_FIFO:
+       case SCHED_RR:
+               p->sched_class = &rt_sched_class;
+               break;
+       }
+
        p->rt_priority = prio;
        p->normal_prio = normal_prio(p);
        /* we are holding p->pi_lock already */
@@ -4179,8 +4180,7 @@ static void __setscheduler(struct task_struct *p, int policy, int prio)
 int sched_setscheduler(struct task_struct *p, int policy,
                       struct sched_param *param)
 {
-       int retval, oldprio, oldpolicy = -1;
-       struct prio_array *array;
+       int retval, oldprio, oldpolicy = -1, on_rq;
        unsigned long flags;
        struct rq *rq;
 
@@ -4191,12 +4191,13 @@ recheck:
        if (policy < 0)
                policy = oldpolicy = p->policy;
        else if (policy != SCHED_FIFO && policy != SCHED_RR &&
-                       policy != SCHED_NORMAL && policy != SCHED_BATCH)
+                       policy != SCHED_NORMAL && policy != SCHED_BATCH &&
+                       policy != SCHED_IDLE)
                return -EINVAL;
        /*
         * Valid priorities for SCHED_FIFO and SCHED_RR are
-        * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
-        * SCHED_BATCH is 0.
+        * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
+        * SCHED_BATCH and SCHED_IDLE is 0.
         */
        if (param->sched_priority < 0 ||
            (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
@@ -4211,7 +4212,6 @@ recheck:
        if (!capable(CAP_SYS_NICE)) {
                if (rt_policy(policy)) {
                        unsigned long rlim_rtprio;
-                       unsigned long flags;
 
                        if (!lock_task_sighand(p, &flags))
                                return -ESRCH;
@@ -4227,6 +4227,12 @@ recheck:
                            param->sched_priority > rlim_rtprio)
                                return -EPERM;
                }
+               /*
+                * Like positive nice levels, dont allow tasks to
+                * move out of SCHED_IDLE either:
+                */
+               if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
+                       return -EPERM;
 
                /* can't change other user's priorities */
                if ((current->euid != p->euid) &&
@@ -4254,13 +4260,14 @@ recheck:
                spin_unlock_irqrestore(&p->pi_lock, flags);
                goto recheck;
        }
-       array = p->array;
-       if (array)
-               deactivate_task(p, rq);
+       update_rq_clock(rq);
+       on_rq = p->se.on_rq;
+       if (on_rq)
+               deactivate_task(rq, p, 0);
        oldprio = p->prio;
-       __setscheduler(p, policy, param->sched_priority);
-       if (array) {
-               __activate_task(p, rq);
+       __setscheduler(rq, p, policy, param->sched_priority);
+       if (on_rq) {
+               activate_task(rq, p, 0);
                /*
                 * Reschedule if we are currently running on this runqueue and
                 * our priority decreased, or if we are not currently running on
@@ -4269,8 +4276,9 @@ recheck:
                if (task_running(rq, p)) {
                        if (p->prio > oldprio)
                                resched_task(rq->curr);
-               } else if (TASK_PREEMPTS_CURR(p, rq))
-                       resched_task(rq->curr);
+               } else {
+                       check_preempt_curr(rq, p);
+               }
        }
        __task_rq_unlock(rq);
        spin_unlock_irqrestore(&p->pi_lock, flags);
@@ -4508,10 +4516,8 @@ long sched_getaffinity(pid_t pid, cpumask_t *mask)
 out_unlock:
        read_unlock(&tasklist_lock);
        mutex_unlock(&sched_hotcpu_mutex);
-       if (retval)
-               return retval;
 
