Documentation: Update mmiotrace.txt
[safe/jmp/linux-2.6] / Documentation / lguest / lguest.c
index 1432b50..4220851 100644 (file)
@@ -1,5 +1,9 @@
-/* Simple program to layout "physical" memory for new lguest guest.
- * Linked high to avoid likely physical memory.  */
+/*P:100
+ * This is the Launcher code, a simple program which lays out the "physical"
+ * memory for the new Guest by mapping the kernel image and the virtual
+ * devices, then opens /dev/lguest to tell the kernel about the Guest and
+ * control it.
+:*/
 #define _LARGEFILE64_SOURCE
 #define _GNU_SOURCE
 #include <stdio.h>
 #include <stdlib.h>
 #include <elf.h>
 #include <sys/mman.h>
+#include <sys/param.h>
 #include <sys/types.h>
 #include <sys/stat.h>
 #include <sys/wait.h>
+#include <sys/eventfd.h>
 #include <fcntl.h>
 #include <stdbool.h>
 #include <errno.h>
 #include <termios.h>
 #include <getopt.h>
 #include <zlib.h>
+#include <assert.h>
+#include <sched.h>
+#include <limits.h>
+#include <stddef.h>
+#include <signal.h>
+#include "linux/lguest_launcher.h"
+#include "linux/virtio_config.h"
+#include "linux/virtio_net.h"
+#include "linux/virtio_blk.h"
+#include "linux/virtio_console.h"
+#include "linux/virtio_rng.h"
+#include "linux/virtio_ring.h"
+#include "asm/bootparam.h"
+/*L:110
+ * We can ignore the 42 include files we need for this program, but I do want
+ * to draw attention to the use of kernel-style types.
+ *
+ * As Linus said, "C is a Spartan language, and so should your naming be."  I
+ * like these abbreviations, so we define them here.  Note that u64 is always
+ * unsigned long long, which works on all Linux systems: this means that we can
+ * use %llu in printf for any u64.
+ */
 typedef unsigned long long u64;
 typedef uint32_t u32;
 typedef uint16_t u16;
 typedef uint8_t u8;
-#include "../../include/linux/lguest_launcher.h"
-#include "../../include/asm-i386/e820.h"
+/*:*/
 
 #define PAGE_PRESENT 0x7       /* Present, RW, Execute */
-#define NET_PEERNUM 1
 #define BRIDGE_PFX "bridge:"
 #ifndef SIOCBRADDIF
 #define SIOCBRADDIF    0x89a2          /* add interface to bridge      */
 #endif
-
+/* We can have up to 256 pages for devices. */
+#define DEVICE_PAGES 256
+/* This will occupy 3 pages: it must be a power of 2. */
+#define VIRTQUEUE_NUM 256
+
+/*L:120
+ * verbose is both a global flag and a macro.  The C preprocessor allows
+ * this, and although I wouldn't recommend it, it works quite nicely here.
+ */
 static bool verbose;
 #define verbose(args...) \
        do { if (verbose) printf(args); } while(0)
-static int waker_fd;
+/*:*/
 
-struct device_list
-{
-       fd_set infds;
-       int max_infd;
+/* The pointer to the start of guest memory. */
+static void *guest_base;
+/* The maximum guest physical address allowed, and maximum possible. */
+static unsigned long guest_limit, guest_max;
+/* The /dev/lguest file descriptor. */
+static int lguest_fd;
+
+/* a per-cpu variable indicating whose vcpu is currently running */
+static unsigned int __thread cpu_id;
+
+/* This is our list of devices. */
+struct device_list {
+       /* Counter to assign interrupt numbers. */
+       unsigned int next_irq;
+
+       /* Counter to print out convenient device numbers. */
+       unsigned int device_num;
 
+       /* The descriptor page for the devices. */
+       u8 *descpage;
+
+       /* A single linked list of devices. */
        struct device *dev;
-       struct device **lastdev;
+       /* And a pointer to the last device for easy append. */
+       struct device *lastdev;
 };
 
-struct device
-{
+/* The list of Guest devices, based on command line arguments. */
+static struct device_list devices;
+
+/* The device structure describes a single device. */
+struct device {
+       /* The linked-list pointer. */
        struct device *next;
+
+       /* The device's descriptor, as mapped into the Guest. */
        struct lguest_device_desc *desc;
-       void *mem;
 
-       /* Watch this fd if handle_input non-NULL. */
-       int fd;
-       bool (*handle_input)(int fd, struct device *me);
+       /* We can't trust desc values once Guest has booted: we use these. */
+       unsigned int feature_len;
+       unsigned int num_vq;
 
-       /* Watch DMA to this key if handle_input non-NULL. */
-       unsigned long watch_key;
-       u32 (*handle_output)(int fd, const struct iovec *iov,
-                            unsigned int num, struct device *me);
+       /* The name of this device, for --verbose. */
+       const char *name;
+
+       /* Any queues attached to this device */
+       struct virtqueue *vq;
+
+       /* Is it operational */
+       bool running;
+
+       /* Does Guest want an intrrupt on empty? */
+       bool irq_on_empty;
 
        /* Device-specific data. */
        void *priv;
 };
 
+/* The virtqueue structure describes a queue attached to a device. */
+struct virtqueue {
+       struct virtqueue *next;
+
+       /* Which device owns me. */
+       struct device *dev;
+
+       /* The configuration for this queue. */
+       struct lguest_vqconfig config;
+
+       /* The actual ring of buffers. */
+       struct vring vring;
+
+       /* Last available index we saw. */
+       u16 last_avail_idx;
+
+       /* How many are used since we sent last irq? */
+       unsigned int pending_used;
+
+       /* Eventfd where Guest notifications arrive. */
+       int eventfd;
+
+       /* Function for the thread which is servicing this virtqueue. */
+       void (*service)(struct virtqueue *vq);
+       pid_t thread;
+};
+
+/* Remember the arguments to the program so we can "reboot" */
+static char **main_args;
+
+/* The original tty settings to restore on exit. */
+static struct termios orig_term;
+
+/*
+ * We have to be careful with barriers: our devices are all run in separate
+ * threads and so we need to make sure that changes visible to the Guest happen
+ * in precise order.
+ */
+#define wmb() __asm__ __volatile__("" : : : "memory")
+#define mb() __asm__ __volatile__("" : : : "memory")
+
+/*
+ * Convert an iovec element to the given type.
+ *
+ * This is a fairly ugly trick: we need to know the size of the type and
+ * alignment requirement to check the pointer is kosher.  It's also nice to
+ * have the name of the type in case we report failure.
+ *
+ * Typing those three things all the time is cumbersome and error prone, so we
+ * have a macro which sets them all up and passes to the real function.
+ */
+#define convert(iov, type) \
+       ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
+
+static void *_convert(struct iovec *iov, size_t size, size_t align,
+                     const char *name)
+{
+       if (iov->iov_len != size)
+               errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
+       if ((unsigned long)iov->iov_base % align != 0)
+               errx(1, "Bad alignment %p for %s", iov->iov_base, name);
+       return iov->iov_base;
+}
+
+/* Wrapper for the last available index.  Makes it easier to change. */
+#define lg_last_avail(vq)      ((vq)->last_avail_idx)
+
+/*
+ * The virtio configuration space is defined to be little-endian.  x86 is
+ * little-endian too, but it's nice to be explicit so we have these helpers.
+ */
+#define cpu_to_le16(v16) (v16)
+#define cpu_to_le32(v32) (v32)
+#define cpu_to_le64(v64) (v64)
+#define le16_to_cpu(v16) (v16)
+#define le32_to_cpu(v32) (v32)
+#define le64_to_cpu(v64) (v64)
+
+/* Is this iovec empty? */
+static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
+{
+       unsigned int i;
+
+       for (i = 0; i < num_iov; i++)
+               if (iov[i].iov_len)
+                       return false;
+       return true;
+}
+
+/* Take len bytes from the front of this iovec. */
+static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
+{
+       unsigned int i;
+
+       for (i = 0; i < num_iov; i++) {
+               unsigned int used;
+
+               used = iov[i].iov_len < len ? iov[i].iov_len : len;
+               iov[i].iov_base += used;
+               iov[i].iov_len -= used;
+               len -= used;
+       }
+       assert(len == 0);
+}
+
+/* The device virtqueue descriptors are followed by feature bitmasks. */
+static u8 *get_feature_bits(struct device *dev)
+{
+       return (u8 *)(dev->desc + 1)
+               + dev->num_vq * sizeof(struct lguest_vqconfig);
+}
+
+/*L:100
+ * The Launcher code itself takes us out into userspace, that scary place where
+ * pointers run wild and free!  Unfortunately, like most userspace programs,
+ * it's quite boring (which is why everyone likes to hack on the kernel!).
+ * Perhaps if you make up an Lguest Drinking Game at this point, it will get
+ * you through this section.  Or, maybe not.
+ *
+ * The Launcher sets up a big chunk of memory to be the Guest's "physical"
+ * memory and stores it in "guest_base".  In other words, Guest physical ==
+ * Launcher virtual with an offset.
+ *
+ * This can be tough to get your head around, but usually it just means that we
+ * use these trivial conversion functions when the Guest gives us it's
+ * "physical" addresses:
+ */
+static void *from_guest_phys(unsigned long addr)
+{
+       return guest_base + addr;
+}
+
+static unsigned long to_guest_phys(const void *addr)
+{
+       return (addr - guest_base);
+}
+
+/*L:130
+ * Loading the Kernel.
+ *
+ * We start with couple of simple helper routines.  open_or_die() avoids
+ * error-checking code cluttering the callers:
+ */
 static int open_or_die(const char *name, int flags)
 {
        int fd = open(name, flags);
@@ -84,699 +291,1136 @@ static int open_or_die(const char *name, int flags)
        return fd;
 }
 
-static void *map_zeroed_pages(unsigned long addr, unsigned int num)
+/* map_zeroed_pages() takes a number of pages. */
+static void *map_zeroed_pages(unsigned int num)
 {
-       static int fd = -1;
-
-       if (fd == -1)
-               fd = open_or_die("/dev/zero", O_RDONLY);
+       int fd = open_or_die("/dev/zero", O_RDONLY);
+       void *addr;
 
-       if (mmap((void *)addr, getpagesize() * num,
-                PROT_READ|PROT_WRITE|PROT_EXEC, MAP_FIXED|MAP_PRIVATE, fd, 0)
-           != (void *)addr)
-               err(1, "Mmaping %u pages of /dev/zero @%p", num, (void *)addr);
-       return (void *)addr;
+       /*
+        * We use a private mapping (ie. if we write to the page, it will be
+        * copied).
+        */
+       addr = mmap(NULL, getpagesize() * num,
+                   PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
+       if (addr == MAP_FAILED)
+               err(1, "Mmapping %u pages of /dev/zero", num);
+
+       /*
+        * One neat mmap feature is that you can close the fd, and it
+        * stays mapped.
+        */
+       close(fd);
+
+       return addr;
 }
 
