e1000: test link state conclusively
[safe/jmp/linux-2.6] / drivers / net / e1000 / e1000_hw.c
index a6f8f4f..076db19 100644 (file)
@@ -1,25 +1,24 @@
 /*******************************************************************************
 
-  
-  Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
-  
-  This program is free software; you can redistribute it and/or modify it 
-  under the terms of the GNU General Public License as published by the Free 
-  Software Foundation; either version 2 of the License, or (at your option) 
-  any later version.
-  
-  This program is distributed in the hope that it will be useful, but WITHOUT 
-  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
-  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2006 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
   more details.
-  
+
   You should have received a copy of the GNU General Public License along with
-  this program; if not, write to the Free Software Foundation, Inc., 59 
-  Temple Place - Suite 330, Boston, MA  02111-1307, USA.
-  
-  The full GNU General Public License is included in this distribution in the
-  file called LICENSE.
-  
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
   Contact Information:
   Linux NICS <linux.nics@intel.com>
   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 
 #include "e1000_hw.h"
 
-static int32_t e1000_set_phy_type(struct e1000_hw *hw);
-static void e1000_phy_init_script(struct e1000_hw *hw);
-static int32_t e1000_setup_copper_link(struct e1000_hw *hw);
-static int32_t e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
-static int32_t e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
-static int32_t e1000_phy_force_speed_duplex(struct e1000_hw *hw);
-static int32_t e1000_config_mac_to_phy(struct e1000_hw *hw);
-static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
-static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
-static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data,
-                                     uint16_t count);
-static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw);
-static int32_t e1000_phy_reset_dsp(struct e1000_hw *hw);
-static int32_t e1000_write_eeprom_spi(struct e1000_hw *hw, uint16_t offset,
-                                      uint16_t words, uint16_t *data);
-static int32_t e1000_write_eeprom_microwire(struct e1000_hw *hw,
-                                            uint16_t offset, uint16_t words,
-                                            uint16_t *data);
-static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw);
-static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
-static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
-static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data,
-                                    uint16_t count);
-static int32_t e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
-                                      uint16_t phy_data);
-static int32_t e1000_read_phy_reg_ex(struct e1000_hw *hw,uint32_t reg_addr,
-                                     uint16_t *phy_data);
-static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count);
-static int32_t e1000_acquire_eeprom(struct e1000_hw *hw);
-static void e1000_release_eeprom(struct e1000_hw *hw);
-static void e1000_standby_eeprom(struct e1000_hw *hw);
-static int32_t e1000_set_vco_speed(struct e1000_hw *hw);
-static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw);
-static int32_t e1000_set_phy_mode(struct e1000_hw *hw);
-static int32_t e1000_host_if_read_cookie(struct e1000_hw *hw, uint8_t *buffer);
-static uint8_t e1000_calculate_mng_checksum(char *buffer, uint32_t length);
-static uint8_t e1000_arc_subsystem_valid(struct e1000_hw *hw);
-static int32_t e1000_check_downshift(struct e1000_hw *hw);
-static int32_t e1000_check_polarity(struct e1000_hw *hw, uint16_t *polarity);
+static s32 e1000_check_downshift(struct e1000_hw *hw);
+static s32 e1000_check_polarity(struct e1000_hw *hw,
+                               e1000_rev_polarity *polarity);
 static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
 static void e1000_clear_vfta(struct e1000_hw *hw);
-static int32_t e1000_commit_shadow_ram(struct e1000_hw *hw);
-static int32_t e1000_config_dsp_after_link_change(struct e1000_hw *hw,
-                                                 boolean_t link_up);
-static int32_t e1000_config_fc_after_link_up(struct e1000_hw *hw);
-static int32_t e1000_detect_gig_phy(struct e1000_hw *hw);
-static int32_t e1000_get_auto_rd_done(struct e1000_hw *hw);
-static int32_t e1000_get_cable_length(struct e1000_hw *hw,
-                                     uint16_t *min_length,
-                                     uint16_t *max_length);
-static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
-static int32_t e1000_get_phy_cfg_done(struct e1000_hw *hw);
-static int32_t e1000_id_led_init(struct e1000_hw * hw);
+static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
+                                             bool link_up);
+static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
+static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
+static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
+static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
+                                 u16 *max_length);
+static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
+static s32 e1000_id_led_init(struct e1000_hw *hw);
 static void e1000_init_rx_addrs(struct e1000_hw *hw);
-static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw);
-static int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd);
-static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
-static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw, uint16_t offset,
-                                     uint16_t words, uint16_t *data);
-static int32_t e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active);
-static int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active);
-static int32_t e1000_wait_autoneg(struct e1000_hw *hw);
-
-static void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset,
-                              uint32_t value);
-
-#define E1000_WRITE_REG_IO(a, reg, val) \
-           e1000_write_reg_io((a), E1000_##reg, val)
-static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw,
-                                               uint16_t duplex);
-static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw);
-
-static int32_t e1000_erase_ich8_4k_segment(struct e1000_hw *hw,
-                                          uint32_t segment);
-static int32_t e1000_get_software_flag(struct e1000_hw *hw);
-static int32_t e1000_get_software_semaphore(struct e1000_hw *hw);
-static int32_t e1000_init_lcd_from_nvm(struct e1000_hw *hw);
-static int32_t e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw);
-static int32_t e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset,
-                                     uint16_t words, uint16_t *data);
-static int32_t e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index,
-                                   uint8_t* data);
-static int32_t e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index,
-                                   uint16_t *data);
-static int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr,
-                                  uint16_t *data);
-static void e1000_release_software_flag(struct e1000_hw *hw);
-static void e1000_release_software_semaphore(struct e1000_hw *hw);
-static int32_t e1000_set_pci_ex_no_snoop(struct e1000_hw *hw,
-                                        uint32_t no_snoop);
-static int32_t e1000_verify_write_ich8_byte(struct e1000_hw *hw,
-                                           uint32_t index, uint8_t byte);
-static int32_t e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset,
-                                      uint16_t words, uint16_t *data);
-static int32_t e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index,
-                                    uint8_t data);
-static int32_t e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr,
-                                   uint16_t data);
+static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
+                                 struct e1000_phy_info *phy_info);
+static s32 e1000_read_eeprom_eerd(struct e1000_hw *hw, u16 offset, u16 words,
+                                 u16 *data);
+static s32 e1000_write_eeprom_eewr(struct e1000_hw *hw, u16 offset, u16 words,
+                                  u16 *data);
+static s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd);
+static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
+                                 struct e1000_phy_info *phy_info);
+static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
+static s32 e1000_wait_autoneg(struct e1000_hw *hw);
+static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
+static s32 e1000_set_phy_type(struct e1000_hw *hw);
+static void e1000_phy_init_script(struct e1000_hw *hw);
+static s32 e1000_setup_copper_link(struct e1000_hw *hw);
+static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
+static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
+static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
+static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
+static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
+static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
+static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data,
+                                    u16 count);
+static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
+static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
+static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
+                                      u16 words, u16 *data);
+static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
+                                       u16 words, u16 *data);
+static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
+static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
+static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
+static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
+static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
+                                 u16 phy_data);
+static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw,u32 reg_addr,
+                                u16 *phy_data);
+static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
+static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
+static void e1000_release_eeprom(struct e1000_hw *hw);
+static void e1000_standby_eeprom(struct e1000_hw *hw);
+static s32 e1000_set_vco_speed(struct e1000_hw *hw);
+static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
+static s32 e1000_set_phy_mode(struct e1000_hw *hw);
+static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
 
 /* IGP cable length table */
 static const
-uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
+u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
     { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
       5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
       25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
@@ -145,25 +107,14 @@ uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
       100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
       110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
 
-static const
-uint16_t e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] =
-    { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
-      0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
-      6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
-      21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
-      40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
-      60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
-      83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
-      104, 109, 114, 118, 121, 124};
-
+static DEFINE_SPINLOCK(e1000_eeprom_lock);
 
 /******************************************************************************
  * Set the phy type member in the hw struct.
  *
  * hw - Struct containing variables accessed by shared code
  *****************************************************************************/
-int32_t
-e1000_set_phy_type(struct e1000_hw *hw)
+static s32 e1000_set_phy_type(struct e1000_hw *hw)
 {
     DEBUGFUNC("e1000_set_phy_type");
 
@@ -185,20 +136,6 @@ e1000_set_phy_type(struct e1000_hw *hw)
             hw->phy_type = e1000_phy_igp;
             break;
         }
-    case IGP03E1000_E_PHY_ID:
-        hw->phy_type = e1000_phy_igp_3;
-        break;
-    case IFE_E_PHY_ID:
-    case IFE_PLUS_E_PHY_ID:
-    case IFE_C_E_PHY_ID:
-        hw->phy_type = e1000_phy_ife;
-        break;
-    case GG82563_E_PHY_ID:
-        if (hw->mac_type == e1000_80003es2lan) {
-            hw->phy_type = e1000_phy_gg82563;
-            break;
-        }
-        /* Fall Through */
     default:
         /* Should never have loaded on this device */
         hw->phy_type = e1000_phy_undefined;
@@ -208,22 +145,20 @@ e1000_set_phy_type(struct e1000_hw *hw)
     return E1000_SUCCESS;
 }
 
-
 /******************************************************************************
  * IGP phy init script - initializes the GbE PHY
  *
  * hw - Struct containing variables accessed by shared code
  *****************************************************************************/
-static void
-e1000_phy_init_script(struct e1000_hw *hw)
+static void e1000_phy_init_script(struct e1000_hw *hw)
 {
-    uint32_t ret_val;
-    uint16_t phy_saved_data;
+    u32 ret_val;
+    u16 phy_saved_data;
 
     DEBUGFUNC("e1000_phy_init_script");
 
     if (hw->phy_init_script) {
-        msec_delay(20);
+        msleep(20);
 
         /* Save off the current value of register 0x2F5B to be restored at
          * the end of this routine. */
@@ -232,11 +167,11 @@ e1000_phy_init_script(struct e1000_hw *hw)
         /* Disabled the PHY transmitter */
         e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
 
-        msec_delay(20);
+        msleep(20);
 
         e1000_write_phy_reg(hw,0x0000,0x0140);
 
-        msec_delay(5);
+        msleep(5);
 
         switch (hw->mac_type) {
         case e1000_82541:
@@ -270,13 +205,13 @@ e1000_phy_init_script(struct e1000_hw *hw)
 
         e1000_write_phy_reg(hw, 0x0000, 0x3300);
 
-        msec_delay(20);
+        msleep(20);
 
         /* Now enable the transmitter */
         e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
 
         if (hw->mac_type == e1000_82547) {
-            uint16_t fused, fine, coarse;
+            u16 fused, fine, coarse;
 
             /* Move to analog registers page */
             e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
@@ -310,141 +245,107 @@ e1000_phy_init_script(struct e1000_hw *hw)
  *
  * hw - Struct containing variables accessed by shared code
  *****************************************************************************/
-int32_t
-e1000_set_mac_type(struct e1000_hw *hw)
-{
-    DEBUGFUNC("e1000_set_mac_type");
-
-    switch (hw->device_id) {
-    case E1000_DEV_ID_82542:
-        switch (hw->revision_id) {
-        case E1000_82542_2_0_REV_ID:
-            hw->mac_type = e1000_82542_rev2_0;
-            break;
-        case E1000_82542_2_1_REV_ID:
-            hw->mac_type = e1000_82542_rev2_1;
-            break;
-        default:
-            /* Invalid 82542 revision ID */
-            return -E1000_ERR_MAC_TYPE;
-        }
-        break;
-    case E1000_DEV_ID_82543GC_FIBER:
-    case E1000_DEV_ID_82543GC_COPPER:
-        hw->mac_type = e1000_82543;
-        break;
-    case E1000_DEV_ID_82544EI_COPPER:
-    case E1000_DEV_ID_82544EI_FIBER:
-    case E1000_DEV_ID_82544GC_COPPER:
-    case E1000_DEV_ID_82544GC_LOM:
-        hw->mac_type = e1000_82544;
-        break;
-    case E1000_DEV_ID_82540EM:
-    case E1000_DEV_ID_82540EM_LOM:
-    case E1000_DEV_ID_82540EP:
-    case E1000_DEV_ID_82540EP_LOM:
-    case E1000_DEV_ID_82540EP_LP:
-        hw->mac_type = e1000_82540;
-        break;
-    case E1000_DEV_ID_82545EM_COPPER:
-    case E1000_DEV_ID_82545EM_FIBER:
-        hw->mac_type = e1000_82545;
-        break;
-    case E1000_DEV_ID_82545GM_COPPER:
-    case E1000_DEV_ID_82545GM_FIBER:
-    case E1000_DEV_ID_82545GM_SERDES:
-        hw->mac_type = e1000_82545_rev_3;
-        break;
-    case E1000_DEV_ID_82546EB_COPPER:
-    case E1000_DEV_ID_82546EB_FIBER:
-    case E1000_DEV_ID_82546EB_QUAD_COPPER:
-        hw->mac_type = e1000_82546;
-        break;
-    case E1000_DEV_ID_82546GB_COPPER:
-    case E1000_DEV_ID_82546GB_FIBER:
-    case E1000_DEV_ID_82546GB_SERDES:
-    case E1000_DEV_ID_82546GB_PCIE:
-    case E1000_DEV_ID_82546GB_QUAD_COPPER:
-    case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
-        hw->mac_type = e1000_82546_rev_3;
-        break;
-    case E1000_DEV_ID_82541EI:
-    case E1000_DEV_ID_82541EI_MOBILE:
-    case E1000_DEV_ID_82541ER_LOM:
-        hw->mac_type = e1000_82541;
-        break;
-    case E1000_DEV_ID_82541ER:
-    case E1000_DEV_ID_82541GI:
-    case E1000_DEV_ID_82541GI_LF:
-    case E1000_DEV_ID_82541GI_MOBILE:
-        hw->mac_type = e1000_82541_rev_2;
-        break;
-    case E1000_DEV_ID_82547EI:
-    case E1000_DEV_ID_82547EI_MOBILE:
-        hw->mac_type = e1000_82547;
-        break;
-    case E1000_DEV_ID_82547GI:
-        hw->mac_type = e1000_82547_rev_2;
-        break;
-    case E1000_DEV_ID_82571EB_COPPER:
-    case E1000_DEV_ID_82571EB_FIBER:
-    case E1000_DEV_ID_82571EB_SERDES:
-    case E1000_DEV_ID_82571EB_QUAD_COPPER:
-            hw->mac_type = e1000_82571;
-        break;
-    case E1000_DEV_ID_82572EI_COPPER:
-    case E1000_DEV_ID_82572EI_FIBER:
-    case E1000_DEV_ID_82572EI_SERDES:
-    case E1000_DEV_ID_82572EI:
-        hw->mac_type = e1000_82572;
-        break;
-    case E1000_DEV_ID_82573E:
-    case E1000_DEV_ID_82573E_IAMT:
-    case E1000_DEV_ID_82573L:
-        hw->mac_type = e1000_82573;
-        break;
-    case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
-    case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
-    case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
-    case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
-        hw->mac_type = e1000_80003es2lan;
-        break;
-    case E1000_DEV_ID_ICH8_IGP_M_AMT:
-    case E1000_DEV_ID_ICH8_IGP_AMT:
-    case E1000_DEV_ID_ICH8_IGP_C:
-    case E1000_DEV_ID_ICH8_IFE:
-    case E1000_DEV_ID_ICH8_IGP_M:
-        hw->mac_type = e1000_ich8lan;
-        break;
-    default:
-        /* Should never have loaded on this device */
-        return -E1000_ERR_MAC_TYPE;
-    }
-
-    switch (hw->mac_type) {
-    case e1000_ich8lan:
-        hw->swfwhw_semaphore_present = TRUE;
-        hw->asf_firmware_present = TRUE;
-        break;
-    case e1000_80003es2lan:
-        hw->swfw_sync_present = TRUE;
-        /* fall through */
-    case e1000_82571:
-    case e1000_82572:
-    case e1000_82573:
-        hw->eeprom_semaphore_present = TRUE;
-        /* fall through */
-    case e1000_82541:
-    case e1000_82547:
-    case e1000_82541_rev_2:
-    case e1000_82547_rev_2:
-        hw->asf_firmware_present = TRUE;
-        break;
-    default:
-        break;
-    }
-
-    return E1000_SUCCESS;
+s32 e1000_set_mac_type(struct e1000_hw *hw)
+{
+       DEBUGFUNC("e1000_set_mac_type");
+
+       switch (hw->device_id) {
+       case E1000_DEV_ID_82542:
+               switch (hw->revision_id) {
+               case E1000_82542_2_0_REV_ID:
+                       hw->mac_type = e1000_82542_rev2_0;
+                       break;
+               case E1000_82542_2_1_REV_ID:
+                       hw->mac_type = e1000_82542_rev2_1;
+                       break;
+               default:
+                       /* Invalid 82542 revision ID */
+                       return -E1000_ERR_MAC_TYPE;
+               }
+               break;
+       case E1000_DEV_ID_82543GC_FIBER:
+       case E1000_DEV_ID_82543GC_COPPER:
+               hw->mac_type = e1000_82543;
+               break;
+       case E1000_DEV_ID_82544EI_COPPER:
+       case E1000_DEV_ID_82544EI_FIBER:
+       case E1000_DEV_ID_82544GC_COPPER:
+       case E1000_DEV_ID_82544GC_LOM:
+               hw->mac_type = e1000_82544;
+               break;
+       case E1000_DEV_ID_82540EM:
+       case E1000_DEV_ID_82540EM_LOM:
+       case E1000_DEV_ID_82540EP:
+       case E1000_DEV_ID_82540EP_LOM:
+       case E1000_DEV_ID_82540EP_LP:
+               hw->mac_type = e1000_82540;
+               break;
+       case E1000_DEV_ID_82545EM_COPPER:
+       case E1000_DEV_ID_82545EM_FIBER:
+               hw->mac_type = e1000_82545;
+               break;
+       case E1000_DEV_ID_82545GM_COPPER:
+       case E1000_DEV_ID_82545GM_FIBER:
+       case E1000_DEV_ID_82545GM_SERDES:
+               hw->mac_type = e1000_82545_rev_3;
+               break;
+       case E1000_DEV_ID_82546EB_COPPER:
+       case E1000_DEV_ID_82546EB_FIBER:
+       case E1000_DEV_ID_82546EB_QUAD_COPPER:
+               hw->mac_type = e1000_82546;
+               break;
+       case E1000_DEV_ID_82546GB_COPPER:
+       case E1000_DEV_ID_82546GB_FIBER:
+       case E1000_DEV_ID_82546GB_SERDES:
+       case E1000_DEV_ID_82546GB_PCIE:
+       case E1000_DEV_ID_82546GB_QUAD_COPPER:
+       case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+               hw->mac_type = e1000_82546_rev_3;
+               break;
+       case E1000_DEV_ID_82541EI:
+       case E1000_DEV_ID_82541EI_MOBILE:
+       case E1000_DEV_ID_82541ER_LOM:
+               hw->mac_type = e1000_82541;
+               break;
+       case E1000_DEV_ID_82541ER:
+       case E1000_DEV_ID_82541GI:
+       case E1000_DEV_ID_82541GI_LF:
+       case E1000_DEV_ID_82541GI_MOBILE:
+               hw->mac_type = e1000_82541_rev_2;
+               break;
+       case E1000_DEV_ID_82547EI:
+       case E1000_DEV_ID_82547EI_MOBILE:
+               hw->mac_type = e1000_82547;
+               break;
+       case E1000_DEV_ID_82547GI:
+               hw->mac_type = e1000_82547_rev_2;
+               break;
+       default:
+               /* Should never have loaded on this device */
+               return -E1000_ERR_MAC_TYPE;
+       }
+
+       switch (hw->mac_type) {
+       case e1000_82541:
+       case e1000_82547:
+       case e1000_82541_rev_2:
+       case e1000_82547_rev_2:
+               hw->asf_firmware_present = true;
+               break;
+       default:
+               break;
+       }
+
+       /* The 82543 chip does not count tx_carrier_errors properly in
+        * FD mode
+        */
+       if (hw->mac_type == e1000_82543)
+               hw->bad_tx_carr_stats_fd = true;
+
+       if (hw->mac_type > e1000_82544)
+               hw->has_smbus = true;
+
+       return E1000_SUCCESS;
 }
 
 /*****************************************************************************
@@ -452,24 +353,20 @@ e1000_set_mac_type(struct e1000_hw *hw)
  *
  * hw - Struct containing variables accessed by shared code
  * **************************************************************************/
-void
-e1000_set_media_type(struct e1000_hw *hw)
+void e1000_set_media_type(struct e1000_hw *hw)
 {
-    uint32_t status;
+    u32 status;
 
     DEBUGFUNC("e1000_set_media_type");
 
     if (hw->mac_type != e1000_82543) {
         /* tbi_compatibility is only valid on 82543 */
-        hw->tbi_compatibility_en = FALSE;
+        hw->tbi_compatibility_en = false;
     }
 
     switch (hw->device_id) {
     case E1000_DEV_ID_82545GM_SERDES:
     case E1000_DEV_ID_82546GB_SERDES:
-    case E1000_DEV_ID_82571EB_SERDES:
-    case E1000_DEV_ID_82572EI_SERDES:
-    case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
         hw->media_type = e1000_media_type_internal_serdes;
         break;
     default:
@@ -478,19 +375,12 @@ e1000_set_media_type(struct e1000_hw *hw)
         case e1000_82542_rev2_1:
             hw->media_type = e1000_media_type_fiber;
             break;
-        case e1000_ich8lan:
-        case e1000_82573:
-            /* The STATUS_TBIMODE bit is reserved or reused for the this
-             * device.
-             */
-            hw->media_type = e1000_media_type_copper;
-            break;
         default:
-            status = E1000_READ_REG(hw, STATUS);
+            status = er32(STATUS);
             if (status & E1000_STATUS_TBIMODE) {
                 hw->media_type = e1000_media_type_fiber;
                 /* tbi_compatibility not valid on fiber */
-                hw->tbi_compatibility_en = FALSE;
+                hw->tbi_compatibility_en = false;
             } else {
                 hw->media_type = e1000_media_type_copper;
             }
@@ -504,17 +394,14 @@ e1000_set_media_type(struct e1000_hw *hw)
  *
  * hw - Struct containing variables accessed by shared code
  *****************************************************************************/
-int32_t
-e1000_reset_hw(struct e1000_hw *hw)
+s32 e1000_reset_hw(struct e1000_hw *hw)
 {
-    uint32_t ctrl;
-    uint32_t ctrl_ext;
-    uint32_t icr;
-    uint32_t manc;
-    uint32_t led_ctrl;
-    uint32_t timeout;
-    uint32_t extcnf_ctrl;
-    int32_t ret_val;
+    u32 ctrl;
+    u32 ctrl_ext;
+    u32 icr;
+    u32 manc;
+    u32 led_ctrl;
+    s32 ret_val;
 
     DEBUGFUNC("e1000_reset_hw");
 
@@ -524,71 +411,32 @@ e1000_reset_hw(struct e1000_hw *hw)
         e1000_pci_clear_mwi(hw);
     }
 
-    if (hw->bus_type == e1000_bus_type_pci_express) {
-        /* Prevent the PCI-E bus from sticking if there is no TLP connection
-         * on the last TLP read/write transaction when MAC is reset.
-         */
-        if (e1000_disable_pciex_master(hw) != E1000_SUCCESS) {
-            DEBUGOUT("PCI-E Master disable polling has failed.\n");
-        }
-    }
-
     /* Clear interrupt mask to stop board from generating interrupts */
     DEBUGOUT("Masking off all interrupts\n");
-    E1000_WRITE_REG(hw, IMC, 0xffffffff);
+    ew32(IMC, 0xffffffff);
 
     /* Disable the Transmit and Receive units.  Then delay to allow
      * any pending transactions to complete before we hit the MAC with
      * the global reset.
      */
-    E1000_WRITE_REG(hw, RCTL, 0);
-    E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
-    E1000_WRITE_FLUSH(hw);
+    ew32(RCTL, 0);
+    ew32(TCTL, E1000_TCTL_PSP);
+    E1000_WRITE_FLUSH();
 
     /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
-    hw->tbi_compatibility_on = FALSE;
+    hw->tbi_compatibility_on = false;
 
     /* Delay to allow any outstanding PCI transactions to complete before
      * resetting the device
      */
-    msec_delay(10);
+    msleep(10);
 
-    ctrl = E1000_READ_REG(hw, CTRL);
+    ctrl = er32(CTRL);
 
     /* Must reset the PHY before resetting the MAC */
     if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
-        E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
-        msec_delay(5);
-    }
-
-    /* Must acquire the MDIO ownership before MAC reset.
-     * Ownership defaults to firmware after a reset. */
-    if (hw->mac_type == e1000_82573) {
-        timeout = 10;
-
-        extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
-        extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
-
-        do {
-            E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
-            extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
-
-            if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
-                break;
-            else
-                extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
-
-            msec_delay(2);
-            timeout--;
-        } while (timeout);
-    }
-
-    /* Workaround for ICH8 bit corruption issue in FIFO memory */
-    if (hw->mac_type == e1000_ich8lan) {
-        /* Set Tx and Rx buffer allocation to 8k apiece. */
-        E1000_WRITE_REG(hw, PBA, E1000_PBA_8K);
-        /* Set Packet Buffer Size to 16k. */
-        E1000_WRITE_REG(hw, PBS, E1000_PBS_16K);
+        ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
+        msleep(5);
     }
 
     /* Issue a global reset to the MAC.  This will reset the chip's
@@ -612,24 +460,10 @@ e1000_reset_hw(struct e1000_hw *hw)
         case e1000_82545_rev_3:
         case e1000_82546_rev_3:
             /* Reset is performed on a shadow of the control register */
-            E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
-            break;
-        case e1000_ich8lan:
-            if (!hw->phy_reset_disable &&
-                e1000_check_phy_reset_block(hw) == E1000_SUCCESS) {
-                /* e1000_ich8lan PHY HW reset requires MAC CORE reset
-                 * at the same time to make sure the interface between
-                 * MAC and the external PHY is reset.
-                 */
-                ctrl |= E1000_CTRL_PHY_RST;
-            }
-
-            e1000_get_software_flag(hw);
-            E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
-            msec_delay(5);
+            ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
             break;
         default:
-            E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
+            ew32(CTRL, (ctrl | E1000_CTRL_RST));
             break;
     }
 
@@ -644,80 +478,58 @@ e1000_reset_hw(struct e1000_hw *hw)
         case e1000_82544:
             /* Wait for reset to complete */
             udelay(10);
-            ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+            ctrl_ext = er32(CTRL_EXT);
             ctrl_ext |= E1000_CTRL_EXT_EE_RST;
-            E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
-            E1000_WRITE_FLUSH(hw);
+            ew32(CTRL_EXT, ctrl_ext);
+            E1000_WRITE_FLUSH();
             /* Wait for EEPROM reload */
-            msec_delay(2);
+            msleep(2);
             break;
         case e1000_82541:
         case e1000_82541_rev_2:
         case e1000_82547:
         case e1000_82547_rev_2:
             /* Wait for EEPROM reload */
-            msec_delay(20);
+            msleep(20);
             break;
-        case e1000_82573:
-            if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
-                udelay(10);
-                ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
-                ctrl_ext |= E1000_CTRL_EXT_EE_RST;
-                E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
-                E1000_WRITE_FLUSH(hw);
-            }
-            /* fall through */
-        case e1000_82571:
-        case e1000_82572:
-        case e1000_ich8lan:
-        case e1000_80003es2lan:
+        default:
+            /* Auto read done will delay 5ms or poll based on mac type */
             ret_val = e1000_get_auto_rd_done(hw);
             if (ret_val)
-                /* We don't want to continue accessing MAC registers. */
                 return ret_val;
             break;
-        default:
-            /* Wait for EEPROM reload (it happens automatically) */
-            msec_delay(5);
-            break;
     }
 
     /* Disable HW ARPs on ASF enabled adapters */
-    if (hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) {
-        manc = E1000_READ_REG(hw, MANC);
+    if (hw->mac_type >= e1000_82540) {
+        manc = er32(MANC);
         manc &= ~(E1000_MANC_ARP_EN);
-        E1000_WRITE_REG(hw, MANC, manc);
+        ew32(MANC, manc);
     }
 
     if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
         e1000_phy_init_script(hw);
 
         /* Configure activity LED after PHY reset */
-        led_ctrl = E1000_READ_REG(hw, LEDCTL);
+        led_ctrl = er32(LEDCTL);
         led_ctrl &= IGP_ACTIVITY_LED_MASK;
         led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
-        E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
+        ew32(LEDCTL, led_ctrl);
     }
 
     /* Clear interrupt mask to stop board from generating interrupts */
     DEBUGOUT("Masking off all interrupts\n");
-    E1000_WRITE_REG(hw, IMC, 0xffffffff);
+    ew32(IMC, 0xffffffff);
 
     /* Clear any pending interrupt events. */
-    icr = E1000_READ_REG(hw, ICR);
+    icr = er32(ICR);
 
     /* If MWI was previously enabled, reenable it. */
     if (hw->mac_type == e1000_82542_rev2_0) {
-        if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+        if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
             e1000_pci_set_mwi(hw);
     }
 
-    if (hw->mac_type == e1000_ich8lan) {
-        uint32_t kab = E1000_READ_REG(hw, KABGTXD);
-        kab |= E1000_KABGTXD_BGSQLBIAS;
-        E1000_WRITE_REG(hw, KABGTXD, kab);
-    }
-
     return E1000_SUCCESS;
 }
 
@@ -732,33 +544,16 @@ e1000_reset_hw(struct e1000_hw *hw)
  * configuration and flow control settings. Clears all on-chip counters. Leaves
  * the transmit and receive units disabled and uninitialized.
  *****************************************************************************/
-int32_t
-e1000_init_hw(struct e1000_hw *hw)
+s32 e1000_init_hw(struct e1000_hw *hw)
 {
-    uint32_t ctrl;
-    uint32_t i;
-    int32_t ret_val;
-    uint16_t pcix_cmd_word;
-    uint16_t pcix_stat_hi_word;
-    uint16_t cmd_mmrbc;
-    uint16_t stat_mmrbc;
-    uint32_t mta_size;
-    uint32_t reg_data;
-    uint32_t ctrl_ext;
+    u32 ctrl;
+    u32 i;
+    s32 ret_val;
+    u32 mta_size;
+    u32 ctrl_ext;
 
     DEBUGFUNC("e1000_init_hw");
 
-    /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
-    if (hw->mac_type == e1000_ich8lan) {
-        reg_data = E1000_READ_REG(hw, TARC0);
-        reg_data |= 0x30000000;
-        E1000_WRITE_REG(hw, TARC0, reg_data);
-
-        reg_data = E1000_READ_REG(hw, STATUS);
-        reg_data &= ~0x80000000;
-        E1000_WRITE_REG(hw, STATUS, reg_data);
-    }
-
     /* Initialize Identification LED */
     ret_val = e1000_id_led_init(hw);
     if (ret_val) {
@@ -771,20 +566,17 @@ e1000_init_hw(struct e1000_hw *hw)
 
     /* Disabling VLAN filtering. */
     DEBUGOUT("Initializing the IEEE VLAN\n");
-    /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
-    if (hw->mac_type != e1000_ich8lan) {
-        if (hw->mac_type < e1000_82545_rev_3)
-            E1000_WRITE_REG(hw, VET, 0);
-        e1000_clear_vfta(hw);
-    }
+    if (hw->mac_type < e1000_82545_rev_3)
+        ew32(VET, 0);
+    e1000_clear_vfta(hw);
 
     /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
     if (hw->mac_type == e1000_82542_rev2_0) {
         DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
         e1000_pci_clear_mwi(hw);
-        E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
-        E1000_WRITE_FLUSH(hw);
-        msec_delay(5);
+        ew32(RCTL, E1000_RCTL_RST);
+        E1000_WRITE_FLUSH();
+        msleep(5);
     }
 
     /* Setup the receive address. This involves initializing all of the Receive
@@ -794,23 +586,21 @@ e1000_init_hw(struct e1000_hw *hw)
 
     /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
     if (hw->mac_type == e1000_82542_rev2_0) {
-        E1000_WRITE_REG(hw, RCTL, 0);
-        E1000_WRITE_FLUSH(hw);
-        msec_delay(1);
-        if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+        ew32(RCTL, 0);
+        E1000_WRITE_FLUSH();
+        msleep(1);
+        if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
             e1000_pci_set_mwi(hw);
     }
 
     /* Zero out the Multicast HASH table */
     DEBUGOUT("Zeroing the MTA\n");
     mta_size = E1000_MC_TBL_SIZE;
-    if (hw->mac_type == e1000_ich8lan)
-        mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
     for (i = 0; i < mta_size; i++) {
         E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
         /* use write flush to prevent Memory Write Block (MWB) from
          * occuring when accessing our register space */
-        E1000_WRITE_FLUSH(hw);
+        E1000_WRITE_FLUSH();
     }
 
