Merge remote branch 'nouveau/for-airlied' into drm-linus
[safe/jmp/linux-2.6] / drivers / edac / amd64_edac.c
index 28f85c9..3391e67 100644 (file)
@@ -1,4 +1,5 @@
 #include "amd64_edac.h"
+#include <asm/k8.h>
 
 static struct edac_pci_ctl_info *amd64_ctl_pci;
 
@@ -12,10 +13,91 @@ module_param(report_gart_errors, int, 0644);
 static int ecc_enable_override;
 module_param(ecc_enable_override, int, 0644);
 
+static struct msr *msrs;
+
 /* Lookup table for all possible MC control instances */
 struct amd64_pvt;
-static struct mem_ctl_info *mci_lookup[MAX_NUMNODES];
-static struct amd64_pvt *pvt_lookup[MAX_NUMNODES];
+static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
+static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
+
+/*
+ * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
+ * later.
+ */
+static int ddr2_dbam_revCG[] = {
+                          [0]          = 32,
+                          [1]          = 64,
+                          [2]          = 128,
+                          [3]          = 256,
+                          [4]          = 512,
+                          [5]          = 1024,
+                          [6]          = 2048,
+};
+
+static int ddr2_dbam_revD[] = {
+                          [0]          = 32,
+                          [1]          = 64,
+                          [2 ... 3]    = 128,
+                          [4]          = 256,
+                          [5]          = 512,
+                          [6]          = 256,
+                          [7]          = 512,
+                          [8 ... 9]    = 1024,
+                          [10]         = 2048,
+};
+
+static int ddr2_dbam[] = { [0]         = 128,
+                          [1]          = 256,
+                          [2 ... 4]    = 512,
+                          [5 ... 6]    = 1024,
+                          [7 ... 8]    = 2048,
+                          [9 ... 10]   = 4096,
+                          [11]         = 8192,
+};
+
+static int ddr3_dbam[] = { [0]         = -1,
+                          [1]          = 256,
+                          [2]          = 512,
+                          [3 ... 4]    = -1,
+                          [5 ... 6]    = 1024,
+                          [7 ... 8]    = 2048,
+                          [9 ... 10]   = 4096,
+                          [11] = 8192,
+};
+
+/*
+ * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
+ * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
+ * or higher value'.
+ *
+ *FIXME: Produce a better mapping/linearisation.
+ */
+
+struct scrubrate scrubrates[] = {
+       { 0x01, 1600000000UL},
+       { 0x02, 800000000UL},
+       { 0x03, 400000000UL},
+       { 0x04, 200000000UL},
+       { 0x05, 100000000UL},
+       { 0x06, 50000000UL},
+       { 0x07, 25000000UL},
+       { 0x08, 12284069UL},
+       { 0x09, 6274509UL},
+       { 0x0A, 3121951UL},
+       { 0x0B, 1560975UL},
+       { 0x0C, 781440UL},
+       { 0x0D, 390720UL},
+       { 0x0E, 195300UL},
+       { 0x0F, 97650UL},
+       { 0x10, 48854UL},
+       { 0x11, 24427UL},
+       { 0x12, 12213UL},
+       { 0x13, 6101UL},
+       { 0x14, 3051UL},
+       { 0x15, 1523UL},
+       { 0x16, 761UL},
+       { 0x00, 0UL},        /* scrubbing off */
+};
 
 /*
  * Memory scrubber control interface. For K8, memory scrubbing is handled by
@@ -106,18 +188,16 @@ static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
 {
        struct amd64_pvt *pvt = mci->pvt_info;
        u32 scrubval = 0;
-       int status = -1, i, ret = 0;
+       int status = -1, i;
 
-       ret = pci_read_config_dword(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
-       if (ret)
-               debugf0("Reading K8_SCRCTRL failed\n");
+       amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
 
        scrubval = scrubval & 0x001F;
 
        edac_printk(KERN_DEBUG, EDAC_MC,
                    "pci-read, sdram scrub control value: %d \n", scrubval);
 
-       for (i = 0; ARRAY_SIZE(scrubrates); i++) {
+       for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
                if (scrubrates[i].scrubval == scrubval) {
                        *bw = scrubrates[i].bandwidth;
                        status = 0;
@@ -131,7 +211,10 @@ static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
 /* Map from a CSROW entry to the mask entry that operates on it */
 static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
 {
-       return csrow >> (pvt->num_dcsm >> 3);
+       if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
+               return csrow;
+       else
+               return csrow >> 1;
 }
 
 /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
@@ -221,29 +304,26 @@ static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
        intlv_en = pvt->dram_IntlvEn[0];
 
        if (intlv_en == 0) {
-               for (node_id = 0; ) {
+               for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
                        if (amd64_base_limit_match(pvt, sys_addr, node_id))
-                               break;
-
-                       if (++node_id >= DRAM_REG_COUNT)
-                               goto err_no_match;
+                               goto found;
                }
-               goto found;
+               goto err_no_match;
        }
 
-       if (unlikely((intlv_en != (0x01 << 8)) &&
-                    (intlv_en != (0x03 << 8)) &&
-                    (intlv_en != (0x07 << 8)))) {
+       if (unlikely((intlv_en != 0x01) &&
+                    (intlv_en != 0x03) &&
+                    (intlv_en != 0x07))) {
                amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
                             "IntlvEn field of DRAM Base Register for node 0: "
-                            "This probably indicates a BIOS bug.\n", intlv_en);
+                            "this probably indicates a BIOS bug.\n", intlv_en);
                return NULL;
        }
 
        bits = (((u32) sys_addr) >> 12) & intlv_en;
 
        for (node_id = 0; ; ) {
-               if ((pvt->dram_limit[node_id] & intlv_en) == bits)
+               if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
                        break;  /* intlv_sel field matches */
 
                if (++node_id >= DRAM_REG_COUNT)
@@ -253,10 +333,10 @@ static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
        /* sanity test for sys_addr */
        if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
                amd64_printk(KERN_WARNING,
-                         "%s(): sys_addr 0x%lx falls outside base/limit "
-                         "address range for node %d with node interleaving "
-                         "enabled.\n", __func__, (unsigned long)sys_addr,
-                         node_id);
+                            "%s(): sys_addr 0x%llx falls outside base/limit "
+                            "address range for node %d with node interleaving "
+                            "enabled.\n",
+                            __func__, sys_addr, node_id);
                return NULL;
        }
 
@@ -319,7 +399,7 @@ static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
         * base/mask register pair, test the condition shown near the start of
         * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
         */
-       for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
+       for (csrow = 0; csrow < pvt->cs_count; csrow++) {
 
                /* This DRAM chip select is disabled on this node */
                if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
@@ -379,7 +459,7 @@ int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
        u64 base;
 
        /* only revE and later have the DRAM Hole Address Register */
-       if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) {
+       if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
                debugf1("  revision %d for node %d does not support DHAR\n",
                        pvt->ext_model, pvt->mc_node_id);
                return 1;
@@ -676,7 +756,7 @@ static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
        u64 base, mask;
 
        pvt = mci->pvt_info;
-       BUG_ON((csrow < 0) || (csrow >= CHIPSELECT_COUNT));
+       BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
 
        base = base_from_dct_base(pvt, csrow);
        mask = mask_from_dct_mask(pvt, csrow);
@@ -685,21 +765,6 @@ static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
        *input_addr_max = base | mask | pvt->dcs_mask_notused;
 }
 
-/*
- * Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB
- * Address High (section 3.6.4.6) register values and return the result. Address
- * is located in the info structure (nbeah and nbeal), the encoding is device
- * specific.
- */
-static u64 extract_error_address(struct mem_ctl_info *mci,
-                                struct amd64_error_info_regs *info)
-{
-       struct amd64_pvt *pvt = mci->pvt_info;
-
-       return pvt->ops->get_error_address(mci, info);
-}
-
-
 /* Map the Error address to a PAGE and PAGE OFFSET. */
 static inline void error_address_to_page_and_offset(u64 error_address,
                                                    u32 *page, u32 *offset)
@@ -729,3 +794,2293 @@ static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
        return csrow;
 }
 