-/* Find magic string marking entry point, return entry point. */
-static unsigned long entry_point(void *start, void *end,
-                                unsigned long page_offset)
+/* Get some more pages for a device. */
+static void *get_pages(unsigned int num)
 {
-       void *p;
+       void *addr = from_guest_phys(guest_limit);
 
-       for (p = start; p < end; p++)
-               if (memcmp(p, "GenuineLguest", strlen("GenuineLguest")) == 0)
-                       return (long)p + strlen("GenuineLguest") + page_offset;
+       guest_limit += num * getpagesize();
+       if (guest_limit > guest_max)
+               errx(1, "Not enough memory for devices");
+       return addr;
+}
 
-       err(1, "Is this image a genuine lguest?");
+/*
+ * This routine is used to load the kernel or initrd.  It tries mmap, but if
+ * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
+ * it falls back to reading the memory in.
+ */
+static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
+{
+       ssize_t r;
+
+       /*
+        * We map writable even though for some segments are marked read-only.
+        * The kernel really wants to be writable: it patches its own
+        * instructions.
+        *
+        * MAP_PRIVATE means that the page won't be copied until a write is
+        * done to it.  This allows us to share untouched memory between
+        * Guests.
+        */
+       if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
+                MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
+               return;
+
+       /* pread does a seek and a read in one shot: saves a few lines. */
+       r = pread(fd, addr, len, offset);
+       if (r != len)
+               err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
 }
 
-/* Returns the entry point */
-static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr,
-                            unsigned long *page_offset)
+/*
+ * This routine takes an open vmlinux image, which is in ELF, and maps it into
+ * the Guest memory.  ELF = Embedded Linking Format, which is the format used
+ * by all modern binaries on Linux including the kernel.
+ *
+ * The ELF headers give *two* addresses: a physical address, and a virtual
+ * address.  We use the physical address; the Guest will map itself to the
+ * virtual address.
+ *
+ * We return the starting address.
+ */
+static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
 {
-       void *addr;
        Elf32_Phdr phdr[ehdr->e_phnum];
        unsigned int i;
-       unsigned long start = -1UL, end = 0;
 
-       /* Sanity checks. */
+       /*
+        * Sanity checks on the main ELF header: an x86 executable with a
+        * reasonable number of correctly-sized program headers.
+        */
        if (ehdr->e_type != ET_EXEC
            || ehdr->e_machine != EM_386
            || ehdr->e_phentsize != sizeof(Elf32_Phdr)
            || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
                errx(1, "Malformed elf header");
 
+       /*
+        * An ELF executable contains an ELF header and a number of "program"
+        * headers which indicate which parts ("segments") of the program to
+        * load where.
+        */
+
+       /* We read in all the program headers at once: */
        if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
                err(1, "Seeking to program headers");
        if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
                err(1, "Reading program headers");
 
-       *page_offset = 0;
-       /* We map the loadable segments at virtual addresses corresponding
-        * to their physical addresses (our virtual == guest physical). */
+       /*
+        * Try all the headers: there are usually only three.  A read-only one,
+        * a read-write one, and a "note" section which we don't load.
+        */
        for (i = 0; i < ehdr->e_phnum; i++) {
+               /* If this isn't a loadable segment, we ignore it */
                if (phdr[i].p_type != PT_LOAD)
                        continue;
 
                verbose("Section %i: size %i addr %p\n",
                        i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
 
-               /* We expect linear address space. */
-               if (!*page_offset)
-                       *page_offset = phdr[i].p_vaddr - phdr[i].p_paddr;
-               else if (*page_offset != phdr[i].p_vaddr - phdr[i].p_paddr)
-                       errx(1, "Page offset of section %i different", i);
-
-               if (phdr[i].p_paddr < start)
-                       start = phdr[i].p_paddr;
-               if (phdr[i].p_paddr + phdr[i].p_filesz > end)
-                       end = phdr[i].p_paddr + phdr[i].p_filesz;
-
-               /* We map everything private, writable. */
-               addr = mmap((void *)phdr[i].p_paddr,
-                           phdr[i].p_filesz,
-                           PROT_READ|PROT_WRITE|PROT_EXEC,
-                           MAP_FIXED|MAP_PRIVATE,
-                           elf_fd, phdr[i].p_offset);
-               if (addr != (void *)phdr[i].p_paddr)
-                       err(1, "Mmaping vmlinux seg %i gave %p not %p",
-                           i, addr, (void *)phdr[i].p_paddr);
+               /* We map this section of the file at its physical address. */
+               map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
+                      phdr[i].p_offset, phdr[i].p_filesz);
        }
 
-       return entry_point((void *)start, (void *)end, *page_offset);
-}
-
-/* This is amazingly reliable. */
-static unsigned long intuit_page_offset(unsigned char *img, unsigned long len)
-{
-       unsigned int i, possibilities[256] = { 0 };
-
-       for (i = 0; i + 4 < len; i++) {
-               /* mov 0xXXXXXXXX,%eax */
-               if (img[i] == 0xA1 && ++possibilities[img[i+4]] > 3)
-                       return (unsigned long)img[i+4] << 24;
-       }
-       errx(1, "could not determine page offset");
-}
-
-static unsigned long unpack_bzimage(int fd, unsigned long *page_offset)
-{
-       gzFile f;
-       int ret, len = 0;
-       void *img = (void *)0x100000;
-
-       f = gzdopen(fd, "rb");
-       while ((ret = gzread(f, img + len, 65536)) > 0)
-               len += ret;
-       if (ret < 0)
-               err(1, "reading image from bzImage");
-
-       verbose("Unpacked size %i addr %p\n", len, img);
-       *page_offset = intuit_page_offset(img, len);
-
-       return entry_point(img, img + len, *page_offset);
+       /* The entry point is given in the ELF header. */
+       return ehdr->e_entry;
 }
 
-static unsigned long load_bzimage(int fd, unsigned long *page_offset)
+/*L:150
+ * A bzImage, unlike an ELF file, is not meant to be loaded.  You're supposed
+ * to jump into it and it will unpack itself.  We used to have to perform some
+ * hairy magic because the unpacking code scared me.
+ *
+ * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
+ * a small patch to jump over the tricky bits in the Guest, so now we just read
+ * the funky header so we know where in the file to load, and away we go!
+ */
+static unsigned long load_bzimage(int fd)
 {
-       unsigned char c;
-       int state = 0;
-
-       /* Ugly brute force search for gzip header. */
-       while (read(fd, &c, 1) == 1) {
-               switch (state) {
-               case 0:
-                       if (c == 0x1F)
-                               state++;
-                       break;
-               case 1:
-                       if (c == 0x8B)
-                               state++;
-                       else
-                               state = 0;
-                       break;
-               case 2 ... 8:
-                       state++;
-                       break;
-               case 9:
-                       lseek(fd, -10, SEEK_CUR);
-                       if (c != 0x03) /* Compressed under UNIX. */
-                               state = -1;
-                       else
-                               return unpack_bzimage(fd, page_offset);
-               }
-       }
-       errx(1, "Could not find kernel in bzImage");
+       struct boot_params boot;
+       int r;
+       /* Modern bzImages get loaded at 1M. */
+       void *p = from_guest_phys(0x100000);
+
+       /*
+        * Go back to the start of the file and read the header.  It should be
+        * a Linux boot header (see Documentation/x86/i386/boot.txt)
+        */
+       lseek(fd, 0, SEEK_SET);
+       read(fd, &boot, sizeof(boot));
+
+       /* Inside the setup_hdr, we expect the magic "HdrS" */
+       if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
+               errx(1, "This doesn't look like a bzImage to me");
+
+       /* Skip over the extra sectors of the header. */
+       lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
+
+       /* Now read everything into memory. in nice big chunks. */
+       while ((r = read(fd, p, 65536)) > 0)
+               p += r;
+
+       /* Finally, code32_start tells us where to enter the kernel. */
+       return boot.hdr.code32_start;
 }
 
-static unsigned long load_kernel(int fd, unsigned long *page_offset)
+/*L:140
+ * Loading the kernel is easy when it's a "vmlinux", but most kernels
+ * come wrapped up in the self-decompressing "bzImage" format.  With a little
+ * work, we can load those, too.
+ */
+static unsigned long load_kernel(int fd)
 {
        Elf32_Ehdr hdr;
 
+       /* Read in the first few bytes. */
        if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
                err(1, "Reading kernel");
 
+       /* If it's an ELF file, it starts with "\177ELF" */
        if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
-               return map_elf(fd, &hdr, page_offset);
+               return map_elf(fd, &hdr);
 
-       return load_bzimage(fd, page_offset);
+       /* Otherwise we assume it's a bzImage, and try to load it. */
+       return load_bzimage(fd);
 }
 
+/*
+ * This is a trivial little helper to align pages.  Andi Kleen hated it because
+ * it calls getpagesize() twice: "it's dumb code."
+ *
+ * Kernel guys get really het up about optimization, even when it's not
+ * necessary.  I leave this code as a reaction against that.
+ */
 static inline unsigned long page_align(unsigned long addr)
 {
+       /* Add upwards and truncate downwards. */
        return ((addr + getpagesize()-1) & ~(getpagesize()-1));
 }
 
-/* initrd gets loaded at top of memory: return length. */
+/*L:180
+ * An "initial ram disk" is a disk image loaded into memory along with the
+ * kernel which the kernel can use to boot from without needing any drivers.
+ * Most distributions now use this as standard: the initrd contains the code to
+ * load the appropriate driver modules for the current machine.
+ *
+ * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
+ * kernels.  He sent me this (and tells me when I break it).
+ */
 static unsigned long load_initrd(const char *name, unsigned long mem)
 {
        int ifd;
        struct stat st;
        unsigned long len;
-       void *iaddr;
 
        ifd = open_or_die(name, O_RDONLY);
+       /* fstat() is needed to get the file size. */
        if (fstat(ifd, &st) < 0)
                err(1, "fstat() on initrd '%s'", name);
 
+       /*
+        * We map the initrd at the top of memory, but mmap wants it to be
+        * page-aligned, so we round the size up for that.
+        */
        len = page_align(st.st_size);
-       iaddr = mmap((void *)mem - len, st.st_size,
-                    PROT_READ|PROT_EXEC|PROT_WRITE,
-                    MAP_FIXED|MAP_PRIVATE, ifd, 0);
-       if (iaddr != (void *)mem - len)
-               err(1, "Mmaping initrd '%s' returned %p not %p",
-                   name, iaddr, (void *)mem - len);
+       map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
+       /*
+        * Once a file is mapped, you can close the file descriptor.  It's a
+        * little odd, but quite useful.
+        */
        close(ifd);
-       verbose("mapped initrd %s size=%lu @ %p\n", name, st.st_size, iaddr);
-       return len;
-}
-
-static unsigned long setup_pagetables(unsigned long mem,
-                                     unsigned long initrd_size,
-                                     unsigned long page_offset)
-{
-       u32 *pgdir, *linear;
-       unsigned int mapped_pages, i, linear_pages;
-       unsigned int ptes_per_page = getpagesize()/sizeof(u32);
-
-       /* If we can map all of memory above page_offset, we do so. */
-       if (mem <= -page_offset)
-               mapped_pages = mem/getpagesize();
-       else
-               mapped_pages = -page_offset/getpagesize();
-
-       /* Each linear PTE page can map ptes_per_page pages. */
-       linear_pages = (mapped_pages + ptes_per_page-1)/ptes_per_page;
-
-       /* We lay out top-level then linear mapping immediately below initrd */
-       pgdir = (void *)mem - initrd_size - getpagesize();
-       linear = (void *)pgdir - linear_pages*getpagesize();
-
-       for (i = 0; i < mapped_pages; i++)
-               linear[i] = ((i * getpagesize()) | PAGE_PRESENT);
+       verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
 