     /* Set the PCI priority bit correctly in the CTRL register.  This
@@ -819,8 +609,8 @@ e1000_init_hw(struct e1000_hw *hw)
      * 82542 and 82543 silicon.
      */
     if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
-        ctrl = E1000_READ_REG(hw, CTRL);
-        E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
+        ctrl = er32(CTRL);
+        ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
     }
 
     switch (hw->mac_type) {
@@ -829,96 +619,19 @@ e1000_init_hw(struct e1000_hw *hw)
         break;
     default:
         /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
-        if (hw->bus_type == e1000_bus_type_pcix) {
-            e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
-            e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI,
-                &pcix_stat_hi_word);
-            cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
-                PCIX_COMMAND_MMRBC_SHIFT;
-            stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
-                PCIX_STATUS_HI_MMRBC_SHIFT;
-            if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
-                stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
-            if (cmd_mmrbc > stat_mmrbc) {
-                pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
-                pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
-                e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER,
-                    &pcix_cmd_word);
-            }
-        }
-        break;
+       if (hw->bus_type == e1000_bus_type_pcix && e1000_pcix_get_mmrbc(hw) > 2048)
+               e1000_pcix_set_mmrbc(hw, 2048);
+       break;
     }
 
-    /* More time needed for PHY to initialize */
-    if (hw->mac_type == e1000_ich8lan)
-        msec_delay(15);
-
     /* Call a subroutine to configure the link and setup flow control. */
     ret_val = e1000_setup_link(hw);
 
     /* Set the transmit descriptor write-back policy */
     if (hw->mac_type > e1000_82544) {
-        ctrl = E1000_READ_REG(hw, TXDCTL);
-        ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
-        switch (hw->mac_type) {
-        default:
-            break;
-        case e1000_82571:
-        case e1000_82572:
-        case e1000_82573:
-        case e1000_ich8lan:
-        case e1000_80003es2lan:
-            ctrl |= E1000_TXDCTL_COUNT_DESC;
-            break;
-        }
-        E1000_WRITE_REG(hw, TXDCTL, ctrl);
-    }
-
-    if (hw->mac_type == e1000_82573) {
-        e1000_enable_tx_pkt_filtering(hw);
-    }
-
-    switch (hw->mac_type) {
-    default:
-        break;
-    case e1000_80003es2lan:
-        /* Enable retransmit on late collisions */
-        reg_data = E1000_READ_REG(hw, TCTL);
-        reg_data |= E1000_TCTL_RTLC;
-        E1000_WRITE_REG(hw, TCTL, reg_data);
-
-        /* Configure Gigabit Carry Extend Padding */
-        reg_data = E1000_READ_REG(hw, TCTL_EXT);
-        reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
-        reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
-        E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
-
-        /* Configure Transmit Inter-Packet Gap */
-        reg_data = E1000_READ_REG(hw, TIPG);
-        reg_data &= ~E1000_TIPG_IPGT_MASK;
-        reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
-        E1000_WRITE_REG(hw, TIPG, reg_data);
-
-        reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
-        reg_data &= ~0x00100000;
-        E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
-        /* Fall through */
-    case e1000_82571:
-    case e1000_82572:
-    case e1000_ich8lan:
-        ctrl = E1000_READ_REG(hw, TXDCTL1);
+        ctrl = er32(TXDCTL);
         ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
-        if (hw->mac_type >= e1000_82571)
-            ctrl |= E1000_TXDCTL_COUNT_DESC;
-        E1000_WRITE_REG(hw, TXDCTL1, ctrl);
-        break;
-    }
-
-
-    if (hw->mac_type == e1000_82573) {
-        uint32_t gcr = E1000_READ_REG(hw, GCR);
-        gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
-        E1000_WRITE_REG(hw, GCR, gcr);
+        ew32(TXDCTL, ctrl);
     }
 
     /* Clear all of the statistics registers (clear on read).  It is
@@ -928,18 +641,13 @@ e1000_init_hw(struct e1000_hw *hw)
      */
     e1000_clear_hw_cntrs(hw);
 
-    /* ICH8 No-snoop bits are opposite polarity.
-     * Set to snoop by default after reset. */
-    if (hw->mac_type == e1000_ich8lan)
-        e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
-
     if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
         hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
-        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+        ctrl_ext = er32(CTRL_EXT);
         /* Relaxed ordering must be disabled to avoid a parity
          * error crash in a PCI slot. */
         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
-        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+        ew32(CTRL_EXT, ctrl_ext);
     }
 
     return ret_val;
@@ -950,11 +658,10 @@ e1000_init_hw(struct e1000_hw *hw)
  *
  * hw - Struct containing variables accessed by shared code.
  *****************************************************************************/
-static int32_t
-e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
+static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
 {
-    uint16_t eeprom_data;
-    int32_t  ret_val;
+    u16 eeprom_data;
+    s32  ret_val;
 
     DEBUGFUNC("e1000_adjust_serdes_amplitude");
 
@@ -996,20 +703,14 @@ e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
  * established. Assumes the hardware has previously been reset and the
  * transmitter and receiver are not enabled.
  *****************************************************************************/
-int32_t
-e1000_setup_link(struct e1000_hw *hw)
+s32 e1000_setup_link(struct e1000_hw *hw)
 {
-    uint32_t ctrl_ext;
-    int32_t ret_val;
-    uint16_t eeprom_data;
+    u32 ctrl_ext;
+    s32 ret_val;
+    u16 eeprom_data;
 
     DEBUGFUNC("e1000_setup_link");
 
-    /* In the case of the phy reset being blocked, we already have a link.
-     * We do not have to set it up again. */
-    if (e1000_check_phy_reset_block(hw))
-        return E1000_SUCCESS;
-
     /* Read and store word 0x0F of the EEPROM. This word contains bits
      * that determine the hardware's default PAUSE (flow control) mode,
      * a bit that determines whether the HW defaults to enabling or
@@ -1018,28 +719,20 @@ e1000_setup_link(struct e1000_hw *hw)
      * control setting, then the variable hw->fc will
      * be initialized based on a value in the EEPROM.
      */
-    if (hw->fc == e1000_fc_default) {
-        switch (hw->mac_type) {
-        case e1000_ich8lan:
-        case e1000_82573:
-            hw->fc = e1000_fc_full;
-            break;
-        default:
-            ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
-                                        1, &eeprom_data);
-            if (ret_val) {
-                DEBUGOUT("EEPROM Read Error\n");
-                return -E1000_ERR_EEPROM;
-            }
-            if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
-                hw->fc = e1000_fc_none;
-            else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
-                    EEPROM_WORD0F_ASM_DIR)
-                hw->fc = e1000_fc_tx_pause;
-            else
-                hw->fc = e1000_fc_full;
-            break;
+    if (hw->fc == E1000_FC_DEFAULT) {
+        ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
+                                    1, &eeprom_data);
+        if (ret_val) {
+            DEBUGOUT("EEPROM Read Error\n");
+            return -E1000_ERR_EEPROM;
         }
+        if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
+            hw->fc = E1000_FC_NONE;
+        else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
+                 EEPROM_WORD0F_ASM_DIR)
+            hw->fc = E1000_FC_TX_PAUSE;
+        else
+            hw->fc = E1000_FC_FULL;
     }
 
     /* We want to save off the original Flow Control configuration just
@@ -1047,10 +740,10 @@ e1000_setup_link(struct e1000_hw *hw)
      * hub or switch with different Flow Control capabilities.
      */
     if (hw->mac_type == e1000_82542_rev2_0)
-        hw->fc &= (~e1000_fc_tx_pause);
+        hw->fc &= (~E1000_FC_TX_PAUSE);
 
     if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
-        hw->fc &= (~e1000_fc_rx_pause);
+        hw->fc &= (~E1000_FC_RX_PAUSE);
 
     hw->original_fc = hw->fc;
 
@@ -1072,7 +765,7 @@ e1000_setup_link(struct e1000_hw *hw)
         }
         ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
                     SWDPIO__EXT_SHIFT);
-        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+        ew32(CTRL_EXT, ctrl_ext);
     }
 
     /* Call the necessary subroutine to configure the link. */
@@ -1087,14 +780,11 @@ e1000_setup_link(struct e1000_hw *hw)
      */
     DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
 
-    /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
-    if (hw->mac_type != e1000_ich8lan) {
-        E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
-        E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
-        E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
-    }
+    ew32(FCT, FLOW_CONTROL_TYPE);
+    ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+    ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
 
-    E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
+    ew32(FCTTV, hw->fc_pause_time);
 
     /* Set the flow control receive threshold registers.  Normally,
      * these registers will be set to a default threshold that may be
@@ -1102,19 +792,19 @@ e1000_setup_link(struct e1000_hw *hw)
      * ability to transmit pause frames in not enabled, then these
      * registers will be set to 0.
      */
-    if (!(hw->fc & e1000_fc_tx_pause)) {
-        E1000_WRITE_REG(hw, FCRTL, 0);
-        E1000_WRITE_REG(hw, FCRTH, 0);
+    if (!(hw->fc & E1000_FC_TX_PAUSE)) {
+        ew32(FCRTL, 0);
+        ew32(FCRTH, 0);
     } else {
         /* We need to set up the Receive Threshold high and low water marks
          * as well as (optionally) enabling the transmission of XON frames.
          */
         if (hw->fc_send_xon) {
-            E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
-            E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
+            ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
+            ew32(FCRTH, hw->fc_high_water);
         } else {
-            E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
-            E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
+            ew32(FCRTL, hw->fc_low_water);
+            ew32(FCRTH, hw->fc_high_water);
         }
     }
     return ret_val;
@@ -1129,33 +819,24 @@ e1000_setup_link(struct e1000_hw *hw)
  * link. Assumes the hardware has been previously reset and the transmitter
  * and receiver are not enabled.
  *****************************************************************************/
-static int32_t
-e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
+static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
 {
-    uint32_t ctrl;
-    uint32_t status;
-    uint32_t txcw = 0;
-    uint32_t i;
-    uint32_t signal = 0;
-    int32_t ret_val;
+    u32 ctrl;
+    u32 status;
+    u32 txcw = 0;
+    u32 i;
+    u32 signal = 0;
+    s32 ret_val;
 
     DEBUGFUNC("e1000_setup_fiber_serdes_link");
 
-    /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists
-     * until explicitly turned off or a power cycle is performed.  A read to
-     * the register does not indicate its status.  Therefore, we ensure
-     * loopback mode is disabled during initialization.
-     */
-    if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572)
-        E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK);
-
-    /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
+    /* On adapters with a MAC newer than 82544, SWDP 1 will be
      * set when the optics detect a signal. On older adapters, it will be
      * cleared when there is a signal.  This applies to fiber media only.
-     * If we're on serdes media, adjust the output amplitude to value set in
-     * the EEPROM.
+     * If we're on serdes media, adjust the output amplitude to value
+     * set in the EEPROM.
      */
-    ctrl = E1000_READ_REG(hw, CTRL);
+    ctrl = er32(CTRL);
     if (hw->media_type == e1000_media_type_fiber)
         signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
 
@@ -1189,11 +870,11 @@ e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
      *      3:  Both Rx and TX flow control (symmetric) are enabled.
      */
     switch (hw->fc) {
-    case e1000_fc_none:
+    case E1000_FC_NONE:
         /* Flow control is completely disabled by a software over-ride. */
         txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
         break;
-    case e1000_fc_rx_pause:
+    case E1000_FC_RX_PAUSE:
         /* RX Flow control is enabled and TX Flow control is disabled by a
          * software over-ride. Since there really isn't a way to advertise
          * that we are capable of RX Pause ONLY, we will advertise that we
@@ -1202,13 +883,13 @@ e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
          */
         txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
         break;
-    case e1000_fc_tx_pause:
+    case E1000_FC_TX_PAUSE:
         /* TX Flow control is enabled, and RX Flow control is disabled, by a
          * software over-ride.
          */
         txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
         break;
-    case e1000_fc_full:
+    case E1000_FC_FULL:
         /* Flow control (both RX and TX) is enabled by a software over-ride. */
         txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
         break;
@@ -1226,12 +907,12 @@ e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
      */
     DEBUGOUT("Auto-negotiation enabled\n");
 
-    E1000_WRITE_REG(hw, TXCW, txcw);
-    E1000_WRITE_REG(hw, CTRL, ctrl);
-    E1000_WRITE_FLUSH(hw);
+    ew32(TXCW, txcw);
+    ew32(CTRL, ctrl);
+    E1000_WRITE_FLUSH();
 
     hw->txcw = txcw;
-    msec_delay(1);
+    msleep(1);
 
     /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
      * indication in the Device Status Register.  Time-out if a link isn't
@@ -1240,11 +921,11 @@ e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
      * For internal serdes, we just assume a signal is present, then poll.
      */
     if (hw->media_type == e1000_media_type_internal_serdes ||
-       (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
+       (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
         DEBUGOUT("Looking for Link\n");
         for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
-            msec_delay(10);
-            status = E1000_READ_REG(hw, STATUS);
+            msleep(10);
+            status = er32(STATUS);
             if (status & E1000_STATUS_LU) break;
         }
         if (i == (LINK_UP_TIMEOUT / 10)) {
@@ -1276,16 +957,15 @@ e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
 *
 * hw - Struct containing variables accessed by shared code
 ******************************************************************************/
-static int32_t
-e1000_copper_link_preconfig(struct e1000_hw *hw)
+static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
 {
-    uint32_t ctrl;
-    int32_t ret_val;
-    uint16_t phy_data;
+    u32 ctrl;
+    s32 ret_val;
+    u16 phy_data;
 
     DEBUGFUNC("e1000_copper_link_preconfig");
 
-    ctrl = E1000_READ_REG(hw, CTRL);
+    ctrl = er32(CTRL);
     /* With 82543, we need to force speed and duplex on the MAC equal to what
      * the PHY speed and duplex configuration is. In addition, we need to
      * perform a hardware reset on the PHY to take it out of reset.
@@ -1293,10 +973,10 @@ e1000_copper_link_preconfig(struct e1000_hw *hw)
     if (hw->mac_type > e1000_82543) {
         ctrl |= E1000_CTRL_SLU;
         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
-        E1000_WRITE_REG(hw, CTRL, ctrl);
+        ew32(CTRL, ctrl);
     } else {
         ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
-        E1000_WRITE_REG(hw, CTRL, ctrl);
+        ew32(CTRL, ctrl);
         ret_val = e1000_phy_hw_reset(hw);
         if (ret_val)
             return ret_val;
@@ -1325,7 +1005,7 @@ e1000_copper_link_preconfig(struct e1000_hw *hw)
     if (hw->mac_type <= e1000_82543 ||
         hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
         hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
-        hw->phy_reset_disable = FALSE;
+        hw->phy_reset_disable = false;
 
    return E1000_SUCCESS;
 }
@@ -1336,12 +1016,11 @@ e1000_copper_link_preconfig(struct e1000_hw *hw)
 *
 * hw - Struct containing variables accessed by shared code
 *********************************************************************/
-static int32_t
-e1000_copper_link_igp_setup(struct e1000_hw *hw)
+static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
 {
-    uint32_t led_ctrl;
-    int32_t ret_val;
-    uint16_t phy_data;
+    u32 led_ctrl;
+    s32 ret_val;
+    u16 phy_data;
 
     DEBUGFUNC("e1000_copper_link_igp_setup");
 
@@ -1355,31 +1034,23 @@ e1000_copper_link_igp_setup(struct e1000_hw *hw)
     }
 
     /* Wait 15ms for MAC to configure PHY from eeprom settings */
-    msec_delay(15);
-    if (hw->mac_type != e1000_ich8lan) {
+    msleep(15);
     /* Configure activity LED after PHY reset */
-    led_ctrl = E1000_READ_REG(hw, LEDCTL);
+    led_ctrl = er32(LEDCTL);
     led_ctrl &= IGP_ACTIVITY_LED_MASK;
     led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
-    E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
-    }
+    ew32(LEDCTL, led_ctrl);
 
     /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
     if (hw->phy_type == e1000_phy_igp) {
         /* disable lplu d3 during driver init */
-        ret_val = e1000_set_d3_lplu_state(hw, FALSE);
+        ret_val = e1000_set_d3_lplu_state(hw, false);
         if (ret_val) {
             DEBUGOUT("Error Disabling LPLU D3\n");
             return ret_val;
         }
     }
 
-    /* disable lplu d0 during driver init */
-    ret_val = e1000_set_d0_lplu_state(hw, FALSE);
-    if (ret_val) {
-        DEBUGOUT("Error Disabling LPLU D0\n");
-        return ret_val;
-    }
     /* Configure mdi-mdix settings */
     ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
     if (ret_val)
@@ -1479,163 +1150,14 @@ e1000_copper_link_igp_setup(struct e1000_hw *hw)
 }
 
 /********************************************************************
-* Copper link setup for e1000_phy_gg82563 series.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
-static int32_t
-e1000_copper_link_ggp_setup(struct e1000_hw *hw)
-{
-    int32_t ret_val;
-    uint16_t phy_data;
-    uint32_t reg_data;
-
-    DEBUGFUNC("e1000_copper_link_ggp_setup");
-
-    if (!hw->phy_reset_disable) {
-
-        /* Enable CRS on TX for half-duplex operation. */
-        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
-                                     &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
-        /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
-        phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
-
-        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
-                                      phy_data);
-        if (ret_val)
-            return ret_val;
-
-        /* Options:
-         *   MDI/MDI-X = 0 (default)
-         *   0 - Auto for all speeds
-         *   1 - MDI mode
-         *   2 - MDI-X mode
-         *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
-         */
-        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
-
-        switch (hw->mdix) {
-        case 1:
-            phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
-            break;
-        case 2:
-            phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
-            break;
-        case 0:
-        default:
-            phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
-            break;
-        }
-
-        /* Options:
-         *   disable_polarity_correction = 0 (default)
-         *       Automatic Correction for Reversed Cable Polarity
-         *   0 - Disabled
-         *   1 - Enabled
-         */
-        phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
-        if (hw->disable_polarity_correction == 1)
-            phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
-        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
-
-        if (ret_val)
-            return ret_val;
-
-        /* SW Reset the PHY so all changes take effect */
-        ret_val = e1000_phy_reset(hw);
-        if (ret_val) {
-            DEBUGOUT("Error Resetting the PHY\n");
-            return ret_val;
-        }
-    } /* phy_reset_disable */
-
-    if (hw->mac_type == e1000_80003es2lan) {
-        /* Bypass RX and TX FIFO's */
-        ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
-                                       E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
-                                       E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
-        if (ret_val)
-            return ret_val;
-
-        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
-        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data);
-
-        if (ret_val)
-            return ret_val;
-
-        reg_data = E1000_READ_REG(hw, CTRL_EXT);
-        reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
-        E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
-
-        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
-                                          &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        /* Do not init these registers when the HW is in IAMT mode, since the
-         * firmware will have already initialized them.  We only initialize
-         * them if the HW is not in IAMT mode.
-         */
-        if (e1000_check_mng_mode(hw) == FALSE) {
-            /* Enable Electrical Idle on the PHY */
-            phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
-            ret_val = e1000_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
-                                          phy_data);
-            if (ret_val)
-                return ret_val;
-
-            ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
-                                         &phy_data);
-            if (ret_val)
-                return ret_val;
-
-            phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
-            ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
-                                          phy_data);
-
-            if (ret_val)
-                return ret_val;
-        }
-
-        /* Workaround: Disable padding in Kumeran interface in the MAC
-         * and in the PHY to avoid CRC errors.
-         */
-        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
-                                     &phy_data);
-        if (ret_val)
-            return ret_val;
-        phy_data |= GG82563_ICR_DIS_PADDING;
-        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
-                                      phy_data);
-        if (ret_val)
-            return ret_val;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/********************************************************************
 * Copper link setup for e1000_phy_m88 series.
 *
 * hw - Struct containing variables accessed by shared code
 *********************************************************************/
-static int32_t
-e1000_copper_link_mgp_setup(struct e1000_hw *hw)
+static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
 {
-    int32_t ret_val;
-    uint16_t phy_data;
+    s32 ret_val;
+    u16 phy_data;
 
     DEBUGFUNC("e1000_copper_link_mgp_setup");
 
@@ -1735,11 +1257,10 @@ e1000_copper_link_mgp_setup(struct e1000_hw *hw)
 *
 * hw - Struct containing variables accessed by shared code
 *********************************************************************/
-static int32_t
-e1000_copper_link_autoneg(struct e1000_hw *hw)
+static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
 {
-    int32_t ret_val;
-    uint16_t phy_data;
+    s32 ret_val;
+    u16 phy_data;
 
     DEBUGFUNC("e1000_copper_link_autoneg");
 
@@ -1754,10 +1275,6 @@ e1000_copper_link_autoneg(struct e1000_hw *hw)
     if (hw->autoneg_advertised == 0)
         hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 
-    /* IFE phy only supports 10/100 */
-    if (hw->phy_type == e1000_phy_ife)
-        hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
-
     DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
     ret_val = e1000_phy_setup_autoneg(hw);
     if (ret_val) {
@@ -1789,7 +1306,7 @@ e1000_copper_link_autoneg(struct e1000_hw *hw)
         }
     }
 
-    hw->get_link_status = TRUE;
+    hw->get_link_status = true;
 
     return E1000_SUCCESS;
 }
@@ -1806,10 +1323,9 @@ e1000_copper_link_autoneg(struct e1000_hw *hw)
 *
 * hw - Struct containing variables accessed by shared code
 ******************************************************************************/
-static int32_t
-e1000_copper_link_postconfig(struct e1000_hw *hw)
+static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
 {
-    int32_t ret_val;
+    s32 ret_val;
     DEBUGFUNC("e1000_copper_link_postconfig");
 
     if (hw->mac_type >= e1000_82544) {
@@ -1829,7 +1345,7 @@ e1000_copper_link_postconfig(struct e1000_hw *hw)
 
     /* Config DSP to improve Giga link quality */
     if (hw->phy_type == e1000_phy_igp) {
-        ret_val = e1000_config_dsp_after_link_change(hw, TRUE);
+        ret_val = e1000_config_dsp_after_link_change(hw, true);
         if (ret_val) {
             DEBUGOUT("Error Configuring DSP after link up\n");
             return ret_val;
@@ -1844,58 +1360,20 @@ e1000_copper_link_postconfig(struct e1000_hw *hw)
 *
 * hw - Struct containing variables accessed by shared code
 ******************************************************************************/
-static int32_t
-e1000_setup_copper_link(struct e1000_hw *hw)
+static s32 e1000_setup_copper_link(struct e1000_hw *hw)
 {
-    int32_t ret_val;
-    uint16_t i;
-    uint16_t phy_data;
-    uint16_t reg_data;
+    s32 ret_val;
+    u16 i;
+    u16 phy_data;
 
     DEBUGFUNC("e1000_setup_copper_link");
 
-    switch (hw->mac_type) {
-    case e1000_80003es2lan:
-    case e1000_ich8lan:
-        /* Set the mac to wait the maximum time between each
-         * iteration and increase the max iterations when
-         * polling the phy; this fixes erroneous timeouts at 10Mbps. */
-        ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
-        if (ret_val)
-            return ret_val;
-        ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
-        if (ret_val)
-            return ret_val;
-        reg_data |= 0x3F;
-        ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
-        if (ret_val)
-            return ret_val;
-    default:
-        break;
-    }
-
     /* Check if it is a valid PHY and set PHY mode if necessary. */
     ret_val = e1000_copper_link_preconfig(hw);
     if (ret_val)
         return ret_val;
 
-    switch (hw->mac_type) {
-    case e1000_80003es2lan:
-        /* Kumeran registers are written-only */
-        reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
-        reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
-        ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
-                                       reg_data);
-        if (ret_val)
-            return ret_val;
-        break;
-    default:
-        break;
-    }
-
-    if (hw->phy_type == e1000_phy_igp ||
-        hw->phy_type == e1000_phy_igp_3 ||
-        hw->phy_type == e1000_phy_igp_2) {
+    if (hw->phy_type == e1000_phy_igp) {
         ret_val = e1000_copper_link_igp_setup(hw);
         if (ret_val)
             return ret_val;
@@ -1903,10 +1381,6 @@ e1000_setup_copper_link(struct e1000_hw *hw)
         ret_val = e1000_copper_link_mgp_setup(hw);
         if (ret_val)
             return ret_val;
-    } else if (hw->phy_type == e1000_phy_gg82563) {
-        ret_val = e1000_copper_link_ggp_setup(hw);
-        if (ret_val)
-            return ret_val;
     }
 
     if (hw->autoneg) {
@@ -1954,118 +1428,41 @@ e1000_setup_copper_link(struct e1000_hw *hw)
 }
 
 /******************************************************************************
-* Configure the MAC-to-PHY interface for 10/100Mbps
+* Configures PHY autoneg and flow control advertisement settings
 *
 * hw - Struct containing variables accessed by shared code
 ******************************************************************************/
-static int32_t
-e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
+s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
 {
-    int32_t ret_val = E1000_SUCCESS;
-    uint32_t tipg;
-    uint16_t reg_data;
+    s32 ret_val;
+    u16 mii_autoneg_adv_reg;
+    u16 mii_1000t_ctrl_reg;
 
-    DEBUGFUNC("e1000_configure_kmrn_for_10_100");
+    DEBUGFUNC("e1000_phy_setup_autoneg");
 
-    reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
-    ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
-                                   reg_data);
+    /* Read the MII Auto-Neg Advertisement Register (Address 4). */
+    ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
     if (ret_val)
         return ret_val;
 
-    /* Configure Transmit Inter-Packet Gap */
-    tipg = E1000_READ_REG(hw, TIPG);
-    tipg &= ~E1000_TIPG_IPGT_MASK;
-    tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
-    E1000_WRITE_REG(hw, TIPG, tipg);
-
-    ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
-
+    /* Read the MII 1000Base-T Control Register (Address 9). */
+    ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
     if (ret_val)
         return ret_val;
 
-    if (duplex == HALF_DUPLEX)
-        reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
-    else
-        reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+    /* Need to parse both autoneg_advertised and fc and set up
+     * the appropriate PHY registers.  First we will parse for
+     * autoneg_advertised software override.  Since we can advertise
+     * a plethora of combinations, we need to check each bit
+     * individually.
+     */
 
-    ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
-
-    return ret_val;
-}
-
-static int32_t
-e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
-{
-    int32_t ret_val = E1000_SUCCESS;
-    uint16_t reg_data;
-    uint32_t tipg;
-
-    DEBUGFUNC("e1000_configure_kmrn_for_1000");
-
-    reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
-    ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
-                                   reg_data);
-    if (ret_val)
-        return ret_val;
-
-    /* Configure Transmit Inter-Packet Gap */
-    tipg = E1000_READ_REG(hw, TIPG);
-    tipg &= ~E1000_TIPG_IPGT_MASK;
-    tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
-    E1000_WRITE_REG(hw, TIPG, tipg);
-
-    ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
-
-    if (ret_val)
-        return ret_val;
-
-    reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
-    ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
-
-    return ret_val;
-}
-
-/******************************************************************************
-* Configures PHY autoneg and flow control advertisement settings
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-int32_t
-e1000_phy_setup_autoneg(struct e1000_hw *hw)
-{
-    int32_t ret_val;
-    uint16_t mii_autoneg_adv_reg;
-    uint16_t mii_1000t_ctrl_reg;
-
-    DEBUGFUNC("e1000_phy_setup_autoneg");
-
-    /* Read the MII Auto-Neg Advertisement Register (Address 4). */
-    ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
-    if (ret_val)
-        return ret_val;
-
-    if (hw->phy_type != e1000_phy_ife) {
-        /* Read the MII 1000Base-T Control Register (Address 9). */
-        ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
-        if (ret_val)
-            return ret_val;
-    } else
-        mii_1000t_ctrl_reg=0;
-
-    /* Need to parse both autoneg_advertised and fc and set up
-     * the appropriate PHY registers.  First we will parse for
-     * autoneg_advertised software override.  Since we can advertise
-     * a plethora of combinations, we need to check each bit
-     * individually.
-     */
-
-    /* First we clear all the 10/100 mb speed bits in the Auto-Neg
-     * Advertisement Register (Address 4) and the 1000 mb speed bits in
-     * the  1000Base-T Control Register (Address 9).
-     */
-    mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
-    mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
+    /* First we clear all the 10/100 mb speed bits in the Auto-Neg
+     * Advertisement Register (Address 4) and the 1000 mb speed bits in
+     * the  1000Base-T Control Register (Address 9).
+     */
+    mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
+    mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
 
     DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
 
@@ -2102,9 +1499,6 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw)
     if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
         DEBUGOUT("Advertise 1000mb Full duplex\n");
         mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
-        if (hw->phy_type == e1000_phy_ife) {
-            DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n");
-        }
     }
 
     /* Check for a software override of the flow control settings, and
@@ -2124,13 +1518,13 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw)
      *          in the EEPROM is used.
      */
     switch (hw->fc) {
-    case e1000_fc_none: /* 0 */
+    case E1000_FC_NONE: /* 0 */
         /* Flow control (RX & TX) is completely disabled by a
          * software over-ride.
          */
         mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
         break;
-    case e1000_fc_rx_pause: /* 1 */
+    case E1000_FC_RX_PAUSE: /* 1 */
         /* RX Flow control is enabled, and TX Flow control is
          * disabled, by a software over-ride.
          */
@@ -2142,14 +1536,14 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw)
          */
         mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
         break;
-    case e1000_fc_tx_pause: /* 2 */
+    case E1000_FC_TX_PAUSE: /* 2 */
         /* TX Flow control is enabled, and RX Flow control is
          * disabled, by a software over-ride.
          */
         mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
         mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
         break;
-    case e1000_fc_full: /* 3 */
+    case E1000_FC_FULL: /* 3 */
         /* Flow control (both RX and TX) is enabled by a software
          * over-ride.
          */
@@ -2166,11 +1560,9 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw)
 
     DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
 
-    if (hw->phy_type != e1000_phy_ife) {
-        ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
-        if (ret_val)
-            return ret_val;
-    }
+    ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
+    if (ret_val)
+        return ret_val;
 
     return E1000_SUCCESS;
 }
@@ -2180,25 +1572,24 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw)
 *
 * hw - Struct containing variables accessed by shared code
 ******************************************************************************/
-static int32_t
-e1000_phy_force_speed_duplex(struct e1000_hw *hw)
+static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
 {
-    uint32_t ctrl;
-    int32_t ret_val;
-    uint16_t mii_ctrl_reg;
-    uint16_t mii_status_reg;
-    uint16_t phy_data;
-    uint16_t i;
+    u32 ctrl;
+    s32 ret_val;
+    u16 mii_ctrl_reg;
+    u16 mii_status_reg;
+    u16 phy_data;
+    u16 i;
 
     DEBUGFUNC("e1000_phy_force_speed_duplex");
 
     /* Turn off Flow control if we are forcing speed and duplex. */
-    hw->fc = e1000_fc_none;
+    hw->fc = E1000_FC_NONE;
 
     DEBUGOUT1("hw->fc = %d\n", hw->fc);
 
     /* Read the Device Control Register. */
-    ctrl = E1000_READ_REG(hw, CTRL);
+    ctrl = er32(CTRL);
 
     /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
     ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
@@ -2253,10 +1644,9 @@ e1000_phy_force_speed_duplex(struct e1000_hw *hw)
     e1000_config_collision_dist(hw);
 
     /* Write the configured values back to the Device Control Reg. */
-    E1000_WRITE_REG(hw, CTRL, ctrl);
+    ew32(CTRL, ctrl);
 
-    if ((hw->phy_type == e1000_phy_m88) ||
-        (hw->phy_type == e1000_phy_gg82563)) {
+    if (hw->phy_type == e1000_phy_m88) {
         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
         if (ret_val)
             return ret_val;
@@ -2273,18 +1663,7 @@ e1000_phy_force_speed_duplex(struct e1000_hw *hw)
 
         /* Need to reset the PHY or these changes will be ignored */
         mii_ctrl_reg |= MII_CR_RESET;
-    /* Disable MDI-X support for 10/100 */
-    } else if (hw->phy_type == e1000_phy_ife) {
-        ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
-        if (ret_val)
-            return ret_val;
 
-        phy_data &= ~IFE_PMC_AUTO_MDIX;
-        phy_data &= ~IFE_PMC_FORCE_MDIX;
-
-        ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data);
-        if (ret_val)
-            return ret_val;
     } else {
         /* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
          * forced whenever speed or duplex are forced.
@@ -2334,11 +1713,10 @@ e1000_phy_force_speed_duplex(struct e1000_hw *hw)
                 return ret_val;
 
             if (mii_status_reg & MII_SR_LINK_STATUS) break;
-            msec_delay(100);
+            msleep(100);
         }
         if ((i == 0) &&
-           ((hw->phy_type == e1000_phy_m88) ||
-            (hw->phy_type == e1000_phy_gg82563))) {
+           (hw->phy_type == e1000_phy_m88)) {
             /* We didn't get link.  Reset the DSP and wait again for link. */
             ret_val = e1000_phy_reset_dsp(hw);
             if (ret_val) {
@@ -2349,7 +1727,7 @@ e1000_phy_force_speed_duplex(struct e1000_hw *hw)
         /* This loop will early-out if the link condition has been met.  */
         for (i = PHY_FORCE_TIME; i > 0; i--) {
             if (mii_status_reg & MII_SR_LINK_STATUS) break;
-            msec_delay(100);
+            msleep(100);
             /* Read the MII Status Register and wait for Auto-Neg Complete bit
              * to be set.
              */
@@ -2396,27 +1774,6 @@ e1000_phy_force_speed_duplex(struct e1000_hw *hw)
             if (ret_val)
                 return ret_val;
         }
-    } else if (hw->phy_type == e1000_phy_gg82563) {
-        /* The TX_CLK of the Extended PHY Specific Control Register defaults
-         * to 2.5MHz on a reset.  We need to re-force it back to 25MHz, if
-         * we're not in a forced 10/duplex configuration. */
-        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
-        if ((hw->forced_speed_duplex == e1000_10_full) ||
-            (hw->forced_speed_duplex == e1000_10_half))
-            phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ;
-        else
-            phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ;
-
-        /* Also due to the reset, we need to enable CRS on Tx. */
-        phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
-
-        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
-        if (ret_val)
-            return ret_val;
     }
     return E1000_SUCCESS;
 }
@@ -2429,10 +1786,9 @@ e1000_phy_force_speed_duplex(struct e1000_hw *hw)
 * Link should have been established previously. Reads the speed and duplex
 * information from the Device Status register.
 ******************************************************************************/
-void
-e1000_config_collision_dist(struct e1000_hw *hw)
+void e1000_config_collision_dist(struct e1000_hw *hw)
 {
-    uint32_t tctl, coll_dist;
+    u32 tctl, coll_dist;
 