+static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
+
+static void amd64_cpu_display_info(struct amd64_pvt *pvt)
+{
+       if (boot_cpu_data.x86 == 0x11)
+               edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
+       else if (boot_cpu_data.x86 == 0x10)
+               edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
+       else if (boot_cpu_data.x86 == 0xf)
+               edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
+                       (pvt->ext_model >= K8_REV_F) ?
+                       "Rev F or later" : "Rev E or earlier");
+       else
+               /* we'll hardly ever ever get here */
+               edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
+}
+
+/*
+ * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
+ * are ECC capable.
+ */
+static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
+{
+       int bit;
+       enum dev_type edac_cap = EDAC_FLAG_NONE;
+
+       bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
+               ? 19
+               : 17;
+
+       if (pvt->dclr0 & BIT(bit))
+               edac_cap = EDAC_FLAG_SECDED;
+
+       return edac_cap;
+}
+
+
+static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
+
+static void amd64_dump_dramcfg_low(u32 dclr, int chan)
+{
+       debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
+
+       debugf1("  DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
+               (dclr & BIT(16)) ?  "un" : "",
+               (dclr & BIT(19)) ? "yes" : "no");
+
+       debugf1("  PAR/ERR parity: %s\n",
+               (dclr & BIT(8)) ?  "enabled" : "disabled");
+
+       debugf1("  DCT 128bit mode width: %s\n",
+               (dclr & BIT(11)) ?  "128b" : "64b");
+
+       debugf1("  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
+               (dclr & BIT(12)) ?  "yes" : "no",
+               (dclr & BIT(13)) ?  "yes" : "no",
+               (dclr & BIT(14)) ?  "yes" : "no",
+               (dclr & BIT(15)) ?  "yes" : "no");
+}
+
+/* Display and decode various NB registers for debug purposes. */
+static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
+{
+       int ganged;
+
+       debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
+
+       debugf1("  NB two channel DRAM capable: %s\n",
+               (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
+
+       debugf1("  ECC capable: %s, ChipKill ECC capable: %s\n",
+               (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
+               (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
+
+       amd64_dump_dramcfg_low(pvt->dclr0, 0);
+
+       debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
+
+       debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
+                       "offset: 0x%08x\n",
+                       pvt->dhar,
+                       dhar_base(pvt->dhar),
+                       (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
+                                                  : f10_dhar_offset(pvt->dhar));
+
+       debugf1("  DramHoleValid: %s\n",
+               (pvt->dhar & DHAR_VALID) ? "yes" : "no");
+
+       /* everything below this point is Fam10h and above */
+       if (boot_cpu_data.x86 == 0xf) {
+               amd64_debug_display_dimm_sizes(0, pvt);
+               return;
+       }
+
+       /* Only if NOT ganged does dclr1 have valid info */
+       if (!dct_ganging_enabled(pvt))
+               amd64_dump_dramcfg_low(pvt->dclr1, 1);
+
+       /*
+        * Determine if ganged and then dump memory sizes for first controller,
+        * and if NOT ganged dump info for 2nd controller.
+        */
+       ganged = dct_ganging_enabled(pvt);
+
+       amd64_debug_display_dimm_sizes(0, pvt);
+
+       if (!ganged)
+               amd64_debug_display_dimm_sizes(1, pvt);
+}
+
+/* Read in both of DBAM registers */
+static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
+{
+       amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM0, &pvt->dbam0);
+
+       if (boot_cpu_data.x86 >= 0x10)
+               amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM1, &pvt->dbam1);
+}
+
+/*
+ * NOTE: CPU Revision Dependent code: Rev E and Rev F
+ *
+ * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
+ * set the shift factor for the DCSB and DCSM values.
+ *
+ * ->dcs_mask_notused, RevE:
+ *
+ * To find the max InputAddr for the csrow, start with the base address and set
+ * all bits that are "don't care" bits in the test at the start of section
+ * 3.5.4 (p. 84).
+ *
+ * The "don't care" bits are all set bits in the mask and all bits in the gaps
+ * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
+ * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
+ * gaps.
+ *
+ * ->dcs_mask_notused, RevF and later:
+ *
+ * To find the max InputAddr for the csrow, start with the base address and set
+ * all bits that are "don't care" bits in the test at the start of NPT section
+ * 4.5.4 (p. 87).
+ *
+ * The "don't care" bits are all set bits in the mask and all bits in the gaps
+ * between bit ranges [36:27] and [21:13].
+ *
+ * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
+ * which are all bits in the above-mentioned gaps.
+ */
+static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
+{
+
+       if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
+               pvt->dcsb_base          = REV_E_DCSB_BASE_BITS;
+               pvt->dcsm_mask          = REV_E_DCSM_MASK_BITS;
+               pvt->dcs_mask_notused   = REV_E_DCS_NOTUSED_BITS;
+               pvt->dcs_shift          = REV_E_DCS_SHIFT;
+               pvt->cs_count           = 8;
+               pvt->num_dcsm           = 8;
+       } else {
+               pvt->dcsb_base          = REV_F_F1Xh_DCSB_BASE_BITS;
+               pvt->dcsm_mask          = REV_F_F1Xh_DCSM_MASK_BITS;
+               pvt->dcs_mask_notused   = REV_F_F1Xh_DCS_NOTUSED_BITS;
+               pvt->dcs_shift          = REV_F_F1Xh_DCS_SHIFT;
+
+               if (boot_cpu_data.x86 == 0x11) {
+                       pvt->cs_count = 4;
+                       pvt->num_dcsm = 2;
+               } else {
+                       pvt->cs_count = 8;
+                       pvt->num_dcsm = 4;
+               }
+       }
+}
+
+/*
+ * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
+ */
+static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
+{
+       int cs, reg;
+
+       amd64_set_dct_base_and_mask(pvt);
+
+       for (cs = 0; cs < pvt->cs_count; cs++) {
+               reg = K8_DCSB0 + (cs * 4);
+               if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsb0[cs]))
+                       debugf0("  DCSB0[%d]=0x%08x reg: F2x%x\n",
+                               cs, pvt->dcsb0[cs], reg);
+
+               /* If DCT are NOT ganged, then read in DCT1's base */
+               if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
+                       reg = F10_DCSB1 + (cs * 4);
+                       if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
+                                               &pvt->dcsb1[cs]))
+                               debugf0("  DCSB1[%d]=0x%08x reg: F2x%x\n",
+                                       cs, pvt->dcsb1[cs], reg);
+               } else {
+                       pvt->dcsb1[cs] = 0;
+               }
+       }
+
+       for (cs = 0; cs < pvt->num_dcsm; cs++) {
+               reg = K8_DCSM0 + (cs * 4);
+               if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsm0[cs]))
+                       debugf0("    DCSM0[%d]=0x%08x reg: F2x%x\n",
+                               cs, pvt->dcsm0[cs], reg);
+
+               /* If DCT are NOT ganged, then read in DCT1's mask */
+               if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
+                       reg = F10_DCSM1 + (cs * 4);
+                       if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
+                                               &pvt->dcsm1[cs]))
+                               debugf0("    DCSM1[%d]=0x%08x reg: F2x%x\n",
+                                       cs, pvt->dcsm1[cs], reg);
+               } else {
+                       pvt->dcsm1[cs] = 0;
+               }
+       }
+}
+
+static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
+{
+       enum mem_type type;
+
+       if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
+               if (pvt->dchr0 & DDR3_MODE)
+                       type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
+               else
+                       type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
+       } else {
+               type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
+       }
+
+       debugf1("  Memory type is: %s\n", edac_mem_types[type]);
+
+       return type;
+}
+
+/*
+ * Read the DRAM Configuration Low register. It differs between CG, D & E revs
+ * and the later RevF memory controllers (DDR vs DDR2)
+ *
+ * Return:
+ *      number of memory channels in operation
+ * Pass back:
+ *      contents of the DCL0_LOW register
+ */
+static int k8_early_channel_count(struct amd64_pvt *pvt)
+{
+       int flag, err = 0;
+
+       err = amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
+       if (err)
+               return err;
+
+       if ((boot_cpu_data.x86_model >> 4) >= K8_REV_F) {
+               /* RevF (NPT) and later */
+               flag = pvt->dclr0 & F10_WIDTH_128;
+       } else {
+               /* RevE and earlier */
+               flag = pvt->dclr0 & REVE_WIDTH_128;
+       }
+
+       /* not used */
+       pvt->dclr1 = 0;
+
+       return (flag) ? 2 : 1;
+}
+
+/* extract the ERROR ADDRESS for the K8 CPUs */
+static u64 k8_get_error_address(struct mem_ctl_info *mci,
+                               struct err_regs *info)
+{
+       return (((u64) (info->nbeah & 0xff)) << 32) +
+                       (info->nbeal & ~0x03);
+}
+
+/*
+ * Read the Base and Limit registers for K8 based Memory controllers; extract
+ * fields from the 'raw' reg into separate data fields
+ *
+ * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
+ */
+static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
+{
+       u32 low;
+       u32 off = dram << 3;    /* 8 bytes between DRAM entries */
+
+       amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_BASE_LOW + off, &low);
+
+       /* Extract parts into separate data entries */
+       pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
+       pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
+       pvt->dram_rw_en[dram] = (low & 0x3);
+
+       amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_LIMIT_LOW + off, &low);
+
+       /*
+        * Extract parts into separate data entries. Limit is the HIGHEST memory
+        * location of the region, so lower 24 bits need to be all ones
+        */
+       pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
+       pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
+       pvt->dram_DstNode[dram] = (low & 0x7);
+}
+
+static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
+                                       struct err_regs *info,
+                                       u64 sys_addr)
+{
+       struct mem_ctl_info *src_mci;
+       unsigned short syndrome;
+       int channel, csrow;
+       u32 page, offset;
+
+       /* Extract the syndrome parts and form a 16-bit syndrome */
+       syndrome  = HIGH_SYNDROME(info->nbsl) << 8;
+       syndrome |= LOW_SYNDROME(info->nbsh);
+
+       /* CHIPKILL enabled */
+       if (info->nbcfg & K8_NBCFG_CHIPKILL) {