-       /* Now set up pgd so that this memory is at page_offset */
-       for (i = 0; i < mapped_pages; i += ptes_per_page) {
-               pgdir[(i + page_offset/getpagesize())/ptes_per_page]
-                       = (((u32)linear + i*sizeof(u32)) | PAGE_PRESENT);
-       }
-
-       verbose("Linear mapping of %u pages in %u pte pages at %p\n",
-               mapped_pages, linear_pages, linear);
-
-       return (unsigned long)pgdir;
+       /* We return the initrd size. */
+       return len;
 }
+/*:*/
 
+/*
+ * Simple routine to roll all the commandline arguments together with spaces
+ * between them.
+ */
 static void concat(char *dst, char *args[])
 {
        unsigned int i, len = 0;
 
        for (i = 0; args[i]; i++) {
+               if (i) {
+                       strcat(dst+len, " ");
+                       len++;
+               }
                strcpy(dst+len, args[i]);
-               strcat(dst+len, " ");
-               len += strlen(args[i]) + 1;
+               len += strlen(args[i]);
        }
        /* In case it's empty. */
        dst[len] = '\0';
 }
 
-static int tell_kernel(u32 pgdir, u32 start, u32 page_offset)
+/*L:185
+ * This is where we actually tell the kernel to initialize the Guest.  We
+ * saw the arguments it expects when we looked at initialize() in lguest_user.c:
+ * the base of Guest "physical" memory, the top physical page to allow and the
+ * entry point for the Guest.
+ */
+static void tell_kernel(unsigned long start)
 {
-       u32 args[] = { LHREQ_INITIALIZE,
-                      LGUEST_GUEST_TOP/getpagesize(), /* Just below us */
-                      pgdir, start, page_offset };
-       int fd;
-
-       fd = open_or_die("/dev/lguest", O_RDWR);
-       if (write(fd, args, sizeof(args)) < 0)
+       unsigned long args[] = { LHREQ_INITIALIZE,
+                                (unsigned long)guest_base,
+                                guest_limit / getpagesize(), start };
+       verbose("Guest: %p - %p (%#lx)\n",
+               guest_base, guest_base + guest_limit, guest_limit);
+       lguest_fd = open_or_die("/dev/lguest", O_RDWR);
+       if (write(lguest_fd, args, sizeof(args)) < 0)
                err(1, "Writing to /dev/lguest");
-       return fd;
 }
-
-static void set_fd(int fd, struct device_list *devices)
+/*:*/
+
+/*L:200
+ * Device Handling.
+ *
+ * When the Guest gives us a buffer, it sends an array of addresses and sizes.
+ * We need to make sure it's not trying to reach into the Launcher itself, so
+ * we have a convenient routine which checks it and exits with an error message
+ * if something funny is going on:
+ */
+static void *_check_pointer(unsigned long addr, unsigned int size,
+                           unsigned int line)
 {
-       FD_SET(fd, &devices->infds);
-       if (fd > devices->max_infd)
-               devices->max_infd = fd;
+       /*
+        * We have to separately check addr and addr+size, because size could
+        * be huge and addr + size might wrap around.
+        */
+       if (addr >= guest_limit || addr + size >= guest_limit)
+               errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
+       /*
+        * We return a pointer for the caller's convenience, now we know it's
+        * safe to use.
+        */
+       return from_guest_phys(addr);
 }
+/* A macro which transparently hands the line number to the real function. */
+#define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
 
-/* When input arrives, we tell the kernel to kick lguest out with -EAGAIN. */
-static void wake_parent(int pipefd, int lguest_fd, struct device_list *devices)
+/*
+ * Each buffer in the virtqueues is actually a chain of descriptors.  This
+ * function returns the next descriptor in the chain, or vq->vring.num if we're
+ * at the end.
+ */
+static unsigned next_desc(struct vring_desc *desc,
+                         unsigned int i, unsigned int max)
 {
-       set_fd(pipefd, devices);
+       unsigned int next;
 
-       for (;;) {
-               fd_set rfds = devices->infds;
-               u32 args[] = { LHREQ_BREAK, 1 };
-
-               select(devices->max_infd+1, &rfds, NULL, NULL, NULL);
-               if (FD_ISSET(pipefd, &rfds)) {
-                       int ignorefd;
-                       if (read(pipefd, &ignorefd, sizeof(ignorefd)) == 0)
-                               exit(0);
-                       FD_CLR(ignorefd, &devices->infds);
-               } else
-                       write(lguest_fd, args, sizeof(args));
-       }
-}
-
-static int setup_waker(int lguest_fd, struct device_list *device_list)
-{
-       int pipefd[2], child;
+       /* If this descriptor says it doesn't chain, we're done. */
+       if (!(desc[i].flags & VRING_DESC_F_NEXT))
+               return max;
 
-       pipe(pipefd);
-       child = fork();
-       if (child == -1)
-               err(1, "forking");
+       /* Check they're not leading us off end of descriptors. */
+       next = desc[i].next;
+       /* Make sure compiler knows to grab that: we don't want it changing! */
+       wmb();
 
-       if (child == 0) {
-               close(pipefd[1]);
-               wake_parent(pipefd[0], lguest_fd, device_list);
-       }
-       close(pipefd[0]);
+       if (next >= max)
+               errx(1, "Desc next is %u", next);
 
-       return pipefd[1];
+       return next;
 }
 
-static void *_check_pointer(unsigned long addr, unsigned int size,
-                           unsigned int line)
+/*
+ * This actually sends the interrupt for this virtqueue, if we've used a
+ * buffer.
+ */
+static void trigger_irq(struct virtqueue *vq)
 {
-       if (addr >= LGUEST_GUEST_TOP || addr + size >= LGUEST_GUEST_TOP)
-               errx(1, "%s:%i: Invalid address %li", __FILE__, line, addr);
-       return (void *)addr;
+       unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
+
+       /* Don't inform them if nothing used. */
+       if (!vq->pending_used)
+               return;
+       vq->pending_used = 0;
+
+       /* If they don't want an interrupt, don't send one... */
+       if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT) {
+               /* ... unless they've asked us to force one on empty. */
+               if (!vq->dev->irq_on_empty
+                   || lg_last_avail(vq) != vq->vring.avail->idx)
+                       return;
+       }
+
+       /* Send the Guest an interrupt tell them we used something up. */
+       if (write(lguest_fd, buf, sizeof(buf)) != 0)
+               err(1, "Triggering irq %i", vq->config.irq);
 }
-#define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
 
-/* Returns pointer to dma->used_len */
-static u32 *dma2iov(unsigned long dma, struct iovec iov[], unsigned *num)
+/*
+ * This looks in the virtqueue for the first available buffer, and converts
+ * it to an iovec for convenient access.  Since descriptors consist of some
+ * number of output then some number of input descriptors, it's actually two
+ * iovecs, but we pack them into one and note how many of each there were.
+ *
+ * This function waits if necessary, and returns the descriptor number found.
+ */
+static unsigned wait_for_vq_desc(struct virtqueue *vq,
+                                struct iovec iov[],
+                                unsigned int *out_num, unsigned int *in_num)
 {
-       unsigned int i;
-       struct lguest_dma *udma;
-
-       udma = check_pointer(dma, sizeof(*udma));
-       for (i = 0; i < LGUEST_MAX_DMA_SECTIONS; i++) {
-               if (!udma->len[i])
+       unsigned int i, head, max;
+       struct vring_desc *desc;
+       u16 last_avail = lg_last_avail(vq);
+
+       /* There's nothing available? */
+       while (last_avail == vq->vring.avail->idx) {
+               u64 event;
+
+               /*
+                * Since we're about to sleep, now is a good time to tell the
+                * Guest about what we've used up to now.
+                */
+               trigger_irq(vq);
+
+               /* OK, now we need to know about added descriptors. */
+               vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
+
+               /*
+                * They could have slipped one in as we were doing that: make
+                * sure it's written, then check again.
+                */
+               mb();
+               if (last_avail != vq->vring.avail->idx) {
+                       vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
                        break;
+               }
+
+               /* Nothing new?  Wait for eventfd to tell us they refilled. */
+               if (read(vq->eventfd, &event, sizeof(event)) != sizeof(event))
+                       errx(1, "Event read failed?");
 
-               iov[i].iov_base = check_pointer(udma->addr[i], udma->len[i]);
-               iov[i].iov_len = udma->len[i];
+               /* We don't need to be notified again. */
+               vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
        }
-       *num = i;
-       return &udma->used_len;
-}
 
-static u32 *get_dma_buffer(int fd, void *key,
-                          struct iovec iov[], unsigned int *num, u32 *irq)
-{
-       u32 buf[] = { LHREQ_GETDMA, (u32)key };
-       unsigned long udma;
-       u32 *res;
+       /* Check it isn't doing very strange things with descriptor numbers. */
+       if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
+               errx(1, "Guest moved used index from %u to %u",
+                    last_avail, vq->vring.avail->idx);
+
+       /*
+        * Grab the next descriptor number they're advertising, and increment
+        * the index we've seen.
+        */
+       head = vq->vring.avail->ring[last_avail % vq->vring.num];
+       lg_last_avail(vq)++;
+
+       /* If their number is silly, that's a fatal mistake. */
+       if (head >= vq->vring.num)
+               errx(1, "Guest says index %u is available", head);
+
+       /* When we start there are none of either input nor output. */
+       *out_num = *in_num = 0;
+
+       max = vq->vring.num;
+       desc = vq->vring.desc;
+       i = head;
+
+       /*
+        * If this is an indirect entry, then this buffer contains a descriptor
+        * table which we handle as if it's any normal descriptor chain.
+        */
+       if (desc[i].flags & VRING_DESC_F_INDIRECT) {
+               if (desc[i].len % sizeof(struct vring_desc))
+                       errx(1, "Invalid size for indirect buffer table");
+
+               max = desc[i].len / sizeof(struct vring_desc);
+               desc = check_pointer(desc[i].addr, desc[i].len);
+               i = 0;
+       }
 