-       return 0;
+       return retval;
 }
 
 /**
@@ -4542,41 +4548,15 @@ asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
 /**
  * sys_sched_yield - yield the current processor to other threads.
  *
- * This function yields the current CPU by moving the calling thread
- * to the expired array. If there are no other threads running on this
- * CPU then this function will return.
+ * This function yields the current CPU to other tasks. If there are no
+ * other threads running on this CPU then this function will return.
  */
 asmlinkage long sys_sched_yield(void)
 {
        struct rq *rq = this_rq_lock();
-       struct prio_array *array = current->array, *target = rq->expired;
 
        schedstat_inc(rq, yld_cnt);
-       /*
-        * We implement yielding by moving the task into the expired
-        * queue.
-        *
-        * (special rule: RT tasks will just roundrobin in the active
-        *  array.)
-        */
-       if (rt_task(current))
-               target = rq->active;
-
-       if (array->nr_active == 1) {
-               schedstat_inc(rq, yld_act_empty);
-               if (!rq->expired->nr_active)
-                       schedstat_inc(rq, yld_both_empty);
-       } else if (!rq->expired->nr_active)
-               schedstat_inc(rq, yld_exp_empty);
-
-       if (array != target) {
-               dequeue_task(current, array);
-               enqueue_task(current, target);
-       } else
-               /*
-                * requeue_task is cheaper so perform that if possible.
-                */
-               requeue_task(current, array);
+       current->sched_class->yield_task(rq, current);
 
        /*
         * Since we are going to call schedule() anyway, there's
@@ -4727,6 +4707,7 @@ asmlinkage long sys_sched_get_priority_max(int policy)
                break;
        case SCHED_NORMAL:
        case SCHED_BATCH:
+       case SCHED_IDLE:
                ret = 0;
                break;
        }
@@ -4751,6 +4732,7 @@ asmlinkage long sys_sched_get_priority_min(int policy)
                break;
        case SCHED_NORMAL:
        case SCHED_BATCH:
+       case SCHED_IDLE:
                ret = 0;
        }
        return ret;
@@ -4785,7 +4767,7 @@ long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
                goto out_unlock;
 
        jiffies_to_timespec(p->policy == SCHED_FIFO ?
-                               0 : task_timeslice(p), &t);
+                               0 : static_prio_timeslice(p->static_prio), &t);
        read_unlock(&tasklist_lock);
        retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
 out_nounlock:
@@ -4805,14 +4787,14 @@ static void show_task(struct task_struct *p)
        state = p->state ? __ffs(p->state) + 1 : 0;
        printk("%-13.13s %c", p->comm,
                state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
-#if (BITS_PER_LONG == 32)
+#if BITS_PER_LONG == 32
        if (state == TASK_RUNNING)
-               printk(" running ");
+               printk(" running  ");
        else
-               printk(" %08lX ", thread_saved_pc(p));
+               printk(" %08lx ", thread_saved_pc(p));
 #else
        if (state == TASK_RUNNING)
-               printk("  running task   ");
+               printk("  running task    ");
        else
                printk(" %016lx ", thread_saved_pc(p));
 #endif
@@ -4824,11 +4806,7 @@ static void show_task(struct task_struct *p)
                free = (unsigned long)n - (unsigned long)end_of_stack(p);
        }
 #endif
-       printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
-       if (!p->mm)
-               printk(" (L-TLB)\n");
-       else
-               printk(" (NOTLB)\n");
+       printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
 
        if (state != TASK_RUNNING)
                show_stack(p, NULL);
@@ -4838,14 +4816,12 @@ void show_state_filter(unsigned long state_filter)
 {
        struct task_struct *g, *p;
 
-#if (BITS_PER_LONG == 32)
-       printk("\n"
-              "                         free                        sibling\n");
-       printk("  task             PC    stack   pid father child younger older\n");
+#if BITS_PER_LONG == 32
+       printk(KERN_INFO
+               "  task                PC stack   pid father\n");
 #else
-       printk("\n"
-              "                                 free                        sibling\n");
-       printk("  task                 PC        stack   pid father child younger older\n");
+       printk(KERN_INFO
+               "  task                        PC stack   pid father\n");
 #endif
        read_lock(&tasklist_lock);
        do_each_thread(g, p) {
@@ -4860,6 +4836,9 @@ void show_state_filter(unsigned long state_filter)
 
        touch_all_softlockup_watchdogs();
 