+               channel = get_channel_from_ecc_syndrome(mci, syndrome);
+               if (channel < 0) {
+                       /*
+                        * Syndrome didn't map, so we don't know which of the
+                        * 2 DIMMs is in error. So we need to ID 'both' of them
+                        * as suspect.
+                        */
+                       amd64_mc_printk(mci, KERN_WARNING,
+                                      "unknown syndrome 0x%x - possible error "
+                                      "reporting race\n", syndrome);
+                       edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
+                       return;
+               }
+       } else {
+               /*
+                * non-chipkill ecc mode
+                *
+                * The k8 documentation is unclear about how to determine the
+                * channel number when using non-chipkill memory.  This method
+                * was obtained from email communication with someone at AMD.
+                * (Wish the email was placed in this comment - norsk)
+                */
+               channel = ((sys_addr & BIT(3)) != 0);
+       }
+
+       /*
+        * Find out which node the error address belongs to. This may be
+        * different from the node that detected the error.
+        */
+       src_mci = find_mc_by_sys_addr(mci, sys_addr);
+       if (!src_mci) {
+               amd64_mc_printk(mci, KERN_ERR,
+                            "failed to map error address 0x%lx to a node\n",
+                            (unsigned long)sys_addr);
+               edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
+               return;
+       }
+
+       /* Now map the sys_addr to a CSROW */
+       csrow = sys_addr_to_csrow(src_mci, sys_addr);
+       if (csrow < 0) {
+               edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
+       } else {
+               error_address_to_page_and_offset(sys_addr, &page, &offset);
+
+               edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
+                                 channel, EDAC_MOD_STR);
+       }
+}
+
+static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
+{
+       int *dbam_map;
+
+       if (pvt->ext_model >= K8_REV_F)
+               dbam_map = ddr2_dbam;
+       else if (pvt->ext_model >= K8_REV_D)
+               dbam_map = ddr2_dbam_revD;
+       else
+               dbam_map = ddr2_dbam_revCG;
+
+       return dbam_map[cs_mode];
+}
+
+/*
+ * Get the number of DCT channels in use.
+ *
+ * Return:
+ *     number of Memory Channels in operation
+ * Pass back:
+ *     contents of the DCL0_LOW register
+ */
+static int f10_early_channel_count(struct amd64_pvt *pvt)
+{
+       int dbams[] = { DBAM0, DBAM1 };
+       int i, j, channels = 0;
+       u32 dbam;
+
+       /* If we are in 128 bit mode, then we are using 2 channels */
+       if (pvt->dclr0 & F10_WIDTH_128) {
+               channels = 2;
+               return channels;
+       }
+
+       /*
+        * Need to check if in unganged mode: In such, there are 2 channels,
+        * but they are not in 128 bit mode and thus the above 'dclr0' status
+        * bit will be OFF.
+        *
+        * Need to check DCT0[0] and DCT1[0] to see if only one of them has
+        * their CSEnable bit on. If so, then SINGLE DIMM case.
+        */
+       debugf0("Data width is not 128 bits - need more decoding\n");
+
+       /*
+        * Check DRAM Bank Address Mapping values for each DIMM to see if there
+        * is more than just one DIMM present in unganged mode. Need to check
+        * both controllers since DIMMs can be placed in either one.
+        */
+       for (i = 0; i < ARRAY_SIZE(dbams); i++) {
+               if (amd64_read_pci_cfg(pvt->dram_f2_ctl, dbams[i], &dbam))
+                       goto err_reg;
+
+               for (j = 0; j < 4; j++) {
+                       if (DBAM_DIMM(j, dbam) > 0) {
+                               channels++;
+                               break;
+                       }
+               }
+       }
+
+       if (channels > 2)
+               channels = 2;
+
+       debugf0("MCT channel count: %d\n", channels);
+
+       return channels;
+
+err_reg:
+       return -1;
+
+}
+
+static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
+{
+       int *dbam_map;
+
+       if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
+               dbam_map = ddr3_dbam;
+       else
+               dbam_map = ddr2_dbam;
+
+       return dbam_map[cs_mode];
+}
+
+/* Enable extended configuration access via 0xCF8 feature */
+static void amd64_setup(struct amd64_pvt *pvt)
+{
+       u32 reg;
+
+       amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
+
+       pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
+       reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
+       pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
+}
+
+/* Restore the extended configuration access via 0xCF8 feature */
+static void amd64_teardown(struct amd64_pvt *pvt)
+{
+       u32 reg;
+
+       amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
+
+       reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
+       if (pvt->flags.cf8_extcfg)
+               reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
+       pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
+}
+
+static u64 f10_get_error_address(struct mem_ctl_info *mci,
+                       struct err_regs *info)
+{
+       return (((u64) (info->nbeah & 0xffff)) << 32) +
+                       (info->nbeal & ~0x01);
+}
+
+/*
+ * Read the Base and Limit registers for F10 based Memory controllers. Extract
+ * fields from the 'raw' reg into separate data fields.
+ *
+ * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
+ */
+static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
+{
+       u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
+
+       low_offset = K8_DRAM_BASE_LOW + (dram << 3);
+       high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
+
+       /* read the 'raw' DRAM BASE Address register */
+       amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_base);
+
+       /* Read from the ECS data register */
+       amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_base);
+
+       /* Extract parts into separate data entries */
+       pvt->dram_rw_en[dram] = (low_base & 0x3);
+
+       if (pvt->dram_rw_en[dram] == 0)
+               return;
+
+       pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
+
+       pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
+                              (((u64)low_base  & 0xFFFF0000) << 8);
+
+       low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
+       high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
+
+       /* read the 'raw' LIMIT registers */
+       amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_limit);
+
+       /* Read from the ECS data register for the HIGH portion */
+       amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_limit);
+
+       pvt->dram_DstNode[dram] = (low_limit & 0x7);
+       pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
+
+       /*
+        * Extract address values and form a LIMIT address. Limit is the HIGHEST
+        * memory location of the region, so low 24 bits need to be all ones.
+        */
+       pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
+                               (((u64) low_limit & 0xFFFF0000) << 8) |
+                               0x00FFFFFF;
+}
+
+static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
+{
+
+       if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
+                               &pvt->dram_ctl_select_low)) {
+               debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
+                       "High range addresses at: 0x%x\n",
+                       pvt->dram_ctl_select_low,
+                       dct_sel_baseaddr(pvt));
+
+               debugf0("  DCT mode: %s, All DCTs on: %s\n",
+                       (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
+                       (dct_dram_enabled(pvt) ? "yes"   : "no"));
+
+               if (!dct_ganging_enabled(pvt))
+                       debugf0("  Address range split per DCT: %s\n",
+                               (dct_high_range_enabled(pvt) ? "yes" : "no"));
+
+               debugf0("  DCT data interleave for ECC: %s, "
+                       "DRAM cleared since last warm reset: %s\n",
+                       (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
+                       (dct_memory_cleared(pvt) ? "yes" : "no"));
+
+               debugf0("  DCT channel interleave: %s, "
+                       "DCT interleave bits selector: 0x%x\n",
+                       (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
+                       dct_sel_interleave_addr(pvt));
+       }
+
+       amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
+                          &pvt->dram_ctl_select_high);
+}
+
+/*
+ * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
+ * Interleaving Modes.
+ */
+static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
+                               int hi_range_sel, u32 intlv_en)
+{
+       u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
+
+       if (dct_ganging_enabled(pvt))
+               cs = 0;
+       else if (hi_range_sel)
+               cs = dct_sel_high;
+       else if (dct_interleave_enabled(pvt)) {
+               /*
+                * see F2x110[DctSelIntLvAddr] - channel interleave mode
+                */
+               if (dct_sel_interleave_addr(pvt) == 0)
+                       cs = sys_addr >> 6 & 1;
+               else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
+                       temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
+
+                       if (dct_sel_interleave_addr(pvt) & 1)
+                               cs = (sys_addr >> 9 & 1) ^ temp;
+                       else
+                               cs = (sys_addr >> 6 & 1) ^ temp;
+               } else if (intlv_en & 4)
+                       cs = sys_addr >> 15 & 1;
+               else if (intlv_en & 2)
+                       cs = sys_addr >> 14 & 1;
+               else if (intlv_en & 1)
+                       cs = sys_addr >> 13 & 1;
+               else
+                       cs = sys_addr >> 12 & 1;
+       } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
+               cs = ~dct_sel_high & 1;
+       else
+               cs = 0;
+
+       return cs;
+}
+
+static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
+{
+       if (intlv_en == 1)
+               return 1;
+       else if (intlv_en == 3)
+               return 2;
+       else if (intlv_en == 7)
+               return 3;
+
+       return 0;
+}
+
+/* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
+static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
+                                                u32 dct_sel_base_addr,
+                                                u64 dct_sel_base_off,
+                                                u32 hole_valid, u32 hole_off,
+                                                u64 dram_base)
+{
+       u64 chan_off;
+
+       if (hi_range_sel) {
+               if (!(dct_sel_base_addr & 0xFFFFF800) &&
+                  hole_valid && (sys_addr >= 0x100000000ULL))
+                       chan_off = hole_off << 16;
+               else
+                       chan_off = dct_sel_base_off;
+       } else {
+               if (hole_valid && (sys_addr >= 0x100000000ULL))