-       udma = write(fd, buf, sizeof(buf));
-       if (udma == (unsigned long)-1)
-               return NULL;
+       do {
+               /* Grab the first descriptor, and check it's OK. */
+               iov[*out_num + *in_num].iov_len = desc[i].len;
+               iov[*out_num + *in_num].iov_base
+                       = check_pointer(desc[i].addr, desc[i].len);
+               /* If this is an input descriptor, increment that count. */
+               if (desc[i].flags & VRING_DESC_F_WRITE)
+                       (*in_num)++;
+               else {
+                       /*
+                        * If it's an output descriptor, they're all supposed
+                        * to come before any input descriptors.
+                        */
+                       if (*in_num)
+                               errx(1, "Descriptor has out after in");
+                       (*out_num)++;
+               }
 
-       /* Kernel stashes irq in ->used_len. */
-       res = dma2iov(udma, iov, num);
-       *irq = *res;
-       return res;
-}
+               /* If we've got too many, that implies a descriptor loop. */
+               if (*out_num + *in_num > max)
+                       errx(1, "Looped descriptor");
+       } while ((i = next_desc(desc, i, max)) != max);
 
-static void trigger_irq(int fd, u32 irq)
-{
-       u32 buf[] = { LHREQ_IRQ, irq };
-       if (write(fd, buf, sizeof(buf)) != 0)
-               err(1, "Triggering irq %i", irq);
+       return head;
 }
 
-static void discard_iovec(struct iovec *iov, unsigned int *num)
+/*
+ * After we've used one of their buffers, we tell the Guest about it.  Sometime
+ * later we'll want to send them an interrupt using trigger_irq(); note that
+ * wait_for_vq_desc() does that for us if it has to wait.
+ */
+static void add_used(struct virtqueue *vq, unsigned int head, int len)
 {
-       static char discard_buf[1024];
-       *num = 1;
-       iov->iov_base = discard_buf;
-       iov->iov_len = sizeof(discard_buf);
+       struct vring_used_elem *used;
+
+       /*
+        * The virtqueue contains a ring of used buffers.  Get a pointer to the
+        * next entry in that used ring.
+        */
+       used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
+       used->id = head;
+       used->len = len;
+       /* Make sure buffer is written before we update index. */
+       wmb();
+       vq->vring.used->idx++;
+       vq->pending_used++;
 }
 
-static struct termios orig_term;
-static void restore_term(void)
+/* And here's the combo meal deal.  Supersize me! */
+static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
 {
-       tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
+       add_used(vq, head, len);
+       trigger_irq(vq);
 }
 
-struct console_abort
-{
+/*
+ * The Console
+ *
+ * We associate some data with the console for our exit hack.
+ */
+struct console_abort {
+       /* How many times have they hit ^C? */
        int count;
+       /* When did they start? */
        struct timeval start;
 };
 
-/* We DMA input to buffer bound at start of console page. */
-static bool handle_console_input(int fd, struct device *dev)
+/* This is the routine which handles console input (ie. stdin). */
+static void console_input(struct virtqueue *vq)
 {
-       u32 irq = 0, *lenp;
        int len;
-       unsigned int num;
-       struct iovec iov[LGUEST_MAX_DMA_SECTIONS];
-       struct console_abort *abort = dev->priv;
-
-       lenp = get_dma_buffer(fd, dev->mem, iov, &num, &irq);
-       if (!lenp) {
-               warn("console: no dma buffer!");
-               discard_iovec(iov, &num);
-       }
+       unsigned int head, in_num, out_num;
+       struct console_abort *abort = vq->dev->priv;
+       struct iovec iov[vq->vring.num];
+
+       /* Make sure there's a descriptor available. */
+       head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
+       if (out_num)
+               errx(1, "Output buffers in console in queue?");
 
-       len = readv(dev->fd, iov, num);
+       /* Read into it.  This is where we usually wait. */
+       len = readv(STDIN_FILENO, iov, in_num);
        if (len <= 0) {
+               /* Ran out of input? */
                warnx("Failed to get console input, ignoring console.");
-               len = 0;
+               /*
+                * For simplicity, dying threads kill the whole Launcher.  So
+                * just nap here.
+                */
+               for (;;)
+                       pause();
        }
 
-       if (lenp) {
-               *lenp = len;
-               trigger_irq(fd, irq);
+       /* Tell the Guest we used a buffer. */
+       add_used_and_trigger(vq, head, len);
+
+       /*
+        * Three ^C within one second?  Exit.
+        *
+        * This is such a hack, but works surprisingly well.  Each ^C has to
+        * be in a buffer by itself, so they can't be too fast.  But we check
+        * that we get three within about a second, so they can't be too
+        * slow.
+        */
+       if (len != 1 || ((char *)iov[0].iov_base)[0] != 3) {
+               abort->count = 0;
+               return;
        }
 
-       /* Three ^C within one second?  Exit. */
-       if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
-               if (!abort->count++)
-                       gettimeofday(&abort->start, NULL);
-               else if (abort->count == 3) {
-                       struct timeval now;
-                       gettimeofday(&now, NULL);
-                       if (now.tv_sec <= abort->start.tv_sec+1) {
-                               /* Make sure waker is not blocked in BREAK */
-                               u32 args[] = { LHREQ_BREAK, 0 };
-                               close(waker_fd);
-                               write(fd, args, sizeof(args));
-                               exit(2);
-                       }
-                       abort->count = 0;
-               }
-       } else
+       abort->count++;
+       if (abort->count == 1)
+               gettimeofday(&abort->start, NULL);
+       else if (abort->count == 3) {
+               struct timeval now;
+               gettimeofday(&now, NULL);
+               /* Kill all Launcher processes with SIGINT, like normal ^C */
+               if (now.tv_sec <= abort->start.tv_sec+1)
+                       kill(0, SIGINT);
                abort->count = 0;
-
-       if (!len) {
-               restore_term();
-               return false;
        }
-       return true;
 }
 
-static u32 handle_console_output(int fd, const struct iovec *iov,
-                                unsigned num, struct device*dev)
+/* This is the routine which handles console output (ie. stdout). */
+static void console_output(struct virtqueue *vq)
 {
-       return writev(STDOUT_FILENO, iov, num);
+       unsigned int head, out, in;
+       struct iovec iov[vq->vring.num];
+
+       /* We usually wait in here, for the Guest to give us something. */
+       head = wait_for_vq_desc(vq, iov, &out, &in);
+       if (in)
+               errx(1, "Input buffers in console output queue?");
+
+       /* writev can return a partial write, so we loop here. */
+       while (!iov_empty(iov, out)) {
+               int len = writev(STDOUT_FILENO, iov, out);
+               if (len <= 0)
+                       err(1, "Write to stdout gave %i", len);
+               iov_consume(iov, out, len);
+       }
+
+       /*
+        * We're finished with that buffer: if we're going to sleep,
+        * wait_for_vq_desc() will prod the Guest with an interrupt.
+        */
+       add_used(vq, head, 0);
 }
 
-static u32 handle_tun_output(int fd, const struct iovec *iov,
-                            unsigned num, struct device *dev)
+/*
+ * The Network
+ *
+ * Handling output for network is also simple: we get all the output buffers
+ * and write them to /dev/net/tun.
+ */
+struct net_info {
+       int tunfd;
+};
+
+static void net_output(struct virtqueue *vq)
 {
-       /* Now we've seen output, we should warn if we can't get buffers. */
-       *(bool *)dev->priv = true;
-       return writev(dev->fd, iov, num);
+       struct net_info *net_info = vq->dev->priv;
+       unsigned int head, out, in;
+       struct iovec iov[vq->vring.num];
+
+       /* We usually wait in here for the Guest to give us a packet. */
+       head = wait_for_vq_desc(vq, iov, &out, &in);
+       if (in)
+               errx(1, "Input buffers in net output queue?");
+       /*
+        * Send the whole thing through to /dev/net/tun.  It expects the exact
+        * same format: what a coincidence!
+        */
+       if (writev(net_info->tunfd, iov, out) < 0)
+               errx(1, "Write to tun failed?");
+
+       /*
+        * Done with that one; wait_for_vq_desc() will send the interrupt if
+        * all packets are processed.
+        */
+       add_used(vq, head, 0);
 }
 
-static unsigned long peer_offset(unsigned int peernum)
+/*
+ * Handling network input is a bit trickier, because I've tried to optimize it.
+ *
+ * First we have a helper routine which tells is if from this file descriptor
+ * (ie. the /dev/net/tun device) will block:
+ */
+static bool will_block(int fd)
 {
-       return 4 * peernum;
+       fd_set fdset;
+       struct timeval zero = { 0, 0 };
+       FD_ZERO(&fdset);
+       FD_SET(fd, &fdset);
+       return select(fd+1, &fdset, NULL, NULL, &zero) != 1;
 }
 
-static bool handle_tun_input(int fd, struct device *dev)
+/*
+ * This handles packets coming in from the tun device to our Guest.  Like all
+ * service routines, it gets called again as soon as it returns, so you don't
+ * see a while(1) loop here.
+ */
+static void net_input(struct virtqueue *vq)
 {
-       u32 irq = 0, *lenp;
        int len;
-       unsigned num;
-       struct iovec iov[LGUEST_MAX_DMA_SECTIONS];
-
-       lenp = get_dma_buffer(fd, dev->mem+peer_offset(NET_PEERNUM), iov, &num,
-                             &irq);
-       if (!lenp) {
-               if (*(bool *)dev->priv)
-                       warn("network: no dma buffer!");
-               discard_iovec(iov, &num);
-       }
-
-       len = readv(dev->fd, iov, num);
+       unsigned int head, out, in;
+       struct iovec iov[vq->vring.num];
+       struct net_info *net_info = vq->dev->priv;
+
+       /*
+        * Get a descriptor to write an incoming packet into.  This will also
+        * send an interrupt if they're out of descriptors.
+        */
+       head = wait_for_vq_desc(vq, iov, &out, &in);
+       if (out)
+               errx(1, "Output buffers in net input queue?");
+
+       /*
+        * If it looks like we'll block reading from the tun device, send them
+        * an interrupt.
+        */
+       if (vq->pending_used && will_block(net_info->tunfd))
+               trigger_irq(vq);
+
+       /*
+        * Read in the packet.  This is where we normally wait (when there's no
+        * incoming network traffic).
+        */
+       len = readv(net_info->tunfd, iov, in);
        if (len <= 0)
-               err(1, "reading network");
-       if (lenp) {
-               *lenp = len;
-               trigger_irq(fd, irq);
-       }
-       verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
-               ((u8 *)iov[0].iov_base)[0], ((u8 *)iov[0].iov_base)[1],
-               lenp ? "sent" : "discarded");
-       return true;
+               err(1, "Failed to read from tun.");
+
+       /*
+        * Mark that packet buffer as used, but don't interrupt here.  We want
+        * to wait until we've done as much work as we can.
+        */
+       add_used(vq, head, len);
+}
+/*:*/
+
+/* This is the helper to create threads: run the service routine in a loop. */
+static int do_thread(void *_vq)
+{
+       struct virtqueue *vq = _vq;
+
+       for (;;)
+               vq->service(vq);
+       return 0;
 }
 