+#ifdef CONFIG_SCHED_DEBUG
+       sysrq_sched_debug_show();
+#endif
        read_unlock(&tasklist_lock);
        /*
         * Only show locks if all tasks are dumped:
@@ -4870,7 +4849,7 @@ void show_state_filter(unsigned long state_filter)
 
 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
 {
-       /* nothing yet */
+       idle->sched_class = &idle_sched_class;
 }
 
 /**
@@ -4886,12 +4865,12 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu)
        struct rq *rq = cpu_rq(cpu);
        unsigned long flags;
 
-       idle->timestamp = sched_clock();
-       idle->array = NULL;
+       __sched_fork(idle);
+       idle->se.exec_start = sched_clock();
+
        idle->prio = idle->normal_prio = MAX_PRIO;
-       idle->state = TASK_RUNNING;
        idle->cpus_allowed = cpumask_of_cpu(cpu);
-       set_task_cpu(idle, cpu);
+       __set_task_cpu(idle, cpu);
 
        spin_lock_irqsave(&rq->lock, flags);
        rq->curr = rq->idle = idle;
@@ -4906,6 +4885,10 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu)
 #else
        task_thread_info(idle)->preempt_count = 0;
 #endif
+       /*
+        * The idle tasks have their own, simple scheduling class:
+        */
+       idle->sched_class = &idle_sched_class;
 }
 
 /*
@@ -4917,6 +4900,32 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu)
  */
 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
 
+/*
+ * Increase the granularity value when there are more CPUs,
+ * because with more CPUs the 'effective latency' as visible
+ * to users decreases. But the relationship is not linear,
+ * so pick a second-best guess by going with the log2 of the
+ * number of CPUs.
+ *
+ * This idea comes from the SD scheduler of Con Kolivas:
+ */
+static inline void sched_init_granularity(void)
+{
+       unsigned int factor = 1 + ilog2(num_online_cpus());
+       const unsigned long limit = 100000000;
+
+       sysctl_sched_min_granularity *= factor;
+       if (sysctl_sched_min_granularity > limit)
+               sysctl_sched_min_granularity = limit;
+
+       sysctl_sched_latency *= factor;
+       if (sysctl_sched_latency > limit)
+               sysctl_sched_latency = limit;
+
+       sysctl_sched_runtime_limit = sysctl_sched_latency;
+       sysctl_sched_wakeup_granularity = sysctl_sched_min_granularity / 2;
+}
+
 #ifdef CONFIG_SMP
 /*
  * This is how migration works:
@@ -4990,7 +4999,7 @@ EXPORT_SYMBOL_GPL(set_cpus_allowed);
 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
 {
        struct rq *rq_dest, *rq_src;
-       int ret = 0;
+       int ret = 0, on_rq;
 
        if (unlikely(cpu_is_offline(dest_cpu)))
                return ret;
@@ -5006,20 +5015,14 @@ static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
        if (!cpu_isset(dest_cpu, p->cpus_allowed))
                goto out;
 
+       on_rq = p->se.on_rq;
+       if (on_rq)
+               deactivate_task(rq_src, p, 0);
+
        set_task_cpu(p, dest_cpu);
-       if (p->array) {
-               /*
-                * Sync timestamp with rq_dest's before activating.
-                * The same thing could be achieved by doing this step
-                * afterwards, and pretending it was a local activate.
-                * This way is cleaner and logically correct.
-                */
-               p->timestamp = p->timestamp - rq_src->most_recent_timestamp
-                               + rq_dest->most_recent_timestamp;
-               deactivate_task(p, rq_src);
-               __activate_task(p, rq_dest);
-               if (TASK_PREEMPTS_CURR(p, rq_dest))
-                       resched_task(rq_dest->curr);
+       if (on_rq) {
+               activate_task(rq_dest, p, 0);
+               check_preempt_curr(rq_dest, p);
        }
        ret = 1;
 out:
@@ -5045,8 +5048,6 @@ static int migration_thread(void *data)
                struct migration_req *req;
                struct list_head *head;
 