+                       chan_off = hole_off << 16;
+               else
+                       chan_off = dram_base & 0xFFFFF8000000ULL;
+       }
+
+       return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
+                       (chan_off & 0x0000FFFFFF800000ULL);
+}
+
+/* Hack for the time being - Can we get this from BIOS?? */
+#define        CH0SPARE_RANK   0
+#define        CH1SPARE_RANK   1
+
+/*
+ * checks if the csrow passed in is marked as SPARED, if so returns the new
+ * spare row
+ */
+static inline int f10_process_possible_spare(int csrow,
+                               u32 cs, struct amd64_pvt *pvt)
+{
+       u32 swap_done;
+       u32 bad_dram_cs;
+
+       /* Depending on channel, isolate respective SPARING info */
+       if (cs) {
+               swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
+               bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
+               if (swap_done && (csrow == bad_dram_cs))
+                       csrow = CH1SPARE_RANK;
+       } else {
+               swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
+               bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
+               if (swap_done && (csrow == bad_dram_cs))
+                       csrow = CH0SPARE_RANK;
+       }
+       return csrow;
+}
+
+/*
+ * Iterate over the DRAM DCT "base" and "mask" registers looking for a
+ * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
+ *
+ * Return:
+ *     -EINVAL:  NOT FOUND
+ *     0..csrow = Chip-Select Row
+ */
+static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
+{
+       struct mem_ctl_info *mci;
+       struct amd64_pvt *pvt;
+       u32 cs_base, cs_mask;
+       int cs_found = -EINVAL;
+       int csrow;
+
+       mci = mci_lookup[nid];
+       if (!mci)
+               return cs_found;
+
+       pvt = mci->pvt_info;
+
+       debugf1("InputAddr=0x%x  channelselect=%d\n", in_addr, cs);
+
+       for (csrow = 0; csrow < pvt->cs_count; csrow++) {
+
+               cs_base = amd64_get_dct_base(pvt, cs, csrow);
+               if (!(cs_base & K8_DCSB_CS_ENABLE))
+                       continue;
+
+               /*
+                * We have an ENABLED CSROW, Isolate just the MASK bits of the
+                * target: [28:19] and [13:5], which map to [36:27] and [21:13]
+                * of the actual address.
+                */
+               cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
+
+               /*
+                * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
+                * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
+                */
+               cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
+
+               debugf1("    CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
+                               csrow, cs_base, cs_mask);
+
+               cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
+
+               debugf1("              Final CSMask=0x%x\n", cs_mask);
+               debugf1("    (InputAddr & ~CSMask)=0x%x "
+                               "(CSBase & ~CSMask)=0x%x\n",
+                               (in_addr & ~cs_mask), (cs_base & ~cs_mask));
+
+               if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
+                       cs_found = f10_process_possible_spare(csrow, cs, pvt);
+
+                       debugf1(" MATCH csrow=%d\n", cs_found);
+                       break;
+               }
+       }
+       return cs_found;
+}
+
+/* For a given @dram_range, check if @sys_addr falls within it. */
+static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
+                                 u64 sys_addr, int *nid, int *chan_sel)
+{
+       int node_id, cs_found = -EINVAL, high_range = 0;
+       u32 intlv_en, intlv_sel, intlv_shift, hole_off;
+       u32 hole_valid, tmp, dct_sel_base, channel;
+       u64 dram_base, chan_addr, dct_sel_base_off;
+
+       dram_base = pvt->dram_base[dram_range];
+       intlv_en = pvt->dram_IntlvEn[dram_range];
+
+       node_id = pvt->dram_DstNode[dram_range];
+       intlv_sel = pvt->dram_IntlvSel[dram_range];
+
+       debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
+               dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
+
+       /*
+        * This assumes that one node's DHAR is the same as all the other
+        * nodes' DHAR.
+        */
+       hole_off = (pvt->dhar & 0x0000FF80);
+       hole_valid = (pvt->dhar & 0x1);
+       dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
+
+       debugf1("   HoleOffset=0x%x  HoleValid=0x%x IntlvSel=0x%x\n",
+                       hole_off, hole_valid, intlv_sel);
+
+       if (intlv_en ||
+           (intlv_sel != ((sys_addr >> 12) & intlv_en)))
+               return -EINVAL;
+
+       dct_sel_base = dct_sel_baseaddr(pvt);
+
+       /*
+        * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
+        * select between DCT0 and DCT1.
+        */
+       if (dct_high_range_enabled(pvt) &&
+          !dct_ganging_enabled(pvt) &&
+          ((sys_addr >> 27) >= (dct_sel_base >> 11)))
+               high_range = 1;
+
+       channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
+
+       chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
+                                            dct_sel_base_off, hole_valid,
+                                            hole_off, dram_base);
+
+       intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
+
+       /* remove Node ID (in case of memory interleaving) */
+       tmp = chan_addr & 0xFC0;
+
+       chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
+
+       /* remove channel interleave and hash */
+       if (dct_interleave_enabled(pvt) &&
+          !dct_high_range_enabled(pvt) &&
+          !dct_ganging_enabled(pvt)) {
+               if (dct_sel_interleave_addr(pvt) != 1)
+                       chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
+               else {
+                       tmp = chan_addr & 0xFC0;
+                       chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
+                                       | tmp;
+               }
+       }
+
+       debugf1("   (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
+               chan_addr, (u32)(chan_addr >> 8));
+
+       cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
+
+       if (cs_found >= 0) {
+               *nid = node_id;
+               *chan_sel = channel;
+       }
+       return cs_found;
+}
+
+static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
+                                      int *node, int *chan_sel)
+{
+       int dram_range, cs_found = -EINVAL;
+       u64 dram_base, dram_limit;
+
+       for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
+
+               if (!pvt->dram_rw_en[dram_range])
+                       continue;
+
+               dram_base = pvt->dram_base[dram_range];
+               dram_limit = pvt->dram_limit[dram_range];
+
+               if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
+
+                       cs_found = f10_match_to_this_node(pvt, dram_range,
+                                                         sys_addr, node,
+                                                         chan_sel);
+                       if (cs_found >= 0)
+                               break;
+               }
+       }
+       return cs_found;
+}
+
+/*
+ * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
+ * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
+ *
+ * The @sys_addr is usually an error address received from the hardware
+ * (MCX_ADDR).
+ */
+static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
+                                    struct err_regs *info,
+                                    u64 sys_addr)
+{
+       struct amd64_pvt *pvt = mci->pvt_info;
+       u32 page, offset;
+       unsigned short syndrome;
+       int nid, csrow, chan = 0;
+
+       csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
+
+       if (csrow < 0) {
+               edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
+               return;
+       }
+
+       error_address_to_page_and_offset(sys_addr, &page, &offset);
+
+       syndrome  = HIGH_SYNDROME(info->nbsl) << 8;
+       syndrome |= LOW_SYNDROME(info->nbsh);
+
+       /*
+        * We need the syndromes for channel detection only when we're
+        * ganged. Otherwise @chan should already contain the channel at
+        * this point.
+        */
+       if (dct_ganging_enabled(pvt) && pvt->nbcfg & K8_NBCFG_CHIPKILL)
+               chan = get_channel_from_ecc_syndrome(mci, syndrome);
+
+       if (chan >= 0)
+               edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
+                                 EDAC_MOD_STR);
+       else
+               /*
+                * Channel unknown, report all channels on this CSROW as failed.
+                */
+               for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
+                       edac_mc_handle_ce(mci, page, offset, syndrome,
+                                         csrow, chan, EDAC_MOD_STR);
+}
+
+/*
+ * debug routine to display the memory sizes of all logical DIMMs and its
+ * CSROWs as well
+ */
+static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
+{
+       int dimm, size0, size1, factor = 0;
+       u32 dbam;
+       u32 *dcsb;
+
+       if (boot_cpu_data.x86 == 0xf) {
+               if (pvt->dclr0 & F10_WIDTH_128)
+                       factor = 1;
+
+               /* K8 families < revF not supported yet */
+              if (pvt->ext_model < K8_REV_F)
+                       return;
+              else
+                      WARN_ON(ctrl != 0);
+       }
+
+       debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
+               ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
+
+       dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
+       dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
+
+       edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
+
+       /* Dump memory sizes for DIMM and its CSROWs */
+       for (dimm = 0; dimm < 4; dimm++) {
+
+               size0 = 0;
+               if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
+                       size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
+
+               size1 = 0;
+               if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
+                       size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
+
+               edac_printk(KERN_DEBUG, EDAC_MC, " %d: %5dMB %d: %5dMB\n",
+                           dimm * 2,     size0 << factor,
+                           dimm * 2 + 1, size1 << factor);
+       }
+}
+
+/*
+ * There currently are 3 types type of MC devices for AMD Athlon/Opterons
+ * (as per PCI DEVICE_IDs):
+ *
+ * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
+ * DEVICE ID, even though there is differences between the different Revisions
+ * (CG,D,E,F).
+ *
+ * Family F10h and F11h.
+ *
+ */
+static struct amd64_family_type amd64_family_types[] = {
+       [K8_CPUS] = {
+               .ctl_name = "RevF",
+               .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
+               .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
+               .ops = {
+                       .early_channel_count    = k8_early_channel_count,
+                       .get_error_address      = k8_get_error_address,
+                       .read_dram_base_limit   = k8_read_dram_base_limit,
+                       .map_sysaddr_to_csrow   = k8_map_sysaddr_to_csrow,