     DEBUGFUNC("e1000_config_collision_dist");
 
@@ -2441,13 +1797,13 @@ e1000_config_collision_dist(struct e1000_hw *hw)
     else
         coll_dist = E1000_COLLISION_DISTANCE;
 
-    tctl = E1000_READ_REG(hw, TCTL);
+    tctl = er32(TCTL);
 
     tctl &= ~E1000_TCTL_COLD;
     tctl |= coll_dist << E1000_COLD_SHIFT;
 
-    E1000_WRITE_REG(hw, TCTL, tctl);
-    E1000_WRITE_FLUSH(hw);
+    ew32(TCTL, tctl);
+    E1000_WRITE_FLUSH();
 }
 
 /******************************************************************************
@@ -2459,12 +1815,11 @@ e1000_config_collision_dist(struct e1000_hw *hw)
 * The contents of the PHY register containing the needed information need to
 * be passed in.
 ******************************************************************************/
-static int32_t
-e1000_config_mac_to_phy(struct e1000_hw *hw)
+static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
 {
-    uint32_t ctrl;
-    int32_t ret_val;
-    uint16_t phy_data;
+    u32 ctrl;
+    s32 ret_val;
+    u16 phy_data;
 
     DEBUGFUNC("e1000_config_mac_to_phy");
 
@@ -2476,7 +1831,7 @@ e1000_config_mac_to_phy(struct e1000_hw *hw)
     /* Read the Device Control Register and set the bits to Force Speed
      * and Duplex.
      */
-    ctrl = E1000_READ_REG(hw, CTRL);
+    ctrl = er32(CTRL);
     ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
     ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
 
@@ -2503,7 +1858,7 @@ e1000_config_mac_to_phy(struct e1000_hw *hw)
         ctrl |= E1000_CTRL_SPD_100;
 
     /* Write the configured values back to the Device Control Reg. */
-    E1000_WRITE_REG(hw, CTRL, ctrl);
+    ew32(CTRL, ctrl);
     return E1000_SUCCESS;
 }
 
@@ -2518,15 +1873,14 @@ e1000_config_mac_to_phy(struct e1000_hw *hw)
  * by the PHY rather than the MAC. Software must also configure these
  * bits when link is forced on a fiber connection.
  *****************************************************************************/
-int32_t
-e1000_force_mac_fc(struct e1000_hw *hw)
+s32 e1000_force_mac_fc(struct e1000_hw *hw)
 {
-    uint32_t ctrl;
+    u32 ctrl;
 
     DEBUGFUNC("e1000_force_mac_fc");
 
     /* Get the current configuration of the Device Control Register */
-    ctrl = E1000_READ_REG(hw, CTRL);
+    ctrl = er32(CTRL);
 
     /* Because we didn't get link via the internal auto-negotiation
      * mechanism (we either forced link or we got link via PHY
@@ -2547,18 +1901,18 @@ e1000_force_mac_fc(struct e1000_hw *hw)
      */
 
     switch (hw->fc) {
-    case e1000_fc_none:
+    case E1000_FC_NONE:
         ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
         break;
-    case e1000_fc_rx_pause:
+    case E1000_FC_RX_PAUSE:
         ctrl &= (~E1000_CTRL_TFCE);
         ctrl |= E1000_CTRL_RFCE;
         break;
-    case e1000_fc_tx_pause:
+    case E1000_FC_TX_PAUSE:
         ctrl &= (~E1000_CTRL_RFCE);
         ctrl |= E1000_CTRL_TFCE;
         break;
-    case e1000_fc_full:
+    case E1000_FC_FULL:
         ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
         break;
     default:
@@ -2570,7 +1924,7 @@ e1000_force_mac_fc(struct e1000_hw *hw)
     if (hw->mac_type == e1000_82542_rev2_0)
         ctrl &= (~E1000_CTRL_TFCE);
 
-    E1000_WRITE_REG(hw, CTRL, ctrl);
+    ew32(CTRL, ctrl);
     return E1000_SUCCESS;
 }
 
@@ -2585,15 +1939,14 @@ e1000_force_mac_fc(struct e1000_hw *hw)
  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
  *****************************************************************************/
-static int32_t
-e1000_config_fc_after_link_up(struct e1000_hw *hw)
+static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
 {
-    int32_t ret_val;
-    uint16_t mii_status_reg;
-    uint16_t mii_nway_adv_reg;
-    uint16_t mii_nway_lp_ability_reg;
-    uint16_t speed;
-    uint16_t duplex;
+    s32 ret_val;
+    u16 mii_status_reg;
+    u16 mii_nway_adv_reg;
+    u16 mii_nway_lp_ability_reg;
+    u16 speed;
+    u16 duplex;
 
     DEBUGFUNC("e1000_config_fc_after_link_up");
 
@@ -2657,14 +2010,14 @@ e1000_config_fc_after_link_up(struct e1000_hw *hw)
              *   LOCAL DEVICE  |   LINK PARTNER
              * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
              *-------|---------|-------|---------|--------------------
-             *   0   |    0    |  DC   |   DC    | e1000_fc_none
-             *   0   |    1    |   0   |   DC    | e1000_fc_none
-             *   0   |    1    |   1   |    0    | e1000_fc_none
-             *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
-             *   1   |    0    |   0   |   DC    | e1000_fc_none
-             *   1   |   DC    |   1   |   DC    | e1000_fc_full
-             *   1   |    1    |   0   |    0    | e1000_fc_none
-             *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
+             *   0   |    0    |  DC   |   DC    | E1000_FC_NONE
+             *   0   |    1    |   0   |   DC    | E1000_FC_NONE
+             *   0   |    1    |   1   |    0    | E1000_FC_NONE
+             *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
+             *   1   |    0    |   0   |   DC    | E1000_FC_NONE
+             *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
+             *   1   |    1    |   0   |    0    | E1000_FC_NONE
+             *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
              *
              */
             /* Are both PAUSE bits set to 1?  If so, this implies
@@ -2676,7 +2029,7 @@ e1000_config_fc_after_link_up(struct e1000_hw *hw)
              *   LOCAL DEVICE  |   LINK PARTNER
              * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
              *-------|---------|-------|---------|--------------------
-             *   1   |   DC    |   1   |   DC    | e1000_fc_full
+             *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
              *
              */
             if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
@@ -2687,11 +2040,11 @@ e1000_config_fc_after_link_up(struct e1000_hw *hw)
                  * ONLY. Hence, we must now check to see if we need to
                  * turn OFF  the TRANSMISSION of PAUSE frames.
                  */
-                if (hw->original_fc == e1000_fc_full) {
-                    hw->fc = e1000_fc_full;
+                if (hw->original_fc == E1000_FC_FULL) {
+                    hw->fc = E1000_FC_FULL;
                     DEBUGOUT("Flow Control = FULL.\n");
                 } else {
-                    hw->fc = e1000_fc_rx_pause;
+                    hw->fc = E1000_FC_RX_PAUSE;
                     DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
                 }
             }
@@ -2700,14 +2053,14 @@ e1000_config_fc_after_link_up(struct e1000_hw *hw)
              *   LOCAL DEVICE  |   LINK PARTNER
              * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
              *-------|---------|-------|---------|--------------------
-             *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
+             *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
              *
              */
             else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
                      (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
                      (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
                      (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
-                hw->fc = e1000_fc_tx_pause;
+                hw->fc = E1000_FC_TX_PAUSE;
                 DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
             }
             /* For transmitting PAUSE frames ONLY.
@@ -2715,14 +2068,14 @@ e1000_config_fc_after_link_up(struct e1000_hw *hw)
              *   LOCAL DEVICE  |   LINK PARTNER
              * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
              *-------|---------|-------|---------|--------------------
-             *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
+             *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
              *
              */
             else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
                      (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
                      !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
                      (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
-                hw->fc = e1000_fc_rx_pause;
+                hw->fc = E1000_FC_RX_PAUSE;
                 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
             }
             /* Per the IEEE spec, at this point flow control should be
@@ -2745,13 +2098,13 @@ e1000_config_fc_after_link_up(struct e1000_hw *hw)
              * be asked to delay transmission of packets than asking
              * our link partner to pause transmission of frames.
              */
-            else if ((hw->original_fc == e1000_fc_none ||
-                      hw->original_fc == e1000_fc_tx_pause) ||
+            else if ((hw->original_fc == E1000_FC_NONE ||
+                      hw->original_fc == E1000_FC_TX_PAUSE) ||
                       hw->fc_strict_ieee) {
-                hw->fc = e1000_fc_none;
+                hw->fc = E1000_FC_NONE;
                 DEBUGOUT("Flow Control = NONE.\n");
             } else {
-                hw->fc = e1000_fc_rx_pause;
+                hw->fc = E1000_FC_RX_PAUSE;
                 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
             }
 
@@ -2766,7 +2119,7 @@ e1000_config_fc_after_link_up(struct e1000_hw *hw)
             }
 
             if (duplex == HALF_DUPLEX)
-                hw->fc = e1000_fc_none;
+                hw->fc = E1000_FC_NONE;
 
             /* Now we call a subroutine to actually force the MAC
              * controller to use the correct flow control settings.
@@ -2783,6 +2136,116 @@ e1000_config_fc_after_link_up(struct e1000_hw *hw)
     return E1000_SUCCESS;
 }
 
+/**
+ *  e1000_check_for_serdes_link_generic - Check for link (Serdes)
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks for link up on the hardware.  If link is not up and we have
+ *  a signal, then we need to force link up.
+ **/
+s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
+{
+       u32 rxcw;
+       u32 ctrl;
+       u32 status;
+       s32 ret_val = E1000_SUCCESS;
+
+       DEBUGFUNC("e1000_check_for_serdes_link_generic");
+
+       ctrl = er32(CTRL);
+       status = er32(STATUS);
+       rxcw = er32(RXCW);
+
+       /*
+        * If we don't have link (auto-negotiation failed or link partner
+        * cannot auto-negotiate), and our link partner is not trying to
+        * auto-negotiate with us (we are receiving idles or data),
+        * we need to force link up. We also need to give auto-negotiation
+        * time to complete.
+        */
+       /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
+       if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
+               if (hw->autoneg_failed == 0) {
+                       hw->autoneg_failed = 1;
+                       goto out;
+               }
+               DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
+
+               /* Disable auto-negotiation in the TXCW register */
+               ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
+
+               /* Force link-up and also force full-duplex. */
+               ctrl = er32(CTRL);
+               ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+               ew32(CTRL, ctrl);
+
+               /* Configure Flow Control after forcing link up. */
+               ret_val = e1000_config_fc_after_link_up(hw);
+               if (ret_val) {
+                       DEBUGOUT("Error configuring flow control\n");
+                       goto out;
+               }
+       } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+               /*
+                * If we are forcing link and we are receiving /C/ ordered
+                * sets, re-enable auto-negotiation in the TXCW register
+                * and disable forced link in the Device Control register
+                * in an attempt to auto-negotiate with our link partner.
+                */
+               DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
+               ew32(TXCW, hw->txcw);
+               ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+               hw->serdes_has_link = true;
+       } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
+               /*
+                * If we force link for non-auto-negotiation switch, check
+                * link status based on MAC synchronization for internal
+                * serdes media type.
+                */
+               /* SYNCH bit and IV bit are sticky. */
+               udelay(10);
+               rxcw = er32(RXCW);
+               if (rxcw & E1000_RXCW_SYNCH) {
+                       if (!(rxcw & E1000_RXCW_IV)) {
+                               hw->serdes_has_link = true;
+                               DEBUGOUT("SERDES: Link up - forced.\n");
+                       }
+               } else {
+                       hw->serdes_has_link = false;
+                       DEBUGOUT("SERDES: Link down - force failed.\n");
+               }
+       }
+
+       if (E1000_TXCW_ANE & er32(TXCW)) {
+               status = er32(STATUS);
+               if (status & E1000_STATUS_LU) {
+                       /* SYNCH bit and IV bit are sticky, so reread rxcw. */
+                       udelay(10);
+                       rxcw = er32(RXCW);
+                       if (rxcw & E1000_RXCW_SYNCH) {
+                               if (!(rxcw & E1000_RXCW_IV)) {
+                                       hw->serdes_has_link = true;
+                                       DEBUGOUT("SERDES: Link up - autoneg "
+                                          "completed sucessfully.\n");
+                               } else {
+                                       hw->serdes_has_link = false;
+                                       DEBUGOUT("SERDES: Link down - invalid"
+                                          "codewords detected in autoneg.\n");
+                               }
+                       } else {
+                               hw->serdes_has_link = false;
+                               DEBUGOUT("SERDES: Link down - no sync.\n");
+                       }
+               } else {
+                       hw->serdes_has_link = false;
+                       DEBUGOUT("SERDES: Link down - autoneg failed\n");
+               }
+       }
+
+out:
+       return ret_val;
+}
 /******************************************************************************
  * Checks to see if the link status of the hardware has changed.
  *
@@ -2790,22 +2253,21 @@ e1000_config_fc_after_link_up(struct e1000_hw *hw)
  *
  * Called by any function that needs to check the link status of the adapter.
  *****************************************************************************/
-int32_t
-e1000_check_for_link(struct e1000_hw *hw)
+s32 e1000_check_for_link(struct e1000_hw *hw)
 {
-    uint32_t rxcw = 0;
-    uint32_t ctrl;
-    uint32_t status;
-    uint32_t rctl;
-    uint32_t icr;
-    uint32_t signal = 0;
-    int32_t ret_val;
-    uint16_t phy_data;
+    u32 rxcw = 0;
+    u32 ctrl;
+    u32 status;
+    u32 rctl;
+    u32 icr;
+    u32 signal = 0;
+    s32 ret_val;
+    u16 phy_data;
 
     DEBUGFUNC("e1000_check_for_link");
 
-    ctrl = E1000_READ_REG(hw, CTRL);
-    status = E1000_READ_REG(hw, STATUS);
+    ctrl = er32(CTRL);
+    status = er32(STATUS);
 
     /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
      * set when the optics detect a signal. On older adapters, it will be
@@ -2813,12 +2275,12 @@ e1000_check_for_link(struct e1000_hw *hw)
      */
     if ((hw->media_type == e1000_media_type_fiber) ||
         (hw->media_type == e1000_media_type_internal_serdes)) {
-        rxcw = E1000_READ_REG(hw, RXCW);
+        rxcw = er32(RXCW);
 
         if (hw->media_type == e1000_media_type_fiber) {
             signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
             if (status & E1000_STATUS_LU)
-                hw->get_link_status = FALSE;
+                hw->get_link_status = false;
         }
     }
 
@@ -2842,7 +2304,7 @@ e1000_check_for_link(struct e1000_hw *hw)
             return ret_val;
 
         if (phy_data & MII_SR_LINK_STATUS) {
-            hw->get_link_status = FALSE;
+            hw->get_link_status = false;
             /* Check if there was DownShift, must be checked immediately after
              * link-up */
             e1000_check_downshift(hw);
@@ -2859,16 +2321,16 @@ e1000_check_for_link(struct e1000_hw *hw)
                 (!hw->autoneg) &&
                 (hw->forced_speed_duplex == e1000_10_full ||
                  hw->forced_speed_duplex == e1000_10_half)) {
-                E1000_WRITE_REG(hw, IMC, 0xffffffff);
+                ew32(IMC, 0xffffffff);
                 ret_val = e1000_polarity_reversal_workaround(hw);
-                icr = E1000_READ_REG(hw, ICR);
-                E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC));
-                E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK);
+                icr = er32(ICR);
+                ew32(ICS, (icr & ~E1000_ICS_LSC));
+                ew32(IMS, IMS_ENABLE_MASK);
             }
 
         } else {
             /* No link detected */
-            e1000_config_dsp_after_link_change(hw, FALSE);
+            e1000_config_dsp_after_link_change(hw, false);
             return 0;
         }
 
@@ -2878,7 +2340,7 @@ e1000_check_for_link(struct e1000_hw *hw)
         if (!hw->autoneg) return -E1000_ERR_CONFIG;
 
         /* optimize the dsp settings for the igp phy */
-        e1000_config_dsp_after_link_change(hw, TRUE);
+        e1000_config_dsp_after_link_change(hw, true);
 
         /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
          * have Si on board that is 82544 or newer, Auto
@@ -2916,7 +2378,7 @@ e1000_check_for_link(struct e1000_hw *hw)
          * at gigabit speed, we turn on TBI compatibility.
          */
         if (hw->tbi_compatibility_en) {
-            uint16_t speed, duplex;
+            u16 speed, duplex;
             ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
             if (ret_val) {
                 DEBUGOUT("Error getting link speed and duplex\n");
@@ -2928,94 +2390,31 @@ e1000_check_for_link(struct e1000_hw *hw)
                  */
                 if (hw->tbi_compatibility_on) {
                     /* If we previously were in the mode, turn it off. */
-                    rctl = E1000_READ_REG(hw, RCTL);
+                    rctl = er32(RCTL);
                     rctl &= ~E1000_RCTL_SBP;
-                    E1000_WRITE_REG(hw, RCTL, rctl);
-                    hw->tbi_compatibility_on = FALSE;
+                    ew32(RCTL, rctl);
+                    hw->tbi_compatibility_on = false;
                 }
             } else {
                 /* If TBI compatibility is was previously off, turn it on. For
                  * compatibility with a TBI link partner, we will store bad
                  * packets. Some frames have an additional byte on the end and
-                 * will look like CRC errors to to the hardware.
+                 * will look like CRC errors to the hardware.
                  */
                 if (!hw->tbi_compatibility_on) {
-                    hw->tbi_compatibility_on = TRUE;
-                    rctl = E1000_READ_REG(hw, RCTL);
+                    hw->tbi_compatibility_on = true;
+                    rctl = er32(RCTL);
                     rctl |= E1000_RCTL_SBP;
-                    E1000_WRITE_REG(hw, RCTL, rctl);
+                    ew32(RCTL, rctl);
                 }
             }
         }
     }
-    /* If we don't have link (auto-negotiation failed or link partner cannot
-     * auto-negotiate), the cable is plugged in (we have signal), and our
-     * link partner is not trying to auto-negotiate with us (we are receiving
-     * idles or data), we need to force link up. We also need to give
-     * auto-negotiation time to complete, in case the cable was just plugged
-     * in. The autoneg_failed flag does this.
-     */
-    else if ((((hw->media_type == e1000_media_type_fiber) &&
-              ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
-              (hw->media_type == e1000_media_type_internal_serdes)) &&
-              (!(status & E1000_STATUS_LU)) &&
-              (!(rxcw & E1000_RXCW_C))) {
-        if (hw->autoneg_failed == 0) {
-            hw->autoneg_failed = 1;
-            return 0;
-        }
-        DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
-
-        /* Disable auto-negotiation in the TXCW register */
-        E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
-
-        /* Force link-up and also force full-duplex. */
-        ctrl = E1000_READ_REG(hw, CTRL);
-        ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
-        E1000_WRITE_REG(hw, CTRL, ctrl);
 
-        /* Configure Flow Control after forcing link up. */
-        ret_val = e1000_config_fc_after_link_up(hw);
-        if (ret_val) {
-            DEBUGOUT("Error configuring flow control\n");
-            return ret_val;
-        }
-    }
-    /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
-     * auto-negotiation in the TXCW register and disable forced link in the
-     * Device Control register in an attempt to auto-negotiate with our link
-     * partner.
-     */
-    else if (((hw->media_type == e1000_media_type_fiber) ||
-              (hw->media_type == e1000_media_type_internal_serdes)) &&
-              (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
-        DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
-        E1000_WRITE_REG(hw, TXCW, hw->txcw);
-        E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
+    if ((hw->media_type == e1000_media_type_fiber) ||
+        (hw->media_type == e1000_media_type_internal_serdes))
+        e1000_check_for_serdes_link_generic(hw);
 
-        hw->serdes_link_down = FALSE;
-    }
-    /* If we force link for non-auto-negotiation switch, check link status
-     * based on MAC synchronization for internal serdes media type.
-     */
-    else if ((hw->media_type == e1000_media_type_internal_serdes) &&
-             !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
-        /* SYNCH bit and IV bit are sticky. */
-        udelay(10);
-        if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
-            if (!(rxcw & E1000_RXCW_IV)) {
-                hw->serdes_link_down = FALSE;
-                DEBUGOUT("SERDES: Link is up.\n");
-            }
-        } else {
-            hw->serdes_link_down = TRUE;
-            DEBUGOUT("SERDES: Link is down.\n");
-        }
-    }
-    if ((hw->media_type == e1000_media_type_internal_serdes) &&
-        (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
-        hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS));
-    }
     return E1000_SUCCESS;
 }
 
@@ -3026,19 +2425,16 @@ e1000_check_for_link(struct e1000_hw *hw)
  * speed - Speed of the connection
  * duplex - Duplex setting of the connection
  *****************************************************************************/
-int32_t
-e1000_get_speed_and_duplex(struct e1000_hw *hw,
-                           uint16_t *speed,
-                           uint16_t *duplex)
+s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
 {
-    uint32_t status;
-    int32_t ret_val;
-    uint16_t phy_data;
+    u32 status;
+    s32 ret_val;
+    u16 phy_data;
 
     DEBUGFUNC("e1000_get_speed_and_duplex");
 
     if (hw->mac_type >= e1000_82543) {
-        status = E1000_READ_REG(hw, STATUS);
+        status = er32(STATUS);
         if (status & E1000_STATUS_SPEED_1000) {
             *speed = SPEED_1000;
             DEBUGOUT("1000 Mbs, ");
@@ -3084,22 +2480,6 @@ e1000_get_speed_and_duplex(struct e1000_hw *hw,
         }
     }
 
-    if ((hw->mac_type == e1000_80003es2lan) &&
-        (hw->media_type == e1000_media_type_copper)) {
-        if (*speed == SPEED_1000)
-            ret_val = e1000_configure_kmrn_for_1000(hw);
-        else
-            ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
-        if (ret_val)
-            return ret_val;
-    }
-
-    if ((hw->phy_type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
-        ret_val = e1000_kumeran_lock_loss_workaround(hw);
-        if (ret_val)
-            return ret_val;
-    }
-
     return E1000_SUCCESS;
 }
 
@@ -3108,12 +2488,11 @@ e1000_get_speed_and_duplex(struct e1000_hw *hw,
 *
 * hw - Struct containing variables accessed by shared code
 ******************************************************************************/
-static int32_t
-e1000_wait_autoneg(struct e1000_hw *hw)
+static s32 e1000_wait_autoneg(struct e1000_hw *hw)
 {
-    int32_t ret_val;
-    uint16_t i;
-    uint16_t phy_data;
+    s32 ret_val;
+    u16 i;
+    u16 phy_data;
 
     DEBUGFUNC("e1000_wait_autoneg");
     DEBUGOUT("Waiting for Auto-Neg to complete.\n");
@@ -3132,7 +2511,7 @@ e1000_wait_autoneg(struct e1000_hw *hw)
         if (phy_data & MII_SR_AUTONEG_COMPLETE) {
             return E1000_SUCCESS;
         }
-        msec_delay(100);
+        msleep(100);
     }
     return E1000_SUCCESS;
 }
@@ -3143,15 +2522,13 @@ e1000_wait_autoneg(struct e1000_hw *hw)
 * hw - Struct containing variables accessed by shared code
 * ctrl - Device control register's current value
 ******************************************************************************/
-static void
-e1000_raise_mdi_clk(struct e1000_hw *hw,
-                    uint32_t *ctrl)
+static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
 {
     /* Raise the clock input to the Management Data Clock (by setting the MDC
      * bit), and then delay 10 microseconds.
      */
-    E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
-    E1000_WRITE_FLUSH(hw);
+    ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
+    E1000_WRITE_FLUSH();
     udelay(10);
 }
 
@@ -3161,15 +2538,13 @@ e1000_raise_mdi_clk(struct e1000_hw *hw,
 * hw - Struct containing variables accessed by shared code
 * ctrl - Device control register's current value
 ******************************************************************************/
-static void
-e1000_lower_mdi_clk(struct e1000_hw *hw,
-                    uint32_t *ctrl)
+static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
 {
     /* Lower the clock input to the Management Data Clock (by clearing the MDC
      * bit), and then delay 10 microseconds.
      */
-    E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
-    E1000_WRITE_FLUSH(hw);
+    ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
+    E1000_WRITE_FLUSH();
     udelay(10);
 }
 
@@ -3182,13 +2557,10 @@ e1000_lower_mdi_clk(struct e1000_hw *hw,
 *
 * Bits are shifted out in MSB to LSB order.
 ******************************************************************************/
-static void
-e1000_shift_out_mdi_bits(struct e1000_hw *hw,
-                         uint32_t data,
-                         uint16_t count)
+static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
 {
-    uint32_t ctrl;
-    uint32_t mask;
+    u32 ctrl;
+    u32 mask;
 
     /* We need to shift "count" number of bits out to the PHY. So, the value
      * in the "data" parameter will be shifted out to the PHY one bit at a
@@ -3197,7 +2569,7 @@ e1000_shift_out_mdi_bits(struct e1000_hw *hw,
     mask = 0x01;
     mask <<= (count - 1);
 
-    ctrl = E1000_READ_REG(hw, CTRL);
+    ctrl = er32(CTRL);
 
     /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
     ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
@@ -3213,8 +2585,8 @@ e1000_shift_out_mdi_bits(struct e1000_hw *hw,
         else
             ctrl &= ~E1000_CTRL_MDIO;
 
-        E1000_WRITE_REG(hw, CTRL, ctrl);
-        E1000_WRITE_FLUSH(hw);
+        ew32(CTRL, ctrl);
+        E1000_WRITE_FLUSH();
 
         udelay(10);
 
@@ -3232,12 +2604,11 @@ e1000_shift_out_mdi_bits(struct e1000_hw *hw,
 *
 * Bits are shifted in in MSB to LSB order.
 ******************************************************************************/
-static uint16_t
-e1000_shift_in_mdi_bits(struct e1000_hw *hw)
+static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
 {
-    uint32_t ctrl;
-    uint16_t data = 0;
-    uint8_t i;
+    u32 ctrl;
+    u16 data = 0;
+    u8 i;
 
     /* In order to read a register from the PHY, we need to shift in a total
      * of 18 bits from the PHY. The first two bit (turnaround) times are used
@@ -3246,14 +2617,14 @@ e1000_shift_in_mdi_bits(struct e1000_hw *hw)
      * by raising the input to the Management Data Clock (setting the MDC bit),
      * and then reading the value of the MDIO bit.
      */
-    ctrl = E1000_READ_REG(hw, CTRL);
+    ctrl = er32(CTRL);
 
     /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
     ctrl &= ~E1000_CTRL_MDIO_DIR;
     ctrl &= ~E1000_CTRL_MDIO;
 
-    E1000_WRITE_REG(hw, CTRL, ctrl);
-    E1000_WRITE_FLUSH(hw);
+    ew32(CTRL, ctrl);
+    E1000_WRITE_FLUSH();
 
     /* Raise and Lower the clock before reading in the data. This accounts for
      * the turnaround bits. The first clock occurred when we clocked out the
@@ -3265,7 +2636,7 @@ e1000_shift_in_mdi_bits(struct e1000_hw *hw)
     for (data = 0, i = 0; i < 16; i++) {
         data = data << 1;
         e1000_raise_mdi_clk(hw, &ctrl);
-        ctrl = E1000_READ_REG(hw, CTRL);
+        ctrl = er32(CTRL);
         /* Check to see if we shifted in a "1". */
         if (ctrl & E1000_CTRL_MDIO)
             data |= 1;
@@ -3278,153 +2649,37 @@ e1000_shift_in_mdi_bits(struct e1000_hw *hw)
     return data;
 }
 
-static int32_t
-e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
-{
-    uint32_t swfw_sync = 0;
-    uint32_t swmask = mask;
-    uint32_t fwmask = mask << 16;
-    int32_t timeout = 200;
-
-    DEBUGFUNC("e1000_swfw_sync_acquire");
-
-    if (hw->swfwhw_semaphore_present)
-        return e1000_get_software_flag(hw);
-
-    if (!hw->swfw_sync_present)
-        return e1000_get_hw_eeprom_semaphore(hw);
-
-    while (timeout) {
-            if (e1000_get_hw_eeprom_semaphore(hw))
-                return -E1000_ERR_SWFW_SYNC;
-
-            swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
-            if (!(swfw_sync & (fwmask | swmask))) {
-                break;
-            }
-
-            /* firmware currently using resource (fwmask) */
-            /* or other software thread currently using resource (swmask) */
-            e1000_put_hw_eeprom_semaphore(hw);
-            msec_delay_irq(5);
-            timeout--;
-    }
-
-    if (!timeout) {
-        DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
-        return -E1000_ERR_SWFW_SYNC;
-    }
-
-    swfw_sync |= swmask;
-    E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
-
-    e1000_put_hw_eeprom_semaphore(hw);
-    return E1000_SUCCESS;
-}
-
-static void
-e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
-{
-    uint32_t swfw_sync;
-    uint32_t swmask = mask;
-
-    DEBUGFUNC("e1000_swfw_sync_release");
-
-    if (hw->swfwhw_semaphore_present) {
-        e1000_release_software_flag(hw);
-        return;
-    }
-
-    if (!hw->swfw_sync_present) {
-        e1000_put_hw_eeprom_semaphore(hw);
-        return;
-    }
-
-    /* if (e1000_get_hw_eeprom_semaphore(hw))
-     *    return -E1000_ERR_SWFW_SYNC; */
-    while (e1000_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS);
-        /* empty */
-
-    swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
-    swfw_sync &= ~swmask;
-    E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
-
-    e1000_put_hw_eeprom_semaphore(hw);
-}
-
 /*****************************************************************************
 * Reads the value from a PHY register, if the value is on a specific non zero
 * page, sets the page first.
 * hw - Struct containing variables accessed by shared code
 * reg_addr - address of the PHY register to read
 ******************************************************************************/
-int32_t
-e1000_read_phy_reg(struct e1000_hw *hw,
-                   uint32_t reg_addr,
-                   uint16_t *phy_data)
+s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
 {
-    uint32_t ret_val;
-    uint16_t swfw;
+    u32 ret_val;
 
     DEBUGFUNC("e1000_read_phy_reg");
 
-    if ((hw->mac_type == e1000_80003es2lan) &&
-        (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
-        swfw = E1000_SWFW_PHY1_SM;
-    } else {
-        swfw = E1000_SWFW_PHY0_SM;
-    }
-    if (e1000_swfw_sync_acquire(hw, swfw))
-        return -E1000_ERR_SWFW_SYNC;
-
-    if ((hw->phy_type == e1000_phy_igp ||
-        hw->phy_type == e1000_phy_igp_3 ||
-        hw->phy_type == e1000_phy_igp_2) &&
-       (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
+    if ((hw->phy_type == e1000_phy_igp) &&
+        (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
         ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
-                                         (uint16_t)reg_addr);
-        if (ret_val) {
-            e1000_swfw_sync_release(hw, swfw);
+                                         (u16)reg_addr);
+        if (ret_val)
             return ret_val;
-        }
-    } else if (hw->phy_type == e1000_phy_gg82563) {
-        if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
-            (hw->mac_type == e1000_80003es2lan)) {
-            /* Select Configuration Page */
-            if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
-                ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
-                          (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
-            } else {
-                /* Use Alternative Page Select register to access
-                 * registers 30 and 31
-                 */
-                ret_val = e1000_write_phy_reg_ex(hw,
-                                                 GG82563_PHY_PAGE_SELECT_ALT,
-                          (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
-            }
-
-            if (ret_val) {
-                e1000_swfw_sync_release(hw, swfw);
-                return ret_val;
-            }
-        }
     }
 
     ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
                                     phy_data);
-
-    e1000_swfw_sync_release(hw, swfw);
     return ret_val;
 }
 
-int32_t
-e1000_read_phy_reg_ex(struct e1000_hw *hw,
-                      uint32_t reg_addr,
-                      uint16_t *phy_data)
+static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
+                                u16 *phy_data)
 {
-    uint32_t i;
-    uint32_t mdic = 0;
-    const uint32_t phy_addr = 1;
+    u32 i;
+    u32 mdic = 0;
+    const u32 phy_addr = 1;
 
     DEBUGFUNC("e1000_read_phy_reg_ex");
 
@@ -3442,12 +2697,12 @@ e1000_read_phy_reg_ex(struct e1000_hw *hw,
                 (phy_addr << E1000_MDIC_PHY_SHIFT) |
                 (E1000_MDIC_OP_READ));
 
-        E1000_WRITE_REG(hw, MDIC, mdic);
+        ew32(MDIC, mdic);
 