-               try_to_freeze();
-
                spin_lock_irq(&rq->lock);
 
                if (cpu_is_offline(cpu)) {
@@ -5171,7 +5172,8 @@ static void migrate_live_tasks(int src_cpu)
        write_unlock_irq(&tasklist_lock);
 }
 
-/* Schedules idle task to be the next runnable task on current CPU.
+/*
+ * Schedules idle task to be the next runnable task on current CPU.
  * It does so by boosting its priority to highest possible and adding it to
  * the _front_ of the runqueue. Used by CPU offline code.
  */
@@ -5191,10 +5193,10 @@ void sched_idle_next(void)
         */
        spin_lock_irqsave(&rq->lock, flags);
 
-       __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
+       __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
 
        /* Add idle task to the _front_ of its priority queue: */
-       __activate_idle_task(p, rq);
+       activate_idle_task(p, rq);
 
        spin_unlock_irqrestore(&rq->lock, flags);
 }
@@ -5244,20 +5246,142 @@ static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
 static void migrate_dead_tasks(unsigned int dead_cpu)
 {
        struct rq *rq = cpu_rq(dead_cpu);
-       unsigned int arr, i;
+       struct task_struct *next;
 
-       for (arr = 0; arr < 2; arr++) {
-               for (i = 0; i < MAX_PRIO; i++) {
-                       struct list_head *list = &rq->arrays[arr].queue[i];
+       for ( ; ; ) {
+               if (!rq->nr_running)
+                       break;
+               update_rq_clock(rq);
+               next = pick_next_task(rq, rq->curr);
+               if (!next)
+                       break;
+               migrate_dead(dead_cpu, next);
 
-                       while (!list_empty(list))
-                               migrate_dead(dead_cpu, list_entry(list->next,
-                                            struct task_struct, run_list));
-               }
        }
 }
 #endif /* CONFIG_HOTPLUG_CPU */
 