+                       .dbam_to_cs             = k8_dbam_to_chip_select,
+               }
+       },
+       [F10_CPUS] = {
+               .ctl_name = "Family 10h",
+               .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
+               .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
+               .ops = {
+                       .early_channel_count    = f10_early_channel_count,
+                       .get_error_address      = f10_get_error_address,
+                       .read_dram_base_limit   = f10_read_dram_base_limit,
+                       .read_dram_ctl_register = f10_read_dram_ctl_register,
+                       .map_sysaddr_to_csrow   = f10_map_sysaddr_to_csrow,
+                       .dbam_to_cs             = f10_dbam_to_chip_select,
+               }
+       },
+       [F11_CPUS] = {
+               .ctl_name = "Family 11h",
+               .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
+               .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
+               .ops = {
+                       .early_channel_count    = f10_early_channel_count,
+                       .get_error_address      = f10_get_error_address,
+                       .read_dram_base_limit   = f10_read_dram_base_limit,
+                       .read_dram_ctl_register = f10_read_dram_ctl_register,
+                       .map_sysaddr_to_csrow   = f10_map_sysaddr_to_csrow,
+                       .dbam_to_cs             = f10_dbam_to_chip_select,
+               }
+       },
+};
+
+static struct pci_dev *pci_get_related_function(unsigned int vendor,
+                                               unsigned int device,
+                                               struct pci_dev *related)
+{
+       struct pci_dev *dev = NULL;
+
+       dev = pci_get_device(vendor, device, dev);
+       while (dev) {
+               if ((dev->bus->number == related->bus->number) &&
+                   (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
+                       break;
+               dev = pci_get_device(vendor, device, dev);
+       }
+
+       return dev;
+}
+
+/*
+ * These are tables of eigenvectors (one per line) which can be used for the
+ * construction of the syndrome tables. The modified syndrome search algorithm
+ * uses those to find the symbol in error and thus the DIMM.
+ *
+ * Algorithm courtesy of Ross LaFetra from AMD.
+ */
+static u16 x4_vectors[] = {
+       0x2f57, 0x1afe, 0x66cc, 0xdd88,
+       0x11eb, 0x3396, 0x7f4c, 0xeac8,
+       0x0001, 0x0002, 0x0004, 0x0008,
+       0x1013, 0x3032, 0x4044, 0x8088,
+       0x106b, 0x30d6, 0x70fc, 0xe0a8,
+       0x4857, 0xc4fe, 0x13cc, 0x3288,
+       0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
+       0x1f39, 0x251e, 0xbd6c, 0x6bd8,
+       0x15c1, 0x2a42, 0x89ac, 0x4758,
+       0x2b03, 0x1602, 0x4f0c, 0xca08,
+       0x1f07, 0x3a0e, 0x6b04, 0xbd08,
+       0x8ba7, 0x465e, 0x244c, 0x1cc8,
+       0x2b87, 0x164e, 0x642c, 0xdc18,
+       0x40b9, 0x80de, 0x1094, 0x20e8,
+       0x27db, 0x1eb6, 0x9dac, 0x7b58,
+       0x11c1, 0x2242, 0x84ac, 0x4c58,
+       0x1be5, 0x2d7a, 0x5e34, 0xa718,
+       0x4b39, 0x8d1e, 0x14b4, 0x28d8,
+       0x4c97, 0xc87e, 0x11fc, 0x33a8,
+       0x8e97, 0x497e, 0x2ffc, 0x1aa8,
+       0x16b3, 0x3d62, 0x4f34, 0x8518,
+       0x1e2f, 0x391a, 0x5cac, 0xf858,
+       0x1d9f, 0x3b7a, 0x572c, 0xfe18,
+       0x15f5, 0x2a5a, 0x5264, 0xa3b8,
+       0x1dbb, 0x3b66, 0x715c, 0xe3f8,
+       0x4397, 0xc27e, 0x17fc, 0x3ea8,
+       0x1617, 0x3d3e, 0x6464, 0xb8b8,
+       0x23ff, 0x12aa, 0xab6c, 0x56d8,
+       0x2dfb, 0x1ba6, 0x913c, 0x7328,
+       0x185d, 0x2ca6, 0x7914, 0x9e28,
+       0x171b, 0x3e36, 0x7d7c, 0xebe8,
+       0x4199, 0x82ee, 0x19f4, 0x2e58,
+       0x4807, 0xc40e, 0x130c, 0x3208,
+       0x1905, 0x2e0a, 0x5804, 0xac08,
+       0x213f, 0x132a, 0xadfc, 0x5ba8,
+       0x19a9, 0x2efe, 0xb5cc, 0x6f88,
+};
+
+static u16 x8_vectors[] = {
+       0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
+       0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
+       0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
+       0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
+       0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
+       0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
+       0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
+       0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
+       0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
+       0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
+       0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
+       0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
+       0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
+       0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
+       0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
+       0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
+       0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
+       0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
+       0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
+};
+
+static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
+                                int v_dim)
+{
+       unsigned int i, err_sym;
+
+       for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
+               u16 s = syndrome;
+               int v_idx =  err_sym * v_dim;
+               int v_end = (err_sym + 1) * v_dim;
+
+               /* walk over all 16 bits of the syndrome */
+               for (i = 1; i < (1U << 16); i <<= 1) {
+
+                       /* if bit is set in that eigenvector... */
+                       if (v_idx < v_end && vectors[v_idx] & i) {
+                               u16 ev_comp = vectors[v_idx++];
+
+                               /* ... and bit set in the modified syndrome, */
+                               if (s & i) {
+                                       /* remove it. */
+                                       s ^= ev_comp;
+
+                                       if (!s)
+                                               return err_sym;
+                               }
+
+                       } else if (s & i)
+                               /* can't get to zero, move to next symbol */
+                               break;
+               }
+       }
+
+       debugf0("syndrome(%x) not found\n", syndrome);
+       return -1;
+}
+
+static int map_err_sym_to_channel(int err_sym, int sym_size)
+{
+       if (sym_size == 4)
+               switch (err_sym) {
+               case 0x20:
+               case 0x21:
+                       return 0;
+                       break;
+               case 0x22:
+               case 0x23:
+                       return 1;
+                       break;
+               default:
+                       return err_sym >> 4;
+                       break;
+               }
+       /* x8 symbols */
+       else
+               switch (err_sym) {
+               /* imaginary bits not in a DIMM */
+               case 0x10:
+                       WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
+                                         err_sym);
+                       return -1;
+                       break;
+
+               case 0x11:
+                       return 0;
+                       break;
+               case 0x12:
+                       return 1;
+                       break;
+               default:
+                       return err_sym >> 3;
+                       break;
+               }
+       return -1;
+}
+
+static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
+{
+       struct amd64_pvt *pvt = mci->pvt_info;
+       u32 value = 0;
+       int err_sym = 0;
+
+       amd64_read_pci_cfg(pvt->misc_f3_ctl, 0x180, &value);
+
+       /* F3x180[EccSymbolSize]=1, x8 symbols */
+       if (boot_cpu_data.x86 == 0x10 &&
+           boot_cpu_data.x86_model > 7 &&
+           value & BIT(25)) {
+               err_sym = decode_syndrome(syndrome, x8_vectors,
+                                         ARRAY_SIZE(x8_vectors), 8);
+               return map_err_sym_to_channel(err_sym, 8);
+       } else {
+               err_sym = decode_syndrome(syndrome, x4_vectors,
+                                         ARRAY_SIZE(x4_vectors), 4);
+               return map_err_sym_to_channel(err_sym, 4);
+       }
+}
+
+/*
+ * Check for valid error in the NB Status High register. If so, proceed to read
+ * NB Status Low, NB Address Low and NB Address High registers and store data
+ * into error structure.
+ *
+ * Returns:
+ *     - 1: if hardware regs contains valid error info
+ *     - 0: if no valid error is indicated
+ */
+static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
+                                    struct err_regs *regs)
+{
+       struct amd64_pvt *pvt;
+       struct pci_dev *misc_f3_ctl;
+
+       pvt = mci->pvt_info;
+       misc_f3_ctl = pvt->misc_f3_ctl;
+
+       if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSH, &regs->nbsh))
+               return 0;
+
+       if (!(regs->nbsh & K8_NBSH_VALID_BIT))
+               return 0;
+
+       /* valid error, read remaining error information registers */
+       if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSL, &regs->nbsl) ||
+           amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAL, &regs->nbeal) ||
+           amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAH, &regs->nbeah) ||
+           amd64_read_pci_cfg(misc_f3_ctl, K8_NBCFG, &regs->nbcfg))
+               return 0;
+
+       return 1;
+}
+
+/*
+ * This function is called to retrieve the error data from hardware and store it
+ * in the info structure.
+ *
+ * Returns:
+ *     - 1: if a valid error is found
+ *     - 0: if no error is found
+ */
+static int amd64_get_error_info(struct mem_ctl_info *mci,
+                               struct err_regs *info)
+{
+       struct amd64_pvt *pvt;
+       struct err_regs regs;
+
+       pvt = mci->pvt_info;
+
+       if (!amd64_get_error_info_regs(mci, info))
+               return 0;
+
+       /*
+        * Here's the problem with the K8's EDAC reporting: There are four
+        * registers which report pieces of error information. They are shared
+        * between CEs and UEs. Furthermore, contrary to what is stated in the
+        * BKDG, the overflow bit is never used! Every error always updates the
+        * reporting registers.
+        *
+        * Can you see the race condition? All four error reporting registers
+        * must be read before a new error updates them! There is no way to read
+        * all four registers atomically. The best than can be done is to detect
+        * that a race has occured and then report the error without any kind of
+        * precision.
+        *
+        * What is still positive is that errors are still reported and thus
+        * problems can still be detected - just not localized because the
+        * syndrome and address are spread out across registers.
+        *
+        * Grrrrr!!!!!  Here's hoping that AMD fixes this in some future K8 rev.
+        * UEs and CEs should have separate register sets with proper overflow
+        * bits that are used! At very least the problem can be fixed by
+        * honoring the ErrValid bit in 'nbsh' and not updating registers - just
+        * set the overflow bit - unless the current error is CE and the new
+        * error is UE which would be the only situation for overwriting the
+        * current values.
+        */
+
+       regs = *info;