         /* Poll the ready bit to see if the MDI read completed */
         for (i = 0; i < 64; i++) {
             udelay(50);
-            mdic = E1000_READ_REG(hw, MDIC);
+            mdic = er32(MDIC);
             if (mdic & E1000_MDIC_READY) break;
         }
         if (!(mdic & E1000_MDIC_READY)) {
@@ -3458,7 +2713,7 @@ e1000_read_phy_reg_ex(struct e1000_hw *hw,
             DEBUGOUT("MDI Error\n");
             return -E1000_ERR_PHY;
         }
-        *phy_data = (uint16_t) mdic;
+        *phy_data = (u16)mdic;
     } else {
         /* We must first send a preamble through the MDIO pin to signal the
          * beginning of an MII instruction.  This is done by sending 32
@@ -3498,73 +2753,32 @@ e1000_read_phy_reg_ex(struct e1000_hw *hw,
 * reg_addr - address of the PHY register to write
 * data - data to write to the PHY
 ******************************************************************************/
-int32_t
-e1000_write_phy_reg(struct e1000_hw *hw,
-                    uint32_t reg_addr,
-                    uint16_t phy_data)
+s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
 {
-    uint32_t ret_val;
-    uint16_t swfw;
+    u32 ret_val;
 
     DEBUGFUNC("e1000_write_phy_reg");
 
-    if ((hw->mac_type == e1000_80003es2lan) &&
-        (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
-        swfw = E1000_SWFW_PHY1_SM;
-    } else {
-        swfw = E1000_SWFW_PHY0_SM;
-    }
-    if (e1000_swfw_sync_acquire(hw, swfw))
-        return -E1000_ERR_SWFW_SYNC;
-
-    if ((hw->phy_type == e1000_phy_igp ||
-        hw->phy_type == e1000_phy_igp_3 ||
-        hw->phy_type == e1000_phy_igp_2) &&
-       (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
+    if ((hw->phy_type == e1000_phy_igp) &&
+        (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
         ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
-                                         (uint16_t)reg_addr);
-        if (ret_val) {
-            e1000_swfw_sync_release(hw, swfw);
+                                         (u16)reg_addr);
+        if (ret_val)
             return ret_val;
-        }
-    } else if (hw->phy_type == e1000_phy_gg82563) {
-        if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
-            (hw->mac_type == e1000_80003es2lan)) {
-            /* Select Configuration Page */
-            if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
-                ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
-                          (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
-            } else {
-                /* Use Alternative Page Select register to access
-                 * registers 30 and 31
-                 */
-                ret_val = e1000_write_phy_reg_ex(hw,
-                                                 GG82563_PHY_PAGE_SELECT_ALT,
-                          (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
-            }
-
-            if (ret_val) {
-                e1000_swfw_sync_release(hw, swfw);
-                return ret_val;
-            }
-        }
     }
 
     ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
                                      phy_data);
 
-    e1000_swfw_sync_release(hw, swfw);
     return ret_val;
 }
 
-int32_t
-e1000_write_phy_reg_ex(struct e1000_hw *hw,
-                    uint32_t reg_addr,
-                    uint16_t phy_data)
+static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
+                                 u16 phy_data)
 {
-    uint32_t i;
-    uint32_t mdic = 0;
-    const uint32_t phy_addr = 1;
+    u32 i;
+    u32 mdic = 0;
+    const u32 phy_addr = 1;
 
     DEBUGFUNC("e1000_write_phy_reg_ex");
 
@@ -3578,17 +2792,17 @@ e1000_write_phy_reg_ex(struct e1000_hw *hw,
          * for the PHY register in the MDI Control register.  The MAC will take
          * care of interfacing with the PHY to send the desired data.
          */
-        mdic = (((uint32_t) phy_data) |
+        mdic = (((u32)phy_data) |
                 (reg_addr << E1000_MDIC_REG_SHIFT) |
                 (phy_addr << E1000_MDIC_PHY_SHIFT) |
                 (E1000_MDIC_OP_WRITE));
 
-        E1000_WRITE_REG(hw, MDIC, mdic);
+        ew32(MDIC, mdic);
 
         /* Poll the ready bit to see if the MDI read completed */
         for (i = 0; i < 641; i++) {
             udelay(5);
-            mdic = E1000_READ_REG(hw, MDIC);
+            mdic = er32(MDIC);
             if (mdic & E1000_MDIC_READY) break;
         }
         if (!(mdic & E1000_MDIC_READY)) {
@@ -3612,7 +2826,7 @@ e1000_write_phy_reg_ex(struct e1000_hw *hw,
         mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
                 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
         mdic <<= 16;
-        mdic |= (uint32_t) phy_data;
+        mdic |= (u32)phy_data;
 
         e1000_shift_out_mdi_bits(hw, mdic, 32);
     }
@@ -3620,153 +2834,63 @@ e1000_write_phy_reg_ex(struct e1000_hw *hw,
     return E1000_SUCCESS;
 }
 
-static int32_t
-e1000_read_kmrn_reg(struct e1000_hw *hw,
-                    uint32_t reg_addr,
-                    uint16_t *data)
-{
-    uint32_t reg_val;
-    uint16_t swfw;
-    DEBUGFUNC("e1000_read_kmrn_reg");
-
-    if ((hw->mac_type == e1000_80003es2lan) &&
-        (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
-        swfw = E1000_SWFW_PHY1_SM;
-    } else {
-        swfw = E1000_SWFW_PHY0_SM;
-    }
-    if (e1000_swfw_sync_acquire(hw, swfw))
-        return -E1000_ERR_SWFW_SYNC;
-
-    /* Write register address */
-    reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
-              E1000_KUMCTRLSTA_OFFSET) |
-              E1000_KUMCTRLSTA_REN;
-    E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
-    udelay(2);
-
-    /* Read the data returned */
-    reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
-    *data = (uint16_t)reg_val;
-
-    e1000_swfw_sync_release(hw, swfw);
-    return E1000_SUCCESS;
-}
-
-static int32_t
-e1000_write_kmrn_reg(struct e1000_hw *hw,
-                     uint32_t reg_addr,
-                     uint16_t data)
-{
-    uint32_t reg_val;
-    uint16_t swfw;
-    DEBUGFUNC("e1000_write_kmrn_reg");
-
-    if ((hw->mac_type == e1000_80003es2lan) &&
-        (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
-        swfw = E1000_SWFW_PHY1_SM;
-    } else {
-        swfw = E1000_SWFW_PHY0_SM;
-    }
-    if (e1000_swfw_sync_acquire(hw, swfw))
-        return -E1000_ERR_SWFW_SYNC;
-
-    reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
-              E1000_KUMCTRLSTA_OFFSET) | data;
-    E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
-    udelay(2);
-
-    e1000_swfw_sync_release(hw, swfw);
-    return E1000_SUCCESS;
-}
-
 /******************************************************************************
 * Returns the PHY to the power-on reset state
 *
 * hw - Struct containing variables accessed by shared code
 ******************************************************************************/
-int32_t
-e1000_phy_hw_reset(struct e1000_hw *hw)
+s32 e1000_phy_hw_reset(struct e1000_hw *hw)
 {
-    uint32_t ctrl, ctrl_ext;
-    uint32_t led_ctrl;
-    int32_t ret_val;
-    uint16_t swfw;
+    u32 ctrl, ctrl_ext;
+    u32 led_ctrl;
+    s32 ret_val;
 
     DEBUGFUNC("e1000_phy_hw_reset");
 
-    /* In the case of the phy reset being blocked, it's not an error, we
-     * simply return success without performing the reset. */
-    ret_val = e1000_check_phy_reset_block(hw);
-    if (ret_val)
-        return E1000_SUCCESS;
-
     DEBUGOUT("Resetting Phy...\n");
 
     if (hw->mac_type > e1000_82543) {
-        if ((hw->mac_type == e1000_80003es2lan) &&
-            (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
-            swfw = E1000_SWFW_PHY1_SM;
-        } else {
-            swfw = E1000_SWFW_PHY0_SM;
-        }
-        if (e1000_swfw_sync_acquire(hw, swfw)) {
-            e1000_release_software_semaphore(hw);
-            return -E1000_ERR_SWFW_SYNC;
-        }
         /* Read the device control register and assert the E1000_CTRL_PHY_RST
          * bit. Then, take it out of reset.
-         * For pre-e1000_82571 hardware, we delay for 10ms between the assert
-         * and deassert.  For e1000_82571 hardware and later, we instead delay
-         * for 50us between and 10ms after the deassertion.
+         * For e1000 hardware, we delay for 10ms between the assert
+         * and deassert.
          */
-        ctrl = E1000_READ_REG(hw, CTRL);
-        E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
-        E1000_WRITE_FLUSH(hw);
+        ctrl = er32(CTRL);
+        ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
+        E1000_WRITE_FLUSH();
 
-        if (hw->mac_type < e1000_82571)
-            msec_delay(10);
-        else
-            udelay(100);
-
-        E1000_WRITE_REG(hw, CTRL, ctrl);
-        E1000_WRITE_FLUSH(hw);
+        msleep(10);
 
-        if (hw->mac_type >= e1000_82571)
-            msec_delay_irq(10);
-        e1000_swfw_sync_release(hw, swfw);
+        ew32(CTRL, ctrl);
+        E1000_WRITE_FLUSH();
     } else {
         /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
          * bit to put the PHY into reset. Then, take it out of reset.
          */
-        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+        ctrl_ext = er32(CTRL_EXT);
         ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
         ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
-        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
-        E1000_WRITE_FLUSH(hw);
-        msec_delay(10);
+        ew32(CTRL_EXT, ctrl_ext);
+        E1000_WRITE_FLUSH();
+        msleep(10);
         ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
-        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
-        E1000_WRITE_FLUSH(hw);
+        ew32(CTRL_EXT, ctrl_ext);
+        E1000_WRITE_FLUSH();
     }
     udelay(150);
 
     if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
         /* Configure activity LED after PHY reset */
-        led_ctrl = E1000_READ_REG(hw, LEDCTL);
+        led_ctrl = er32(LEDCTL);
         led_ctrl &= IGP_ACTIVITY_LED_MASK;
         led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
-        E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
+        ew32(LEDCTL, led_ctrl);
     }
 
     /* Wait for FW to finish PHY configuration. */
     ret_val = e1000_get_phy_cfg_done(hw);
     if (ret_val != E1000_SUCCESS)
         return ret_val;
-    e1000_release_software_semaphore(hw);
-
-    if ((hw->mac_type == e1000_ich8lan) && (hw->phy_type == e1000_phy_igp_3))
-        ret_val = e1000_init_lcd_from_nvm(hw);
 
     return ret_val;
 }
@@ -3776,31 +2900,20 @@ e1000_phy_hw_reset(struct e1000_hw *hw)
 *
 * hw - Struct containing variables accessed by shared code
 *
-* Sets bit 15 of the MII Control regiser
+* Sets bit 15 of the MII Control register
 ******************************************************************************/
-int32_t
-e1000_phy_reset(struct e1000_hw *hw)
+s32 e1000_phy_reset(struct e1000_hw *hw)
 {
-    int32_t ret_val;
-    uint16_t phy_data;
+    s32 ret_val;
+    u16 phy_data;
 
     DEBUGFUNC("e1000_phy_reset");
 
-    /* In the case of the phy reset being blocked, it's not an error, we
-     * simply return success without performing the reset. */
-    ret_val = e1000_check_phy_reset_block(hw);
-    if (ret_val)
-        return E1000_SUCCESS;
-
-    switch (hw->mac_type) {
-    case e1000_82541_rev_2:
-    case e1000_82571:
-    case e1000_82572:
-    case e1000_ich8lan:
+    switch (hw->phy_type) {
+    case e1000_phy_igp:
         ret_val = e1000_phy_hw_reset(hw);
         if (ret_val)
             return ret_val;
-
         break;
     default:
         ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
@@ -3816,199 +2929,61 @@ e1000_phy_reset(struct e1000_hw *hw)
         break;
     }
 
-    if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
+    if (hw->phy_type == e1000_phy_igp)
         e1000_phy_init_script(hw);
 
     return E1000_SUCCESS;
 }
 
 /******************************************************************************
-* Work-around for 82566 power-down: on D3 entry-
-* 1) disable gigabit link
-* 2) write VR power-down enable
-* 3) read it back
-* if successful continue, else issue LCD reset and repeat
-*
-* hw - struct containing variables accessed by shared code
-******************************************************************************/
-void
-e1000_phy_powerdown_workaround(struct e1000_hw *hw)
-{
-    int32_t reg;
-    uint16_t phy_data;
-    int32_t retry = 0;
-
-    DEBUGFUNC("e1000_phy_powerdown_workaround");
-
-    if (hw->phy_type != e1000_phy_igp_3)
-        return;
-
-    do {
-        /* Disable link */
-        reg = E1000_READ_REG(hw, PHY_CTRL);
-        E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
-                        E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
-
-        /* Write VR power-down enable */
-        e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
-        e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data |
-                            IGP3_VR_CTRL_MODE_SHUT);
-
-        /* Read it back and test */
-        e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
-        if ((phy_data & IGP3_VR_CTRL_MODE_SHUT) || retry)
-            break;
-
-        /* Issue PHY reset and repeat at most one more time */
-        reg = E1000_READ_REG(hw, CTRL);
-        E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST);
-        retry++;
-    } while (retry);
-
-    return;
-
-}
-
-/******************************************************************************
-* Work-around for 82566 Kumeran PCS lock loss:
-* On link status change (i.e. PCI reset, speed change) and link is up and
-* speed is gigabit-
-* 0) if workaround is optionally disabled do nothing
-* 1) wait 1ms for Kumeran link to come up
-* 2) check Kumeran Diagnostic register PCS lock loss bit
-* 3) if not set the link is locked (all is good), otherwise...
-* 4) reset the PHY
-* 5) repeat up to 10 times
-* Note: this is only called for IGP3 copper when speed is 1gb.
-*
-* hw - struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t
-e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw)
-{
-    int32_t ret_val;
-    int32_t reg;
-    int32_t cnt;
-    uint16_t phy_data;
-
-    if (hw->kmrn_lock_loss_workaround_disabled)
-        return E1000_SUCCESS;
-
-    /* Make sure link is up before proceeding.  If not just return.
-     * Attempting this while link is negotiating fouled up link
-     * stability */
-    ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
-    ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
-
-    if (phy_data & MII_SR_LINK_STATUS) {
-        for (cnt = 0; cnt < 10; cnt++) {
-            /* read once to clear */
-            ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
-            if (ret_val)
-                return ret_val;
-            /* and again to get new status */
-            ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
-            if (ret_val)
-                return ret_val;
-
-            /* check for PCS lock */
-            if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
-                return E1000_SUCCESS;
-
-            /* Issue PHY reset */
-            e1000_phy_hw_reset(hw);
-            msec_delay_irq(5);
-        }
-        /* Disable GigE link negotiation */
-        reg = E1000_READ_REG(hw, PHY_CTRL);
-        E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
-                        E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
-
-        /* unable to acquire PCS lock */
-        return E1000_ERR_PHY;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
 * Probes the expected PHY address for known PHY IDs
 *
 * hw - Struct containing variables accessed by shared code
 ******************************************************************************/
-int32_t
-e1000_detect_gig_phy(struct e1000_hw *hw)
+static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
 {
-    int32_t phy_init_status, ret_val;
-    uint16_t phy_id_high, phy_id_low;
-    boolean_t match = FALSE;
+    s32 phy_init_status, ret_val;
+    u16 phy_id_high, phy_id_low;
+    bool match = false;
 
     DEBUGFUNC("e1000_detect_gig_phy");
 
-    /* The 82571 firmware may still be configuring the PHY.  In this
-     * case, we cannot access the PHY until the configuration is done.  So
-     * we explicitly set the PHY values. */
-    if (hw->mac_type == e1000_82571 ||
-        hw->mac_type == e1000_82572) {
-        hw->phy_id = IGP01E1000_I_PHY_ID;
-        hw->phy_type = e1000_phy_igp_2;
+    if (hw->phy_id != 0)
         return E1000_SUCCESS;
-    }
-
-    /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a work-
-     * around that forces PHY page 0 to be set or the reads fail.  The rest of
-     * the code in this routine uses e1000_read_phy_reg to read the PHY ID.
-     * So for ESB-2 we need to have this set so our reads won't fail.  If the
-     * attached PHY is not a e1000_phy_gg82563, the routines below will figure
-     * this out as well. */
-    if (hw->mac_type == e1000_80003es2lan)
-        hw->phy_type = e1000_phy_gg82563;
 
     /* Read the PHY ID Registers to identify which PHY is onboard. */
     ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
     if (ret_val)
         return ret_val;
 
-    hw->phy_id = (uint32_t) (phy_id_high << 16);
+    hw->phy_id = (u32)(phy_id_high << 16);
     udelay(20);
     ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
     if (ret_val)
         return ret_val;
 
-    hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
-    hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
+    hw->phy_id |= (u32)(phy_id_low & PHY_REVISION_MASK);
+    hw->phy_revision = (u32)phy_id_low & ~PHY_REVISION_MASK;
 
     switch (hw->mac_type) {
     case e1000_82543:
-        if (hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
+        if (hw->phy_id == M88E1000_E_PHY_ID) match = true;
         break;
     case e1000_82544:
-        if (hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
+        if (hw->phy_id == M88E1000_I_PHY_ID) match = true;
         break;
     case e1000_82540:
     case e1000_82545:
     case e1000_82545_rev_3:
     case e1000_82546:
     case e1000_82546_rev_3:
-        if (hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
+        if (hw->phy_id == M88E1011_I_PHY_ID) match = true;
         break;
     case e1000_82541:
     case e1000_82541_rev_2:
     case e1000_82547:
     case e1000_82547_rev_2:
-        if (hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
-        break;
-    case e1000_82573:
-        if (hw->phy_id == M88E1111_I_PHY_ID) match = TRUE;
-        break;
-    case e1000_80003es2lan:
-        if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE;
-        break;
-    case e1000_ich8lan:
-        if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE;
-        if (hw->phy_id == IFE_E_PHY_ID) match = TRUE;
-        if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE;
-        if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE;
+        if (hw->phy_id == IGP01E1000_I_PHY_ID) match = true;
         break;
     default:
         DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
@@ -4029,17 +3004,14 @@ e1000_detect_gig_phy(struct e1000_hw *hw)
 *
 * hw - Struct containing variables accessed by shared code
 ******************************************************************************/
-static int32_t
-e1000_phy_reset_dsp(struct e1000_hw *hw)
+static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
 {
-    int32_t ret_val;
+    s32 ret_val;
     DEBUGFUNC("e1000_phy_reset_dsp");
 
     do {
-        if (hw->phy_type != e1000_phy_gg82563) {
-            ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
-            if (ret_val) break;
-        }
+        ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
+        if (ret_val) break;
         ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
         if (ret_val) break;
         ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
@@ -4056,12 +3028,12 @@ e1000_phy_reset_dsp(struct e1000_hw *hw)
 * hw - Struct containing variables accessed by shared code
 * phy_info - PHY information structure
 ******************************************************************************/
-static int32_t
-e1000_phy_igp_get_info(struct e1000_hw *hw,
-                       struct e1000_phy_info *phy_info)
+static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
+                                 struct e1000_phy_info *phy_info)
 {
-    int32_t ret_val;
-    uint16_t phy_data, polarity, min_length, max_length, average;
+    s32 ret_val;
+    u16 phy_data, min_length, max_length, average;
+    e1000_rev_polarity polarity;
 
     DEBUGFUNC("e1000_phy_igp_get_info");
 
@@ -4086,8 +3058,8 @@ e1000_phy_igp_get_info(struct e1000_hw *hw,
     if (ret_val)
         return ret_val;
 
-    phy_info->mdix_mode = (phy_data & IGP01E1000_PSSR_MDIX) >>
-                          IGP01E1000_PSSR_MDIX_SHIFT;
+    phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & IGP01E1000_PSSR_MDIX) >>
+                          IGP01E1000_PSSR_MDIX_SHIFT);
 
     if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
        IGP01E1000_PSSR_SPEED_1000MBPS) {
@@ -4096,10 +3068,12 @@ e1000_phy_igp_get_info(struct e1000_hw *hw,
         if (ret_val)
             return ret_val;
 
-        phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
-                             SR_1000T_LOCAL_RX_STATUS_SHIFT;
-        phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
-                              SR_1000T_REMOTE_RX_STATUS_SHIFT;
+        phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
+                             SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
+                             e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+        phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
+                              SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
+                              e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
 
         /* Get cable length */
         ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
@@ -4124,121 +3098,71 @@ e1000_phy_igp_get_info(struct e1000_hw *hw,
     return E1000_SUCCESS;
 }
 
+
 /******************************************************************************
-* Get PHY information from various PHY registers for ife PHY only.
+* Get PHY information from various PHY registers fot m88 PHY only.
 *
 * hw - Struct containing variables accessed by shared code
 * phy_info - PHY information structure
 ******************************************************************************/
-static int32_t
-e1000_phy_ife_get_info(struct e1000_hw *hw,
-                       struct e1000_phy_info *phy_info)
+static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
+                                 struct e1000_phy_info *phy_info)
 {
-    int32_t ret_val;
-    uint16_t phy_data, polarity;
+    s32 ret_val;
+    u16 phy_data;
+    e1000_rev_polarity polarity;
 
-    DEBUGFUNC("e1000_phy_ife_get_info");
+    DEBUGFUNC("e1000_phy_m88_get_info");
 
+    /* The downshift status is checked only once, after link is established,
+     * and it stored in the hw->speed_downgraded parameter. */
     phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
-    phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
 
-    ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
+    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
     if (ret_val)
         return ret_val;
+
+    phy_info->extended_10bt_distance =
+        ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
+        M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
+        e1000_10bt_ext_dist_enable_lower : e1000_10bt_ext_dist_enable_normal;
+
     phy_info->polarity_correction =
-                        (phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >>
-                        IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT;
+        ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
+        M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
+        e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
 
-    if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) {
-        ret_val = e1000_check_polarity(hw, &polarity);
-        if (ret_val)
-            return ret_val;
-    } else {
-        /* Polarity is forced. */
-        polarity = (phy_data & IFE_PSC_FORCE_POLARITY) >>
-                       IFE_PSC_FORCE_POLARITY_SHIFT;
-    }
+    /* Check polarity status */
+    ret_val = e1000_check_polarity(hw, &polarity);
+    if (ret_val)
+        return ret_val;
     phy_info->cable_polarity = polarity;
 
-    ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
+    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
     if (ret_val)
         return ret_val;
 
-    phy_info->mdix_mode =
-                     (phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >>
-                     IFE_PMC_MDIX_MODE_SHIFT;
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Get PHY information from various PHY registers fot m88 PHY only.
-*
-* hw - Struct containing variables accessed by shared code
-* phy_info - PHY information structure
-******************************************************************************/
-static int32_t
-e1000_phy_m88_get_info(struct e1000_hw *hw,
-                       struct e1000_phy_info *phy_info)
-{
-    int32_t ret_val;
-    uint16_t phy_data, polarity;
-
-    DEBUGFUNC("e1000_phy_m88_get_info");
-
-    /* The downshift status is checked only once, after link is established,
-     * and it stored in the hw->speed_downgraded parameter. */
-    phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
-
-    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    phy_info->extended_10bt_distance =
-        (phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
-        M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT;
-    phy_info->polarity_correction =
-        (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
-        M88E1000_PSCR_POLARITY_REVERSAL_SHIFT;
-
-    /* Check polarity status */
-    ret_val = e1000_check_polarity(hw, &polarity);
-    if (ret_val)
-        return ret_val;
-    phy_info->cable_polarity = polarity;
-
-    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    phy_info->mdix_mode = (phy_data & M88E1000_PSSR_MDIX) >>
-                          M88E1000_PSSR_MDIX_SHIFT;
+    phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & M88E1000_PSSR_MDIX) >>
+                          M88E1000_PSSR_MDIX_SHIFT);
 
     if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
         /* Cable Length Estimation and Local/Remote Receiver Information
          * are only valid at 1000 Mbps.
          */
-        if (hw->phy_type != e1000_phy_gg82563) {
-            phy_info->cable_length = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
-                                      M88E1000_PSSR_CABLE_LENGTH_SHIFT);
-        } else {
-            ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
-                                         &phy_data);
-            if (ret_val)
-                return ret_val;
-
-            phy_info->cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH;
-        }
+        phy_info->cable_length = (e1000_cable_length)((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+                                  M88E1000_PSSR_CABLE_LENGTH_SHIFT);
 
         ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
         if (ret_val)
             return ret_val;
 
-        phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
-                             SR_1000T_LOCAL_RX_STATUS_SHIFT;
+        phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
+                             SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
+                             e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+        phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
+                              SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
+                              e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
 
-        phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
-                              SR_1000T_REMOTE_RX_STATUS_SHIFT;
     }
 
     return E1000_SUCCESS;
@@ -4250,12 +3174,10 @@ e1000_phy_m88_get_info(struct e1000_hw *hw,
 * hw - Struct containing variables accessed by shared code
 * phy_info - PHY information structure
 ******************************************************************************/
-int32_t
-e1000_phy_get_info(struct e1000_hw *hw,
-                   struct e1000_phy_info *phy_info)
+s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
 {
-    int32_t ret_val;
-    uint16_t phy_data;
+    s32 ret_val;
+    u16 phy_data;
 
     DEBUGFUNC("e1000_phy_get_info");
 
@@ -4286,18 +3208,13 @@ e1000_phy_get_info(struct e1000_hw *hw,
         return -E1000_ERR_CONFIG;
     }
 
-    if (hw->phy_type == e1000_phy_igp ||
-        hw->phy_type == e1000_phy_igp_3 ||
-        hw->phy_type == e1000_phy_igp_2)
+    if (hw->phy_type == e1000_phy_igp)
         return e1000_phy_igp_get_info(hw, phy_info);
-    else if (hw->phy_type == e1000_phy_ife)
-        return e1000_phy_ife_get_info(hw, phy_info);
     else
         return e1000_phy_m88_get_info(hw, phy_info);
 }
 
-int32_t
-e1000_validate_mdi_setting(struct e1000_hw *hw)
+s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
 {
     DEBUGFUNC("e1000_validate_mdi_settings");
 
@@ -4312,18 +3229,16 @@ e1000_validate_mdi_setting(struct e1000_hw *hw)
 
 /******************************************************************************
  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
- * is configured.  Additionally, if this is ICH8, the flash controller GbE
- * registers must be mapped, or this will crash.
+ * is configured.
  *
  * hw - Struct containing variables accessed by shared code
  *****************************************************************************/
-int32_t
-e1000_init_eeprom_params(struct e1000_hw *hw)
+s32 e1000_init_eeprom_params(struct e1000_hw *hw)
 {
     struct e1000_eeprom_info *eeprom = &hw->eeprom;
-    uint32_t eecd = E1000_READ_REG(hw, EECD);
-    int32_t ret_val = E1000_SUCCESS;
-    uint16_t eeprom_size;
+    u32 eecd = er32(EECD);
+    s32 ret_val = E1000_SUCCESS;
+    u16 eeprom_size;
 
     DEBUGFUNC("e1000_init_eeprom_params");
 
@@ -4337,8 +3252,8 @@ e1000_init_eeprom_params(struct e1000_hw *hw)
         eeprom->opcode_bits = 3;
         eeprom->address_bits = 6;
         eeprom->delay_usec = 50;
-        eeprom->use_eerd = FALSE;
-        eeprom->use_eewr = FALSE;
+        eeprom->use_eerd = false;
+        eeprom->use_eewr = false;
         break;
     case e1000_82540:
     case e1000_82545:
@@ -4355,8 +3270,8 @@ e1000_init_eeprom_params(struct e1000_hw *hw)
             eeprom->word_size = 64;
             eeprom->address_bits = 6;
         }
-        eeprom->use_eerd = FALSE;
-        eeprom->use_eewr = FALSE;
+        eeprom->use_eerd = false;
+        eeprom->use_eewr = false;
         break;
     case e1000_82541:
     case e1000_82541_rev_2:
@@ -4385,90 +3300,9 @@ e1000_init_eeprom_params(struct e1000_hw *hw)
                 eeprom->address_bits = 6;
             }
         }
-        eeprom->use_eerd = FALSE;
-        eeprom->use_eewr = FALSE;
-        break;
-    case e1000_82571:
-    case e1000_82572:
-        eeprom->type = e1000_eeprom_spi;
-        eeprom->opcode_bits = 8;
-        eeprom->delay_usec = 1;
-        if (eecd & E1000_EECD_ADDR_BITS) {
-            eeprom->page_size = 32;
-            eeprom->address_bits = 16;
-        } else {
-            eeprom->page_size = 8;
-            eeprom->address_bits = 8;
-        }
-        eeprom->use_eerd = FALSE;
-        eeprom->use_eewr = FALSE;
-        break;
-    case e1000_82573:
-        eeprom->type = e1000_eeprom_spi;
-        eeprom->opcode_bits = 8;
-        eeprom->delay_usec = 1;
-        if (eecd & E1000_EECD_ADDR_BITS) {
-            eeprom->page_size = 32;
-            eeprom->address_bits = 16;
-        } else {
-            eeprom->page_size = 8;
-            eeprom->address_bits = 8;
-        }
-        eeprom->use_eerd = TRUE;
-        eeprom->use_eewr = TRUE;
-        if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
-            eeprom->type = e1000_eeprom_flash;
-            eeprom->word_size = 2048;
-
-            /* Ensure that the Autonomous FLASH update bit is cleared due to
-             * Flash update issue on parts which use a FLASH for NVM. */
-            eecd &= ~E1000_EECD_AUPDEN;
-            E1000_WRITE_REG(hw, EECD, eecd);
-        }
-        break;
-    case e1000_80003es2lan:
-        eeprom->type = e1000_eeprom_spi;
-        eeprom->opcode_bits = 8;
-        eeprom->delay_usec = 1;
-        if (eecd & E1000_EECD_ADDR_BITS) {
-            eeprom->page_size = 32;
-            eeprom->address_bits = 16;
-        } else {
-            eeprom->page_size = 8;
-            eeprom->address_bits = 8;
-        }
-        eeprom->use_eerd = TRUE;
-        eeprom->use_eewr = FALSE;
-        break;
-    case e1000_ich8lan:
-    {
-        int32_t  i = 0;
-        uint32_t flash_size = E1000_READ_ICH8_REG(hw, ICH8_FLASH_GFPREG);
-
-        eeprom->type = e1000_eeprom_ich8;
-        eeprom->use_eerd = FALSE;
-        eeprom->use_eewr = FALSE;
-        eeprom->word_size = E1000_SHADOW_RAM_WORDS;
-
-        /* Zero the shadow RAM structure. But don't load it from NVM
-         * so as to save time for driver init */
-        if (hw->eeprom_shadow_ram != NULL) {
-            for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
-                hw->eeprom_shadow_ram[i].modified = FALSE;
-                hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
-            }
-        }
-
-        hw->flash_base_addr = (flash_size & ICH8_GFPREG_BASE_MASK) *
-                              ICH8_FLASH_SECTOR_SIZE;
-
-        hw->flash_bank_size = ((flash_size >> 16) & ICH8_GFPREG_BASE_MASK) + 1;
-        hw->flash_bank_size -= (flash_size & ICH8_GFPREG_BASE_MASK);
-        hw->flash_bank_size *= ICH8_FLASH_SECTOR_SIZE;
-        hw->flash_bank_size /= 2 * sizeof(uint16_t);
-
+        eeprom->use_eerd = false;
+        eeprom->use_eewr = false;
         break;
-    }
     default:
         break;
     }
@@ -4477,22 +3311,17 @@ e1000_init_eeprom_params(struct e1000_hw *hw)
         /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
          * 32KB (incremented by powers of 2).
          */
-        if (hw->mac_type <= e1000_82547_rev_2) {
-            /* Set to default value for initial eeprom read. */
-            eeprom->word_size = 64;
-            ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
-            if (ret_val)
-                return ret_val;
-            eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
-            /* 256B eeprom size was not supported in earlier hardware, so we
-             * bump eeprom_size up one to ensure that "1" (which maps to 256B)
-             * is never the result used in the shifting logic below. */
-            if (eeprom_size)
-                eeprom_size++;
-        } else {
-            eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >>
-                          E1000_EECD_SIZE_EX_SHIFT);
-        }
+        /* Set to default value for initial eeprom read. */
+        eeprom->word_size = 64;
+        ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
+        if (ret_val)
+            return ret_val;
+        eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
+        /* 256B eeprom size was not supported in earlier hardware, so we
+         * bump eeprom_size up one to ensure that "1" (which maps to 256B)
+         * is never the result used in the shifting logic below. */
+        if (eeprom_size)
+            eeprom_size++;
 
         eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
     }
@@ -4505,16 +3334,14 @@ e1000_init_eeprom_params(struct e1000_hw *hw)
  * hw - Struct containing variables accessed by shared code
  * eecd - EECD's current value
  *****************************************************************************/
-static void
-e1000_raise_ee_clk(struct e1000_hw *hw,
-                   uint32_t *eecd)
+static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
 {
     /* Raise the clock input to the EEPROM (by setting the SK bit), and then
      * wait <delay> microseconds.
      */
     *eecd = *eecd | E1000_EECD_SK;
-    E1000_WRITE_REG(hw, EECD, *eecd);
-    E1000_WRITE_FLUSH(hw);
+    ew32(EECD, *eecd);
+    E1000_WRITE_FLUSH();
     udelay(hw->eeprom.delay_usec);
 }
 