+#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
+
+static struct ctl_table sd_ctl_dir[] = {
+       {
+               .procname       = "sched_domain",
+               .mode           = 0555,
+       },
+       {0,},
+};
+
+static struct ctl_table sd_ctl_root[] = {
+       {
+               .ctl_name       = CTL_KERN,
+               .procname       = "kernel",
+               .mode           = 0555,
+               .child          = sd_ctl_dir,
+       },
+       {0,},
+};
+
+static struct ctl_table *sd_alloc_ctl_entry(int n)
+{
+       struct ctl_table *entry =
+               kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
+
+       BUG_ON(!entry);
+       memset(entry, 0, n * sizeof(struct ctl_table));
+
+       return entry;
+}
+
+static void
+set_table_entry(struct ctl_table *entry,
+               const char *procname, void *data, int maxlen,
+               mode_t mode, proc_handler *proc_handler)
+{
+       entry->procname = procname;
+       entry->data = data;
+       entry->maxlen = maxlen;
+       entry->mode = mode;
+       entry->proc_handler = proc_handler;
+}
+
+static struct ctl_table *
+sd_alloc_ctl_domain_table(struct sched_domain *sd)
+{
+       struct ctl_table *table = sd_alloc_ctl_entry(14);
+
+       set_table_entry(&table[0], "min_interval", &sd->min_interval,
+               sizeof(long), 0644, proc_doulongvec_minmax);
+       set_table_entry(&table[1], "max_interval", &sd->max_interval,
+               sizeof(long), 0644, proc_doulongvec_minmax);
+       set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
+               sizeof(int), 0644, proc_dointvec_minmax);
+       set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
+               sizeof(int), 0644, proc_dointvec_minmax);
+       set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
+               sizeof(int), 0644, proc_dointvec_minmax);
+       set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
+               sizeof(int), 0644, proc_dointvec_minmax);
+       set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
+               sizeof(int), 0644, proc_dointvec_minmax);
+       set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
+               sizeof(int), 0644, proc_dointvec_minmax);
+       set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
+               sizeof(int), 0644, proc_dointvec_minmax);
+       set_table_entry(&table[10], "cache_nice_tries",
+               &sd->cache_nice_tries,
+               sizeof(int), 0644, proc_dointvec_minmax);
+       set_table_entry(&table[12], "flags", &sd->flags,
+               sizeof(int), 0644, proc_dointvec_minmax);
+
+       return table;
+}
+
+static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
+{
+       struct ctl_table *entry, *table;
+       struct sched_domain *sd;
+       int domain_num = 0, i;
+       char buf[32];
+
+       for_each_domain(cpu, sd)
+               domain_num++;
+       entry = table = sd_alloc_ctl_entry(domain_num + 1);
+
+       i = 0;
+       for_each_domain(cpu, sd) {
+               snprintf(buf, 32, "domain%d", i);
+               entry->procname = kstrdup(buf, GFP_KERNEL);
+               entry->mode = 0555;
+               entry->child = sd_alloc_ctl_domain_table(sd);
+               entry++;
+               i++;
+       }
+       return table;
+}
+
+static struct ctl_table_header *sd_sysctl_header;
+static void init_sched_domain_sysctl(void)
+{
+       int i, cpu_num = num_online_cpus();
+       struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
+       char buf[32];
+
+       sd_ctl_dir[0].child = entry;
+
+       for (i = 0; i < cpu_num; i++, entry++) {
+               snprintf(buf, 32, "cpu%d", i);
+               entry->procname = kstrdup(buf, GFP_KERNEL);
+               entry->mode = 0555;
+               entry->child = sd_alloc_ctl_cpu_table(i);
+       }
+       sd_sysctl_header = register_sysctl_table(sd_ctl_root);
+}
+#else
+static void init_sched_domain_sysctl(void)
+{
+}
+#endif
+
 /*
  * migration_call - callback that gets triggered when a CPU is added.
  * Here we can start up the necessary migration thread for the new CPU.
@@ -5277,14 +5401,13 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
 
        case CPU_UP_PREPARE:
        case CPU_UP_PREPARE_FROZEN:
-               p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
+               p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
                if (IS_ERR(p))
                        return NOTIFY_BAD;
-               p->flags |= PF_NOFREEZE;
                kthread_bind(p, cpu);
                /* Must be high prio: stop_machine expects to yield to it. */
                rq = task_rq_lock(p, &flags);
-               __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
+               __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
                task_rq_unlock(rq, &flags);
                cpu_rq(cpu)->migration_thread = p;
                break;
@@ -5315,9 +5438,11 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
                rq->migration_thread = NULL;
                /* Idle task back to normal (off runqueue, low prio) */
                rq = task_rq_lock(rq->idle, &flags);
-               deactivate_task(rq->idle, rq);
+               update_rq_clock(rq);
+               deactivate_task(rq, rq->idle, 0);
                rq->idle->static_prio = MAX_PRIO;
-               __setscheduler(rq->idle, SCHED_NORMAL, 0);
+               __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
+               rq->idle->sched_class = &idle_sched_class;
                migrate_dead_tasks(cpu);
                task_rq_unlock(rq, &flags);
                migrate_nr_uninterruptible(rq);
@@ -5926,7 +6051,6 @@ static void init_sched_groups_power(int cpu, struct sched_domain *sd)
 static int build_sched_domains(const cpumask_t *cpu_map)
 {
        int i;
-       struct sched_domain *sd;
 #ifdef CONFIG_NUMA
        struct sched_group **sched_group_nodes = NULL;
        int sd_allnodes = 0;
@@ -5934,7 +6058,7 @@ static int build_sched_domains(const cpumask_t *cpu_map)
        /*
         * Allocate the per-node list of sched groups
         */
-       sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
+       sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
                                           GFP_KERNEL);
        if (!sched_group_nodes) {
                printk(KERN_WARNING "Can not alloc sched group node list\n");
@@ -5953,8 +6077,8 @@ static int build_sched_domains(const cpumask_t *cpu_map)
                cpus_and(nodemask, nodemask, *cpu_map);
 