+
+       /* Use info from the second read - most current */
+       if (unlikely(!amd64_get_error_info_regs(mci, info)))
+               return 0;
+
+       /* clear the error bits in hardware */
+       pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);
+
+       /* Check for the possible race condition */
+       if ((regs.nbsh != info->nbsh) ||
+            (regs.nbsl != info->nbsl) ||
+            (regs.nbeah != info->nbeah) ||
+            (regs.nbeal != info->nbeal)) {
+               amd64_mc_printk(mci, KERN_WARNING,
+                               "hardware STATUS read access race condition "
+                               "detected!\n");
+               return 0;
+       }
+       return 1;
+}
+
+/*
+ * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
+ * ADDRESS and process.
+ */
+static void amd64_handle_ce(struct mem_ctl_info *mci,
+                           struct err_regs *info)
+{
+       struct amd64_pvt *pvt = mci->pvt_info;
+       u64 sys_addr;
+
+       /* Ensure that the Error Address is VALID */
+       if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
+               amd64_mc_printk(mci, KERN_ERR,
+                       "HW has no ERROR_ADDRESS available\n");
+               edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
+               return;
+       }
+
+       sys_addr = pvt->ops->get_error_address(mci, info);
+
+       amd64_mc_printk(mci, KERN_ERR,
+               "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
+
+       pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
+}
+
+/* Handle any Un-correctable Errors (UEs) */
+static void amd64_handle_ue(struct mem_ctl_info *mci,
+                           struct err_regs *info)
+{
+       struct amd64_pvt *pvt = mci->pvt_info;
+       struct mem_ctl_info *log_mci, *src_mci = NULL;
+       int csrow;
+       u64 sys_addr;
+       u32 page, offset;
+
+       log_mci = mci;
+
+       if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
+               amd64_mc_printk(mci, KERN_CRIT,
+                       "HW has no ERROR_ADDRESS available\n");
+               edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
+               return;
+       }
+
+       sys_addr = pvt->ops->get_error_address(mci, info);
+
+       /*
+        * Find out which node the error address belongs to. This may be
+        * different from the node that detected the error.
+        */
+       src_mci = find_mc_by_sys_addr(mci, sys_addr);
+       if (!src_mci) {
+               amd64_mc_printk(mci, KERN_CRIT,
+                       "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
+                       (unsigned long)sys_addr);
+               edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
+               return;
+       }
+
+       log_mci = src_mci;
+
+       csrow = sys_addr_to_csrow(log_mci, sys_addr);
+       if (csrow < 0) {
+               amd64_mc_printk(mci, KERN_CRIT,
+                       "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
+                       (unsigned long)sys_addr);
+               edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
+       } else {
+               error_address_to_page_and_offset(sys_addr, &page, &offset);
+               edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
+       }
+}
+
+static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
+                                           struct err_regs *info)
+{
+       u32 ec  = ERROR_CODE(info->nbsl);
+       u32 xec = EXT_ERROR_CODE(info->nbsl);
+       int ecc_type = (info->nbsh >> 13) & 0x3;
+
+       /* Bail early out if this was an 'observed' error */
+       if (PP(ec) == K8_NBSL_PP_OBS)
+               return;
+
+       /* Do only ECC errors */
+       if (xec && xec != F10_NBSL_EXT_ERR_ECC)
+               return;
+
+       if (ecc_type == 2)
+               amd64_handle_ce(mci, info);
+       else if (ecc_type == 1)
+               amd64_handle_ue(mci, info);
+
+       /*
+        * If main error is CE then overflow must be CE.  If main error is UE
+        * then overflow is unknown.  We'll call the overflow a CE - if
+        * panic_on_ue is set then we're already panic'ed and won't arrive
+        * here. Else, then apparently someone doesn't think that UE's are
+        * catastrophic.
+        */
+       if (info->nbsh & K8_NBSH_OVERFLOW)
+               edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR "Error Overflow");
+}
+
+void amd64_decode_bus_error(int node_id, struct err_regs *regs)
+{
+       struct mem_ctl_info *mci = mci_lookup[node_id];
+
+       __amd64_decode_bus_error(mci, regs);
+
+       /*
+        * Check the UE bit of the NB status high register, if set generate some
+        * logs. If NOT a GART error, then process the event as a NO-INFO event.
+        * If it was a GART error, skip that process.
+        *
+        * FIXME: this should go somewhere else, if at all.
+        */
+       if (regs->nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
+               edac_mc_handle_ue_no_info(mci, "UE bit is set");
+
+}
+
+/*
+ * The main polling 'check' function, called FROM the edac core to perform the
+ * error checking and if an error is encountered, error processing.
+ */
+static void amd64_check(struct mem_ctl_info *mci)
+{
+       struct err_regs regs;
+
+       if (amd64_get_error_info(mci, &regs)) {
+               struct amd64_pvt *pvt = mci->pvt_info;
+               amd_decode_nb_mce(pvt->mc_node_id, &regs, 1);
+       }
+}
+
+/*
+ * Input:
+ *     1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
+ *     2) AMD Family index value
+ *
+ * Ouput:
+ *     Upon return of 0, the following filled in:
+ *
+ *             struct pvt->addr_f1_ctl
+ *             struct pvt->misc_f3_ctl
+ *
+ *     Filled in with related device funcitions of 'dram_f2_ctl'
+ *     These devices are "reserved" via the pci_get_device()
+ *
+ *     Upon return of 1 (error status):
+ *
+ *             Nothing reserved
+ */
+static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
+{
+       const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
+
+       /* Reserve the ADDRESS MAP Device */
+       pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
+                                                   amd64_dev->addr_f1_ctl,
+                                                   pvt->dram_f2_ctl);
+
+       if (!pvt->addr_f1_ctl) {
+               amd64_printk(KERN_ERR, "error address map device not found: "
+                            "vendor %x device 0x%x (broken BIOS?)\n",
+                            PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
+               return 1;
+       }
+
+       /* Reserve the MISC Device */
+       pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
+                                                   amd64_dev->misc_f3_ctl,
+                                                   pvt->dram_f2_ctl);
+
+       if (!pvt->misc_f3_ctl) {
+               pci_dev_put(pvt->addr_f1_ctl);
+               pvt->addr_f1_ctl = NULL;
+
+               amd64_printk(KERN_ERR, "error miscellaneous device not found: "
+                            "vendor %x device 0x%x (broken BIOS?)\n",
+                            PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
+               return 1;
+       }
+
+       debugf1("    Addr Map device PCI Bus ID:\t%s\n",
+               pci_name(pvt->addr_f1_ctl));
+       debugf1("    DRAM MEM-CTL PCI Bus ID:\t%s\n",
+               pci_name(pvt->dram_f2_ctl));
+       debugf1("    Misc device PCI Bus ID:\t%s\n",
+               pci_name(pvt->misc_f3_ctl));
+
+       return 0;
+}
+
+static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
+{
+       pci_dev_put(pvt->addr_f1_ctl);
+       pci_dev_put(pvt->misc_f3_ctl);
+}
+
+/*
+ * Retrieve the hardware registers of the memory controller (this includes the
+ * 'Address Map' and 'Misc' device regs)
+ */
+static void amd64_read_mc_registers(struct amd64_pvt *pvt)
+{
+       u64 msr_val;
+       int dram;
+
+       /*
+        * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
+        * those are Read-As-Zero
+        */
+       rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
+       debugf0("  TOP_MEM:  0x%016llx\n", pvt->top_mem);
+
+       /* check first whether TOP_MEM2 is enabled */
+       rdmsrl(MSR_K8_SYSCFG, msr_val);
+       if (msr_val & (1U << 21)) {
+               rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
+               debugf0("  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
+       } else
+               debugf0("  TOP_MEM2 disabled.\n");
+
+       amd64_cpu_display_info(pvt);
+
+       amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
+
+       if (pvt->ops->read_dram_ctl_register)
+               pvt->ops->read_dram_ctl_register(pvt);
+
+       for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
+               /*
+                * Call CPU specific READ function to get the DRAM Base and
+                * Limit values from the DCT.
+                */
+               pvt->ops->read_dram_base_limit(pvt, dram);
+
+               /*
+                * Only print out debug info on rows with both R and W Enabled.
+                * Normal processing, compiler should optimize this whole 'if'
+                * debug output block away.
+                */
+               if (pvt->dram_rw_en[dram] != 0) {
+                       debugf1("  DRAM-BASE[%d]: 0x%016llx "
+                               "DRAM-LIMIT:  0x%016llx\n",
+                               dram,
+                               pvt->dram_base[dram],
+                               pvt->dram_limit[dram]);
+
+                       debugf1("        IntlvEn=%s %s %s "
+                               "IntlvSel=%d DstNode=%d\n",
+                               pvt->dram_IntlvEn[dram] ?
+                                       "Enabled" : "Disabled",
+                               (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
+                               (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
+                               pvt->dram_IntlvSel[dram],
+                               pvt->dram_DstNode[dram]);
+               }
+       }
+
+       amd64_read_dct_base_mask(pvt);
+
+       amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
+       amd64_read_dbam_reg(pvt);
+
+       amd64_read_pci_cfg(pvt->misc_f3_ctl,
+                          F10_ONLINE_SPARE, &pvt->online_spare);
+
+       amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
+       amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
+
+       if (!dct_ganging_enabled(pvt) && boot_cpu_data.x86 >= 0x10) {
+               amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
+               amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_1, &pvt->dchr1);
+       }
+       amd64_dump_misc_regs(pvt);
+}
+
+/*
+ * NOTE: CPU Revision Dependent code
+ *
+ * Input:
+ *     @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
+ *     k8 private pointer to -->
+ *                     DRAM Bank Address mapping register
+ *                     node_id
+ *                     DCL register where dual_channel_active is
+ *
+ * The DBAM register consists of 4 sets of 4 bits each definitions:
+ *
+ * Bits:       CSROWs
+ * 0-3         CSROWs 0 and 1
+ * 4-7         CSROWs 2 and 3
+ * 8-11                CSROWs 4 and 5
+ * 12-15       CSROWs 6 and 7
+ *
+ * Values range from: 0 to 15
+ * The meaning of the values depends on CPU revision and dual-channel state,
+ * see relevant BKDG more info.
+ *