@@ -4524,16 +3351,14 @@ e1000_raise_ee_clk(struct e1000_hw *hw,
  * hw - Struct containing variables accessed by shared code
  * eecd - EECD's current value
  *****************************************************************************/
-static void
-e1000_lower_ee_clk(struct e1000_hw *hw,
-                   uint32_t *eecd)
+static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
 {
     /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
      * wait 50 microseconds.
      */
     *eecd = *eecd & ~E1000_EECD_SK;
-    E1000_WRITE_REG(hw, EECD, *eecd);
-    E1000_WRITE_FLUSH(hw);
+    ew32(EECD, *eecd);
+    E1000_WRITE_FLUSH();
     udelay(hw->eeprom.delay_usec);
 }
 
@@ -4544,21 +3369,18 @@ e1000_lower_ee_clk(struct e1000_hw *hw,
  * data - data to send to the EEPROM
  * count - number of bits to shift out
  *****************************************************************************/
-static void
-e1000_shift_out_ee_bits(struct e1000_hw *hw,
-                        uint16_t data,
-                        uint16_t count)
+static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
 {
     struct e1000_eeprom_info *eeprom = &hw->eeprom;
-    uint32_t eecd;
-    uint32_t mask;
+    u32 eecd;
+    u32 mask;
 
     /* We need to shift "count" bits out to the EEPROM. So, value in the
      * "data" parameter will be shifted out to the EEPROM one bit at a time.
      * In order to do this, "data" must be broken down into bits.
      */
     mask = 0x01 << (count - 1);
-    eecd = E1000_READ_REG(hw, EECD);
+    eecd = er32(EECD);
     if (eeprom->type == e1000_eeprom_microwire) {
         eecd &= ~E1000_EECD_DO;
     } else if (eeprom->type == e1000_eeprom_spi) {
@@ -4575,8 +3397,8 @@ e1000_shift_out_ee_bits(struct e1000_hw *hw,
         if (data & mask)
             eecd |= E1000_EECD_DI;
 
-        E1000_WRITE_REG(hw, EECD, eecd);
-        E1000_WRITE_FLUSH(hw);
+        ew32(EECD, eecd);
+        E1000_WRITE_FLUSH();
 
         udelay(eeprom->delay_usec);
 
@@ -4589,7 +3411,7 @@ e1000_shift_out_ee_bits(struct e1000_hw *hw,
 
     /* We leave the "DI" bit set to "0" when we leave this routine. */
     eecd &= ~E1000_EECD_DI;
-    E1000_WRITE_REG(hw, EECD, eecd);
+    ew32(EECD, eecd);
 }
 
 /******************************************************************************
@@ -4597,13 +3419,11 @@ e1000_shift_out_ee_bits(struct e1000_hw *hw,
  *
  * hw - Struct containing variables accessed by shared code
  *****************************************************************************/
-static uint16_t
-e1000_shift_in_ee_bits(struct e1000_hw *hw,
-                       uint16_t count)
+static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
 {
-    uint32_t eecd;
-    uint32_t i;
-    uint16_t data;
+    u32 eecd;
+    u32 i;
+    u16 data;
 
     /* In order to read a register from the EEPROM, we need to shift 'count'
      * bits in from the EEPROM. Bits are "shifted in" by raising the clock
@@ -4612,7 +3432,7 @@ e1000_shift_in_ee_bits(struct e1000_hw *hw,
      * always be clear.
      */
 
-    eecd = E1000_READ_REG(hw, EECD);
+    eecd = er32(EECD);
 
     eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
     data = 0;
@@ -4621,7 +3441,7 @@ e1000_shift_in_ee_bits(struct e1000_hw *hw,
         data = data << 1;
         e1000_raise_ee_clk(hw, &eecd);
 
-        eecd = E1000_READ_REG(hw, EECD);
+        eecd = er32(EECD);
 
         eecd &= ~(E1000_EECD_DI);
         if (eecd & E1000_EECD_DO)
@@ -4641,37 +3461,31 @@ e1000_shift_in_ee_bits(struct e1000_hw *hw,
  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
  * function should be called before issuing a command to the EEPROM.
  *****************************************************************************/
-static int32_t
-e1000_acquire_eeprom(struct e1000_hw *hw)
+static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
 {
     struct e1000_eeprom_info *eeprom = &hw->eeprom;
-    uint32_t eecd, i=0;
+    u32 eecd, i=0;
 
     DEBUGFUNC("e1000_acquire_eeprom");
 
-    if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
-        return -E1000_ERR_SWFW_SYNC;
-    eecd = E1000_READ_REG(hw, EECD);
-
-    if (hw->mac_type != e1000_82573) {
-        /* Request EEPROM Access */
-        if (hw->mac_type > e1000_82544) {
-            eecd |= E1000_EECD_REQ;
-            E1000_WRITE_REG(hw, EECD, eecd);
-            eecd = E1000_READ_REG(hw, EECD);
-            while ((!(eecd & E1000_EECD_GNT)) &&
-                  (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
-                i++;
-                udelay(5);
-                eecd = E1000_READ_REG(hw, EECD);
-            }
-            if (!(eecd & E1000_EECD_GNT)) {
-                eecd &= ~E1000_EECD_REQ;
-                E1000_WRITE_REG(hw, EECD, eecd);
-                DEBUGOUT("Could not acquire EEPROM grant\n");
-                e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
-                return -E1000_ERR_EEPROM;
-            }
+    eecd = er32(EECD);
+
+    /* Request EEPROM Access */
+    if (hw->mac_type > e1000_82544) {
+        eecd |= E1000_EECD_REQ;
+        ew32(EECD, eecd);
+        eecd = er32(EECD);
+        while ((!(eecd & E1000_EECD_GNT)) &&
+               (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
+            i++;
+            udelay(5);
+            eecd = er32(EECD);
+        }
+        if (!(eecd & E1000_EECD_GNT)) {
+            eecd &= ~E1000_EECD_REQ;
+            ew32(EECD, eecd);
+            DEBUGOUT("Could not acquire EEPROM grant\n");
+            return -E1000_ERR_EEPROM;
         }
     }
 
@@ -4680,15 +3494,15 @@ e1000_acquire_eeprom(struct e1000_hw *hw)
     if (eeprom->type == e1000_eeprom_microwire) {
         /* Clear SK and DI */
         eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
-        E1000_WRITE_REG(hw, EECD, eecd);
+        ew32(EECD, eecd);
 
         /* Set CS */
         eecd |= E1000_EECD_CS;
-        E1000_WRITE_REG(hw, EECD, eecd);
+        ew32(EECD, eecd);
     } else if (eeprom->type == e1000_eeprom_spi) {
         /* Clear SK and CS */
         eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
-        E1000_WRITE_REG(hw, EECD, eecd);
+        ew32(EECD, eecd);
         udelay(1);
     }
 
@@ -4700,46 +3514,45 @@ e1000_acquire_eeprom(struct e1000_hw *hw)
  *
  * hw - Struct containing variables accessed by shared code
  *****************************************************************************/
-static void
-e1000_standby_eeprom(struct e1000_hw *hw)
+static void e1000_standby_eeprom(struct e1000_hw *hw)
 {
     struct e1000_eeprom_info *eeprom = &hw->eeprom;
-    uint32_t eecd;
+    u32 eecd;
 
-    eecd = E1000_READ_REG(hw, EECD);
+    eecd = er32(EECD);
 
     if (eeprom->type == e1000_eeprom_microwire) {
         eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
-        E1000_WRITE_REG(hw, EECD, eecd);
-        E1000_WRITE_FLUSH(hw);
+        ew32(EECD, eecd);
+        E1000_WRITE_FLUSH();
         udelay(eeprom->delay_usec);
 
         /* Clock high */
         eecd |= E1000_EECD_SK;
-        E1000_WRITE_REG(hw, EECD, eecd);
-        E1000_WRITE_FLUSH(hw);
+        ew32(EECD, eecd);
+        E1000_WRITE_FLUSH();
         udelay(eeprom->delay_usec);
 
         /* Select EEPROM */
         eecd |= E1000_EECD_CS;
-        E1000_WRITE_REG(hw, EECD, eecd);
-        E1000_WRITE_FLUSH(hw);
+        ew32(EECD, eecd);
+        E1000_WRITE_FLUSH();
         udelay(eeprom->delay_usec);
 
         /* Clock low */
         eecd &= ~E1000_EECD_SK;
-        E1000_WRITE_REG(hw, EECD, eecd);
-        E1000_WRITE_FLUSH(hw);
+        ew32(EECD, eecd);
+        E1000_WRITE_FLUSH();
         udelay(eeprom->delay_usec);
     } else if (eeprom->type == e1000_eeprom_spi) {
         /* Toggle CS to flush commands */
         eecd |= E1000_EECD_CS;
-        E1000_WRITE_REG(hw, EECD, eecd);
-        E1000_WRITE_FLUSH(hw);
+        ew32(EECD, eecd);
+        E1000_WRITE_FLUSH();
         udelay(eeprom->delay_usec);
         eecd &= ~E1000_EECD_CS;
-        E1000_WRITE_REG(hw, EECD, eecd);
-        E1000_WRITE_FLUSH(hw);
+        ew32(EECD, eecd);
+        E1000_WRITE_FLUSH();
         udelay(eeprom->delay_usec);
     }
 }
@@ -4749,20 +3562,19 @@ e1000_standby_eeprom(struct e1000_hw *hw)
  *
  * hw - Struct containing variables accessed by shared code
  *****************************************************************************/
-static void
-e1000_release_eeprom(struct e1000_hw *hw)
+static void e1000_release_eeprom(struct e1000_hw *hw)
 {
-    uint32_t eecd;
+    u32 eecd;
 
     DEBUGFUNC("e1000_release_eeprom");
 
-    eecd = E1000_READ_REG(hw, EECD);
+    eecd = er32(EECD);
 
     if (hw->eeprom.type == e1000_eeprom_spi) {
         eecd |= E1000_EECD_CS;  /* Pull CS high */
         eecd &= ~E1000_EECD_SK; /* Lower SCK */
 
-        E1000_WRITE_REG(hw, EECD, eecd);
+        ew32(EECD, eecd);
 
         udelay(hw->eeprom.delay_usec);
     } else if (hw->eeprom.type == e1000_eeprom_microwire) {
@@ -4771,28 +3583,26 @@ e1000_release_eeprom(struct e1000_hw *hw)
         /* CS on Microwire is active-high */
         eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
 
-        E1000_WRITE_REG(hw, EECD, eecd);
+        ew32(EECD, eecd);
 
         /* Rising edge of clock */
         eecd |= E1000_EECD_SK;
-        E1000_WRITE_REG(hw, EECD, eecd);
-        E1000_WRITE_FLUSH(hw);
+        ew32(EECD, eecd);
+        E1000_WRITE_FLUSH();
         udelay(hw->eeprom.delay_usec);
 
         /* Falling edge of clock */
         eecd &= ~E1000_EECD_SK;
-        E1000_WRITE_REG(hw, EECD, eecd);
-        E1000_WRITE_FLUSH(hw);
+        ew32(EECD, eecd);
+        E1000_WRITE_FLUSH();
         udelay(hw->eeprom.delay_usec);
     }
 
     /* Stop requesting EEPROM access */
     if (hw->mac_type > e1000_82544) {
         eecd &= ~E1000_EECD_REQ;
-        E1000_WRITE_REG(hw, EECD, eecd);
+        ew32(EECD, eecd);
     }
-
-    e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
 }
 
 /******************************************************************************
@@ -4800,11 +3610,10 @@ e1000_release_eeprom(struct e1000_hw *hw)
  *
  * hw - Struct containing variables accessed by shared code
  *****************************************************************************/
-int32_t
-e1000_spi_eeprom_ready(struct e1000_hw *hw)
+static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
 {
-    uint16_t retry_count = 0;
-    uint8_t spi_stat_reg;
+    u16 retry_count = 0;
+    u8 spi_stat_reg;
 
     DEBUGFUNC("e1000_spi_eeprom_ready");
 
@@ -4817,7 +3626,7 @@ e1000_spi_eeprom_ready(struct e1000_hw *hw)
     do {
         e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
                                 hw->eeprom.opcode_bits);
-        spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
+        spi_stat_reg = (u8)e1000_shift_in_ee_bits(hw, 8);
         if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
             break;
 
@@ -4846,55 +3655,54 @@ e1000_spi_eeprom_ready(struct e1000_hw *hw)
  * data - word read from the EEPROM
  * words - number of words to read
  *****************************************************************************/
-int32_t
-e1000_read_eeprom(struct e1000_hw *hw,
-                  uint16_t offset,
-                  uint16_t words,
-                  uint16_t *data)
+s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+    s32 ret;
+    spin_lock(&e1000_eeprom_lock);
+    ret = e1000_do_read_eeprom(hw, offset, words, data);
+    spin_unlock(&e1000_eeprom_lock);
+    return ret;
+}
+
+static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
 {
     struct e1000_eeprom_info *eeprom = &hw->eeprom;
-    uint32_t i = 0;
-    int32_t ret_val;
+    u32 i = 0;
 
     DEBUGFUNC("e1000_read_eeprom");
 
+    /* If eeprom is not yet detected, do so now */
+    if (eeprom->word_size == 0)
+        e1000_init_eeprom_params(hw);
+
     /* A check for invalid values:  offset too large, too many words, and not
      * enough words.
      */
     if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
        (words == 0)) {
-        DEBUGOUT("\"words\" parameter out of bounds\n");
+        DEBUGOUT2("\"words\" parameter out of bounds. Words = %d, size = %d\n", offset, eeprom->word_size);
         return -E1000_ERR_EEPROM;
     }
 
-    /* FLASH reads without acquiring the semaphore are safe */
-    if (e1000_is_onboard_nvm_eeprom(hw) == TRUE &&
-        hw->eeprom.use_eerd == FALSE) {
-        switch (hw->mac_type) {
-        case e1000_80003es2lan:
-            break;
-        default:
-            /* Prepare the EEPROM for reading  */
-            if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
-                return -E1000_ERR_EEPROM;
-            break;
-        }
-    }
-
-    if (eeprom->use_eerd == TRUE) {
-        ret_val = e1000_read_eeprom_eerd(hw, offset, words, data);
-        if ((e1000_is_onboard_nvm_eeprom(hw) == TRUE) ||
-            (hw->mac_type != e1000_82573))
-            e1000_release_eeprom(hw);
-        return ret_val;
+    /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
+     * directly. In this case, we need to acquire the EEPROM so that
+     * FW or other port software does not interrupt.
+     */
+    if (!hw->eeprom.use_eerd) {
+        /* Prepare the EEPROM for bit-bang reading */
+        if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
+            return -E1000_ERR_EEPROM;
     }
 
-    if (eeprom->type == e1000_eeprom_ich8)
-        return e1000_read_eeprom_ich8(hw, offset, words, data);
+    /* Eerd register EEPROM access requires no eeprom aquire/release */
+    if (eeprom->use_eerd)
+        return e1000_read_eeprom_eerd(hw, offset, words, data);
 
+    /* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
+     * acquired the EEPROM at this point, so any returns should relase it */
     if (eeprom->type == e1000_eeprom_spi) {
-        uint16_t word_in;
-        uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
+        u16 word_in;
+        u8 read_opcode = EEPROM_READ_OPCODE_SPI;
 
         if (e1000_spi_eeprom_ready(hw)) {
             e1000_release_eeprom(hw);
@@ -4909,7 +3717,7 @@ e1000_read_eeprom(struct e1000_hw *hw,
 
         /* Send the READ command (opcode + addr)  */
         e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
-        e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits);
+        e1000_shift_out_ee_bits(hw, (u16)(offset*2), eeprom->address_bits);
 
         /* Read the data.  The address of the eeprom internally increments with
          * each byte (spi) being read, saving on the overhead of eeprom setup
@@ -4925,7 +3733,7 @@ e1000_read_eeprom(struct e1000_hw *hw,
             /* Send the READ command (opcode + addr)  */
             e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
                                     eeprom->opcode_bits);
-            e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
+            e1000_shift_out_ee_bits(hw, (u16)(offset + i),
                                     eeprom->address_bits);
 
             /* Read the data.  For microwire, each word requires the overhead
@@ -4949,26 +3757,23 @@ e1000_read_eeprom(struct e1000_hw *hw,
  * data - word read from the EEPROM
  * words - number of words to read
  *****************************************************************************/
-static int32_t
-e1000_read_eeprom_eerd(struct e1000_hw *hw,
-                  uint16_t offset,
-                  uint16_t words,
-                  uint16_t *data)
+static s32 e1000_read_eeprom_eerd(struct e1000_hw *hw, u16 offset, u16 words,
+                                 u16 *data)
 {
-    uint32_t i, eerd = 0;
-    int32_t error = 0;
+    u32 i, eerd = 0;
+    s32 error = 0;
 
     for (i = 0; i < words; i++) {
         eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
                          E1000_EEPROM_RW_REG_START;
 
-        E1000_WRITE_REG(hw, EERD, eerd);
+        ew32(EERD, eerd);
         error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
 
         if (error) {
             break;
         }
-        data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA);
+        data[i] = (er32(EERD) >> E1000_EEPROM_RW_REG_DATA);
 
     }
 
@@ -4983,18 +3788,13 @@ e1000_read_eeprom_eerd(struct e1000_hw *hw,
  * data - word read from the EEPROM
  * words - number of words to read
  *****************************************************************************/
-static int32_t
-e1000_write_eeprom_eewr(struct e1000_hw *hw,
-                   uint16_t offset,
-                   uint16_t words,
-                   uint16_t *data)
+static s32 e1000_write_eeprom_eewr(struct e1000_hw *hw, u16 offset, u16 words,
+                                  u16 *data)
 {
-    uint32_t    register_value = 0;
-    uint32_t    i              = 0;
-    int32_t     error          = 0;
+    u32    register_value = 0;
+    u32    i              = 0;
+    s32     error          = 0;
 
-    if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
-        return -E1000_ERR_SWFW_SYNC;
 
     for (i = 0; i < words; i++) {
         register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
@@ -5006,7 +3806,7 @@ e1000_write_eeprom_eewr(struct e1000_hw *hw,
             break;
         }
 
-        E1000_WRITE_REG(hw, EEWR, register_value);
+        ew32(EEWR, register_value);
 
         error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
 
@@ -5015,7 +3815,6 @@ e1000_write_eeprom_eewr(struct e1000_hw *hw,
         }
     }
 
-    e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
     return error;
 }
 
@@ -5024,18 +3823,17 @@ e1000_write_eeprom_eewr(struct e1000_hw *hw,
  *
  * hw - Struct containing variables accessed by shared code
  *****************************************************************************/
-static int32_t
-e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
+static s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
 {
-    uint32_t attempts = 100000;
-    uint32_t i, reg = 0;
-    int32_t done = E1000_ERR_EEPROM;
+    u32 attempts = 100000;
+    u32 i, reg = 0;
+    s32 done = E1000_ERR_EEPROM;
 
     for (i = 0; i < attempts; i++) {
         if (eerd == E1000_EEPROM_POLL_READ)
-            reg = E1000_READ_REG(hw, EERD);
+            reg = er32(EERD);
         else
-            reg = E1000_READ_REG(hw, EEWR);
+            reg = er32(EEWR);
 
         if (reg & E1000_EEPROM_RW_REG_DONE) {
             done = E1000_SUCCESS;
@@ -5047,35 +3845,6 @@ e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
     return done;
 }
 
-/***************************************************************************
-* Description:     Determines if the onboard NVM is FLASH or EEPROM.
-*
-* hw - Struct containing variables accessed by shared code
-****************************************************************************/
-static boolean_t
-e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
-{
-    uint32_t eecd = 0;
-
-    DEBUGFUNC("e1000_is_onboard_nvm_eeprom");
-
-    if (hw->mac_type == e1000_ich8lan)
-        return FALSE;
-
-    if (hw->mac_type == e1000_82573) {
-        eecd = E1000_READ_REG(hw, EECD);
-
-        /* Isolate bits 15 & 16 */
-        eecd = ((eecd >> 15) & 0x03);
-
-        /* If both bits are set, device is Flash type */
-        if (eecd == 0x03) {
-            return FALSE;
-        }
-    }
-    return TRUE;
-}
-
 /******************************************************************************
  * Verifies that the EEPROM has a valid checksum
  *
@@ -5085,47 +3854,13 @@ e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
  * valid.
  *****************************************************************************/
-int32_t
-e1000_validate_eeprom_checksum(struct e1000_hw *hw)
+s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
 {
-    uint16_t checksum = 0;
-    uint16_t i, eeprom_data;
+    u16 checksum = 0;
+    u16 i, eeprom_data;
 
     DEBUGFUNC("e1000_validate_eeprom_checksum");
 
-    if ((hw->mac_type == e1000_82573) &&
-        (e1000_is_onboard_nvm_eeprom(hw) == FALSE)) {
-        /* Check bit 4 of word 10h.  If it is 0, firmware is done updating
-         * 10h-12h.  Checksum may need to be fixed. */
-        e1000_read_eeprom(hw, 0x10, 1, &eeprom_data);
-        if ((eeprom_data & 0x10) == 0) {
-            /* Read 0x23 and check bit 15.  This bit is a 1 when the checksum
-             * has already been fixed.  If the checksum is still wrong and this
-             * bit is a 1, we need to return bad checksum.  Otherwise, we need
-             * to set this bit to a 1 and update the checksum. */
-            e1000_read_eeprom(hw, 0x23, 1, &eeprom_data);
-            if ((eeprom_data & 0x8000) == 0) {
-                eeprom_data |= 0x8000;
-                e1000_write_eeprom(hw, 0x23, 1, &eeprom_data);
-                e1000_update_eeprom_checksum(hw);
-            }
-        }
-    }
-
-    if (hw->mac_type == e1000_ich8lan) {
-        /* Drivers must allocate the shadow ram structure for the
-         * EEPROM checksum to be updated.  Otherwise, this bit as well
-         * as the checksum must both be set correctly for this
-         * validation to pass.
-         */
-        e1000_read_eeprom(hw, 0x19, 1, &eeprom_data);
-        if ((eeprom_data & 0x40) == 0) {
-            eeprom_data |= 0x40;
-            e1000_write_eeprom(hw, 0x19, 1, &eeprom_data);
-            e1000_update_eeprom_checksum(hw);
-        }
-    }
-
     for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
         if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
             DEBUGOUT("EEPROM Read Error\n");
@@ -5134,7 +3869,7 @@ e1000_validate_eeprom_checksum(struct e1000_hw *hw)
         checksum += eeprom_data;
     }
 
-    if (checksum == (uint16_t) EEPROM_SUM)
+    if (checksum == (u16)EEPROM_SUM)
         return E1000_SUCCESS;
     else {
         DEBUGOUT("EEPROM Checksum Invalid\n");
@@ -5150,12 +3885,10 @@ e1000_validate_eeprom_checksum(struct e1000_hw *hw)
  * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
  * Writes the difference to word offset 63 of the EEPROM.
  *****************************************************************************/
-int32_t
-e1000_update_eeprom_checksum(struct e1000_hw *hw)
+s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
 {
-    uint32_t ctrl_ext;
-    uint16_t checksum = 0;
-    uint16_t i, eeprom_data;
+    u16 checksum = 0;
+    u16 i, eeprom_data;
 
     DEBUGFUNC("e1000_update_eeprom_checksum");
 
@@ -5166,20 +3899,10 @@ e1000_update_eeprom_checksum(struct e1000_hw *hw)
         }
         checksum += eeprom_data;
     }
-    checksum = (uint16_t) EEPROM_SUM - checksum;
+    checksum = (u16)EEPROM_SUM - checksum;
     if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
         DEBUGOUT("EEPROM Write Error\n");
         return -E1000_ERR_EEPROM;
-    } else if (hw->eeprom.type == e1000_eeprom_flash) {
-        e1000_commit_shadow_ram(hw);
-    } else if (hw->eeprom.type == e1000_eeprom_ich8) {
-        e1000_commit_shadow_ram(hw);
-        /* Reload the EEPROM, or else modifications will not appear
-         * until after next adapter reset. */
-        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
-        ctrl_ext |= E1000_CTRL_EXT_EE_RST;
-        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
-        msec_delay(10);
     }
     return E1000_SUCCESS;
 }
@@ -5195,17 +3918,27 @@ e1000_update_eeprom_checksum(struct e1000_hw *hw)
  * If e1000_update_eeprom_checksum is not called after this function, the
  * EEPROM will most likely contain an invalid checksum.
  *****************************************************************************/
-int32_t
-e1000_write_eeprom(struct e1000_hw *hw,
-                   uint16_t offset,
-                   uint16_t words,
-                   uint16_t *data)
+s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+    s32 ret;
+    spin_lock(&e1000_eeprom_lock);
+    ret = e1000_do_write_eeprom(hw, offset, words, data);
+    spin_unlock(&e1000_eeprom_lock);
+    return ret;
+}
+
+
+static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
 {
     struct e1000_eeprom_info *eeprom = &hw->eeprom;
-    int32_t status = 0;
+    s32 status = 0;
 
     DEBUGFUNC("e1000_write_eeprom");
 
+    /* If eeprom is not yet detected, do so now */
+    if (eeprom->word_size == 0)
+        e1000_init_eeprom_params(hw);
+
     /* A check for invalid values:  offset too large, too many words, and not
      * enough words.
      */
@@ -5215,13 +3948,9 @@ e1000_write_eeprom(struct e1000_hw *hw,
         return -E1000_ERR_EEPROM;
     }
 
-    /* 82573 writes only through eewr */
-    if (eeprom->use_eewr == TRUE)
+    if (eeprom->use_eewr)
         return e1000_write_eeprom_eewr(hw, offset, words, data);
 
-    if (eeprom->type == e1000_eeprom_ich8)
-        return e1000_write_eeprom_ich8(hw, offset, words, data);
-
     /* Prepare the EEPROM for writing  */
     if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
         return -E1000_ERR_EEPROM;
@@ -5230,7 +3959,7 @@ e1000_write_eeprom(struct e1000_hw *hw,
         status = e1000_write_eeprom_microwire(hw, offset, words, data);
     } else {
         status = e1000_write_eeprom_spi(hw, offset, words, data);
-        msec_delay(10);
+        msleep(10);
     }
 
     /* Done with writing */
@@ -5248,19 +3977,16 @@ e1000_write_eeprom(struct e1000_hw *hw,
  * data - pointer to array of 8 bit words to be written to the EEPROM
  *
  *****************************************************************************/
-int32_t
-e1000_write_eeprom_spi(struct e1000_hw *hw,
-                       uint16_t offset,
-                       uint16_t words,
-                       uint16_t *data)
+static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
+                                 u16 *data)
 {
     struct e1000_eeprom_info *eeprom = &hw->eeprom;
-    uint16_t widx = 0;
+    u16 widx = 0;
 
     DEBUGFUNC("e1000_write_eeprom_spi");
 
     while (widx < words) {
-        uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI;
+        u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
 
         if (e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
 
@@ -5279,14 +4005,14 @@ e1000_write_eeprom_spi(struct e1000_hw *hw,
         /* Send the Write command (8-bit opcode + addr) */
         e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
 
-        e1000_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2),
+        e1000_shift_out_ee_bits(hw, (u16)((offset + widx)*2),
                                 eeprom->address_bits);
 
         /* Send the data */
 
         /* Loop to allow for up to whole page write (32 bytes) of eeprom */
         while (widx < words) {
-            uint16_t word_out = data[widx];
+            u16 word_out = data[widx];
             word_out = (word_out >> 8) | (word_out << 8);
             e1000_shift_out_ee_bits(hw, word_out, 16);
             widx++;
@@ -5314,16 +4040,13 @@ e1000_write_eeprom_spi(struct e1000_hw *hw,
  * data - pointer to array of 16 bit words to be written to the EEPROM
  *
  *****************************************************************************/
-int32_t
-e1000_write_eeprom_microwire(struct e1000_hw *hw,
-                             uint16_t offset,
-                             uint16_t words,
-                             uint16_t *data)
+static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
+                                       u16 words, u16 *data)
 {
     struct e1000_eeprom_info *eeprom = &hw->eeprom;
-    uint32_t eecd;
-    uint16_t words_written = 0;
-    uint16_t i = 0;
+    u32 eecd;
+    u16 words_written = 0;
+    u16 i = 0;
 
     DEBUGFUNC("e1000_write_eeprom_microwire");
 
@@ -5334,9 +4057,9 @@ e1000_write_eeprom_microwire(struct e1000_hw *hw,
      * EEPROM into write/erase mode.
      */
     e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
-                            (uint16_t)(eeprom->opcode_bits + 2));
+                            (u16)(eeprom->opcode_bits + 2));
 
-    e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
+    e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
 
     /* Prepare the EEPROM */
     e1000_standby_eeprom(hw);
@@ -5346,7 +4069,7 @@ e1000_write_eeprom_microwire(struct e1000_hw *hw,
         e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
                                 eeprom->opcode_bits);
 
-        e1000_shift_out_ee_bits(hw, (uint16_t)(offset + words_written),
+        e1000_shift_out_ee_bits(hw, (u16)(offset + words_written),
                                 eeprom->address_bits);
 
         /* Send the data */
@@ -5362,7 +4085,7 @@ e1000_write_eeprom_microwire(struct e1000_hw *hw,
          * If DO does not go high in 10 milliseconds, then error out.
          */
         for (i = 0; i < 200; i++) {
-            eecd = E1000_READ_REG(hw, EECD);
+            eecd = er32(EECD);
             if (eecd & E1000_EECD_DO) break;
             udelay(50);
         }
@@ -5384,189 +4107,23 @@ e1000_write_eeprom_microwire(struct e1000_hw *hw,
      * EEPROM out of write/erase mode.
      */
     e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
-                            (uint16_t)(eeprom->opcode_bits + 2));
+                            (u16)(eeprom->opcode_bits + 2));
 
-    e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
+    e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
 
     return E1000_SUCCESS;
 }
 
 /******************************************************************************
- * Flushes the cached eeprom to NVM. This is done by saving the modified values
- * in the eeprom cache and the non modified values in the currently active bank
- * to the new bank.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of  word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-static int32_t
-e1000_commit_shadow_ram(struct e1000_hw *hw)
-{
-    uint32_t attempts = 100000;
-    uint32_t eecd = 0;
-    uint32_t flop = 0;
-    uint32_t i = 0;
-    int32_t error = E1000_SUCCESS;
-    uint32_t old_bank_offset = 0;
-    uint32_t new_bank_offset = 0;
-    uint32_t sector_retries = 0;
-    uint8_t low_byte = 0;
-    uint8_t high_byte = 0;
-    uint8_t temp_byte = 0;
-    boolean_t sector_write_failed = FALSE;
-
-    if (hw->mac_type == e1000_82573) {
-        /* The flop register will be used to determine if flash type is STM */
-        flop = E1000_READ_REG(hw, FLOP);
-        for (i=0; i < attempts; i++) {
-            eecd = E1000_READ_REG(hw, EECD);
-            if ((eecd & E1000_EECD_FLUPD) == 0) {
-                break;
-            }
-            udelay(5);
-        }
-
-        if (i == attempts) {
-            return -E1000_ERR_EEPROM;
-        }
-
-        /* If STM opcode located in bits 15:8 of flop, reset firmware */
-        if ((flop & 0xFF00) == E1000_STM_OPCODE) {
-            E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET);
-        }
-
-        /* Perform the flash update */
-        E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD);
-
-        for (i=0; i < attempts; i++) {
-            eecd = E1000_READ_REG(hw, EECD);
-            if ((eecd & E1000_EECD_FLUPD) == 0) {
-                break;
-            }
-            udelay(5);
-        }
-
-        if (i == attempts) {
-            return -E1000_ERR_EEPROM;
-        }
-    }
-
-    if (hw->mac_type == e1000_ich8lan && hw->eeprom_shadow_ram != NULL) {
-        /* We're writing to the opposite bank so if we're on bank 1,
-         * write to bank 0 etc.  We also need to erase the segment that
-         * is going to be written */
-        if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) {
-            new_bank_offset = hw->flash_bank_size * 2;
-            old_bank_offset = 0;
-            e1000_erase_ich8_4k_segment(hw, 1);
-        } else {
-            old_bank_offset = hw->flash_bank_size * 2;
-            new_bank_offset = 0;
-            e1000_erase_ich8_4k_segment(hw, 0);
-        }
-
-        do {
-            sector_write_failed = FALSE;
-            /* Loop for every byte in the shadow RAM,
-             * which is in units of words. */
-            for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
-                /* Determine whether to write the value stored
-                 * in the other NVM bank or a modified value stored
-                 * in the shadow RAM */
-                if (hw->eeprom_shadow_ram[i].modified == TRUE) {
-                    low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word;
-                    e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
-                                         &temp_byte);
-                    udelay(100);
-                    error = e1000_verify_write_ich8_byte(hw,
-                                                 (i << 1) + new_bank_offset,
-                                                 low_byte);
-                    if (error != E1000_SUCCESS)
-                        sector_write_failed = TRUE;
-                    high_byte =
-                        (uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8);
-                    e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
-                                         &temp_byte);
-                    udelay(100);
-                } else {
-                    e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
-                                         &low_byte);
-                    udelay(100);
-                    error = e1000_verify_write_ich8_byte(hw,
-                                 (i << 1) + new_bank_offset, low_byte);
-                    if (error != E1000_SUCCESS)
-                        sector_write_failed = TRUE;
-                    e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
-                                         &high_byte);
-                }
-
-                /* If the word is 0x13, then make sure the signature bits
-                 * (15:14) are 11b until the commit has completed.
-                 * This will allow us to write 10b which indicates the
-                 * signature is valid.  We want to do this after the write
-                 * has completed so that we don't mark the segment valid
-                 * while the write is still in progress */
-                if (i == E1000_ICH8_NVM_SIG_WORD)
-                    high_byte = E1000_ICH8_NVM_SIG_MASK | high_byte;
-
-                error = e1000_verify_write_ich8_byte(hw,
-                             (i << 1) + new_bank_offset + 1, high_byte);
-                if (error != E1000_SUCCESS)
-                    sector_write_failed = TRUE;
-
-                if (sector_write_failed == FALSE) {
-                    /* Clear the now not used entry in the cache */
-                    hw->eeprom_shadow_ram[i].modified = FALSE;
-                    hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
-                }
-            }
-
-            /* Don't bother writing the segment valid bits if sector
-             * programming failed. */
-            if (sector_write_failed == FALSE) {
-                /* Finally validate the new segment by setting bit 15:14
-                 * to 10b in word 0x13 , this can be done without an
-                 * erase as well since these bits are 11 to start with
-                 * and we need to change bit 14 to 0b */
-                e1000_read_ich8_byte(hw,
-                    E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
-                    &high_byte);
-                high_byte &= 0xBF;
-                error = e1000_verify_write_ich8_byte(hw,
-                            E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
-                            high_byte);
-                if (error != E1000_SUCCESS)
-                    sector_write_failed = TRUE;
-
-                /* And invalidate the previously valid segment by setting
-                 * its signature word (0x13) high_byte to 0b. This can be
-                 * done without an erase because flash erase sets all bits
-                 * to 1's. We can write 1's to 0's without an erase */
-                error = e1000_verify_write_ich8_byte(hw,
-                            E1000_ICH8_NVM_SIG_WORD * 2 + 1 + old_bank_offset,
-                            0);
-                if (error != E1000_SUCCESS)
-                    sector_write_failed = TRUE;
-            }
-        } while (++sector_retries < 10 && sector_write_failed == TRUE);
-    }
-
-    return error;
-}
-
-/******************************************************************************
  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
  * second function of dual function devices
  *
  * hw - Struct containing variables accessed by shared code
  *****************************************************************************/
-int32_t
-e1000_read_mac_addr(struct e1000_hw * hw)
+s32 e1000_read_mac_addr(struct e1000_hw *hw)
 {
-    uint16_t offset;
-    uint16_t eeprom_data, i;
+    u16 offset;
+    u16 eeprom_data, i;
 