 #ifdef CONFIG_NUMA
-               if (cpus_weight(*cpu_map)
-                               SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
+               if (cpus_weight(*cpu_map) >
+                               SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
                        sd = &per_cpu(allnodes_domains, i);
                        *sd = SD_ALLNODES_INIT;
                        sd->span = *cpu_map;
@@ -6013,7 +6137,8 @@ static int build_sched_domains(const cpumask_t *cpu_map)
                if (i != first_cpu(this_sibling_map))
                        continue;
 
-               init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
+               init_sched_build_groups(this_sibling_map, cpu_map,
+                                       &cpu_to_cpu_group);
        }
 #endif
 
@@ -6024,11 +6149,11 @@ static int build_sched_domains(const cpumask_t *cpu_map)
                cpus_and(this_core_map, this_core_map, *cpu_map);
                if (i != first_cpu(this_core_map))
                        continue;
-               init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
+               init_sched_build_groups(this_core_map, cpu_map,
+                                       &cpu_to_core_group);
        }
 #endif
 
-
        /* Set up physical groups */
        for (i = 0; i < MAX_NUMNODES; i++) {
                cpumask_t nodemask = node_to_cpumask(i);
@@ -6043,7 +6168,8 @@ static int build_sched_domains(const cpumask_t *cpu_map)
 #ifdef CONFIG_NUMA
        /* Set up node groups */
        if (sd_allnodes)
-               init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
+               init_sched_build_groups(*cpu_map, cpu_map,
+                                       &cpu_to_allnodes_group);
 
        for (i = 0; i < MAX_NUMNODES; i++) {
                /* Set up node groups */
@@ -6071,6 +6197,7 @@ static int build_sched_domains(const cpumask_t *cpu_map)
                sched_group_nodes[i] = sg;
                for_each_cpu_mask(j, nodemask) {
                        struct sched_domain *sd;
+
                        sd = &per_cpu(node_domains, j);
                        sd->groups = sg;
                }
@@ -6115,19 +6242,22 @@ static int build_sched_domains(const cpumask_t *cpu_map)
        /* Calculate CPU power for physical packages and nodes */
 #ifdef CONFIG_SCHED_SMT
        for_each_cpu_mask(i, *cpu_map) {
-               sd = &per_cpu(cpu_domains, i);
+               struct sched_domain *sd = &per_cpu(cpu_domains, i);
+
                init_sched_groups_power(i, sd);
        }
 #endif
 #ifdef CONFIG_SCHED_MC
        for_each_cpu_mask(i, *cpu_map) {
-               sd = &per_cpu(core_domains, i);
+               struct sched_domain *sd = &per_cpu(core_domains, i);
+
                init_sched_groups_power(i, sd);
        }
 #endif
 
        for_each_cpu_mask(i, *cpu_map) {
-               sd = &per_cpu(phys_domains, i);
+               struct sched_domain *sd = &per_cpu(phys_domains, i);
+
                init_sched_groups_power(i, sd);
        }
 
@@ -6231,7 +6361,7 @@ int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
 }
 
 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
-int arch_reinit_sched_domains(void)
+static int arch_reinit_sched_domains(void)
 {
        int err;
 
@@ -6260,24 +6390,6 @@ static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
        return ret ? ret : count;
 }
 