+ * The memory controller provides for total of only 8 CSROWs in its current
+ * architecture. Each "pair" of CSROWs normally represents just one DIMM in
+ * single channel or two (2) DIMMs in dual channel mode.
+ *
+ * The following code logic collapses the various tables for CSROW based on CPU
+ * revision.
+ *
+ * Returns:
+ *     The number of PAGE_SIZE pages on the specified CSROW number it
+ *     encompasses
+ *
+ */
+static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
+{
+       u32 cs_mode, nr_pages;
+
+       /*
+        * The math on this doesn't look right on the surface because x/2*4 can
+        * be simplified to x*2 but this expression makes use of the fact that
+        * it is integral math where 1/2=0. This intermediate value becomes the
+        * number of bits to shift the DBAM register to extract the proper CSROW
+        * field.
+        */
+       cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
+
+       nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
+
+       /*
+        * If dual channel then double the memory size of single channel.
+        * Channel count is 1 or 2
+        */
+       nr_pages <<= (pvt->channel_count - 1);
+
+       debugf0("  (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
+       debugf0("    nr_pages= %u  channel-count = %d\n",
+               nr_pages, pvt->channel_count);
+
+       return nr_pages;
+}
+
+/*
+ * Initialize the array of csrow attribute instances, based on the values
+ * from pci config hardware registers.
+ */
+static int amd64_init_csrows(struct mem_ctl_info *mci)
+{
+       struct csrow_info *csrow;
+       struct amd64_pvt *pvt;
+       u64 input_addr_min, input_addr_max, sys_addr;
+       int i, empty = 1;
+
+       pvt = mci->pvt_info;
+
+       amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
+
+       debugf0("NBCFG= 0x%x  CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
+               (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
+               (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
+               );
+
+       for (i = 0; i < pvt->cs_count; i++) {
+               csrow = &mci->csrows[i];
+
+               if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
+                       debugf1("----CSROW %d EMPTY for node %d\n", i,
+                               pvt->mc_node_id);
+                       continue;
+               }
+
+               debugf1("----CSROW %d VALID for MC node %d\n",
+                       i, pvt->mc_node_id);
+
+               empty = 0;
+               csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
+               find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
+               sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
+               csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
+               sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
+               csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
+               csrow->page_mask = ~mask_from_dct_mask(pvt, i);
+               /* 8 bytes of resolution */
+
+               csrow->mtype = amd64_determine_memory_type(pvt);
+
+               debugf1("  for MC node %d csrow %d:\n", pvt->mc_node_id, i);
+               debugf1("    input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
+                       (unsigned long)input_addr_min,
+                       (unsigned long)input_addr_max);
+               debugf1("    sys_addr: 0x%lx  page_mask: 0x%lx\n",
+                       (unsigned long)sys_addr, csrow->page_mask);
+               debugf1("    nr_pages: %u  first_page: 0x%lx "
+                       "last_page: 0x%lx\n",
+                       (unsigned)csrow->nr_pages,
+                       csrow->first_page, csrow->last_page);
+
+               /*
+                * determine whether CHIPKILL or JUST ECC or NO ECC is operating
+                */
+               if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
+                       csrow->edac_mode =
+                           (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
+                           EDAC_S4ECD4ED : EDAC_SECDED;
+               else
+                       csrow->edac_mode = EDAC_NONE;
+       }
+
+       return empty;
+}
+
+/* get all cores on this DCT */
+static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
+{
+       int cpu;
+
+       for_each_online_cpu(cpu)
+               if (amd_get_nb_id(cpu) == nid)
+                       cpumask_set_cpu(cpu, mask);
+}
+
+/* check MCG_CTL on all the cpus on this node */
+static bool amd64_nb_mce_bank_enabled_on_node(int nid)
+{
+       cpumask_var_t mask;
+       int cpu, nbe;
+       bool ret = false;
+
+       if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
+               amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
+                            __func__);
+               return false;
+       }
+
+       get_cpus_on_this_dct_cpumask(mask, nid);
+
+       rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
+
+       for_each_cpu(cpu, mask) {
+               struct msr *reg = per_cpu_ptr(msrs, cpu);
+               nbe = reg->l & K8_MSR_MCGCTL_NBE;
+
+               debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
+                       cpu, reg->q,
+                       (nbe ? "enabled" : "disabled"));
+
+               if (!nbe)
+                       goto out;
+       }
+       ret = true;
+
+out:
+       free_cpumask_var(mask);
+       return ret;
+}
+
+static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on)
+{
+       cpumask_var_t cmask;
+       int cpu;
+
+       if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
+               amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
+                            __func__);
+               return false;
+       }
+
+       get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id);
+
+       rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
+
+       for_each_cpu(cpu, cmask) {
+
+               struct msr *reg = per_cpu_ptr(msrs, cpu);
+
+               if (on) {
+                       if (reg->l & K8_MSR_MCGCTL_NBE)
+                               pvt->flags.ecc_report = 1;
+
+                       reg->l |= K8_MSR_MCGCTL_NBE;
+               } else {
+                       /*
+                        * Turn off ECC reporting only when it was off before
+                        */
+                       if (!pvt->flags.ecc_report)
+                               reg->l &= ~K8_MSR_MCGCTL_NBE;
+               }
+       }
+       wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
+
+       free_cpumask_var(cmask);
+
+       return 0;
+}
+
+/*
+ * Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we"
+ * enable it.
+ */
+static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
+{
+       struct amd64_pvt *pvt = mci->pvt_info;
+       u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
+
+       if (!ecc_enable_override)
+               return;
+
+       amd64_printk(KERN_WARNING,
+               "'ecc_enable_override' parameter is active, "
+               "Enabling AMD ECC hardware now: CAUTION\n");
+
+       amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
+
+       /* turn on UECCn and CECCEn bits */
+       pvt->old_nbctl = value & mask;
+       pvt->nbctl_mcgctl_saved = 1;
+
+       value |= mask;
+       pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
+
+       if (amd64_toggle_ecc_err_reporting(pvt, ON))
+               amd64_printk(KERN_WARNING, "Error enabling ECC reporting over "
+                                          "MCGCTL!\n");
+
+       amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
+
+       debugf0("NBCFG(1)= 0x%x  CHIPKILL= %s ECC_ENABLE= %s\n", value,
+               (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
+               (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
+
+       if (!(value & K8_NBCFG_ECC_ENABLE)) {
+               amd64_printk(KERN_WARNING,
+                       "This node reports that DRAM ECC is "
+                       "currently Disabled; ENABLING now\n");
+
+               /* Attempt to turn on DRAM ECC Enable */
+               value |= K8_NBCFG_ECC_ENABLE;
+               pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
+
+               amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
+
+               if (!(value & K8_NBCFG_ECC_ENABLE)) {
+                       amd64_printk(KERN_WARNING,
+                               "Hardware rejects Enabling DRAM ECC checking\n"
+                               "Check memory DIMM configuration\n");
+               } else {
+                       amd64_printk(KERN_DEBUG,
+                               "Hardware accepted DRAM ECC Enable\n");
+               }
+       }
+       debugf0("NBCFG(2)= 0x%x  CHIPKILL= %s ECC_ENABLE= %s\n", value,
+               (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
+               (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
+
+       pvt->ctl_error_info.nbcfg = value;
+}
+
+static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
+{
+       u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
+
+       if (!pvt->nbctl_mcgctl_saved)
+               return;
+
+       amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
+       value &= ~mask;
+       value |= pvt->old_nbctl;
+
+       /* restore the NB Enable MCGCTL bit */
+       pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
+
+       if (amd64_toggle_ecc_err_reporting(pvt, OFF))
+               amd64_printk(KERN_WARNING, "Error restoring ECC reporting over "
+                                          "MCGCTL!\n");
+}
+
+/*
+ * EDAC requires that the BIOS have ECC enabled before taking over the
+ * processing of ECC errors. This is because the BIOS can properly initialize
+ * the memory system completely. A command line option allows to force-enable
+ * hardware ECC later in amd64_enable_ecc_error_reporting().
+ */
+static const char *ecc_msg =
+       "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
+       " Either enable ECC checking or force module loading by setting "
+       "'ecc_enable_override'.\n"
+       " (Note that use of the override may cause unknown side effects.)\n";
+
+static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
+{
+       u32 value;
+       u8 ecc_enabled = 0;
+       bool nb_mce_en = false;
+
+       amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
+
+       ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
+       if (!ecc_enabled)
+               amd64_printk(KERN_NOTICE, "This node reports that Memory ECC "
+                            "is currently disabled, set F3x%x[22] (%s).\n",
+                            K8_NBCFG, pci_name(pvt->misc_f3_ctl));
+       else
+               amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n");
+
+       nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
+       if (!nb_mce_en)
+               amd64_printk(KERN_NOTICE, "NB MCE bank disabled, set MSR "
+                            "0x%08x[4] on node %d to enable.\n",
+                            MSR_IA32_MCG_CTL, pvt->mc_node_id);
+
+       if (!ecc_enabled || !nb_mce_en) {
+               if (!ecc_enable_override) {
+                       amd64_printk(KERN_NOTICE, "%s", ecc_msg);
+                       return -ENODEV;
+               }
+               ecc_enable_override = 0;
+       }
+
+       return 0;
+}
+
+struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
+                                         ARRAY_SIZE(amd64_inj_attrs) +