     DEBUGFUNC("e1000_read_mac_addr");
 
@@ -5576,8 +4133,8 @@ e1000_read_mac_addr(struct e1000_hw * hw)
             DEBUGOUT("EEPROM Read Error\n");
             return -E1000_ERR_EEPROM;
         }
-        hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF);
-        hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8);
+        hw->perm_mac_addr[i] = (u8)(eeprom_data & 0x00FF);
+        hw->perm_mac_addr[i+1] = (u8)(eeprom_data >> 8);
     }
 
     switch (hw->mac_type) {
@@ -5585,9 +4142,7 @@ e1000_read_mac_addr(struct e1000_hw * hw)
         break;
     case e1000_82546:
     case e1000_82546_rev_3:
-    case e1000_82571:
-    case e1000_80003es2lan:
-        if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
+        if (er32(STATUS) & E1000_STATUS_FUNC_1)
             hw->perm_mac_addr[5] ^= 0x01;
         break;
     }
@@ -5606,11 +4161,10 @@ e1000_read_mac_addr(struct e1000_hw * hw)
  * of the receive addresss registers. Clears the multicast table. Assumes
  * the receiver is in reset when the routine is called.
  *****************************************************************************/
-static void
-e1000_init_rx_addrs(struct e1000_hw *hw)
+static void e1000_init_rx_addrs(struct e1000_hw *hw)
 {
-    uint32_t i;
-    uint32_t rar_num;
+    u32 i;
+    u32 rar_num;
 
     DEBUGFUNC("e1000_init_rx_addrs");
 
@@ -5621,116 +4175,15 @@ e1000_init_rx_addrs(struct e1000_hw *hw)
 
     rar_num = E1000_RAR_ENTRIES;
 
-    /* Reserve a spot for the Locally Administered Address to work around
-     * an 82571 issue in which a reset on one port will reload the MAC on
-     * the other port. */
-    if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE))
-        rar_num -= 1;
-    if (hw->mac_type == e1000_ich8lan)
-        rar_num = E1000_RAR_ENTRIES_ICH8LAN;
-
     /* Zero out the other 15 receive addresses. */
     DEBUGOUT("Clearing RAR[1-15]\n");
     for (i = 1; i < rar_num; i++) {
         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
-        E1000_WRITE_FLUSH(hw);
-        E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
-        E1000_WRITE_FLUSH(hw);
-    }
-}
-
-/******************************************************************************
- * Updates the MAC's list of multicast addresses.
- *
- * hw - Struct containing variables accessed by shared code
- * mc_addr_list - the list of new multicast addresses
- * mc_addr_count - number of addresses
- * pad - number of bytes between addresses in the list
- * rar_used_count - offset where to start adding mc addresses into the RAR's
- *
- * The given list replaces any existing list. Clears the last 15 receive
- * address registers and the multicast table. Uses receive address registers
- * for the first 15 multicast addresses, and hashes the rest into the
- * multicast table.
- *****************************************************************************/
-#if 0
-void
-e1000_mc_addr_list_update(struct e1000_hw *hw,
-                          uint8_t *mc_addr_list,
-                          uint32_t mc_addr_count,
-                          uint32_t pad,
-                          uint32_t rar_used_count)
-{
-    uint32_t hash_value;
-    uint32_t i;
-    uint32_t num_rar_entry;
-    uint32_t num_mta_entry;
-
-    DEBUGFUNC("e1000_mc_addr_list_update");
-
-    /* Set the new number of MC addresses that we are being requested to use. */
-    hw->num_mc_addrs = mc_addr_count;
-
-    /* Clear RAR[1-15] */
-    DEBUGOUT(" Clearing RAR[1-15]\n");
-    num_rar_entry = E1000_RAR_ENTRIES;
-    if (hw->mac_type == e1000_ich8lan)
-        num_rar_entry = E1000_RAR_ENTRIES_ICH8LAN;
-    /* Reserve a spot for the Locally Administered Address to work around
-     * an 82571 issue in which a reset on one port will reload the MAC on
-     * the other port. */
-    if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE))
-        num_rar_entry -= 1;
-
-    for (i = rar_used_count; i < num_rar_entry; i++) {
-        E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
-        E1000_WRITE_FLUSH(hw);
+        E1000_WRITE_FLUSH();
         E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
-        E1000_WRITE_FLUSH(hw);
-    }
-
-    /* Clear the MTA */
-    DEBUGOUT(" Clearing MTA\n");
-    num_mta_entry = E1000_NUM_MTA_REGISTERS;
-    if (hw->mac_type == e1000_ich8lan)
-        num_mta_entry = E1000_NUM_MTA_REGISTERS_ICH8LAN;
-    for (i = 0; i < num_mta_entry; i++) {
-        E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
-        E1000_WRITE_FLUSH(hw);
-    }
-
-    /* Add the new addresses */
-    for (i = 0; i < mc_addr_count; i++) {
-        DEBUGOUT(" Adding the multicast addresses:\n");
-        DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
-                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)],
-                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1],
-                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2],
-                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3],
-                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4],
-                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]);
-
-        hash_value = e1000_hash_mc_addr(hw,
-                                        mc_addr_list +
-                                        (i * (ETH_LENGTH_OF_ADDRESS + pad)));
-
-        DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);
-
-        /* Place this multicast address in the RAR if there is room, *
-         * else put it in the MTA
-         */
-        if (rar_used_count < num_rar_entry) {
-            e1000_rar_set(hw,
-                          mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)),
-                          rar_used_count);
-            rar_used_count++;
-        } else {
-            e1000_mta_set(hw, hash_value);
-        }
+        E1000_WRITE_FLUSH();
     }
-    DEBUGOUT("MC Update Complete\n");
 }
-#endif  /*  0  */
 
 /******************************************************************************
  * Hashes an address to determine its location in the multicast table
@@ -5738,11 +4191,9 @@ e1000_mc_addr_list_update(struct e1000_hw *hw,
  * hw - Struct containing variables accessed by shared code
  * mc_addr - the multicast address to hash
  *****************************************************************************/
-uint32_t
-e1000_hash_mc_addr(struct e1000_hw *hw,
-                   uint8_t *mc_addr)
+u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
 {
-    uint32_t hash_value = 0;
+    u32 hash_value = 0;
 
     /* The portion of the address that is used for the hash table is
      * determined by the mc_filter_type setting.
@@ -5753,118 +4204,44 @@ e1000_hash_mc_addr(struct e1000_hw *hw,
      * LSB                 MSB
      */
     case 0:
-        if (hw->mac_type == e1000_ich8lan) {
-            /* [47:38] i.e. 0x158 for above example address */
-            hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2));
-        } else {
-            /* [47:36] i.e. 0x563 for above example address */
-            hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
-        }
+        /* [47:36] i.e. 0x563 for above example address */
+        hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
         break;
     case 1:
-        if (hw->mac_type == e1000_ich8lan) {
-            /* [46:37] i.e. 0x2B1 for above example address */
-            hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3));
-        } else {
-            /* [46:35] i.e. 0xAC6 for above example address */
-            hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
-        }
+        /* [46:35] i.e. 0xAC6 for above example address */
+        hash_value = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
         break;
     case 2:
-        if (hw->mac_type == e1000_ich8lan) {
-            /*[45:36] i.e. 0x163 for above example address */
-            hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
-        } else {
-            /* [45:34] i.e. 0x5D8 for above example address */
-            hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
-        }
+        /* [45:34] i.e. 0x5D8 for above example address */
+        hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
         break;
     case 3:
-        if (hw->mac_type == e1000_ich8lan) {
-            /* [43:34] i.e. 0x18D for above example address */
-            hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
-        } else {
-            /* [43:32] i.e. 0x634 for above example address */
-            hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
-        }
+        /* [43:32] i.e. 0x634 for above example address */
+        hash_value = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
         break;
     }
 
     hash_value &= 0xFFF;
-    if (hw->mac_type == e1000_ich8lan)
-        hash_value &= 0x3FF;
-
     return hash_value;
 }
 
 /******************************************************************************
- * Sets the bit in the multicast table corresponding to the hash value.
- *
- * hw - Struct containing variables accessed by shared code
- * hash_value - Multicast address hash value
- *****************************************************************************/
-void
-e1000_mta_set(struct e1000_hw *hw,
-              uint32_t hash_value)
-{
-    uint32_t hash_bit, hash_reg;
-    uint32_t mta;
-    uint32_t temp;
-
-    /* The MTA is a register array of 128 32-bit registers.
-     * It is treated like an array of 4096 bits.  We want to set
-     * bit BitArray[hash_value]. So we figure out what register
-     * the bit is in, read it, OR in the new bit, then write
-     * back the new value.  The register is determined by the
-     * upper 7 bits of the hash value and the bit within that
-     * register are determined by the lower 5 bits of the value.
-     */
-    hash_reg = (hash_value >> 5) & 0x7F;
-    if (hw->mac_type == e1000_ich8lan)
-        hash_reg &= 0x1F;
-    hash_bit = hash_value & 0x1F;
-
-    mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
-
-    mta |= (1 << hash_bit);
-
-    /* If we are on an 82544 and we are trying to write an odd offset
-     * in the MTA, save off the previous entry before writing and
-     * restore the old value after writing.
-     */
-    if ((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) {
-        temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
-        E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
-        E1000_WRITE_FLUSH(hw);
-        E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
-        E1000_WRITE_FLUSH(hw);
-    } else {
-        E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
-        E1000_WRITE_FLUSH(hw);
-    }
-}
-
-/******************************************************************************
  * Puts an ethernet address into a receive address register.
  *
  * hw - Struct containing variables accessed by shared code
  * addr - Address to put into receive address register
  * index - Receive address register to write
  *****************************************************************************/
-void
-e1000_rar_set(struct e1000_hw *hw,
-              uint8_t *addr,
-              uint32_t index)
+void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
 {
-    uint32_t rar_low, rar_high;
+    u32 rar_low, rar_high;
 
     /* HW expects these in little endian so we reverse the byte order
      * from network order (big endian) to little endian
      */
-    rar_low = ((uint32_t) addr[0] |
-               ((uint32_t) addr[1] << 8) |
-               ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
-    rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8));
+    rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
+               ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
+    rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
 
     /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
      * unit hang.
@@ -5885,11 +4262,6 @@ e1000_rar_set(struct e1000_hw *hw,
      * on our merry way.
      */
     switch (hw->mac_type) {
-    case e1000_82571:
-    case e1000_82572:
-    case e1000_80003es2lan:
-        if (hw->leave_av_bit_off == TRUE)
-            break;
     default:
         /* Indicate to hardware the Address is Valid. */
         rar_high |= E1000_RAH_AV;
@@ -5897,9 +4269,9 @@ e1000_rar_set(struct e1000_hw *hw,
     }
 
     E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
-    E1000_WRITE_FLUSH(hw);
+    E1000_WRITE_FLUSH();
     E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
-    E1000_WRITE_FLUSH(hw);
+    E1000_WRITE_FLUSH();
 }
 
 /******************************************************************************
@@ -5909,25 +4281,19 @@ e1000_rar_set(struct e1000_hw *hw,
  * offset - Offset in VLAN filer table to write
  * value - Value to write into VLAN filter table
  *****************************************************************************/
-void
-e1000_write_vfta(struct e1000_hw *hw,
-                 uint32_t offset,
-                 uint32_t value)
+void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
 {
-    uint32_t temp;
-
-    if (hw->mac_type == e1000_ich8lan)
-        return;
+    u32 temp;
 
     if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
         temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
         E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
-        E1000_WRITE_FLUSH(hw);
+        E1000_WRITE_FLUSH();
         E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
-        E1000_WRITE_FLUSH(hw);
+        E1000_WRITE_FLUSH();
     } else {
         E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
-        E1000_WRITE_FLUSH(hw);
+        E1000_WRITE_FLUSH();
     }
 }
 
@@ -5936,49 +4302,31 @@ e1000_write_vfta(struct e1000_hw *hw,
  *
  * hw - Struct containing variables accessed by shared code
  *****************************************************************************/
-static void
-e1000_clear_vfta(struct e1000_hw *hw)
+static void e1000_clear_vfta(struct e1000_hw *hw)
 {
-    uint32_t offset;
-    uint32_t vfta_value = 0;
-    uint32_t vfta_offset = 0;
-    uint32_t vfta_bit_in_reg = 0;
-
-    if (hw->mac_type == e1000_ich8lan)
-        return;
-
-    if (hw->mac_type == e1000_82573) {
-        if (hw->mng_cookie.vlan_id != 0) {
-            /* The VFTA is a 4096b bit-field, each identifying a single VLAN
-             * ID.  The following operations determine which 32b entry
-             * (i.e. offset) into the array we want to set the VLAN ID
-             * (i.e. bit) of the manageability unit. */
-            vfta_offset = (hw->mng_cookie.vlan_id >>
-                           E1000_VFTA_ENTRY_SHIFT) &
-                          E1000_VFTA_ENTRY_MASK;
-            vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
-                                    E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
-        }
-    }
+    u32 offset;
+    u32 vfta_value = 0;
+    u32 vfta_offset = 0;
+    u32 vfta_bit_in_reg = 0;
+
     for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
         /* If the offset we want to clear is the same offset of the
          * manageability VLAN ID, then clear all bits except that of the
          * manageability unit */
         vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
         E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
-        E1000_WRITE_FLUSH(hw);
+        E1000_WRITE_FLUSH();
     }
 }
 
-static int32_t
-e1000_id_led_init(struct e1000_hw * hw)
+static s32 e1000_id_led_init(struct e1000_hw *hw)
 {
-    uint32_t ledctl;
-    const uint32_t ledctl_mask = 0x000000FF;
-    const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON;
-    const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
-    uint16_t eeprom_data, i, temp;
-    const uint16_t led_mask = 0x0F;
+    u32 ledctl;
+    const u32 ledctl_mask = 0x000000FF;
+    const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
+    const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
+    u16 eeprom_data, i, temp;
+    const u16 led_mask = 0x0F;
 
     DEBUGFUNC("e1000_id_led_init");
 
@@ -5987,7 +4335,7 @@ e1000_id_led_init(struct e1000_hw * hw)
         return E1000_SUCCESS;
     }
 
-    ledctl = E1000_READ_REG(hw, LEDCTL);
+    ledctl = er32(LEDCTL);
     hw->ledctl_default = ledctl;
     hw->ledctl_mode1 = hw->ledctl_default;
     hw->ledctl_mode2 = hw->ledctl_default;
@@ -5997,16 +4345,11 @@ e1000_id_led_init(struct e1000_hw * hw)
         return -E1000_ERR_EEPROM;
     }
 
-    if ((hw->mac_type == e1000_82573) &&
-        (eeprom_data == ID_LED_RESERVED_82573))
-        eeprom_data = ID_LED_DEFAULT_82573;
-    else if ((eeprom_data == ID_LED_RESERVED_0000) ||
+    if ((eeprom_data == ID_LED_RESERVED_0000) ||
             (eeprom_data == ID_LED_RESERVED_FFFF)) {
-        if (hw->mac_type == e1000_ich8lan)
-            eeprom_data = ID_LED_DEFAULT_ICH8LAN;
-        else
             eeprom_data = ID_LED_DEFAULT;
     }
+
     for (i = 0; i < 4; i++) {
         temp = (eeprom_data >> (i << 2)) & led_mask;
         switch (temp) {
@@ -6052,11 +4395,10 @@ e1000_id_led_init(struct e1000_hw * hw)
  *
  * hw - Struct containing variables accessed by shared code
  *****************************************************************************/
-int32_t
-e1000_setup_led(struct e1000_hw *hw)
+s32 e1000_setup_led(struct e1000_hw *hw)
 {
-    uint32_t ledctl;
-    int32_t ret_val = E1000_SUCCESS;
+    u32 ledctl;
+    s32 ret_val = E1000_SUCCESS;
 
     DEBUGFUNC("e1000_setup_led");
 
@@ -6077,14 +4419,14 @@ e1000_setup_led(struct e1000_hw *hw)
         if (ret_val)
             return ret_val;
         ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
-                                      (uint16_t)(hw->phy_spd_default &
+                                      (u16)(hw->phy_spd_default &
                                       ~IGP01E1000_GMII_SPD));
         if (ret_val)
             return ret_val;
         /* Fall Through */
     default:
         if (hw->media_type == e1000_media_type_fiber) {
-            ledctl = E1000_READ_REG(hw, LEDCTL);
+            ledctl = er32(LEDCTL);
             /* Save current LEDCTL settings */
             hw->ledctl_default = ledctl;
             /* Turn off LED0 */
@@ -6093,63 +4435,23 @@ e1000_setup_led(struct e1000_hw *hw)
                         E1000_LEDCTL_LED0_MODE_MASK);
             ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
                        E1000_LEDCTL_LED0_MODE_SHIFT);
-            E1000_WRITE_REG(hw, LEDCTL, ledctl);
+            ew32(LEDCTL, ledctl);
         } else if (hw->media_type == e1000_media_type_copper)
-            E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
+            ew32(LEDCTL, hw->ledctl_mode1);
         break;
     }
 
     return E1000_SUCCESS;
 }
 
-
-/******************************************************************************
- * Used on 82571 and later Si that has LED blink bits.
- * Callers must use their own timer and should have already called
- * e1000_id_led_init()
- * Call e1000_cleanup led() to stop blinking
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-e1000_blink_led_start(struct e1000_hw *hw)
-{
-    int16_t  i;
-    uint32_t ledctl_blink = 0;
-
-    DEBUGFUNC("e1000_id_led_blink_on");
-
-    if (hw->mac_type < e1000_82571) {
-        /* Nothing to do */
-        return E1000_SUCCESS;
-    }
-    if (hw->media_type == e1000_media_type_fiber) {
-        /* always blink LED0 for PCI-E fiber */
-        ledctl_blink = E1000_LEDCTL_LED0_BLINK |
-                     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
-    } else {
-        /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */
-        ledctl_blink = hw->ledctl_mode2;
-        for (i=0; i < 4; i++)
-            if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) ==
-                E1000_LEDCTL_MODE_LED_ON)
-                ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8));
-    }
-
-    E1000_WRITE_REG(hw, LEDCTL, ledctl_blink);
-
-    return E1000_SUCCESS;
-}
-
 /******************************************************************************
  * Restores the saved state of the SW controlable LED.
  *
  * hw - Struct containing variables accessed by shared code
  *****************************************************************************/
-int32_t
-e1000_cleanup_led(struct e1000_hw *hw)
+s32 e1000_cleanup_led(struct e1000_hw *hw)
 {
-    int32_t ret_val = E1000_SUCCESS;
+    s32 ret_val = E1000_SUCCESS;
 
     DEBUGFUNC("e1000_cleanup_led");
 
@@ -6171,12 +4473,8 @@ e1000_cleanup_led(struct e1000_hw *hw)
             return ret_val;
         /* Fall Through */
     default:
-        if (hw->phy_type == e1000_phy_ife) {
-            e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
-            break;
-        }
         /* Restore LEDCTL settings */
-        E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
+        ew32(LEDCTL, hw->ledctl_default);
         break;
     }
 
@@ -6188,10 +4486,9 @@ e1000_cleanup_led(struct e1000_hw *hw)
  *
  * hw - Struct containing variables accessed by shared code
  *****************************************************************************/
-int32_t
-e1000_led_on(struct e1000_hw *hw)
+s32 e1000_led_on(struct e1000_hw *hw)
 {
-    uint32_t ctrl = E1000_READ_REG(hw, CTRL);
+    u32 ctrl = er32(CTRL);
 
     DEBUGFUNC("e1000_led_on");
 
@@ -6219,17 +4516,14 @@ e1000_led_on(struct e1000_hw *hw)
             /* Clear SW Defineable Pin 0 to turn on the LED */
             ctrl &= ~E1000_CTRL_SWDPIN0;
             ctrl |= E1000_CTRL_SWDPIO0;
-        } else if (hw->phy_type == e1000_phy_ife) {
-            e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
-                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
         } else if (hw->media_type == e1000_media_type_copper) {
-            E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
+            ew32(LEDCTL, hw->ledctl_mode2);
             return E1000_SUCCESS;
         }
         break;
     }
 
-    E1000_WRITE_REG(hw, CTRL, ctrl);
+    ew32(CTRL, ctrl);
 
     return E1000_SUCCESS;
 }
@@ -6239,10 +4533,9 @@ e1000_led_on(struct e1000_hw *hw)
  *
  * hw - Struct containing variables accessed by shared code
  *****************************************************************************/
-int32_t
-e1000_led_off(struct e1000_hw *hw)
+s32 e1000_led_off(struct e1000_hw *hw)
 {
-    uint32_t ctrl = E1000_READ_REG(hw, CTRL);
+    u32 ctrl = er32(CTRL);
 
     DEBUGFUNC("e1000_led_off");
 
@@ -6270,17 +4563,14 @@ e1000_led_off(struct e1000_hw *hw)
             /* Set SW Defineable Pin 0 to turn off the LED */
             ctrl |= E1000_CTRL_SWDPIN0;
             ctrl |= E1000_CTRL_SWDPIO0;
-        } else if (hw->phy_type == e1000_phy_ife) {
-            e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
-                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
         } else if (hw->media_type == e1000_media_type_copper) {
-            E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
+            ew32(LEDCTL, hw->ledctl_mode1);
             return E1000_SUCCESS;
         }
         break;
     }
 
-    E1000_WRITE_REG(hw, CTRL, ctrl);
+    ew32(CTRL, ctrl);
 
     return E1000_SUCCESS;
 }
@@ -6290,98 +4580,78 @@ e1000_led_off(struct e1000_hw *hw)
  *
  * hw - Struct containing variables accessed by shared code
  *****************************************************************************/
-void
-e1000_clear_hw_cntrs(struct e1000_hw *hw)
-{
-    volatile uint32_t temp;
-
-    temp = E1000_READ_REG(hw, CRCERRS);
-    temp = E1000_READ_REG(hw, SYMERRS);
-    temp = E1000_READ_REG(hw, MPC);
-    temp = E1000_READ_REG(hw, SCC);
-    temp = E1000_READ_REG(hw, ECOL);
-    temp = E1000_READ_REG(hw, MCC);
-    temp = E1000_READ_REG(hw, LATECOL);
-    temp = E1000_READ_REG(hw, COLC);
-    temp = E1000_READ_REG(hw, DC);
-    temp = E1000_READ_REG(hw, SEC);
-    temp = E1000_READ_REG(hw, RLEC);
-    temp = E1000_READ_REG(hw, XONRXC);
-    temp = E1000_READ_REG(hw, XONTXC);
-    temp = E1000_READ_REG(hw, XOFFRXC);
-    temp = E1000_READ_REG(hw, XOFFTXC);
-    temp = E1000_READ_REG(hw, FCRUC);
-
-    if (hw->mac_type != e1000_ich8lan) {
-    temp = E1000_READ_REG(hw, PRC64);
-    temp = E1000_READ_REG(hw, PRC127);
-    temp = E1000_READ_REG(hw, PRC255);
-    temp = E1000_READ_REG(hw, PRC511);
-    temp = E1000_READ_REG(hw, PRC1023);
-    temp = E1000_READ_REG(hw, PRC1522);
-    }
-
-    temp = E1000_READ_REG(hw, GPRC);
-    temp = E1000_READ_REG(hw, BPRC);
-    temp = E1000_READ_REG(hw, MPRC);
-    temp = E1000_READ_REG(hw, GPTC);
-    temp = E1000_READ_REG(hw, GORCL);
-    temp = E1000_READ_REG(hw, GORCH);
-    temp = E1000_READ_REG(hw, GOTCL);
-    temp = E1000_READ_REG(hw, GOTCH);
-    temp = E1000_READ_REG(hw, RNBC);
-    temp = E1000_READ_REG(hw, RUC);
-    temp = E1000_READ_REG(hw, RFC);
-    temp = E1000_READ_REG(hw, ROC);
-    temp = E1000_READ_REG(hw, RJC);
-    temp = E1000_READ_REG(hw, TORL);
-    temp = E1000_READ_REG(hw, TORH);
-    temp = E1000_READ_REG(hw, TOTL);
-    temp = E1000_READ_REG(hw, TOTH);
-    temp = E1000_READ_REG(hw, TPR);
-    temp = E1000_READ_REG(hw, TPT);
-
-    if (hw->mac_type != e1000_ich8lan) {
-    temp = E1000_READ_REG(hw, PTC64);
-    temp = E1000_READ_REG(hw, PTC127);
-    temp = E1000_READ_REG(hw, PTC255);
-    temp = E1000_READ_REG(hw, PTC511);
-    temp = E1000_READ_REG(hw, PTC1023);
-    temp = E1000_READ_REG(hw, PTC1522);
-    }
-
-    temp = E1000_READ_REG(hw, MPTC);
-    temp = E1000_READ_REG(hw, BPTC);
+static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
+{
+    volatile u32 temp;
+
+    temp = er32(CRCERRS);
+    temp = er32(SYMERRS);
+    temp = er32(MPC);
+    temp = er32(SCC);
+    temp = er32(ECOL);
+    temp = er32(MCC);
+    temp = er32(LATECOL);
+    temp = er32(COLC);
+    temp = er32(DC);
+    temp = er32(SEC);
+    temp = er32(RLEC);
+    temp = er32(XONRXC);
+    temp = er32(XONTXC);
+    temp = er32(XOFFRXC);
+    temp = er32(XOFFTXC);
+    temp = er32(FCRUC);
+
+    temp = er32(PRC64);
+    temp = er32(PRC127);
+    temp = er32(PRC255);
+    temp = er32(PRC511);
+    temp = er32(PRC1023);
+    temp = er32(PRC1522);
+
+    temp = er32(GPRC);
+    temp = er32(BPRC);
+    temp = er32(MPRC);
+    temp = er32(GPTC);
+    temp = er32(GORCL);
+    temp = er32(GORCH);
+    temp = er32(GOTCL);
+    temp = er32(GOTCH);
+    temp = er32(RNBC);
+    temp = er32(RUC);
+    temp = er32(RFC);
+    temp = er32(ROC);
+    temp = er32(RJC);
+    temp = er32(TORL);
+    temp = er32(TORH);
+    temp = er32(TOTL);
+    temp = er32(TOTH);
+    temp = er32(TPR);
+    temp = er32(TPT);
+
+    temp = er32(PTC64);
+    temp = er32(PTC127);
+    temp = er32(PTC255);
+    temp = er32(PTC511);
+    temp = er32(PTC1023);
+    temp = er32(PTC1522);
+
+    temp = er32(MPTC);
+    temp = er32(BPTC);
 
     if (hw->mac_type < e1000_82543) return;
 
-    temp = E1000_READ_REG(hw, ALGNERRC);
-    temp = E1000_READ_REG(hw, RXERRC);
-    temp = E1000_READ_REG(hw, TNCRS);
-    temp = E1000_READ_REG(hw, CEXTERR);
-    temp = E1000_READ_REG(hw, TSCTC);
-    temp = E1000_READ_REG(hw, TSCTFC);
+    temp = er32(ALGNERRC);
+    temp = er32(RXERRC);
+    temp = er32(TNCRS);
+    temp = er32(CEXTERR);
+    temp = er32(TSCTC);
+    temp = er32(TSCTFC);
 
     if (hw->mac_type <= e1000_82544) return;
 
-    temp = E1000_READ_REG(hw, MGTPRC);
-    temp = E1000_READ_REG(hw, MGTPDC);
-    temp = E1000_READ_REG(hw, MGTPTC);
-
-    if (hw->mac_type <= e1000_82547_rev_2) return;
-
-    temp = E1000_READ_REG(hw, IAC);
-    temp = E1000_READ_REG(hw, ICRXOC);
-
-    if (hw->mac_type == e1000_ich8lan) return;
-
-    temp = E1000_READ_REG(hw, ICRXPTC);
-    temp = E1000_READ_REG(hw, ICRXATC);
-    temp = E1000_READ_REG(hw, ICTXPTC);
-    temp = E1000_READ_REG(hw, ICTXATC);
-    temp = E1000_READ_REG(hw, ICTXQEC);
-    temp = E1000_READ_REG(hw, ICTXQMTC);
-    temp = E1000_READ_REG(hw, ICRXDMTC);
+    temp = er32(MGTPRC);
+    temp = er32(MGTPDC);
+    temp = er32(MGTPTC);
 }
 
 /******************************************************************************
@@ -6390,12 +4660,11 @@ e1000_clear_hw_cntrs(struct e1000_hw *hw)
  * hw - Struct containing variables accessed by shared code
  *
  * Call this after e1000_init_hw. You may override the IFS defaults by setting
- * hw->ifs_params_forced to TRUE. However, you must initialize hw->
+ * hw->ifs_params_forced to true. However, you must initialize hw->
  * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
  * before calling this function.
  *****************************************************************************/
-void
-e1000_reset_adaptive(struct e1000_hw *hw)
+void e1000_reset_adaptive(struct e1000_hw *hw)
 {
     DEBUGFUNC("e1000_reset_adaptive");
 
@@ -6407,8 +4676,8 @@ e1000_reset_adaptive(struct e1000_hw *hw)
             hw->ifs_step_size = IFS_STEP;
             hw->ifs_ratio = IFS_RATIO;
         }
-        hw->in_ifs_mode = FALSE;
-        E1000_WRITE_REG(hw, AIT, 0);
+        hw->in_ifs_mode = false;
+        ew32(AIT, 0);
     } else {
         DEBUGOUT("Not in Adaptive IFS mode!\n");
     }
@@ -6422,28 +4691,27 @@ e1000_reset_adaptive(struct e1000_hw *hw)
  * tx_packets - Number of transmits since last callback
  * total_collisions - Number of collisions since last callback
  *****************************************************************************/
-void
-e1000_update_adaptive(struct e1000_hw *hw)
+void e1000_update_adaptive(struct e1000_hw *hw)
 {
     DEBUGFUNC("e1000_update_adaptive");
 
     if (hw->adaptive_ifs) {
         if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
             if (hw->tx_packet_delta > MIN_NUM_XMITS) {
-                hw->in_ifs_mode = TRUE;
+                hw->in_ifs_mode = true;
                 if (hw->current_ifs_val < hw->ifs_max_val) {
                     if (hw->current_ifs_val == 0)
                         hw->current_ifs_val = hw->ifs_min_val;
                     else
                         hw->current_ifs_val += hw->ifs_step_size;
-                    E1000_WRITE_REG(hw, AIT, hw->current_ifs_val);
+                    ew32(AIT, hw->current_ifs_val);
                 }
             }
         } else {
             if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
                 hw->current_ifs_val = 0;
-                hw->in_ifs_mode = FALSE;
-                E1000_WRITE_REG(hw, AIT, 0);
+                hw->in_ifs_mode = false;
+                ew32(AIT, 0);
             }
         }
     } else {
@@ -6458,13 +4726,10 @@ e1000_update_adaptive(struct e1000_hw *hw)
  * frame_len - The length of the frame in question
  * mac_addr - The Ethernet destination address of the frame in question
  *****************************************************************************/
-void
-e1000_tbi_adjust_stats(struct e1000_hw *hw,
-                       struct e1000_hw_stats *stats,
-                       uint32_t frame_len,
-                       uint8_t *mac_addr)
+void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats,
+                           u32 frame_len, u8 *mac_addr)
 {
-    uint64_t carry_bit;
+    u64 carry_bit;
 