-int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
-{
-       int err = 0;
-
-#ifdef CONFIG_SCHED_SMT
-       if (smt_capable())
-               err = sysfs_create_file(&cls->kset.kobj,
-                                       &attr_sched_smt_power_savings.attr);
-#endif
-#ifdef CONFIG_SCHED_MC
-       if (!err && mc_capable())
-               err = sysfs_create_file(&cls->kset.kobj,
-                                       &attr_sched_mc_power_savings.attr);
-#endif
-       return err;
-}
-#endif
-
 #ifdef CONFIG_SCHED_MC
 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
 {
@@ -6288,8 +6400,8 @@ static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
 {
        return sched_power_savings_store(buf, count, 0);
 }
-SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
-           sched_mc_power_savings_store);
+static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
+                  sched_mc_power_savings_store);
 #endif
 
 #ifdef CONFIG_SCHED_SMT
@@ -6302,8 +6414,26 @@ static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
 {
        return sched_power_savings_store(buf, count, 1);
 }
-SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
-           sched_smt_power_savings_store);
+static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
+                  sched_smt_power_savings_store);
+#endif
+
+int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
+{
+       int err = 0;
+
+#ifdef CONFIG_SCHED_SMT
+       if (smt_capable())
+               err = sysfs_create_file(&cls->kset.kobj,
+                                       &attr_sched_smt_power_savings.attr);
+#endif
+#ifdef CONFIG_SCHED_MC
+       if (!err && mc_capable())
+               err = sysfs_create_file(&cls->kset.kobj,
+                                       &attr_sched_mc_power_savings.attr);
+#endif
+       return err;
+}
 #endif
 
 /*
@@ -6358,13 +6488,17 @@ void __init sched_init_smp(void)
        /* XXX: Theoretical race here - CPU may be hotplugged now */
        hotcpu_notifier(update_sched_domains, 0);
 
+       init_sched_domain_sysctl();
+
        /* Move init over to a non-isolated CPU */
        if (set_cpus_allowed(current, non_isolated_cpus) < 0)
                BUG();
+       sched_init_granularity();
 }
 #else
 void __init sched_init_smp(void)
 {
+       sched_init_granularity();
 }
 #endif /* CONFIG_SMP */
 
@@ -6378,28 +6512,51 @@ int in_sched_functions(unsigned long addr)
                && addr < (unsigned long)__sched_text_end);
 }
 
+static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
+{
+       cfs_rq->tasks_timeline = RB_ROOT;
+       cfs_rq->fair_clock = 1;
+#ifdef CONFIG_FAIR_GROUP_SCHED
+       cfs_rq->rq = rq;
+#endif
+}
+
 void __init sched_init(void)
 {
-       int i, j, k;
+       u64 now = sched_clock();
        int highest_cpu = 0;
+       int i, j;
+
+       /*
+        * Link up the scheduling class hierarchy:
+        */
+       rt_sched_class.next = &fair_sched_class;
+       fair_sched_class.next = &idle_sched_class;
+       idle_sched_class.next = NULL;
 
        for_each_possible_cpu(i) {
-               struct prio_array *array;
+               struct rt_prio_array *array;
                struct rq *rq;
 
                rq = cpu_rq(i);
                spin_lock_init(&rq->lock);
                lockdep_set_class(&rq->lock, &rq->rq_lock_key);
                rq->nr_running = 0;
-               rq->active = rq->arrays;
-               rq->expired = rq->arrays + 1;
-               rq->best_expired_prio = MAX_PRIO;
+               rq->clock = 1;
+               init_cfs_rq(&rq->cfs, rq);
+#ifdef CONFIG_FAIR_GROUP_SCHED
+               INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
+               list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
+#endif
+               rq->ls.load_update_last = now;
+               rq->ls.load_update_start = now;
 
+               for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
+                       rq->cpu_load[j] = 0;
 #ifdef CONFIG_SMP
                rq->sd = NULL;
-               for (j = 1; j < 3; j++)
-                       rq->cpu_load[j] = 0;
                rq->active_balance = 0;
+               rq->next_balance = jiffies;
                rq->push_cpu = 0;
                rq->cpu = i;
                rq->migration_thread = NULL;
@@ -6407,20 +6564,22 @@ void __init sched_init(void)
 #endif
                atomic_set(&rq->nr_iowait, 0);
 