-static u32 handle_block_output(int fd, const struct iovec *iov,
-                              unsigned num, struct device *dev)
+/*
+ * When a child dies, we kill our entire process group with SIGTERM.  This
+ * also has the side effect that the shell restores the console for us!
+ */
+static void kill_launcher(int signal)
 {
-       struct lguest_block_page *p = dev->mem;
-       u32 irq, *lenp;
-       unsigned int len, reply_num;
-       struct iovec reply[LGUEST_MAX_DMA_SECTIONS];
-       off64_t device_len, off = (off64_t)p->sector * 512;
+       kill(0, SIGTERM);
+}
 
-       device_len = *(off64_t *)dev->priv;
+static void reset_device(struct device *dev)
+{
+       struct virtqueue *vq;
 
-       if (off >= device_len)
-               err(1, "Bad offset %llu vs %llu", off, device_len);
-       if (lseek64(dev->fd, off, SEEK_SET) != off)
-               err(1, "Bad seek to sector %i", p->sector);
+       verbose("Resetting device %s\n", dev->name);
 
-       verbose("Block: %s at offset %llu\n", p->type ? "WRITE" : "READ", off);
+       /* Clear any features they've acked. */
+       memset(get_feature_bits(dev) + dev->feature_len, 0, dev->feature_len);
 
-       lenp = get_dma_buffer(fd, dev->mem, reply, &reply_num, &irq);
-       if (!lenp)
-               err(1, "Block request didn't give us a dma buffer");
+       /* We're going to be explicitly killing threads, so ignore them. */
+       signal(SIGCHLD, SIG_IGN);
 
-       if (p->type) {
-               len = writev(dev->fd, iov, num);
-               if (off + len > device_len) {
-                       ftruncate(dev->fd, device_len);
-                       errx(1, "Write past end %llu+%u", off, len);
+       /* Zero out the virtqueues, get rid of their threads */
+       for (vq = dev->vq; vq; vq = vq->next) {
+               if (vq->thread != (pid_t)-1) {
+                       kill(vq->thread, SIGTERM);
+                       waitpid(vq->thread, NULL, 0);
+                       vq->thread = (pid_t)-1;
                }
-               *lenp = 0;
-       } else {
-               len = readv(dev->fd, reply, reply_num);
-               *lenp = len;
+               memset(vq->vring.desc, 0,
+                      vring_size(vq->config.num, LGUEST_VRING_ALIGN));
+               lg_last_avail(vq) = 0;
        }
+       dev->running = false;
 
-       p->result = 1 + (p->bytes != len);
-       trigger_irq(fd, irq);
-       return 0;
+       /* Now we care if threads die. */
+       signal(SIGCHLD, (void *)kill_launcher);
+}
+
+/*L:216
+ * This actually creates the thread which services the virtqueue for a device.
+ */
+static void create_thread(struct virtqueue *vq)
+{
+       /*
+        * Create stack for thread.  Since the stack grows upwards, we point
+        * the stack pointer to the end of this region.
+        */
+       char *stack = malloc(32768);
+       unsigned long args[] = { LHREQ_EVENTFD,
+                                vq->config.pfn*getpagesize(), 0 };
+
+       /* Create a zero-initialized eventfd. */
+       vq->eventfd = eventfd(0, 0);
+       if (vq->eventfd < 0)
+               err(1, "Creating eventfd");
+       args[2] = vq->eventfd;
+
+       /*
+        * Attach an eventfd to this virtqueue: it will go off when the Guest
+        * does an LHCALL_NOTIFY for this vq.
+        */
+       if (write(lguest_fd, &args, sizeof(args)) != 0)
+               err(1, "Attaching eventfd");
+
+       /*
+        * CLONE_VM: because it has to access the Guest memory, and SIGCHLD so
+        * we get a signal if it dies.
+        */
+       vq->thread = clone(do_thread, stack + 32768, CLONE_VM | SIGCHLD, vq);
+       if (vq->thread == (pid_t)-1)
+               err(1, "Creating clone");
+
+       /* We close our local copy now the child has it. */
+       close(vq->eventfd);
+}
+
+static bool accepted_feature(struct device *dev, unsigned int bit)
+{
+       const u8 *features = get_feature_bits(dev) + dev->feature_len;
+
+       if (dev->feature_len < bit / CHAR_BIT)
+               return false;
+       return features[bit / CHAR_BIT] & (1 << (bit % CHAR_BIT));
 }
 
-static void handle_output(int fd, unsigned long dma, unsigned long key,
-                         struct device_list *devices)
+static void start_device(struct device *dev)
+{
+       unsigned int i;
+       struct virtqueue *vq;
+
+       verbose("Device %s OK: offered", dev->name);
+       for (i = 0; i < dev->feature_len; i++)
+               verbose(" %02x", get_feature_bits(dev)[i]);
+       verbose(", accepted");
+       for (i = 0; i < dev->feature_len; i++)
+               verbose(" %02x", get_feature_bits(dev)
+                       [dev->feature_len+i]);
+
+       dev->irq_on_empty = accepted_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
+
+       for (vq = dev->vq; vq; vq = vq->next) {
+               if (vq->service)
+                       create_thread(vq);
+       }
+       dev->running = true;
+}
+
+static void cleanup_devices(void)
+{
+       struct device *dev;
+
+       for (dev = devices.dev; dev; dev = dev->next)
+               reset_device(dev);
+
+       /* If we saved off the original terminal settings, restore them now. */
+       if (orig_term.c_lflag & (ISIG|ICANON|ECHO))
+               tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
+}
+
+/* When the Guest tells us they updated the status field, we handle it. */
+static void update_device_status(struct device *dev)
+{
+       /* A zero status is a reset, otherwise it's a set of flags. */
+       if (dev->desc->status == 0)
+               reset_device(dev);
+       else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
+               warnx("Device %s configuration FAILED", dev->name);
+               if (dev->running)
+                       reset_device(dev);
+       } else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
+               if (!dev->running)
+                       start_device(dev);
+       }
+}
+
+/*L:215
+ * This is the generic routine we call when the Guest uses LHCALL_NOTIFY.  In
+ * particular, it's used to notify us of device status changes during boot.
+ */
+static void handle_output(unsigned long addr)
 {
        struct device *i;
-       u32 *lenp;
-       struct iovec iov[LGUEST_MAX_DMA_SECTIONS];
-       unsigned num = 0;
-
-       lenp = dma2iov(dma, iov, &num);
-       for (i = devices->dev; i; i = i->next) {
-               if (i->handle_output && key == i->watch_key) {
-                       *lenp = i->handle_output(fd, iov, num, i);
+
+       /* Check each device. */
+       for (i = devices.dev; i; i = i->next) {
+               struct virtqueue *vq;
+
+               /*
+                * Notifications to device descriptors mean they updated the
+                * device status.
+                */
+               if (from_guest_phys(addr) == i->desc) {
+                       update_device_status(i);
+                       return;
+               }
+
+               /*
+                * Devices *can* be used before status is set to DRIVER_OK.
+                * The original plan was that they would never do this: they
+                * would always finish setting up their status bits before
+                * actually touching the virtqueues.  In practice, we allowed
+                * them to, and they do (eg. the disk probes for partition
+                * tables as part of initialization).
+                *
+                * If we see this, we start the device: once it's running, we
+                * expect the device to catch all the notifications.
+                */
+               for (vq = i->vq; vq; vq = vq->next) {
+                       if (addr != vq->config.pfn*getpagesize())
+                               continue;
+                       if (i->running)
+                               errx(1, "Notification on running %s", i->name);
+                       /* This just calls create_thread() for each virtqueue */
+                       start_device(i);
                        return;
                }
        }
-       warnx("Pending dma %p, key %p", (void *)dma, (void *)key);
+
+       /*
+        * Early console write is done using notify on a nul-terminated string
+        * in Guest memory.  It's also great for hacking debugging messages
+        * into a Guest.
+        */
+       if (addr >= guest_limit)
+               errx(1, "Bad NOTIFY %#lx", addr);
+
+       write(STDOUT_FILENO, from_guest_phys(addr),
+             strnlen(from_guest_phys(addr), guest_limit - addr));
 }
 
-static void handle_input(int fd, struct device_list *devices)
+/*L:190
+ * Device Setup
+ *
+ * All devices need a descriptor so the Guest knows it exists, and a "struct
+ * device" so the Launcher can keep track of it.  We have common helper
+ * routines to allocate and manage them.
+ */
+
+/*
+ * The layout of the device page is a "struct lguest_device_desc" followed by a
+ * number of virtqueue descriptors, then two sets of feature bits, then an
+ * array of configuration bytes.  This routine returns the configuration
+ * pointer.
+ */
+static u8 *device_config(const struct device *dev)
 {
-       struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
+       return (void *)(dev->desc + 1)
+               + dev->num_vq * sizeof(struct lguest_vqconfig)
+               + dev->feature_len * 2;
+}
 
-       for (;;) {
-               struct device *i;
-               fd_set fds = devices->infds;
+/*
+ * This routine allocates a new "struct lguest_device_desc" from descriptor
+ * table page just above the Guest's normal memory.  It returns a pointer to
+ * that descriptor.
+ */
+static struct lguest_device_desc *new_dev_desc(u16 type)
+{
+       struct lguest_device_desc d = { .type = type };
+       void *p;
 
-               if (select(devices->max_infd+1, &fds, NULL, NULL, &poll) == 0)
-                       break;
+       /* Figure out where the next device config is, based on the last one. */
+       if (devices.lastdev)
+               p = device_config(devices.lastdev)
+                       + devices.lastdev->desc->config_len;
+       else
+               p = devices.descpage;
 