     /* First adjust the frame length. */
     frame_len--;
@@ -6493,7 +4758,7 @@ e1000_tbi_adjust_stats(struct e1000_hw *hw,
      * since the test for a multicast frame will test positive on
      * a broadcast frame.
      */
-    if ((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
+    if ((mac_addr[0] == (u8)0xff) && (mac_addr[1] == (u8)0xff))
         /* Broadcast packet */
         stats->bprc++;
     else if (*mac_addr & 0x01)
@@ -6536,33 +4801,19 @@ e1000_tbi_adjust_stats(struct e1000_hw *hw,
  *
  * hw - Struct containing variables accessed by shared code
  *****************************************************************************/
-void
-e1000_get_bus_info(struct e1000_hw *hw)
+void e1000_get_bus_info(struct e1000_hw *hw)
 {
-    uint32_t status;
+    u32 status;
 
     switch (hw->mac_type) {
     case e1000_82542_rev2_0:
     case e1000_82542_rev2_1:
-        hw->bus_type = e1000_bus_type_unknown;
+        hw->bus_type = e1000_bus_type_pci;
         hw->bus_speed = e1000_bus_speed_unknown;
         hw->bus_width = e1000_bus_width_unknown;
         break;
-    case e1000_82572:
-    case e1000_82573:
-        hw->bus_type = e1000_bus_type_pci_express;
-        hw->bus_speed = e1000_bus_speed_2500;
-        hw->bus_width = e1000_bus_width_pciex_1;
-        break;
-    case e1000_82571:
-    case e1000_ich8lan:
-    case e1000_80003es2lan:
-        hw->bus_type = e1000_bus_type_pci_express;
-        hw->bus_speed = e1000_bus_speed_2500;
-        hw->bus_width = e1000_bus_width_pciex_4;
-        break;
     default:
-        status = E1000_READ_REG(hw, STATUS);
+        status = er32(STATUS);
         hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
                        e1000_bus_type_pcix : e1000_bus_type_pci;
 
@@ -6593,25 +4844,6 @@ e1000_get_bus_info(struct e1000_hw *hw)
         break;
     }
 }
-/******************************************************************************
- * Reads a value from one of the devices registers using port I/O (as opposed
- * memory mapped I/O). Only 82544 and newer devices support port I/O.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset to read from
- *****************************************************************************/
-#if 0
-uint32_t
-e1000_read_reg_io(struct e1000_hw *hw,
-                  uint32_t offset)
-{
-    unsigned long io_addr = hw->io_base;
-    unsigned long io_data = hw->io_base + 4;
-
-    e1000_io_write(hw, io_addr, offset);
-    return e1000_io_read(hw, io_data);
-}
-#endif  /*  0  */
 
 /******************************************************************************
  * Writes a value to one of the devices registers using port I/O (as opposed to
@@ -6621,10 +4853,7 @@ e1000_read_reg_io(struct e1000_hw *hw,
  * offset - offset to write to
  * value - value to write
  *****************************************************************************/
-static void
-e1000_write_reg_io(struct e1000_hw *hw,
-                   uint32_t offset,
-                   uint32_t value)
+static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
 {
     unsigned long io_addr = hw->io_base;
     unsigned long io_data = hw->io_base + 4;
@@ -6633,7 +4862,6 @@ e1000_write_reg_io(struct e1000_hw *hw,
     e1000_io_write(hw, io_data, value);
 }
 
-
 /******************************************************************************
  * Estimates the cable length.
  *
@@ -6649,15 +4877,13 @@ e1000_write_reg_io(struct e1000_hw *hw,
  * register to the minimum and maximum range.
  * For IGP phy's, the function calculates the range by the AGC registers.
  *****************************************************************************/
-static int32_t
-e1000_get_cable_length(struct e1000_hw *hw,
-                       uint16_t *min_length,
-                       uint16_t *max_length)
+static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
+                                 u16 *max_length)
 {
-    int32_t ret_val;
-    uint16_t agc_value = 0;
-    uint16_t i, phy_data;
-    uint16_t cable_length;
+    s32 ret_val;
+    u16 agc_value = 0;
+    u16 i, phy_data;
+    u16 cable_length;
 
     DEBUGFUNC("e1000_get_cable_length");
 
@@ -6699,38 +4925,10 @@ e1000_get_cable_length(struct e1000_hw *hw,
             return -E1000_ERR_PHY;
             break;
         }
-    } else if (hw->phy_type == e1000_phy_gg82563) {
-        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
-                                     &phy_data);
-        if (ret_val)
-            return ret_val;
-        cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH;
-
-        switch (cable_length) {
-        case e1000_gg_cable_length_60:
-            *min_length = 0;
-            *max_length = e1000_igp_cable_length_60;
-            break;
-        case e1000_gg_cable_length_60_115:
-            *min_length = e1000_igp_cable_length_60;
-            *max_length = e1000_igp_cable_length_115;
-            break;
-        case e1000_gg_cable_length_115_150:
-            *min_length = e1000_igp_cable_length_115;
-            *max_length = e1000_igp_cable_length_150;
-            break;
-        case e1000_gg_cable_length_150:
-            *min_length = e1000_igp_cable_length_150;
-            *max_length = e1000_igp_cable_length_180;
-            break;
-        default:
-            return -E1000_ERR_PHY;
-            break;
-        }
     } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
-        uint16_t cur_agc_value;
-        uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
-        uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
+        u16 cur_agc_value;
+        u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
+        u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
                                                          {IGP01E1000_PHY_AGC_A,
                                                           IGP01E1000_PHY_AGC_B,
                                                           IGP01E1000_PHY_AGC_C,
@@ -6774,51 +4972,6 @@ e1000_get_cable_length(struct e1000_hw *hw,
                        IGP01E1000_AGC_RANGE) : 0;
         *max_length = e1000_igp_cable_length_table[agc_value] +
                       IGP01E1000_AGC_RANGE;
-    } else if (hw->phy_type == e1000_phy_igp_2 ||
-               hw->phy_type == e1000_phy_igp_3) {
-        uint16_t cur_agc_index, max_agc_index = 0;
-        uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1;
-        uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
-                                                         {IGP02E1000_PHY_AGC_A,
-                                                          IGP02E1000_PHY_AGC_B,
-                                                          IGP02E1000_PHY_AGC_C,
-                                                          IGP02E1000_PHY_AGC_D};
-        /* Read the AGC registers for all channels */
-        for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
-            ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
-            if (ret_val)
-                return ret_val;
-
-            /* Getting bits 15:9, which represent the combination of course and
-             * fine gain values.  The result is a number that can be put into
-             * the lookup table to obtain the approximate cable length. */
-            cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
-                            IGP02E1000_AGC_LENGTH_MASK;
-
-            /* Array index bound check. */
-            if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) ||
-                (cur_agc_index == 0))
-                return -E1000_ERR_PHY;
-
-            /* Remove min & max AGC values from calculation. */
-            if (e1000_igp_2_cable_length_table[min_agc_index] >
-                e1000_igp_2_cable_length_table[cur_agc_index])
-                min_agc_index = cur_agc_index;
-            if (e1000_igp_2_cable_length_table[max_agc_index] <
-                e1000_igp_2_cable_length_table[cur_agc_index])
-                max_agc_index = cur_agc_index;
-
-            agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
-        }
-
-        agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
-                      e1000_igp_2_cable_length_table[max_agc_index]);
-        agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
-
-        /* Calculate cable length with the error range of +/- 10 meters. */
-        *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
-                       (agc_value - IGP02E1000_AGC_RANGE) : 0;
-        *max_length = agc_value + IGP02E1000_AGC_RANGE;
     }
 
     return E1000_SUCCESS;
@@ -6834,33 +4987,31 @@ e1000_get_cable_length(struct e1000_hw *hw,
  * returns: - E1000_ERR_XXX
  *            E1000_SUCCESS
  *
- * For phy's older then IGP, this function simply reads the polarity bit in the
+ * For phy's older than IGP, this function simply reads the polarity bit in the
  * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
  * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
  * return 0.  If the link speed is 1000 Mbps the polarity status is in the
  * IGP01E1000_PHY_PCS_INIT_REG.
  *****************************************************************************/
-static int32_t
-e1000_check_polarity(struct e1000_hw *hw,
-                     uint16_t *polarity)
+static s32 e1000_check_polarity(struct e1000_hw *hw,
+                               e1000_rev_polarity *polarity)
 {
-    int32_t ret_val;
-    uint16_t phy_data;
+    s32 ret_val;
+    u16 phy_data;
 
     DEBUGFUNC("e1000_check_polarity");
 
-    if ((hw->phy_type == e1000_phy_m88) ||
-        (hw->phy_type == e1000_phy_gg82563)) {
+    if (hw->phy_type == e1000_phy_m88) {
         /* return the Polarity bit in the Status register. */
         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
                                      &phy_data);
         if (ret_val)
             return ret_val;
-        *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >>
-                    M88E1000_PSSR_REV_POLARITY_SHIFT;
-    } else if (hw->phy_type == e1000_phy_igp ||
-              hw->phy_type == e1000_phy_igp_3 ||
-              hw->phy_type == e1000_phy_igp_2) {
+        *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
+                     M88E1000_PSSR_REV_POLARITY_SHIFT) ?
+                     e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
+
+    } else if (hw->phy_type == e1000_phy_igp) {
         /* Read the Status register to check the speed */
         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
                                      &phy_data);
@@ -6879,19 +5030,14 @@ e1000_check_polarity(struct e1000_hw *hw,
                 return ret_val;
 
             /* Check the polarity bits */
-            *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? 1 : 0;
+            *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
+                         e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
         } else {
             /* For 10 Mbps, read the polarity bit in the status register. (for
              * 100 Mbps this bit is always 0) */
-            *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED;
+            *polarity = (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
+                         e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
         }
-    } else if (hw->phy_type == e1000_phy_ife) {
-        ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL,
-                                     &phy_data);
-        if (ret_val)
-            return ret_val;
-        *polarity = (phy_data & IFE_PESC_POLARITY_REVERSED) >>
-                           IFE_PESC_POLARITY_REVERSED_SHIFT;
     }
     return E1000_SUCCESS;
 }
@@ -6906,30 +5052,26 @@ e1000_check_polarity(struct e1000_hw *hw,
  * returns: - E1000_ERR_XXX
  *            E1000_SUCCESS
  *
- * For phy's older then IGP, this function reads the Downshift bit in the Phy
+ * For phy's older than IGP, this function reads the Downshift bit in the Phy
  * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
  * Link Health register.  In IGP this bit is latched high, so the driver must
  * read it immediately after link is established.
  *****************************************************************************/
-static int32_t
-e1000_check_downshift(struct e1000_hw *hw)
+static s32 e1000_check_downshift(struct e1000_hw *hw)
 {
-    int32_t ret_val;
-    uint16_t phy_data;
+    s32 ret_val;
+    u16 phy_data;
 
     DEBUGFUNC("e1000_check_downshift");
 
-    if (hw->phy_type == e1000_phy_igp ||
-        hw->phy_type == e1000_phy_igp_3 ||
-        hw->phy_type == e1000_phy_igp_2) {
+    if (hw->phy_type == e1000_phy_igp) {
         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
                                      &phy_data);
         if (ret_val)
             return ret_val;
 
         hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
-    } else if ((hw->phy_type == e1000_phy_m88) ||
-               (hw->phy_type == e1000_phy_gg82563)) {
+    } else if (hw->phy_type == e1000_phy_m88) {
         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
                                      &phy_data);
         if (ret_val)
@@ -6937,9 +5079,6 @@ e1000_check_downshift(struct e1000_hw *hw)
 
         hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
                                M88E1000_PSSR_DOWNSHIFT_SHIFT;
-    } else if (hw->phy_type == e1000_phy_ife) {
-        /* e1000_phy_ife supports 10/100 speed only */
-        hw->speed_downgraded = FALSE;
     }
 
     return E1000_SUCCESS;
@@ -6957,18 +5096,16 @@ e1000_check_downshift(struct e1000_hw *hw)
  *
  ****************************************************************************/
 
-static int32_t
-e1000_config_dsp_after_link_change(struct e1000_hw *hw,
-                                   boolean_t link_up)
+static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
 {
-    int32_t ret_val;
-    uint16_t phy_data, phy_saved_data, speed, duplex, i;
-    uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
+    s32 ret_val;
+    u16 phy_data, phy_saved_data, speed, duplex, i;
+    u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
                                         {IGP01E1000_PHY_AGC_PARAM_A,
                                         IGP01E1000_PHY_AGC_PARAM_B,
                                         IGP01E1000_PHY_AGC_PARAM_C,
                                         IGP01E1000_PHY_AGC_PARAM_D};
-    uint16_t min_length, max_length;
+    u16 min_length, max_length;
 
     DEBUGFUNC("e1000_config_dsp_after_link_change");
 
@@ -7010,8 +5147,8 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw,
             if ((hw->ffe_config_state == e1000_ffe_config_enabled) &&
                (min_length < e1000_igp_cable_length_50)) {
 
-                uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
-                uint32_t idle_errs = 0;
+                u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
+                u32 idle_errs = 0;
 
                 /* clear previous idle error counts */
                 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
@@ -7058,7 +5195,7 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw,
             if (ret_val)
                 return ret_val;
 
-            msec_delay_irq(20);
+            mdelay(20);
 
             ret_val = e1000_write_phy_reg(hw, 0x0000,
                                           IGP01E1000_IEEE_FORCE_GIGA);
@@ -7082,7 +5219,7 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw,
             if (ret_val)
                 return ret_val;
 
-            msec_delay_irq(20);
+            mdelay(20);
 
             /* Now enable the transmitter */
             ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
@@ -7107,7 +5244,7 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw,
             if (ret_val)
                 return ret_val;
 
-            msec_delay_irq(20);
+            mdelay(20);
 
             ret_val = e1000_write_phy_reg(hw, 0x0000,
                                           IGP01E1000_IEEE_FORCE_GIGA);
@@ -7123,7 +5260,7 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw,
             if (ret_val)
                 return ret_val;
 
-            msec_delay_irq(20);
+            mdelay(20);
 
             /* Now enable the transmitter */
             ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
@@ -7145,11 +5282,10 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw,
  *
  * hw - Struct containing variables accessed by shared code
  ****************************************************************************/
-static int32_t
-e1000_set_phy_mode(struct e1000_hw *hw)
+static s32 e1000_set_phy_mode(struct e1000_hw *hw)
 {
-    int32_t ret_val;
-    uint16_t eeprom_data;
+    s32 ret_val;
+    u16 eeprom_data;
 
     DEBUGFUNC("e1000_set_phy_mode");
 
@@ -7169,7 +5305,7 @@ e1000_set_phy_mode(struct e1000_hw *hw)
             if (ret_val)
                 return ret_val;
 
-            hw->phy_reset_disable = FALSE;
+            hw->phy_reset_disable = false;
         }
     }
 
@@ -7190,17 +5326,13 @@ e1000_set_phy_mode(struct e1000_hw *hw)
  *
  ****************************************************************************/
 
-static int32_t
-e1000_set_d3_lplu_state(struct e1000_hw *hw,
-                        boolean_t active)
+static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
 {
-    uint32_t phy_ctrl = 0;
-    int32_t ret_val;
-    uint16_t phy_data;
+    s32 ret_val;
+    u16 phy_data;
     DEBUGFUNC("e1000_set_d3_lplu_state");
 
-    if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
-        && hw->phy_type != e1000_phy_igp_3)
+    if (hw->phy_type != e1000_phy_igp)
         return E1000_SUCCESS;
 
     /* During driver activity LPLU should not be used or it will attain link
@@ -7210,11 +5342,6 @@ e1000_set_d3_lplu_state(struct e1000_hw *hw,
         ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
         if (ret_val)
             return ret_val;
-    } else if (hw->mac_type == e1000_ich8lan) {
-        /* MAC writes into PHY register based on the state transition
-         * and start auto-negotiation. SW driver can overwrite the settings
-         * in CSR PHY power control E1000_PHY_CTRL register. */
-        phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
     } else {
         ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
         if (ret_val)
@@ -7229,16 +5356,11 @@ e1000_set_d3_lplu_state(struct e1000_hw *hw,
             if (ret_val)
                 return ret_val;
         } else {
-            if (hw->mac_type == e1000_ich8lan) {
-                phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
-                E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
-            } else {
-                phy_data &= ~IGP02E1000_PM_D3_LPLU;
-                ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
-                                              phy_data);
-                if (ret_val)
-                    return ret_val;
-            }
+            phy_data &= ~IGP02E1000_PM_D3_LPLU;
+            ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+                                          phy_data);
+            if (ret_val)
+                return ret_val;
         }
 
         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
@@ -7259,7 +5381,7 @@ e1000_set_d3_lplu_state(struct e1000_hw *hw,
         } else if (hw->smart_speed == e1000_smart_speed_off) {
             ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                                          &phy_data);
-           if (ret_val)
+            if (ret_val)
                 return ret_val;
 
             phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
@@ -7280,118 +5402,13 @@ e1000_set_d3_lplu_state(struct e1000_hw *hw,
             if (ret_val)
                 return ret_val;
         } else {
-            if (hw->mac_type == e1000_ich8lan) {
-                phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
-                E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
-            } else {
-                phy_data |= IGP02E1000_PM_D3_LPLU;
-                ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
-                                              phy_data);
-                if (ret_val)
-                    return ret_val;
-            }
-        }
-
-        /* When LPLU is enabled we should disable SmartSpeed */
-        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
-        ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
-        if (ret_val)
-            return ret_val;
-
-    }
-    return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- *
- * This function sets the lplu d0 state according to the active flag.  When
- * activating lplu this function also disables smart speed and vise versa.
- * lplu will not be activated unless the device autonegotiation advertisment
- * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
- * hw: Struct containing variables accessed by shared code
- * active - true to enable lplu false to disable lplu.
- *
- * returns: - E1000_ERR_PHY if fail to read/write the PHY
- *            E1000_SUCCESS at any other case.
- *
- ****************************************************************************/
-
-static int32_t
-e1000_set_d0_lplu_state(struct e1000_hw *hw,
-                        boolean_t active)
-{
-    uint32_t phy_ctrl = 0;
-    int32_t ret_val;
-    uint16_t phy_data;
-    DEBUGFUNC("e1000_set_d0_lplu_state");
-
-    if (hw->mac_type <= e1000_82547_rev_2)
-        return E1000_SUCCESS;
-
-    if (hw->mac_type == e1000_ich8lan) {
-        phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
-    } else {
-        ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
-        if (ret_val)
-            return ret_val;
-    }
-
-    if (!active) {
-        if (hw->mac_type == e1000_ich8lan) {
-            phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
-            E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
-        } else {
-            phy_data &= ~IGP02E1000_PM_D0_LPLU;
-            ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
-            if (ret_val)
-                return ret_val;
-        }
-
-        /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
-         * Dx states where the power conservation is most important.  During
-         * driver activity we should enable SmartSpeed, so performance is
-         * maintained. */
-        if (hw->smart_speed == e1000_smart_speed_on) {
-            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-                                         &phy_data);
-            if (ret_val)
-                return ret_val;
-
-            phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
-            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-                                          phy_data);
-            if (ret_val)
-                return ret_val;
-        } else if (hw->smart_speed == e1000_smart_speed_off) {
-            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-                                         &phy_data);
-           if (ret_val)
-                return ret_val;
-
-            phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
-            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+            phy_data |= IGP02E1000_PM_D3_LPLU;
+            ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
                                           phy_data);
             if (ret_val)
                 return ret_val;
         }
 
-
-    } else {
-
-        if (hw->mac_type == e1000_ich8lan) {
-            phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
-            E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
-        } else {
-            phy_data |= IGP02E1000_PM_D0_LPLU;
-            ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
-            if (ret_val)
-                return ret_val;
-        }
-
         /* When LPLU is enabled we should disable SmartSpeed */
         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
         if (ret_val)
@@ -7411,12 +5428,11 @@ e1000_set_d0_lplu_state(struct e1000_hw *hw,
  *
  * hw - Struct containing variables accessed by shared code
  *****************************************************************************/
-static int32_t
-e1000_set_vco_speed(struct e1000_hw *hw)
+static s32 e1000_set_vco_speed(struct e1000_hw *hw)
 {
-    int32_t  ret_val;
-    uint16_t default_page = 0;
-    uint16_t phy_data;
+    s32  ret_val;
+    u16 default_page = 0;
+    u16 phy_data;
 
     DEBUGFUNC("e1000_set_vco_speed");
 
@@ -7470,347 +5486,35 @@ e1000_set_vco_speed(struct e1000_hw *hw)
 }
 
 
-/*****************************************************************************
- * This function reads the cookie from ARC ram.
- *
- * returns: - E1000_SUCCESS .
- ****************************************************************************/
-int32_t
-e1000_host_if_read_cookie(struct e1000_hw * hw, uint8_t *buffer)
-{
-    uint8_t i;
-    uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET;
-    uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH;
-
-    length = (length >> 2);
-    offset = (offset >> 2);
-
-    for (i = 0; i < length; i++) {
-        *((uint32_t *) buffer + i) =
-            E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i);
-    }
-    return E1000_SUCCESS;
-}
-
-
-/*****************************************************************************
- * This function checks whether the HOST IF is enabled for command operaton
- * and also checks whether the previous command is completed.
- * It busy waits in case of previous command is not completed.
- *
- * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
- *            timeout
- *          - E1000_SUCCESS for success.
- ****************************************************************************/
-static int32_t
-e1000_mng_enable_host_if(struct e1000_hw * hw)
-{
-    uint32_t hicr;
-    uint8_t i;
-
-    /* Check that the host interface is enabled. */
-    hicr = E1000_READ_REG(hw, HICR);
-    if ((hicr & E1000_HICR_EN) == 0) {
-        DEBUGOUT("E1000_HOST_EN bit disabled.\n");
-        return -E1000_ERR_HOST_INTERFACE_COMMAND;
-    }
-    /* check the previous command is completed */
-    for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
-        hicr = E1000_READ_REG(hw, HICR);
-        if (!(hicr & E1000_HICR_C))
-            break;
-        msec_delay_irq(1);
-    }
-
-    if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
-        DEBUGOUT("Previous command timeout failed .\n");
-        return -E1000_ERR_HOST_INTERFACE_COMMAND;
-    }
-    return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- * This function writes the buffer content at the offset given on the host if.
- * It also does alignment considerations to do the writes in most efficient way.
- * Also fills up the sum of the buffer in *buffer parameter.
- *
- * returns  - E1000_SUCCESS for success.
- ****************************************************************************/
-static int32_t
-e1000_mng_host_if_write(struct e1000_hw * hw, uint8_t *buffer,
-                        uint16_t length, uint16_t offset, uint8_t *sum)
-{
-    uint8_t *tmp;
-    uint8_t *bufptr = buffer;
-    uint32_t data = 0;
-    uint16_t remaining, i, j, prev_bytes;
-
-    /* sum = only sum of the data and it is not checksum */
-
-    if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
-        return -E1000_ERR_PARAM;
-    }
-
-    tmp = (uint8_t *)&data;
-    prev_bytes = offset & 0x3;
-    offset &= 0xFFFC;
-    offset >>= 2;
-
-    if (prev_bytes) {
-        data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset);
-        for (j = prev_bytes; j < sizeof(uint32_t); j++) {
-            *(tmp + j) = *bufptr++;
-            *sum += *(tmp + j);
-        }
-        E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data);
-        length -= j - prev_bytes;
-        offset++;
-    }
-
-    remaining = length & 0x3;
-    length -= remaining;
-
-    /* Calculate length in DWORDs */
-    length >>= 2;
-
-    /* The device driver writes the relevant command block into the
-     * ram area. */
-    for (i = 0; i < length; i++) {
-        for (j = 0; j < sizeof(uint32_t); j++) {
-            *(tmp + j) = *bufptr++;
-            *sum += *(tmp + j);
-        }
-
-        E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
-    }
-    if (remaining) {
-        for (j = 0; j < sizeof(uint32_t); j++) {
-            if (j < remaining)
-                *(tmp + j) = *bufptr++;
-            else
-                *(tmp + j) = 0;
-
-            *sum += *(tmp + j);
-        }
-        E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
-    }
-
-    return E1000_SUCCESS;
-}
-
-
-/*****************************************************************************
- * This function writes the command header after does the checksum calculation.
- *
- * returns  - E1000_SUCCESS for success.
- ****************************************************************************/
-static int32_t
-e1000_mng_write_cmd_header(struct e1000_hw * hw,
-                           struct e1000_host_mng_command_header * hdr)
-{
-    uint16_t i;
-    uint8_t sum;
-    uint8_t *buffer;
-
-    /* Write the whole command header structure which includes sum of
-     * the buffer */
-
-    uint16_t length = sizeof(struct e1000_host_mng_command_header);
-
-    sum = hdr->checksum;
-    hdr->checksum = 0;
-
-    buffer = (uint8_t *) hdr;
-    i = length;
-    while (i--)
-        sum += buffer[i];
-
-    hdr->checksum = 0 - sum;
-
-    length >>= 2;
-    /* The device driver writes the relevant command block into the ram area. */
-    for (i = 0; i < length; i++) {
-        E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i));
-        E1000_WRITE_FLUSH(hw);
-    }
-
-    return E1000_SUCCESS;
-}
-
-
-/*****************************************************************************
- * This function indicates to ARC that a new command is pending which completes
- * one write operation by the driver.
- *
- * returns  - E1000_SUCCESS for success.
- ****************************************************************************/
-static int32_t
-e1000_mng_write_commit(struct e1000_hw * hw)
-{
-    uint32_t hicr;
-
-    hicr = E1000_READ_REG(hw, HICR);
-    /* Setting this bit tells the ARC that a new command is pending. */
-    E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C);
-
-    return E1000_SUCCESS;
-}
-
-
-/*****************************************************************************
- * This function checks the mode of the firmware.
- *
- * returns  - TRUE when the mode is IAMT or FALSE.
- ****************************************************************************/
-boolean_t
-e1000_check_mng_mode(struct e1000_hw *hw)
-{
-    uint32_t fwsm;
-
-    fwsm = E1000_READ_REG(hw, FWSM);
-
-    if (hw->mac_type == e1000_ich8lan) {
-        if ((fwsm & E1000_FWSM_MODE_MASK) ==
-            (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
-            return TRUE;
-    } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
-               (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
-        return TRUE;
-
-    return FALSE;
-}
-
-
-/*****************************************************************************
- * This function writes the dhcp info .
- ****************************************************************************/
-int32_t
-e1000_mng_write_dhcp_info(struct e1000_hw * hw, uint8_t *buffer,
-                         uint16_t length)
-{
-    int32_t ret_val;
-    struct e1000_host_mng_command_header hdr;
-
-    hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
-    hdr.command_length = length;
-    hdr.reserved1 = 0;
-    hdr.reserved2 = 0;
-    hdr.checksum = 0;
-
-    ret_val = e1000_mng_enable_host_if(hw);
-    if (ret_val == E1000_SUCCESS) {
-        ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr),
-                                          &(hdr.checksum));
-        if (ret_val == E1000_SUCCESS) {
-            ret_val = e1000_mng_write_cmd_header(hw, &hdr);
-            if (ret_val == E1000_SUCCESS)
-                ret_val = e1000_mng_write_commit(hw);
-        }
-    }
-    return ret_val;
-}
-
-
-/*****************************************************************************
- * This function calculates the checksum.
- *
- * returns  - checksum of buffer contents.
- ****************************************************************************/
-uint8_t
-e1000_calculate_mng_checksum(char *buffer, uint32_t length)
-{
-    uint8_t sum = 0;
-    uint32_t i;
-
-    if (!buffer)
-        return 0;
-
-    for (i=0; i < length; i++)
-        sum += buffer[i];
-
-    return (uint8_t) (0 - sum);
-}
-
-/*****************************************************************************
- * This function checks whether tx pkt filtering needs to be enabled or not.
- *
- * returns  - TRUE for packet filtering or FALSE.
- ****************************************************************************/
-boolean_t
-e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
-{
-    /* called in init as well as watchdog timer functions */
-
-    int32_t ret_val, checksum;
-    boolean_t tx_filter = FALSE;
-    struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie);
-    uint8_t *buffer = (uint8_t *) &(hw->mng_cookie);
-
-    if (e1000_check_mng_mode(hw)) {
-        ret_val = e1000_mng_enable_host_if(hw);
-        if (ret_val == E1000_SUCCESS) {
-            ret_val = e1000_host_if_read_cookie(hw, buffer);
-            if (ret_val == E1000_SUCCESS) {
-                checksum = hdr->checksum;
-                hdr->checksum = 0;
-                if ((hdr->signature == E1000_IAMT_SIGNATURE) &&
-                    checksum == e1000_calculate_mng_checksum((char *)buffer,
-                                               E1000_MNG_DHCP_COOKIE_LENGTH)) {
-                    if (hdr->status &
-                        E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT)
-                        tx_filter = TRUE;
-                } else
-                    tx_filter = TRUE;
-            } else
-                tx_filter = TRUE;
-        }
-    }
-
-    hw->tx_pkt_filtering = tx_filter;
-    return tx_filter;
-}
-
 /******************************************************************************
  * Verifies the hardware needs to allow ARPs to be processed by the host
  *
  * hw - Struct containing variables accessed by shared code
  *
- * returns: - TRUE/FALSE
+ * returns: - true/false
  *
  *****************************************************************************/
-uint32_t
-e1000_enable_mng_pass_thru(struct e1000_hw *hw)
+u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
 {
-    uint32_t manc;
-    uint32_t fwsm, factps;
+    u32 manc;
 
     if (hw->asf_firmware_present) {
-        manc = E1000_READ_REG(hw, MANC);
+        manc = er32(MANC);
 
         if (!(manc & E1000_MANC_RCV_TCO_EN) ||
             !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
-            return FALSE;
-        if (e1000_arc_subsystem_valid(hw) == TRUE) {
-            fwsm = E1000_READ_REG(hw, FWSM);
-            factps = E1000_READ_REG(hw, FACTPS);
-
-            if (((fwsm & E1000_FWSM_MODE_MASK) ==
-                (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT)) &&
-                (factps & E1000_FACTPS_MNGCG))
-                return TRUE;
-        } else
-            if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
-                return TRUE;
-    }
-    return FALSE;
+            return false;
+        if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
+            return true;
+    }
+    return false;
 }
 
-static int32_t
-e1000_polarity_reversal_workaround(struct e1000_hw *hw)
+static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
 {
-    int32_t ret_val;
-    uint16_t mii_status_reg;
-    uint16_t i;
+    s32 ret_val;
+    u16 mii_status_reg;
+    u16 i;
 
     /* Polarity reversal workaround for forced 10F/10H links. */
 
@@ -7842,26 +5546,26 @@ e1000_polarity_reversal_workaround(struct e1000_hw *hw)
             return ret_val;
 
         if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
-        msec_delay_irq(100);
+        mdelay(100);
     }
 
     /* Recommended delay time after link has been lost */
-    msec_delay_irq(1000);
+    mdelay(1000);
 
     /* Now we will re-enable th transmitter on the PHY */
 
     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
     if (ret_val)
         return ret_val;
-    msec_delay_irq(50);
+    mdelay(50);
     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
     if (ret_val)
         return ret_val;
-    msec_delay_irq(50);
+    mdelay(50);
     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
     if (ret_val)
         return ret_val;
-    msec_delay_irq(50);
+    mdelay(50);
     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
     if (ret_val)
         return ret_val;
@@ -7885,1241 +5589,40 @@ e1000_polarity_reversal_workaround(struct e1000_hw *hw)
             return ret_val;
 
         if (mii_status_reg & MII_SR_LINK_STATUS) break;
-        msec_delay_irq(100);
+        mdelay(100);
     }
     return E1000_SUCCESS;
 }
 
-/***************************************************************************
+/*******************************************************************************
  *
- * Disables PCI-Express master access.
+ * Check for EEPROM Auto Read bit done.
  *
  * hw: Struct containing variables accessed by shared code
  *
- * returns: - none.
+ * returns: - E1000_ERR_RESET if fail to reset MAC
+ *            E1000_SUCCESS at any other case.
  *
- ***************************************************************************/
-static void
-e1000_set_pci_express_master_disable(struct e1000_hw *hw)
+ ******************************************************************************/
+static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
 {
-    uint32_t ctrl;
-
-    DEBUGFUNC("e1000_set_pci_express_master_disable");
-
-    if (hw->bus_type != e1000_bus_type_pci_express)
-        return;
-
-    ctrl = E1000_READ_REG(hw, CTRL);
-    ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
-    E1000_WRITE_REG(hw, CTRL, ctrl);
+    DEBUGFUNC("e1000_get_auto_rd_done");
+    msleep(5);
+    return E1000_SUCCESS;
 }
 