-               for (j = 0; j < 2; j++) {
-                       array = rq->arrays + j;
-                       for (k = 0; k < MAX_PRIO; k++) {
-                               INIT_LIST_HEAD(array->queue + k);
-                               __clear_bit(k, array->bitmap);
-                       }
-                       // delimiter for bitsearch
-                       __set_bit(MAX_PRIO, array->bitmap);
+               array = &rq->rt.active;
+               for (j = 0; j < MAX_RT_PRIO; j++) {
+                       INIT_LIST_HEAD(array->queue + j);
+                       __clear_bit(j, array->bitmap);
                }
                highest_cpu = i;
+               /* delimiter for bitsearch: */
+               __set_bit(MAX_RT_PRIO, array->bitmap);
        }
 
        set_load_weight(&init_task);
 
+#ifdef CONFIG_PREEMPT_NOTIFIERS
+       INIT_HLIST_HEAD(&init_task.preempt_notifiers);
+#endif
+
 #ifdef CONFIG_SMP
        nr_cpu_ids = highest_cpu + 1;
        open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
@@ -6443,6 +6602,10 @@ void __init sched_init(void)
         * when this runqueue becomes "idle".
         */
        init_idle(current, smp_processor_id());
+       /*
+        * During early bootup we pretend to be a normal task:
+        */
+       current->sched_class = &fair_sched_class;
 }
 
 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
@@ -6473,29 +6636,58 @@ EXPORT_SYMBOL(__might_sleep);
 #ifdef CONFIG_MAGIC_SYSRQ
 void normalize_rt_tasks(void)
 {
-       struct prio_array *array;
        struct task_struct *g, *p;
        unsigned long flags;
        struct rq *rq;
+       int on_rq;
 
        read_lock_irq(&tasklist_lock);
-
        do_each_thread(g, p) {
-               if (!rt_task(p))
+               p->se.fair_key                  = 0;
+               p->se.wait_runtime              = 0;
+               p->se.exec_start                = 0;
+               p->se.wait_start_fair           = 0;
+               p->se.sleep_start_fair          = 0;
+#ifdef CONFIG_SCHEDSTATS
+               p->se.wait_start                = 0;
+               p->se.sleep_start               = 0;
+               p->se.block_start               = 0;
+#endif
+               task_rq(p)->cfs.fair_clock      = 0;
+               task_rq(p)->clock               = 0;
+
+               if (!rt_task(p)) {
+                       /*
+                        * Renice negative nice level userspace
+                        * tasks back to 0:
+                        */
+                       if (TASK_NICE(p) < 0 && p->mm)
+                               set_user_nice(p, 0);
                        continue;
+               }
 
                spin_lock_irqsave(&p->pi_lock, flags);
                rq = __task_rq_lock(p);
+#ifdef CONFIG_SMP
+               /*
+                * Do not touch the migration thread:
+                */
+               if (p == rq->migration_thread)
+                       goto out_unlock;
+#endif
 
-               array = p->array;
-               if (array)
-                       deactivate_task(p, task_rq(p));
-               __setscheduler(p, SCHED_NORMAL, 0);
-               if (array) {
-                       __activate_task(p, task_rq(p));
+               update_rq_clock(rq);
+               on_rq = p->se.on_rq;
+               if (on_rq)
+                       deactivate_task(rq, p, 0);
+               __setscheduler(rq, p, SCHED_NORMAL, 0);
+               if (on_rq) {
+                       activate_task(rq, p, 0);
                        resched_task(rq->curr);
                }
-
+#ifdef CONFIG_SMP
+ out_unlock:
+#endif
                __task_rq_unlock(rq);
                spin_unlock_irqrestore(&p->pi_lock, flags);
        } while_each_thread(g, p);