-               for (i = devices->dev; i; i = i->next) {
-                       if (i->handle_input && FD_ISSET(i->fd, &fds)) {
-                               if (!i->handle_input(fd, i)) {
-                                       FD_CLR(i->fd, &devices->infds);
-                                       /* Tell waker to ignore it too... */
-                                       write(waker_fd, &i->fd, sizeof(i->fd));
-                               }
-                       }
-               }
+       /* We only have one page for all the descriptors. */
+       if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
+               errx(1, "Too many devices");
+
+       /* p might not be aligned, so we memcpy in. */
+       return memcpy(p, &d, sizeof(d));
+}
+
+/*
+ * Each device descriptor is followed by the description of its virtqueues.  We
+ * specify how many descriptors the virtqueue is to have.
+ */
+static void add_virtqueue(struct device *dev, unsigned int num_descs,
+                         void (*service)(struct virtqueue *))
+{
+       unsigned int pages;
+       struct virtqueue **i, *vq = malloc(sizeof(*vq));
+       void *p;
+
+       /* First we need some memory for this virtqueue. */
+       pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
+               / getpagesize();
+       p = get_pages(pages);
+
+       /* Initialize the virtqueue */
+       vq->next = NULL;
+       vq->last_avail_idx = 0;
+       vq->dev = dev;
+
+       /*
+        * This is the routine the service thread will run, and its Process ID
+        * once it's running.
+        */
+       vq->service = service;
+       vq->thread = (pid_t)-1;
+
+       /* Initialize the configuration. */
+       vq->config.num = num_descs;
+       vq->config.irq = devices.next_irq++;
+       vq->config.pfn = to_guest_phys(p) / getpagesize();
+
+       /* Initialize the vring. */
+       vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
+
+       /*
+        * Append virtqueue to this device's descriptor.  We use
+        * device_config() to get the end of the device's current virtqueues;
+        * we check that we haven't added any config or feature information
+        * yet, otherwise we'd be overwriting them.
+        */
+       assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
+       memcpy(device_config(dev), &vq->config, sizeof(vq->config));
+       dev->num_vq++;
+       dev->desc->num_vq++;
+
+       verbose("Virtqueue page %#lx\n", to_guest_phys(p));
+
+       /*
+        * Add to tail of list, so dev->vq is first vq, dev->vq->next is
+        * second.
+        */
+       for (i = &dev->vq; *i; i = &(*i)->next);
+       *i = vq;
+}
+
+/*
+ * The first half of the feature bitmask is for us to advertise features.  The
+ * second half is for the Guest to accept features.
+ */
+static void add_feature(struct device *dev, unsigned bit)
+{
+       u8 *features = get_feature_bits(dev);
+
+       /* We can't extend the feature bits once we've added config bytes */
+       if (dev->desc->feature_len <= bit / CHAR_BIT) {
+               assert(dev->desc->config_len == 0);
+               dev->feature_len = dev->desc->feature_len = (bit/CHAR_BIT) + 1;
        }
+
+       features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
 }
 
-static struct lguest_device_desc *new_dev_desc(u16 type, u16 features,
-                                              u16 num_pages)
+/*
+ * This routine sets the configuration fields for an existing device's
+ * descriptor.  It only works for the last device, but that's OK because that's
+ * how we use it.
+ */
+static void set_config(struct device *dev, unsigned len, const void *conf)
 {
-       static unsigned long top = LGUEST_GUEST_TOP;
-       struct lguest_device_desc *desc;
+       /* Check we haven't overflowed our single page. */
+       if (device_config(dev) + len > devices.descpage + getpagesize())
+               errx(1, "Too many devices");
 
-       desc = malloc(sizeof(*desc));
-       desc->type = type;
-       desc->num_pages = num_pages;
-       desc->features = features;
-       desc->status = 0;
-       if (num_pages) {
-               top -= num_pages*getpagesize();
-               map_zeroed_pages(top, num_pages);
-               desc->pfn = top / getpagesize();
-       } else
-               desc->pfn = 0;
-       return desc;
-}
-
-static struct device *new_device(struct device_list *devices,
-                                u16 type, u16 num_pages, u16 features,
-                                int fd,
-                                bool (*handle_input)(int, struct device *),
-                                unsigned long watch_off,
-                                u32 (*handle_output)(int,
-                                                     const struct iovec *,
-                                                     unsigned,
-                                                     struct device *))
+       /* Copy in the config information, and store the length. */
+       memcpy(device_config(dev), conf, len);
+       dev->desc->config_len = len;
+
+       /* Size must fit in config_len field (8 bits)! */
+       assert(dev->desc->config_len == len);
+}
+
+/*
+ * This routine does all the creation and setup of a new device, including
+ * calling new_dev_desc() to allocate the descriptor and device memory.  We
+ * don't actually start the service threads until later.
+ *
+ * See what I mean about userspace being boring?
+ */
+static struct device *new_device(const char *name, u16 type)
 {
        struct device *dev = malloc(sizeof(*dev));
 
-       /* Append to device list. */
-       *devices->lastdev = dev;
-       dev->next = NULL;
-       devices->lastdev = &dev->next;
-
-       dev->fd = fd;
-       if (handle_input)
-               set_fd(dev->fd, devices);
-       dev->desc = new_dev_desc(type, features, num_pages);
-       dev->mem = (void *)(dev->desc->pfn * getpagesize());
-       dev->handle_input = handle_input;
-       dev->watch_key = (unsigned long)dev->mem + watch_off;
-       dev->handle_output = handle_output;
+       /* Now we populate the fields one at a time. */
+       dev->desc = new_dev_desc(type);
+       dev->name = name;
+       dev->vq = NULL;
+       dev->feature_len = 0;
+       dev->num_vq = 0;
+       dev->running = false;
+
+       /*
+        * Append to device list.  Prepending to a single-linked list is
+        * easier, but the user expects the devices to be arranged on the bus
+        * in command-line order.  The first network device on the command line
+        * is eth0, the first block device /dev/vda, etc.
+        */
+       if (devices.lastdev)
+               devices.lastdev->next = dev;
+       else
+               devices.dev = dev;
+       devices.lastdev = dev;
+
        return dev;
 }
 
-static void setup_console(struct device_list *devices)
+/*
+ * Our first setup routine is the console.  It's a fairly simple device, but
+ * UNIX tty handling makes it uglier than it could be.
+ */
+static void setup_console(void)
 {
        struct device *dev;
 
+       /* If we can save the initial standard input settings... */
        if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
                struct termios term = orig_term;
+               /*
+                * Then we turn off echo, line buffering and ^C etc: We want a
+                * raw input stream to the Guest.
+                */
                term.c_lflag &= ~(ISIG|ICANON|ECHO);
                tcsetattr(STDIN_FILENO, TCSANOW, &term);
-               atexit(restore_term);
        }
 
-       /* We don't currently require a page for the console. */
-       dev = new_device(devices, LGUEST_DEVICE_T_CONSOLE, 0, 0,
-                        STDIN_FILENO, handle_console_input,
-                        LGUEST_CONSOLE_DMA_KEY, handle_console_output);
+       dev = new_device("console", VIRTIO_ID_CONSOLE);
+
+       /* We store the console state in dev->priv, and initialize it. */
        dev->priv = malloc(sizeof(struct console_abort));
        ((struct console_abort *)dev->priv)->count = 0;
-       verbose("device %p: console\n",
-               (void *)(dev->desc->pfn * getpagesize()));
-}
 
-static void setup_block_file(const char *filename, struct device_list *devices)
-{
-       int fd;
-       struct device *dev;
-       off64_t *device_len;
-       struct lguest_block_page *p;
-
-       fd = open_or_die(filename, O_RDWR|O_LARGEFILE|O_DIRECT);
-       dev = new_device(devices, LGUEST_DEVICE_T_BLOCK, 1,
-                        LGUEST_DEVICE_F_RANDOMNESS,
-                        fd, NULL, 0, handle_block_output);
-       device_len = dev->priv = malloc(sizeof(*device_len));
-       *device_len = lseek64(fd, 0, SEEK_END);
-       p = dev->mem;
-
-       p->num_sectors = *device_len/512;
-       verbose("device %p: block %i sectors\n",
-               (void *)(dev->desc->pfn * getpagesize()), p->num_sectors);
-}
-
-/* We use fnctl locks to reserve network slots (autocleanup!) */
-static unsigned int find_slot(int netfd, const char *filename)
-{
-       struct flock fl;
-
-       fl.l_type = F_WRLCK;
-       fl.l_whence = SEEK_SET;
-       fl.l_len = 1;
-       for (fl.l_start = 0;
-            fl.l_start < getpagesize()/sizeof(struct lguest_net);
-            fl.l_start++) {
-               if (fcntl(netfd, F_SETLK, &fl) == 0)
-                       return fl.l_start;
-       }
-       errx(1, "No free slots in network file %s", filename);
+       /*
+        * The console needs two virtqueues: the input then the output.  When
+        * they put something the input queue, we make sure we're listening to
+        * stdin.  When they put something in the output queue, we write it to
+        * stdout.
+        */
+       add_virtqueue(dev, VIRTQUEUE_NUM, console_input);
+       add_virtqueue(dev, VIRTQUEUE_NUM, console_output);
+
+       verbose("device %u: console\n", ++devices.device_num);
 }
+/*:*/
+
+/*M:010
+ * Inter-guest networking is an interesting area.  Simplest is to have a
+ * --sharenet=<name> option which opens or creates a named pipe.  This can be
+ * used to send packets to another guest in a 1:1 manner.
+ *
+ * More sopisticated is to use one of the tools developed for project like UML
+ * to do networking.
+ *
+ * Faster is to do virtio bonding in kernel.  Doing this 1:1 would be
+ * completely generic ("here's my vring, attach to your vring") and would work
+ * for any traffic.  Of course, namespace and permissions issues need to be
+ * dealt with.  A more sophisticated "multi-channel" virtio_net.c could hide
+ * multiple inter-guest channels behind one interface, although it would
+ * require some manner of hotplugging new virtio channels.
+ *
+ * Finally, we could implement a virtio network switch in the kernel.
+:*/
 
-static void setup_net_file(const char *filename,
-                          struct device_list *devices)
+static u32 str2ip(const char *ipaddr)
 {
-       int netfd;
-       struct device *dev;
+       unsigned int b[4];
 
-       netfd = open(filename, O_RDWR, 0);
-       if (netfd < 0) {
-               if (errno == ENOENT) {
-                       netfd = open(filename, O_RDWR|O_CREAT, 0600);
-                       if (netfd >= 0) {
-                               char page[getpagesize()];
-                               memset(page, 0, sizeof(page));
-                               write(netfd, page, sizeof(page));
-                       }
-               }
-               if (netfd < 0)
-                       err(1, "cannot open net file '%s'", filename);
-       }
-
-       dev = new_device(devices, LGUEST_DEVICE_T_NET, 1,
-                        find_slot(netfd, filename)|LGUEST_NET_F_NOCSUM,
-                        -1, NULL, 0, NULL);
-
-       /* We overwrite the /dev/zero mapping with the actual file. */
-       if (mmap(dev->mem, getpagesize(), PROT_READ|PROT_WRITE,
-                        MAP_FIXED|MAP_SHARED, netfd, 0) != dev->mem)
-                       err(1, "could not mmap '%s'", filename);
-       verbose("device %p: shared net %s, peer %i\n",
-               (void *)(dev->desc->pfn * getpagesize()), filename,
-               dev->desc->features & ~LGUEST_NET_F_NOCSUM);
+       if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
+               errx(1, "Failed to parse IP address '%s'", ipaddr);
+       return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
 }
 
-static u32 str2ip(const char *ipaddr)
+static void str2mac(const char *macaddr, unsigned char mac[6])
 {
-       unsigned int byte[4];
-
-       sscanf(ipaddr, "%u.%u.%u.%u", &byte[0], &byte[1], &byte[2], &byte[3]);
-       return (byte[0] << 24) | (byte[1] << 16) | (byte[2] << 8) | byte[3];
+       unsigned int m[6];
+       if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
+                  &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
+               errx(1, "Failed to parse mac address '%s'", macaddr);
+       mac[0] = m[0];
+       mac[1] = m[1];
+       mac[2] = m[2];
+       mac[3] = m[3];
+       mac[4] = m[4];
+       mac[5] = m[5];
 }
 