 /***************************************************************************
- *
- * Enables PCI-Express master access.
+ * Checks if the PHY configuration is done
  *
  * hw: Struct containing variables accessed by shared code
  *
- * returns: - none.
+ * returns: - E1000_ERR_RESET if fail to reset MAC
+ *            E1000_SUCCESS at any other case.
  *
  ***************************************************************************/
-#if 0
-void
-e1000_enable_pciex_master(struct e1000_hw *hw)
+static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
 {
-    uint32_t ctrl;
-
-    DEBUGFUNC("e1000_enable_pciex_master");
-
-    if (hw->bus_type != e1000_bus_type_pci_express)
-        return;
-
-    ctrl = E1000_READ_REG(hw, CTRL);
-    ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE;
-    E1000_WRITE_REG(hw, CTRL, ctrl);
+    DEBUGFUNC("e1000_get_phy_cfg_done");
+    mdelay(10);
+    return E1000_SUCCESS;
 }
-#endif  /*  0  */
-
-/*******************************************************************************
- *
- * Disables PCI-Express master access and verifies there are no pending requests
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't
- *            caused the master requests to be disabled.
- *            E1000_SUCCESS master requests disabled.
- *
- ******************************************************************************/
-int32_t
-e1000_disable_pciex_master(struct e1000_hw *hw)
-{
-    int32_t timeout = MASTER_DISABLE_TIMEOUT;   /* 80ms */
-
-    DEBUGFUNC("e1000_disable_pciex_master");
-
-    if (hw->bus_type != e1000_bus_type_pci_express)
-        return E1000_SUCCESS;
-
-    e1000_set_pci_express_master_disable(hw);
-
-    while (timeout) {
-        if (!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
-            break;
-        else
-            udelay(100);
-        timeout--;
-    }
-
-    if (!timeout) {
-        DEBUGOUT("Master requests are pending.\n");
-        return -E1000_ERR_MASTER_REQUESTS_PENDING;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/*******************************************************************************
- *
- * Check for EEPROM Auto Read bit done.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_RESET if fail to reset MAC
- *            E1000_SUCCESS at any other case.
- *
- ******************************************************************************/
-static int32_t
-e1000_get_auto_rd_done(struct e1000_hw *hw)
-{
-    int32_t timeout = AUTO_READ_DONE_TIMEOUT;
-
-    DEBUGFUNC("e1000_get_auto_rd_done");
-
-    switch (hw->mac_type) {
-    default:
-        msec_delay(5);
-        break;
-    case e1000_82571:
-    case e1000_82572:
-    case e1000_82573:
-    case e1000_80003es2lan:
-    case e1000_ich8lan:
-        while (timeout) {
-            if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD)
-                break;
-            else msec_delay(1);
-            timeout--;
-        }
-
-        if (!timeout) {
-            DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
-            return -E1000_ERR_RESET;
-        }
-        break;
-    }
-
-    /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high.
-     * Need to wait for PHY configuration completion before accessing NVM
-     * and PHY. */
-    if (hw->mac_type == e1000_82573)
-        msec_delay(25);
-
-    return E1000_SUCCESS;
-}
-
-/***************************************************************************
- * Checks if the PHY configuration is done
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_RESET if fail to reset MAC
- *            E1000_SUCCESS at any other case.
- *
- ***************************************************************************/
-static int32_t
-e1000_get_phy_cfg_done(struct e1000_hw *hw)
-{
-    int32_t timeout = PHY_CFG_TIMEOUT;
-    uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
-
-    DEBUGFUNC("e1000_get_phy_cfg_done");
-
-    switch (hw->mac_type) {
-    default:
-        msec_delay_irq(10);
-        break;
-    case e1000_80003es2lan:
-        /* Separate *_CFG_DONE_* bit for each port */
-        if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
-            cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
-        /* Fall Through */
-    case e1000_82571:
-    case e1000_82572:
-        while (timeout) {
-            if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
-                break;
-            else
-                msec_delay(1);
-            timeout--;
-        }
-
-        if (!timeout) {
-            DEBUGOUT("MNG configuration cycle has not completed.\n");
-            return -E1000_ERR_RESET;
-        }
-        break;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/***************************************************************************
- *
- * Using the combination of SMBI and SWESMBI semaphore bits when resetting
- * adapter or Eeprom access.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
- *            E1000_SUCCESS at any other case.
- *
- ***************************************************************************/
-static int32_t
-e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
-{
-    int32_t timeout;
-    uint32_t swsm;
-
-    DEBUGFUNC("e1000_get_hw_eeprom_semaphore");
-
-    if (!hw->eeprom_semaphore_present)
-        return E1000_SUCCESS;
-
-    if (hw->mac_type == e1000_80003es2lan) {
-        /* Get the SW semaphore. */
-        if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
-            return -E1000_ERR_EEPROM;
-    }
-
-    /* Get the FW semaphore. */
-    timeout = hw->eeprom.word_size + 1;
-    while (timeout) {
-        swsm = E1000_READ_REG(hw, SWSM);
-        swsm |= E1000_SWSM_SWESMBI;
-        E1000_WRITE_REG(hw, SWSM, swsm);
-        /* if we managed to set the bit we got the semaphore. */
-        swsm = E1000_READ_REG(hw, SWSM);
-        if (swsm & E1000_SWSM_SWESMBI)
-            break;
-
-        udelay(50);
-        timeout--;
-    }
-
-    if (!timeout) {
-        /* Release semaphores */
-        e1000_put_hw_eeprom_semaphore(hw);
-        DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
-        return -E1000_ERR_EEPROM;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/***************************************************************************
- * This function clears HW semaphore bits.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - None.
- *
- ***************************************************************************/
-static void
-e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
-{
-    uint32_t swsm;
-
-    DEBUGFUNC("e1000_put_hw_eeprom_semaphore");
-
-    if (!hw->eeprom_semaphore_present)
-        return;
-
-    swsm = E1000_READ_REG(hw, SWSM);
-    if (hw->mac_type == e1000_80003es2lan) {
-        /* Release both semaphores. */
-        swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
-    } else
-        swsm &= ~(E1000_SWSM_SWESMBI);
-    E1000_WRITE_REG(hw, SWSM, swsm);
-}
-
-/***************************************************************************
- *
- * Obtaining software semaphore bit (SMBI) before resetting PHY.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_RESET if fail to obtain semaphore.
- *            E1000_SUCCESS at any other case.
- *
- ***************************************************************************/
-static int32_t
-e1000_get_software_semaphore(struct e1000_hw *hw)
-{
-    int32_t timeout = hw->eeprom.word_size + 1;
-    uint32_t swsm;
-
-    DEBUGFUNC("e1000_get_software_semaphore");
-
-    if (hw->mac_type != e1000_80003es2lan)
-        return E1000_SUCCESS;
-
-    while (timeout) {
-        swsm = E1000_READ_REG(hw, SWSM);
-        /* If SMBI bit cleared, it is now set and we hold the semaphore */
-        if (!(swsm & E1000_SWSM_SMBI))
-            break;
-        msec_delay_irq(1);
-        timeout--;
-    }
-
-    if (!timeout) {
-        DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
-        return -E1000_ERR_RESET;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/***************************************************************************
- *
- * Release semaphore bit (SMBI).
- *
- * hw: Struct containing variables accessed by shared code
- *
- ***************************************************************************/
-static void
-e1000_release_software_semaphore(struct e1000_hw *hw)
-{
-    uint32_t swsm;
-
-    DEBUGFUNC("e1000_release_software_semaphore");
-
-    if (hw->mac_type != e1000_80003es2lan)
-        return;
-
-    swsm = E1000_READ_REG(hw, SWSM);
-    /* Release the SW semaphores.*/
-    swsm &= ~E1000_SWSM_SMBI;
-    E1000_WRITE_REG(hw, SWSM, swsm);
-}
-
-/******************************************************************************
- * Checks if PHY reset is blocked due to SOL/IDER session, for example.
- * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
- * the caller to figure out how to deal with it.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * returns: - E1000_BLK_PHY_RESET
- *            E1000_SUCCESS
- *
- *****************************************************************************/
-int32_t
-e1000_check_phy_reset_block(struct e1000_hw *hw)
-{
-    uint32_t manc = 0;
-    uint32_t fwsm = 0;
-
-    if (hw->mac_type == e1000_ich8lan) {
-        fwsm = E1000_READ_REG(hw, FWSM);
-        return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
-                                            : E1000_BLK_PHY_RESET;
-    }
-
-    if (hw->mac_type > e1000_82547_rev_2)
-        manc = E1000_READ_REG(hw, MANC);
-    return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
-           E1000_BLK_PHY_RESET : E1000_SUCCESS;
-}
-
-static uint8_t
-e1000_arc_subsystem_valid(struct e1000_hw *hw)
-{
-    uint32_t fwsm;
-
-    /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC
-     * may not be provided a DMA clock when no manageability features are
-     * enabled.  We do not want to perform any reads/writes to these registers
-     * if this is the case.  We read FWSM to determine the manageability mode.
-     */
-    switch (hw->mac_type) {
-    case e1000_82571:
-    case e1000_82572:
-    case e1000_82573:
-    case e1000_80003es2lan:
-        fwsm = E1000_READ_REG(hw, FWSM);
-        if ((fwsm & E1000_FWSM_MODE_MASK) != 0)
-            return TRUE;
-        break;
-    case e1000_ich8lan:
-        return TRUE;
-    default:
-        break;
-    }
-    return FALSE;
-}
-
-
-/******************************************************************************
- * Configure PCI-Ex no-snoop
- *
- * hw - Struct containing variables accessed by shared code.
- * no_snoop - Bitmap of no-snoop events.
- *
- * returns: E1000_SUCCESS
- *
- *****************************************************************************/
-static int32_t
-e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop)
-{
-    uint32_t gcr_reg = 0;
-
-    DEBUGFUNC("e1000_set_pci_ex_no_snoop");
-
-    if (hw->bus_type == e1000_bus_type_unknown)
-        e1000_get_bus_info(hw);
-
-    if (hw->bus_type != e1000_bus_type_pci_express)
-        return E1000_SUCCESS;
-
-    if (no_snoop) {
-        gcr_reg = E1000_READ_REG(hw, GCR);
-        gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL);
-        gcr_reg |= no_snoop;
-        E1000_WRITE_REG(hw, GCR, gcr_reg);
-    }
-    if (hw->mac_type == e1000_ich8lan) {
-        uint32_t ctrl_ext;
-
-        E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL);
-
-        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
-        ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
-        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
-    }
-
-    return E1000_SUCCESS;
-}
-
-/***************************************************************************
- *
- * Get software semaphore FLAG bit (SWFLAG).
- * SWFLAG is used to synchronize the access to all shared resource between
- * SW, FW and HW.
- *
- * hw: Struct containing variables accessed by shared code
- *
- ***************************************************************************/
-static int32_t
-e1000_get_software_flag(struct e1000_hw *hw)
-{
-    int32_t timeout = PHY_CFG_TIMEOUT;
-    uint32_t extcnf_ctrl;
-
-    DEBUGFUNC("e1000_get_software_flag");
-
-    if (hw->mac_type == e1000_ich8lan) {
-        while (timeout) {
-            extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
-            extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
-            E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
-
-            extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
-            if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
-                break;
-            msec_delay_irq(1);
-            timeout--;
-        }
-
-        if (!timeout) {
-            DEBUGOUT("FW or HW locks the resource too long.\n");
-            return -E1000_ERR_CONFIG;
-        }
-    }
-
-    return E1000_SUCCESS;
-}
-
-/***************************************************************************
- *
- * Release software semaphore FLAG bit (SWFLAG).
- * SWFLAG is used to synchronize the access to all shared resource between
- * SW, FW and HW.
- *
- * hw: Struct containing variables accessed by shared code
- *
- ***************************************************************************/
-static void
-e1000_release_software_flag(struct e1000_hw *hw)
-{
-    uint32_t extcnf_ctrl;
-
-    DEBUGFUNC("e1000_release_software_flag");
-
-    if (hw->mac_type == e1000_ich8lan) {
-        extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL);
-        extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
-        E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
-    }
-
-    return;
-}
-
-/***************************************************************************
- *
- * Disable dynamic power down mode in ife PHY.
- * It can be used to workaround band-gap problem.
- *
- * hw: Struct containing variables accessed by shared code
- *
- ***************************************************************************/
-#if 0
-int32_t
-e1000_ife_disable_dynamic_power_down(struct e1000_hw *hw)
-{
-    uint16_t phy_data;
-    int32_t ret_val = E1000_SUCCESS;
-
-    DEBUGFUNC("e1000_ife_disable_dynamic_power_down");
-
-    if (hw->phy_type == e1000_phy_ife) {
-        ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data |=  IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN;
-        ret_val = e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data);
-    }
-
-    return ret_val;
-}
-#endif  /*  0  */
-
-/***************************************************************************
- *
- * Enable dynamic power down mode in ife PHY.
- * It can be used to workaround band-gap problem.
- *
- * hw: Struct containing variables accessed by shared code
- *
- ***************************************************************************/
-#if 0
-int32_t
-e1000_ife_enable_dynamic_power_down(struct e1000_hw *hw)
-{
-    uint16_t phy_data;
-    int32_t ret_val = E1000_SUCCESS;
-
-    DEBUGFUNC("e1000_ife_enable_dynamic_power_down");
-
-    if (hw->phy_type == e1000_phy_ife) {
-        ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data &=  ~IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN;
-        ret_val = e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data);
-    }
-
-    return ret_val;
-}
-#endif  /*  0  */
-
-/******************************************************************************
- * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
- * register.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-static int32_t
-e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
-                       uint16_t *data)
-{
-    int32_t  error = E1000_SUCCESS;
-    uint32_t flash_bank = 0;
-    uint32_t act_offset = 0;
-    uint32_t bank_offset = 0;
-    uint16_t word = 0;
-    uint16_t i = 0;
-
-    /* We need to know which is the valid flash bank.  In the event
-     * that we didn't allocate eeprom_shadow_ram, we may not be
-     * managing flash_bank.  So it cannot be trusted and needs
-     * to be updated with each read.
-     */
-    /* Value of bit 22 corresponds to the flash bank we're on. */
-    flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0;
-
-    /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
-    bank_offset = flash_bank * (hw->flash_bank_size * 2);
-
-    error = e1000_get_software_flag(hw);
-    if (error != E1000_SUCCESS)
-        return error;
-
-    for (i = 0; i < words; i++) {
-        if (hw->eeprom_shadow_ram != NULL &&
-            hw->eeprom_shadow_ram[offset+i].modified == TRUE) {
-            data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word;
-        } else {
-            /* The NVM part needs a byte offset, hence * 2 */
-            act_offset = bank_offset + ((offset + i) * 2);
-            error = e1000_read_ich8_word(hw, act_offset, &word);
-            if (error != E1000_SUCCESS)
-                break;
-            data[i] = word;
-        }
-    }
-
-    e1000_release_software_flag(hw);
-
-    return error;
-}
-
-/******************************************************************************
- * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access
- * register.  Actually, writes are written to the shadow ram cache in the hw
- * structure hw->e1000_shadow_ram.  e1000_commit_shadow_ram flushes this to
- * the NVM, which occurs when the NVM checksum is updated.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of word in the EEPROM to write
- * words - number of words to write
- * data - words to write to the EEPROM
- *****************************************************************************/
-static int32_t
-e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
-                        uint16_t *data)
-{
-    uint32_t i = 0;
-    int32_t error = E1000_SUCCESS;
-
-    error = e1000_get_software_flag(hw);
-    if (error != E1000_SUCCESS)
-        return error;
-
-    /* A driver can write to the NVM only if it has eeprom_shadow_ram
-     * allocated.  Subsequent reads to the modified words are read from
-     * this cached structure as well.  Writes will only go into this
-     * cached structure unless it's followed by a call to
-     * e1000_update_eeprom_checksum() where it will commit the changes
-     * and clear the "modified" field.
-     */
-    if (hw->eeprom_shadow_ram != NULL) {
-        for (i = 0; i < words; i++) {
-            if ((offset + i) < E1000_SHADOW_RAM_WORDS) {
-                hw->eeprom_shadow_ram[offset+i].modified = TRUE;
-                hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i];
-            } else {
-                error = -E1000_ERR_EEPROM;
-                break;
-            }
-        }
-    } else {
-        /* Drivers have the option to not allocate eeprom_shadow_ram as long
-         * as they don't perform any NVM writes.  An attempt in doing so
-         * will result in this error.
-         */
-        error = -E1000_ERR_EEPROM;
-    }
-
-    e1000_release_software_flag(hw);
-
-    return error;
-}
-
-/******************************************************************************
- * This function does initial flash setup so that a new read/write/erase cycle
- * can be started.
- *
- * hw - The pointer to the hw structure
- ****************************************************************************/
-static int32_t
-e1000_ich8_cycle_init(struct e1000_hw *hw)
-{
-    union ich8_hws_flash_status hsfsts;
-    int32_t error = E1000_ERR_EEPROM;
-    int32_t i     = 0;
-
-    DEBUGFUNC("e1000_ich8_cycle_init");
-
-    hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
-
-    /* May be check the Flash Des Valid bit in Hw status */
-    if (hsfsts.hsf_status.fldesvalid == 0) {
-        DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.");
-        return error;
-    }
-
-    /* Clear FCERR in Hw status by writing 1 */
-    /* Clear DAEL in Hw status by writing a 1 */
-    hsfsts.hsf_status.flcerr = 1;
-    hsfsts.hsf_status.dael = 1;
-
-    E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
-
-    /* Either we should have a hardware SPI cycle in progress bit to check
-     * against, in order to start a new cycle or FDONE bit should be changed
-     * in the hardware so that it is 1 after harware reset, which can then be
-     * used as an indication whether a cycle is in progress or has been
-     * completed .. we should also have some software semaphore mechanism to
-     * guard FDONE or the cycle in progress bit so that two threads access to
-     * those bits can be sequentiallized or a way so that 2 threads dont
-     * start the cycle at the same time */
-
-    if (hsfsts.hsf_status.flcinprog == 0) {
-        /* There is no cycle running at present, so we can start a cycle */
-        /* Begin by setting Flash Cycle Done. */
-        hsfsts.hsf_status.flcdone = 1;
-        E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
-        error = E1000_SUCCESS;
-    } else {
-        /* otherwise poll for sometime so the current cycle has a chance
-         * to end before giving up. */
-        for (i = 0; i < ICH8_FLASH_COMMAND_TIMEOUT; i++) {
-            hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
-            if (hsfsts.hsf_status.flcinprog == 0) {
-                error = E1000_SUCCESS;
-                break;
-            }
-            udelay(1);
-        }
-        if (error == E1000_SUCCESS) {
-            /* Successful in waiting for previous cycle to timeout,
-             * now set the Flash Cycle Done. */
-            hsfsts.hsf_status.flcdone = 1;
-            E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
-        } else {
-            DEBUGOUT("Flash controller busy, cannot get access");
-        }
-    }
-    return error;
-}
-
-/******************************************************************************
- * This function starts a flash cycle and waits for its completion
- *
- * hw - The pointer to the hw structure
- ****************************************************************************/
-static int32_t
-e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout)
-{
-    union ich8_hws_flash_ctrl hsflctl;
-    union ich8_hws_flash_status hsfsts;
-    int32_t error = E1000_ERR_EEPROM;
-    uint32_t i = 0;
-
-    /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
-    hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
-    hsflctl.hsf_ctrl.flcgo = 1;
-    E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
-
-    /* wait till FDONE bit is set to 1 */
-    do {
-        hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
-        if (hsfsts.hsf_status.flcdone == 1)
-            break;
-        udelay(1);
-        i++;
-    } while (i < timeout);
-    if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) {
-        error = E1000_SUCCESS;
-    }
-    return error;
-}
-
-/******************************************************************************
- * Reads a byte or word from the NVM using the ICH8 flash access registers.
- *
- * hw - The pointer to the hw structure
- * index - The index of the byte or word to read.
- * size - Size of data to read, 1=byte 2=word
- * data - Pointer to the word to store the value read.
- *****************************************************************************/
-static int32_t
-e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index,
-                     uint32_t size, uint16_t* data)
-{
-    union ich8_hws_flash_status hsfsts;
-    union ich8_hws_flash_ctrl hsflctl;
-    uint32_t flash_linear_address;
-    uint32_t flash_data = 0;
-    int32_t error = -E1000_ERR_EEPROM;
-    int32_t count = 0;
-
-    DEBUGFUNC("e1000_read_ich8_data");
-
-    if (size < 1  || size > 2 || data == 0x0 ||
-        index > ICH8_FLASH_LINEAR_ADDR_MASK)
-        return error;
-
-    flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
-                           hw->flash_base_addr;
-
-    do {
-        udelay(1);
-        /* Steps */
-        error = e1000_ich8_cycle_init(hw);
-        if (error != E1000_SUCCESS)
-            break;
-
-        hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
-        /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
-        hsflctl.hsf_ctrl.fldbcount = size - 1;
-        hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_READ;
-        E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
-
-        /* Write the last 24 bits of index into Flash Linear address field in
-         * Flash Address */
-        /* TODO: TBD maybe check the index against the size of flash */
-
-        E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
-
-        error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
-
-        /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
-         * sequence a few more times, else read in (shift in) the Flash Data0,
-         * the order is least significant byte first msb to lsb */
-        if (error == E1000_SUCCESS) {
-            flash_data = E1000_READ_ICH8_REG(hw, ICH8_FLASH_FDATA0);
-            if (size == 1) {
-                *data = (uint8_t)(flash_data & 0x000000FF);
-            } else if (size == 2) {
-                *data = (uint16_t)(flash_data & 0x0000FFFF);
-            }
-            break;
-        } else {
-            /* If we've gotten here, then things are probably completely hosed,
-             * but if the error condition is detected, it won't hurt to give
-             * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
-             */
-            hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
-            if (hsfsts.hsf_status.flcerr == 1) {
-                /* Repeat for some time before giving up. */
-                continue;
-            } else if (hsfsts.hsf_status.flcdone == 0) {
-                DEBUGOUT("Timeout error - flash cycle did not complete.");
-                break;
-            }
-        }
-    } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
-
-    return error;
-}
-
-/******************************************************************************
- * Writes One /two bytes to the NVM using the ICH8 flash access registers.
- *
- * hw - The pointer to the hw structure
- * index - The index of the byte/word to read.
- * size - Size of data to read, 1=byte 2=word
- * data - The byte(s) to write to the NVM.
- *****************************************************************************/
-static int32_t
-e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size,
-                      uint16_t data)
-{
-    union ich8_hws_flash_status hsfsts;
-    union ich8_hws_flash_ctrl hsflctl;
-    uint32_t flash_linear_address;
-    uint32_t flash_data = 0;
-    int32_t error = -E1000_ERR_EEPROM;
-    int32_t count = 0;
-
-    DEBUGFUNC("e1000_write_ich8_data");
-
-    if (size < 1  || size > 2 || data > size * 0xff ||
-        index > ICH8_FLASH_LINEAR_ADDR_MASK)
-        return error;
-
-    flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
-                           hw->flash_base_addr;
-
-    do {
-        udelay(1);
-        /* Steps */
-        error = e1000_ich8_cycle_init(hw);
-        if (error != E1000_SUCCESS)
-            break;
-
-        hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
-        /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
-        hsflctl.hsf_ctrl.fldbcount = size -1;
-        hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_WRITE;
-        E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
-
-        /* Write the last 24 bits of index into Flash Linear address field in
-         * Flash Address */
-        E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
-
-        if (size == 1)
-            flash_data = (uint32_t)data & 0x00FF;
-        else
-            flash_data = (uint32_t)data;
-
-        E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FDATA0, flash_data);
-
-        /* check if FCERR is set to 1 , if set to 1, clear it and try the whole
-         * sequence a few more times else done */
-        error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
-        if (error == E1000_SUCCESS) {
-            break;
-        } else {
-            /* If we're here, then things are most likely completely hosed,
-             * but if the error condition is detected, it won't hurt to give
-             * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
-             */
-            hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
-            if (hsfsts.hsf_status.flcerr == 1) {
-                /* Repeat for some time before giving up. */
-                continue;
-            } else if (hsfsts.hsf_status.flcdone == 0) {
-                DEBUGOUT("Timeout error - flash cycle did not complete.");
-                break;
-            }
-        }
-    } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
-
-    return error;
-}
-
-/******************************************************************************
- * Reads a single byte from the NVM using the ICH8 flash access registers.
- *
- * hw - pointer to e1000_hw structure
- * index - The index of the byte to read.
- * data - Pointer to a byte to store the value read.
- *****************************************************************************/
-static int32_t
-e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t* data)
-{
-    int32_t status = E1000_SUCCESS;
-    uint16_t word = 0;
-
-    status = e1000_read_ich8_data(hw, index, 1, &word);
-    if (status == E1000_SUCCESS) {
-        *data = (uint8_t)word;
-    }
-
-    return status;
-}
-
-/******************************************************************************
- * Writes a single byte to the NVM using the ICH8 flash access registers.
- * Performs verification by reading back the value and then going through
- * a retry algorithm before giving up.
- *
- * hw - pointer to e1000_hw structure
- * index - The index of the byte to write.
- * byte - The byte to write to the NVM.
- *****************************************************************************/
-static int32_t
-e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte)
-{
-    int32_t error = E1000_SUCCESS;
-    int32_t program_retries;
-    uint8_t temp_byte;
-
-    e1000_write_ich8_byte(hw, index, byte);
-    udelay(100);
-
-    for (program_retries = 0; program_retries < 100; program_retries++) {
-        e1000_read_ich8_byte(hw, index, &temp_byte);
-        if (temp_byte == byte)
-            break;
-        udelay(10);
-        e1000_write_ich8_byte(hw, index, byte);
-        udelay(100);
-    }
-    if (program_retries == 100)
-        error = E1000_ERR_EEPROM;
-
-    return error;
-}
-
-/******************************************************************************
- * Writes a single byte to the NVM using the ICH8 flash access registers.
- *
- * hw - pointer to e1000_hw structure
- * index - The index of the byte to read.
- * data - The byte to write to the NVM.
- *****************************************************************************/
-static int32_t
-e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t data)
-{
-    int32_t status = E1000_SUCCESS;
-    uint16_t word = (uint16_t)data;
-
-    status = e1000_write_ich8_data(hw, index, 1, word);
-
-    return status;
-}
-
-/******************************************************************************
- * Reads a word from the NVM using the ICH8 flash access registers.
- *
- * hw - pointer to e1000_hw structure
- * index - The starting byte index of the word to read.
- * data - Pointer to a word to store the value read.
- *****************************************************************************/
-static int32_t
-e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data)
-{
-    int32_t status = E1000_SUCCESS;
-    status = e1000_read_ich8_data(hw, index, 2, data);
-    return status;
-}
-
-/******************************************************************************
- * Writes a word to the NVM using the ICH8 flash access registers.
- *
- * hw - pointer to e1000_hw structure
- * index - The starting byte index of the word to read.
- * data - The word to write to the NVM.
- *****************************************************************************/
-#if 0
-int32_t
-e1000_write_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t data)
-{
-    int32_t status = E1000_SUCCESS;
-    status = e1000_write_ich8_data(hw, index, 2, data);
-    return status;
-}
-#endif  /*  0  */
-
-/******************************************************************************
- * Erases the bank specified. Each bank is a 4k block. Segments are 0 based.
- * segment N is 4096 * N + flash_reg_addr.
- *
- * hw - pointer to e1000_hw structure
- * segment - 0 for first segment, 1 for second segment, etc.
- *****************************************************************************/
-static int32_t
-e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t segment)
-{
-    union ich8_hws_flash_status hsfsts;
-    union ich8_hws_flash_ctrl hsflctl;
-    uint32_t flash_linear_address;
-    int32_t  count = 0;
-    int32_t  error = E1000_ERR_EEPROM;
-    int32_t  iteration, seg_size;
-    int32_t  sector_size;
-    int32_t  j = 0;
-    int32_t  error_flag = 0;
-
-    hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
-
-    /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */
-    /* 00: The Hw sector is 256 bytes, hence we need to erase 16
-     *     consecutive sectors.  The start index for the nth Hw sector can be
-     *     calculated as = segment * 4096 + n * 256
-     * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
-     *     The start index for the nth Hw sector can be calculated
-     *     as = segment * 4096
-     * 10: Error condition
-     * 11: The Hw sector size is much bigger than the size asked to
-     *     erase...error condition */
-    if (hsfsts.hsf_status.berasesz == 0x0) {
-        /* Hw sector size 256 */
-        sector_size = seg_size = ICH8_FLASH_SEG_SIZE_256;
-        iteration = ICH8_FLASH_SECTOR_SIZE / ICH8_FLASH_SEG_SIZE_256;
-    } else if (hsfsts.hsf_status.berasesz == 0x1) {
-        sector_size = seg_size = ICH8_FLASH_SEG_SIZE_4K;
-        iteration = 1;
-    } else if (hsfsts.hsf_status.berasesz == 0x3) {
-        sector_size = seg_size = ICH8_FLASH_SEG_SIZE_64K;
-        iteration = 1;
-    } else {
-        return error;
-    }
-
-    for (j = 0; j < iteration ; j++) {
-        do {
-            count++;
-            /* Steps */
-            error = e1000_ich8_cycle_init(hw);
-            if (error != E1000_SUCCESS) {
-                error_flag = 1;
-                break;
-            }
-
-            /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash
-             * Control */
-            hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
-            hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_ERASE;
-            E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
-
-            /* Write the last 24 bits of an index within the block into Flash
-             * Linear address field in Flash Address.  This probably needs to
-             * be calculated here based off the on-chip segment size and the
-             * software segment size assumed (4K) */
-            /* TBD */
-            flash_linear_address = segment * sector_size + j * seg_size;
-            flash_linear_address &= ICH8_FLASH_LINEAR_ADDR_MASK;
-            flash_linear_address += hw->flash_base_addr;
-
-            E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
-
-            error = e1000_ich8_flash_cycle(hw, 1000000);
-            /* Check if FCERR is set to 1.  If 1, clear it and try the whole
-             * sequence a few more times else Done */
-            if (error == E1000_SUCCESS) {
-                break;
-            } else {
-                hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
-                if (hsfsts.hsf_status.flcerr == 1) {
-                    /* repeat for some time before giving up */
-                    continue;
-                } else if (hsfsts.hsf_status.flcdone == 0) {
-                    error_flag = 1;
-                    break;
-                }
-            }
-        } while ((count < ICH8_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
-        if (error_flag == 1)
-            break;
-    }
-    if (error_flag != 1)
-        error = E1000_SUCCESS;
-    return error;
-}
-
-/******************************************************************************
- *
- * Reverse duplex setting without breaking the link.
- *
- * hw: Struct containing variables accessed by shared code
- *
- *****************************************************************************/
-#if 0
-int32_t
-e1000_duplex_reversal(struct e1000_hw *hw)
-{
-    int32_t ret_val;
-    uint16_t phy_data;
-
-    if (hw->phy_type != e1000_phy_igp_3)
-        return E1000_SUCCESS;
-
-    ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    phy_data ^= MII_CR_FULL_DUPLEX;
-
-    ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
-    if (ret_val)
-        return ret_val;
-
-    ret_val = e1000_read_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    phy_data |= IGP3_PHY_MISC_DUPLEX_MANUAL_SET;
-    ret_val = e1000_write_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, phy_data);
-
-    return ret_val;
-}
-#endif  /*  0  */
-
-static int32_t
-e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw,
-                                      uint32_t cnf_base_addr, uint32_t cnf_size)
-{
-    uint32_t ret_val = E1000_SUCCESS;
-    uint16_t word_addr, reg_data, reg_addr;
-    uint16_t i;
-
-    /* cnf_base_addr is in DWORD */
-    word_addr = (uint16_t)(cnf_base_addr << 1);
-
-    /* cnf_size is returned in size of dwords */
-    for (i = 0; i < cnf_size; i++) {
-        ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, &reg_data);
-        if (ret_val)
-            return ret_val;
-
-        ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, &reg_addr);
-        if (ret_val)
-            return ret_val;
-
-        ret_val = e1000_get_software_flag(hw);
-        if (ret_val != E1000_SUCCESS)
-            return ret_val;
-
-        ret_val = e1000_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data);
-
-        e1000_release_software_flag(hw);
-    }
-
-    return ret_val;
-}
-
-
-static int32_t
-e1000_init_lcd_from_nvm(struct e1000_hw *hw)
-{
-    uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop;
-
-    if (hw->phy_type != e1000_phy_igp_3)
-          return E1000_SUCCESS;
-
-    /* Check if SW needs configure the PHY */
-    reg_data = E1000_READ_REG(hw, FEXTNVM);
-    if (!(reg_data & FEXTNVM_SW_CONFIG))
-        return E1000_SUCCESS;
-
-    /* Wait for basic configuration completes before proceeding*/
-    loop = 0;
-    do {
-        reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE;
-        udelay(100);
-        loop++;
-    } while ((!reg_data) && (loop < 50));
-
-    /* Clear the Init Done bit for the next init event */
-    reg_data = E1000_READ_REG(hw, STATUS);
-    reg_data &= ~E1000_STATUS_LAN_INIT_DONE;
-    E1000_WRITE_REG(hw, STATUS, reg_data);
-
-    /* Make sure HW does not configure LCD from PHY extended configuration
-       before SW configuration */
-    reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
-    if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) {
-        reg_data = E1000_READ_REG(hw, EXTCNF_SIZE);
-        cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH;
-        cnf_size >>= 16;
-        if (cnf_size) {
-            reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
-            cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER;
-            /* cnf_base_addr is in DWORD */
-            cnf_base_addr >>= 16;
-
-            /* Configure LCD from extended configuration region. */
-            ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr,
-                                                            cnf_size);
-            if (ret_val)
-                return ret_val;
-        }
-    }
-
-    return E1000_SUCCESS;
-}
-
-
-