+                                         1];
+
+struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
+
+static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
+{
+       unsigned int i = 0, j = 0;
+
+       for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
+               sysfs_attrs[i] = amd64_dbg_attrs[i];
+
+       for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
+               sysfs_attrs[i] = amd64_inj_attrs[j];
+
+       sysfs_attrs[i] = terminator;
+
+       mci->mc_driver_sysfs_attributes = sysfs_attrs;
+}
+
+static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
+{
+       struct amd64_pvt *pvt = mci->pvt_info;
+
+       mci->mtype_cap          = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
+       mci->edac_ctl_cap       = EDAC_FLAG_NONE;
+
+       if (pvt->nbcap & K8_NBCAP_SECDED)
+               mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
+
+       if (pvt->nbcap & K8_NBCAP_CHIPKILL)
+               mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
+
+       mci->edac_cap           = amd64_determine_edac_cap(pvt);
+       mci->mod_name           = EDAC_MOD_STR;
+       mci->mod_ver            = EDAC_AMD64_VERSION;
+       mci->ctl_name           = get_amd_family_name(pvt->mc_type_index);
+       mci->dev_name           = pci_name(pvt->dram_f2_ctl);
+       mci->ctl_page_to_phys   = NULL;
+
+       /* IMPORTANT: Set the polling 'check' function in this module */
+       mci->edac_check         = amd64_check;
+
+       /* memory scrubber interface */
+       mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
+       mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
+}
+
+/*
+ * Init stuff for this DRAM Controller device.
+ *
+ * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
+ * Space feature MUST be enabled on ALL Processors prior to actually reading
+ * from the ECS registers. Since the loading of the module can occur on any
+ * 'core', and cores don't 'see' all the other processors ECS data when the
+ * others are NOT enabled. Our solution is to first enable ECS access in this
+ * routine on all processors, gather some data in a amd64_pvt structure and
+ * later come back in a finish-setup function to perform that final
+ * initialization. See also amd64_init_2nd_stage() for that.
+ */
+static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
+                                   int mc_type_index)
+{
+       struct amd64_pvt *pvt = NULL;
+       int err = 0, ret;
+
+       ret = -ENOMEM;
+       pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
+       if (!pvt)
+               goto err_exit;
+
+       pvt->mc_node_id = get_node_id(dram_f2_ctl);
+
+       pvt->dram_f2_ctl        = dram_f2_ctl;
+       pvt->ext_model          = boot_cpu_data.x86_model >> 4;
+       pvt->mc_type_index      = mc_type_index;
+       pvt->ops                = family_ops(mc_type_index);
+
+       /*
+        * We have the dram_f2_ctl device as an argument, now go reserve its
+        * sibling devices from the PCI system.
+        */
+       ret = -ENODEV;
+       err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
+       if (err)
+               goto err_free;
+
+       ret = -EINVAL;
+       err = amd64_check_ecc_enabled(pvt);
+       if (err)
+               goto err_put;
+
+       /*
+        * Key operation here: setup of HW prior to performing ops on it. Some
+        * setup is required to access ECS data. After this is performed, the
+        * 'teardown' function must be called upon error and normal exit paths.
+        */
+       if (boot_cpu_data.x86 >= 0x10)
+               amd64_setup(pvt);
+
+       /*
+        * Save the pointer to the private data for use in 2nd initialization
+        * stage
+        */
+       pvt_lookup[pvt->mc_node_id] = pvt;
+
+       return 0;
+
+err_put:
+       amd64_free_mc_sibling_devices(pvt);
+
+err_free:
+       kfree(pvt);
+
+err_exit:
+       return ret;
+}
+
+/*
+ * This is the finishing stage of the init code. Needs to be performed after all
+ * MCs' hardware have been prepped for accessing extended config space.
+ */
+static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
+{
+       int node_id = pvt->mc_node_id;
+       struct mem_ctl_info *mci;
+       int ret = -ENODEV;
+
+       amd64_read_mc_registers(pvt);
+
+       /*
+        * We need to determine how many memory channels there are. Then use
+        * that information for calculating the size of the dynamic instance
+        * tables in the 'mci' structure
+        */
+       pvt->channel_count = pvt->ops->early_channel_count(pvt);
+       if (pvt->channel_count < 0)
+               goto err_exit;
+
+       ret = -ENOMEM;
+       mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
+       if (!mci)
+               goto err_exit;
+
+       mci->pvt_info = pvt;
+
+       mci->dev = &pvt->dram_f2_ctl->dev;
+       amd64_setup_mci_misc_attributes(mci);
+
+       if (amd64_init_csrows(mci))
+               mci->edac_cap = EDAC_FLAG_NONE;
+
+       amd64_enable_ecc_error_reporting(mci);
+       amd64_set_mc_sysfs_attributes(mci);
+
+       ret = -ENODEV;
+       if (edac_mc_add_mc(mci)) {
+               debugf1("failed edac_mc_add_mc()\n");
+               goto err_add_mc;
+       }
+
+       mci_lookup[node_id] = mci;
+       pvt_lookup[node_id] = NULL;
+
+       /* register stuff with EDAC MCE */
+       if (report_gart_errors)
+               amd_report_gart_errors(true);
+
+       amd_register_ecc_decoder(amd64_decode_bus_error);
+
+       return 0;
+
+err_add_mc:
+       edac_mc_free(mci);
+
+err_exit:
+       debugf0("failure to init 2nd stage: ret=%d\n", ret);
+
+       amd64_restore_ecc_error_reporting(pvt);
+
+       if (boot_cpu_data.x86 > 0xf)
+               amd64_teardown(pvt);
+
+       amd64_free_mc_sibling_devices(pvt);
+
+       kfree(pvt_lookup[pvt->mc_node_id]);
+       pvt_lookup[node_id] = NULL;
+
+       return ret;
+}
+
+
+static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
+                                const struct pci_device_id *mc_type)
+{
+       int ret = 0;
+
+       debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
+               get_amd_family_name(mc_type->driver_data));
+
+       ret = pci_enable_device(pdev);
+       if (ret < 0)
+               ret = -EIO;
+       else
+               ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
+
+       if (ret < 0)
+               debugf0("ret=%d\n", ret);
+
+       return ret;
+}
+
+static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
+{
+       struct mem_ctl_info *mci;
+       struct amd64_pvt *pvt;
+
+       /* Remove from EDAC CORE tracking list */
+       mci = edac_mc_del_mc(&pdev->dev);
+       if (!mci)
+               return;
+
+       pvt = mci->pvt_info;
+
+       amd64_restore_ecc_error_reporting(pvt);
+
+       if (boot_cpu_data.x86 > 0xf)
+               amd64_teardown(pvt);
+
+       amd64_free_mc_sibling_devices(pvt);
+
+       /* unregister from EDAC MCE */
+       amd_report_gart_errors(false);
+       amd_unregister_ecc_decoder(amd64_decode_bus_error);
+
+       /* Free the EDAC CORE resources */
+       mci->pvt_info = NULL;
+       mci_lookup[pvt->mc_node_id] = NULL;
+
+       kfree(pvt);
+       edac_mc_free(mci);
+}
+
+/*
+ * This table is part of the interface for loading drivers for PCI devices. The
+ * PCI core identifies what devices are on a system during boot, and then
+ * inquiry this table to see if this driver is for a given device found.
+ */
+static const struct pci_device_id amd64_pci_table[] __devinitdata = {
+       {
+               .vendor         = PCI_VENDOR_ID_AMD,
+               .device         = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
+               .subvendor      = PCI_ANY_ID,
+               .subdevice      = PCI_ANY_ID,
+               .class          = 0,
+               .class_mask     = 0,
+               .driver_data    = K8_CPUS
+       },
+       {
+               .vendor         = PCI_VENDOR_ID_AMD,
+               .device         = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
+               .subvendor      = PCI_ANY_ID,
+               .subdevice      = PCI_ANY_ID,
+               .class          = 0,
+               .class_mask     = 0,
+               .driver_data    = F10_CPUS
+       },
+       {
+               .vendor         = PCI_VENDOR_ID_AMD,
+               .device         = PCI_DEVICE_ID_AMD_11H_NB_DRAM,
+               .subvendor      = PCI_ANY_ID,
+               .subdevice      = PCI_ANY_ID,
+               .class          = 0,
+               .class_mask     = 0,
+               .driver_data    = F11_CPUS
+       },
+       {0, }
+};
+MODULE_DEVICE_TABLE(pci, amd64_pci_table);
+
+static struct pci_driver amd64_pci_driver = {
+       .name           = EDAC_MOD_STR,
+       .probe          = amd64_init_one_instance,
+       .remove         = __devexit_p(amd64_remove_one_instance),
+       .id_table       = amd64_pci_table,
+};
+
+static void amd64_setup_pci_device(void)
+{
+       struct mem_ctl_info *mci;
+       struct amd64_pvt *pvt;
+
+       if (amd64_ctl_pci)
+               return;
+
+       mci = mci_lookup[0];
+       if (mci) {
+
+               pvt = mci->pvt_info;
+               amd64_ctl_pci =
+                       edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
+                                                   EDAC_MOD_STR);
+
+               if (!amd64_ctl_pci) {
+                       pr_warning("%s(): Unable to create PCI control\n",
+                                  __func__);
+
+                       pr_warning("%s(): PCI error report via EDAC not set\n",
+                                  __func__);
+                       }
+       }
+}
+
+static int __init amd64_edac_init(void)
+{
+       int nb, err = -ENODEV;
+       bool load_ok = false;
+
+       edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
+
+       opstate_init();
+
+       if (cache_k8_northbridges() < 0)
+               goto err_ret;
+
+       msrs = msrs_alloc();
+       if (!msrs)
+               goto err_ret;
+
+       err = pci_register_driver(&amd64_pci_driver);
+       if (err)
+               goto err_pci;
+
+       /*
+        * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
+        * amd64_pvt structs. These will be used in the 2nd stage init function
+        * to finish initialization of the MC instances.
+        */
+       err = -ENODEV;
+       for (nb = 0; nb < num_k8_northbridges; nb++) {
+               if (!pvt_lookup[nb])
+                       continue;
+
+               err = amd64_init_2nd_stage(pvt_lookup[nb]);
+               if (err)
+                       goto err_2nd_stage;
+
+               load_ok = true;
+       }
+
+       if (load_ok) {
+               amd64_setup_pci_device();
+               return 0;
+       }
+
+err_2nd_stage:
+       pci_unregister_driver(&amd64_pci_driver);
+err_pci:
+       msrs_free(msrs);
+       msrs = NULL;
+err_ret:
+       return err;
+}
+
+static void __exit amd64_edac_exit(void)
+{
+       if (amd64_ctl_pci)
+               edac_pci_release_generic_ctl(amd64_ctl_pci);
+
+       pci_unregister_driver(&amd64_pci_driver);
+
+       msrs_free(msrs);
+       msrs = NULL;
+}
+
+module_init(amd64_edac_init);
+module_exit(amd64_edac_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
+               "Dave Peterson, Thayne Harbaugh");
+MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
+               EDAC_AMD64_VERSION);
+
+module_param(edac_op_state, int, 0444);
+MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");