-/* adapted from libbridge */
+/*
+ * This code is "adapted" from libbridge: it attaches the Host end of the
+ * network device to the bridge device specified by the command line.
+ *
+ * This is yet another James Morris contribution (I'm an IP-level guy, so I
+ * dislike bridging), and I just try not to break it.
+ */
 static void add_to_bridge(int fd, const char *if_name, const char *br_name)
 {
        int ifidx;
@@ -790,174 +1434,529 @@ static void add_to_bridge(int fd, const char *if_name, const char *br_name)
                errx(1, "interface %s does not exist!", if_name);
 
        strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
+       ifr.ifr_name[IFNAMSIZ-1] = '\0';
        ifr.ifr_ifindex = ifidx;
        if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
                err(1, "can't add %s to bridge %s", if_name, br_name);
 }
 
-static void configure_device(int fd, const char *devname, u32 ipaddr,
-                            unsigned char hwaddr[6])
+/*
+ * This sets up the Host end of the network device with an IP address, brings
+ * it up so packets will flow, the copies the MAC address into the hwaddr
+ * pointer.
+ */
+static void configure_device(int fd, const char *tapif, u32 ipaddr)
 {
        struct ifreq ifr;
        struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
 
        memset(&ifr, 0, sizeof(ifr));
-       strcpy(ifr.ifr_name, devname);
+       strcpy(ifr.ifr_name, tapif);
+
+       /* Don't read these incantations.  Just cut & paste them like I did! */
        sin->sin_family = AF_INET;
        sin->sin_addr.s_addr = htonl(ipaddr);
        if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
-               err(1, "Setting %s interface address", devname);
+               err(1, "Setting %s interface address", tapif);
        ifr.ifr_flags = IFF_UP;
        if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
-               err(1, "Bringing interface %s up", devname);
-
-       if (ioctl(fd, SIOCGIFHWADDR, &ifr) != 0)
-               err(1, "getting hw address for %s", devname);
-
-       memcpy(hwaddr, ifr.ifr_hwaddr.sa_data, 6);
+               err(1, "Bringing interface %s up", tapif);
 }
 
-static void setup_tun_net(const char *arg, struct device_list *devices)
+static int get_tun_device(char tapif[IFNAMSIZ])
 {
-       struct device *dev;
        struct ifreq ifr;
-       int netfd, ipfd;
-       u32 ip;
-       const char *br_name = NULL;
+       int netfd;
 
-       netfd = open_or_die("/dev/net/tun", O_RDWR);
+       /* Start with this zeroed.  Messy but sure. */
        memset(&ifr, 0, sizeof(ifr));
-       ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
+
+       /*
+        * We open the /dev/net/tun device and tell it we want a tap device.  A
+        * tap device is like a tun device, only somehow different.  To tell
+        * the truth, I completely blundered my way through this code, but it
+        * works now!
+        */
+       netfd = open_or_die("/dev/net/tun", O_RDWR);
+       ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
        strcpy(ifr.ifr_name, "tap%d");
        if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
                err(1, "configuring /dev/net/tun");
+
+       if (ioctl(netfd, TUNSETOFFLOAD,
+                 TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
+               err(1, "Could not set features for tun device");
+
+       /*
+        * We don't need checksums calculated for packets coming in this
+        * device: trust us!
+        */
        ioctl(netfd, TUNSETNOCSUM, 1);
 
-       /* You will be peer 1: we should create enough jitter to randomize */
-       dev = new_device(devices, LGUEST_DEVICE_T_NET, 1,
-                        NET_PEERNUM|LGUEST_DEVICE_F_RANDOMNESS, netfd,
-                        handle_tun_input, peer_offset(0), handle_tun_output);
-       dev->priv = malloc(sizeof(bool));
-       *(bool *)dev->priv = false;
+       memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
+       return netfd;
+}
 
+/*L:195
+ * Our network is a Host<->Guest network.  This can either use bridging or
+ * routing, but the principle is the same: it uses the "tun" device to inject
+ * packets into the Host as if they came in from a normal network card.  We
+ * just shunt packets between the Guest and the tun device.
+ */
+static void setup_tun_net(char *arg)
+{
+       struct device *dev;
+       struct net_info *net_info = malloc(sizeof(*net_info));
+       int ipfd;
+       u32 ip = INADDR_ANY;
+       bool bridging = false;
+       char tapif[IFNAMSIZ], *p;
+       struct virtio_net_config conf;
+
+       net_info->tunfd = get_tun_device(tapif);
+
+       /* First we create a new network device. */
+       dev = new_device("net", VIRTIO_ID_NET);
+       dev->priv = net_info;
+
+       /* Network devices need a recv and a send queue, just like console. */
+       add_virtqueue(dev, VIRTQUEUE_NUM, net_input);
+       add_virtqueue(dev, VIRTQUEUE_NUM, net_output);
+
+       /*
+        * We need a socket to perform the magic network ioctls to bring up the
+        * tap interface, connect to the bridge etc.  Any socket will do!
+        */
        ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
        if (ipfd < 0)
                err(1, "opening IP socket");
 
+       /* If the command line was --tunnet=bridge:<name> do bridging. */
        if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
-               ip = INADDR_ANY;
-               br_name = arg + strlen(BRIDGE_PFX);
-               add_to_bridge(ipfd, ifr.ifr_name, br_name);
-       } else
-               ip = str2ip(arg);
+               arg += strlen(BRIDGE_PFX);
+               bridging = true;
+       }
 
-       /* We are peer 0, ie. first slot. */
-       configure_device(ipfd, ifr.ifr_name, ip, dev->mem);
+       /* A mac address may follow the bridge name or IP address */
+       p = strchr(arg, ':');
+       if (p) {
+               str2mac(p+1, conf.mac);
+               add_feature(dev, VIRTIO_NET_F_MAC);
+               *p = '\0';
+       }
 
-       /* Set "promisc" bit: we want every single packet. */
-       *((u8 *)dev->mem) |= 0x1;
+       /* arg is now either an IP address or a bridge name */
+       if (bridging)
+               add_to_bridge(ipfd, tapif, arg);
+       else
+               ip = str2ip(arg);
 
+       /* Set up the tun device. */
+       configure_device(ipfd, tapif, ip);
+
+       add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
+       /* Expect Guest to handle everything except UFO */
+       add_feature(dev, VIRTIO_NET_F_CSUM);
+       add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
+       add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
+       add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
+       add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
+       add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
+       add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
+       add_feature(dev, VIRTIO_NET_F_HOST_ECN);
+       /* We handle indirect ring entries */
+       add_feature(dev, VIRTIO_RING_F_INDIRECT_DESC);
+       set_config(dev, sizeof(conf), &conf);
+
+       /* We don't need the socket any more; setup is done. */
        close(ipfd);
 
-       verbose("device %p: tun net %u.%u.%u.%u\n",
-               (void *)(dev->desc->pfn * getpagesize()),
-               (u8)(ip>>24), (u8)(ip>>16), (u8)(ip>>8), (u8)ip);
-       if (br_name)
-               verbose("attached to bridge: %s\n", br_name);
+       devices.device_num++;
+
+       if (bridging)
+               verbose("device %u: tun %s attached to bridge: %s\n",
+                       devices.device_num, tapif, arg);
+       else
+               verbose("device %u: tun %s: %s\n",
+                       devices.device_num, tapif, arg);
 }
+/*:*/
 
-/* Now we know how much memory we have, we copy in device descriptors */
-static void map_device_descriptors(struct device_list *devs, unsigned long mem)
+/* This hangs off device->priv. */
+struct vblk_info {
+       /* The size of the file. */
+       off64_t len;
+
+       /* The file descriptor for the file. */
+       int fd;
+
+};
+
+/*L:210
+ * The Disk
+ *
+ * The disk only has one virtqueue, so it only has one thread.  It is really
+ * simple: the Guest asks for a block number and we read or write that position
+ * in the file.
+ *
+ * Before we serviced each virtqueue in a separate thread, that was unacceptably
+ * slow: the Guest waits until the read is finished before running anything
+ * else, even if it could have been doing useful work.
+ *
+ * We could have used async I/O, except it's reputed to suck so hard that
+ * characters actually go missing from your code when you try to use it.
+ */
+static void blk_request(struct virtqueue *vq)
 {
-       struct device *i;
-       unsigned int num;
-       struct lguest_device_desc *descs;
-
-       /* Device descriptor array sits just above top of normal memory */
-       descs = map_zeroed_pages(mem, 1);
-
-       for (i = devs->dev, num = 0; i; i = i->next, num++) {
-               if (num == LGUEST_MAX_DEVICES)
-                       errx(1, "too many devices");
-               verbose("Device %i: %s\n", num,
-                       i->desc->type == LGUEST_DEVICE_T_NET ? "net"
-                       : i->desc->type == LGUEST_DEVICE_T_CONSOLE ? "console"
-                       : i->desc->type == LGUEST_DEVICE_T_BLOCK ? "block"
-                       : "unknown");
-               descs[num] = *i->desc;
-               free(i->desc);
-               i->desc = &descs[num];
+       struct vblk_info *vblk = vq->dev->priv;
+       unsigned int head, out_num, in_num, wlen;
+       int ret;
+       u8 *in;
+       struct virtio_blk_outhdr *out;
+       struct iovec iov[vq->vring.num];
+       off64_t off;
+
+       /*
+        * Get the next request, where we normally wait.  It triggers the
+        * interrupt to acknowledge previously serviced requests (if any).
+        */
+       head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
+
+       /*
+        * Every block request should contain at least one output buffer
+        * (detailing the location on disk and the type of request) and one
+        * input buffer (to hold the result).
+        */
+       if (out_num == 0 || in_num == 0)
+               errx(1, "Bad virtblk cmd %u out=%u in=%u",
+                    head, out_num, in_num);
+
+       out = convert(&iov[0], struct virtio_blk_outhdr);
+       in = convert(&iov[out_num+in_num-1], u8);
+       /*
+        * For historical reasons, block operations are expressed in 512 byte
+        * "sectors".
+        */
+       off = out->sector * 512;
+
+       /*
+        * The block device implements "barriers", where the Guest indicates
+        * that it wants all previous writes to occur before this write.  We
+        * don't have a way of asking our kernel to do a barrier, so we just
+        * synchronize all the data in the file.  Pretty poor, no?
+        */
+       if (out->type & VIRTIO_BLK_T_BARRIER)
+               fdatasync(vblk->fd);
+
+       /*
+        * In general the virtio block driver is allowed to try SCSI commands.
+        * It'd be nice if we supported eject, for example, but we don't.
+        */
+       if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
+               fprintf(stderr, "Scsi commands unsupported\n");
+               *in = VIRTIO_BLK_S_UNSUPP;
+               wlen = sizeof(*in);
+       } else if (out->type & VIRTIO_BLK_T_OUT) {
+               /*
+                * Write
+                *
+                * Move to the right location in the block file.  This can fail
+                * if they try to write past end.
+                */
+               if (lseek64(vblk->fd, off, SEEK_SET) != off)
+                       err(1, "Bad seek to sector %llu", out->sector);
+
+               ret = writev(vblk->fd, iov+1, out_num-1);
+               verbose("WRITE to sector %llu: %i\n", out->sector, ret);
+
+               /*
+                * Grr... Now we know how long the descriptor they sent was, we
+                * make sure they didn't try to write over the end of the block
+                * file (possibly extending it).
+                */
+               if (ret > 0 && off + ret > vblk->len) {
+                       /* Trim it back to the correct length */
+                       ftruncate64(vblk->fd, vblk->len);
+                       /* Die, bad Guest, die. */
+                       errx(1, "Write past end %llu+%u", off, ret);
+               }
+               wlen = sizeof(*in);
+               *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
+       } else {
+               /*
+                * Read
+                *
+                * Move to the right location in the block file.  This can fail
+                * if they try to read past end.
+                */
+               if (lseek64(vblk->fd, off, SEEK_SET) != off)
+                       err(1, "Bad seek to sector %llu", out->sector);
+
+               ret = readv(vblk->fd, iov+1, in_num-1);
+               verbose("READ from sector %llu: %i\n", out->sector, ret);
+               if (ret >= 0) {
+                       wlen = sizeof(*in) + ret;
+                       *in = VIRTIO_BLK_S_OK;
+               } else {
+                       wlen = sizeof(*in);
+                       *in = VIRTIO_BLK_S_IOERR;
+               }
+       }
+
+       /*
+        * OK, so we noted that it was pretty poor to use an fdatasync as a
+        * barrier.  But Christoph Hellwig points out that we need a sync
+        * *afterwards* as well: "Barriers specify no reordering to the front
+        * or the back."  And Jens Axboe confirmed it, so here we are:
+        */
+       if (out->type & VIRTIO_BLK_T_BARRIER)
+               fdatasync(vblk->fd);
+
+       /* Finished that request. */
+       add_used(vq, head, wlen);
+}
+
+/*L:198 This actually sets up a virtual block device. */
+static void setup_block_file(const char *filename)
+{
+       struct device *dev;
+       struct vblk_info *vblk;
+       struct virtio_blk_config conf;
+
+       /* Creat the device. */
+       dev = new_device("block", VIRTIO_ID_BLOCK);
+
+       /* The device has one virtqueue, where the Guest places requests. */
+       add_virtqueue(dev, VIRTQUEUE_NUM, blk_request);
+
+       /* Allocate the room for our own bookkeeping */
+       vblk = dev->priv = malloc(sizeof(*vblk));
+
+       /* First we open the file and store the length. */
+       vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
+       vblk->len = lseek64(vblk->fd, 0, SEEK_END);
+
+       /* We support barriers. */
+       add_feature(dev, VIRTIO_BLK_F_BARRIER);
+
+       /* Tell Guest how many sectors this device has. */
+       conf.capacity = cpu_to_le64(vblk->len / 512);
+
+       /*
+        * Tell Guest not to put in too many descriptors at once: two are used
+        * for the in and out elements.
+        */
+       add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
+       conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
+
+       /* Don't try to put whole struct: we have 8 bit limit. */
+       set_config(dev, offsetof(struct virtio_blk_config, geometry), &conf);
+
+       verbose("device %u: virtblock %llu sectors\n",
+               ++devices.device_num, le64_to_cpu(conf.capacity));
+}
+
+/*L:211
+ * Our random number generator device reads from /dev/random into the Guest's
+ * input buffers.  The usual case is that the Guest doesn't want random numbers
+ * and so has no buffers although /dev/random is still readable, whereas
+ * console is the reverse.
+ *
+ * The same logic applies, however.
+ */
+struct rng_info {
+       int rfd;
+};
+
+static void rng_input(struct virtqueue *vq)
+{
+       int len;
+       unsigned int head, in_num, out_num, totlen = 0;
+       struct rng_info *rng_info = vq->dev->priv;
+       struct iovec iov[vq->vring.num];
+
+       /* First we need a buffer from the Guests's virtqueue. */
+       head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
+       if (out_num)
+               errx(1, "Output buffers in rng?");
+
+       /*
+        * Just like the console write, we loop to cover the whole iovec.
+        * In this case, short reads actually happen quite a bit.
+        */
+       while (!iov_empty(iov, in_num)) {
+               len = readv(rng_info->rfd, iov, in_num);
+               if (len <= 0)
+                       err(1, "Read from /dev/random gave %i", len);
+               iov_consume(iov, in_num, len);
+               totlen += len;
        }
+
+       /* Tell the Guest about the new input. */
+       add_used(vq, head, totlen);
+}
+
+/*L:199
+ * This creates a "hardware" random number device for the Guest.
+ */
+static void setup_rng(void)
+{
+       struct device *dev;
+       struct rng_info *rng_info = malloc(sizeof(*rng_info));
+
+       /* Our device's privat info simply contains the /dev/random fd. */
+       rng_info->rfd = open_or_die("/dev/random", O_RDONLY);
+
+       /* Create the new device. */
+       dev = new_device("rng", VIRTIO_ID_RNG);
+       dev->priv = rng_info;
+
+       /* The device has one virtqueue, where the Guest places inbufs. */
+       add_virtqueue(dev, VIRTQUEUE_NUM, rng_input);
+
+       verbose("device %u: rng\n", devices.device_num++);
 }
+/* That's the end of device setup. */
 
-static void __attribute__((noreturn))
-run_guest(int lguest_fd, struct device_list *device_list)
+/*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
+static void __attribute__((noreturn)) restart_guest(void)
+{
+       unsigned int i;
+
+       /*
+        * Since we don't track all open fds, we simply close everything beyond
+        * stderr.
+        */
+       for (i = 3; i < FD_SETSIZE; i++)
+               close(i);
+
+       /* Reset all the devices (kills all threads). */
+       cleanup_devices();
+
+       execv(main_args[0], main_args);
+       err(1, "Could not exec %s", main_args[0]);
+}
+
+/*L:220
+ * Finally we reach the core of the Launcher which runs the Guest, serves
+ * its input and output, and finally, lays it to rest.
+ */
+static void __attribute__((noreturn)) run_guest(void)
 {
        for (;;) {
-               u32 args[] = { LHREQ_BREAK, 0 };
-               unsigned long arr[2];
+               unsigned long notify_addr;
                int readval;
 
                /* We read from the /dev/lguest device to run the Guest. */
-               readval = read(lguest_fd, arr, sizeof(arr));
-
-               if (readval == sizeof(arr)) {
-                       handle_output(lguest_fd, arr[0], arr[1], device_list);
-                       continue;
+               readval = pread(lguest_fd, &notify_addr,
+                               sizeof(notify_addr), cpu_id);
+
+               /* One unsigned long means the Guest did HCALL_NOTIFY */
+               if (readval == sizeof(notify_addr)) {
+                       verbose("Notify on address %#lx\n", notify_addr);
+                       handle_output(notify_addr);
+               /* ENOENT means the Guest died.  Reading tells us why. */
                } else if (errno == ENOENT) {
                        char reason[1024] = { 0 };
-                       read(lguest_fd, reason, sizeof(reason)-1);
+                       pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
                        errx(1, "%s", reason);
-               } else if (errno != EAGAIN)
+               /* ERESTART means that we need to reboot the guest */
+               } else if (errno == ERESTART) {
+                       restart_guest();
+               /* Anything else means a bug or incompatible change. */
+               } else
                        err(1, "Running guest failed");
-               handle_input(lguest_fd, device_list);
-               if (write(lguest_fd, args, sizeof(args)) < 0)
-                       err(1, "Resetting break");
        }
 }
+/*L:240
+ * This is the end of the Launcher.  The good news: we are over halfway
+ * through!  The bad news: the most fiendish part of the code still lies ahead
+ * of us.
+ *
+ * Are you ready?  Take a deep breath and join me in the core of the Host, in
+ * "make Host".
+:*/
 
 static struct option opts[] = {
        { "verbose", 0, NULL, 'v' },
-       { "sharenet", 1, NULL, 's' },
        { "tunnet", 1, NULL, 't' },
        { "block", 1, NULL, 'b' },
+       { "rng", 0, NULL, 'r' },
        { "initrd", 1, NULL, 'i' },
        { NULL },
 };
 static void usage(void)
 {
        errx(1, "Usage: lguest [--verbose] "
-            "[--sharenet=<filename>|--tunnet=(<ipaddr>|bridge:<bridgename>)\n"
+            "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
             "|--block=<filename>|--initrd=<filename>]...\n"
             "<mem-in-mb> vmlinux [args...]");
 }
 
+/*L:105 The main routine is where the real work begins: */
 int main(int argc, char *argv[])
 {
-       unsigned long mem, pgdir, start, page_offset, initrd_size = 0;
-       int c, lguest_fd;
-       struct device_list device_list;
-       void *boot = (void *)0;
+       /* Memory, code startpoint and size of the (optional) initrd. */
+       unsigned long mem = 0, start, initrd_size = 0;
+       /* Two temporaries. */
+       int i, c;
+       /* The boot information for the Guest. */
+       struct boot_params *boot;
+       /* If they specify an initrd file to load. */
        const char *initrd_name = NULL;
 
-       device_list.max_infd = -1;
-       device_list.dev = NULL;
-       device_list.lastdev = &device_list.dev;
-       FD_ZERO(&device_list.infds);
+       /* Save the args: we "reboot" by execing ourselves again. */
+       main_args = argv;
+
+       /*
+        * First we initialize the device list.  We keep a pointer to the last
+        * device, and the next interrupt number to use for devices (1:
+        * remember that 0 is used by the timer).
+        */
+       devices.lastdev = NULL;
+       devices.next_irq = 1;
+
+       /* We're CPU 0.  In fact, that's the only CPU possible right now. */
+       cpu_id = 0;
+
+       /*
+        * We need to know how much memory so we can set up the device
+        * descriptor and memory pages for the devices as we parse the command
+        * line.  So we quickly look through the arguments to find the amount
+        * of memory now.
+        */
+       for (i = 1; i < argc; i++) {
+               if (argv[i][0] != '-') {
+                       mem = atoi(argv[i]) * 1024 * 1024;
+                       /*
+                        * We start by mapping anonymous pages over all of
+                        * guest-physical memory range.  This fills it with 0,
+                        * and ensures that the Guest won't be killed when it
+                        * tries to access it.
+                        */
+                       guest_base = map_zeroed_pages(mem / getpagesize()
+                                                     + DEVICE_PAGES);
+                       guest_limit = mem;
+                       guest_max = mem + DEVICE_PAGES*getpagesize();
+                       devices.descpage = get_pages(1);
+                       break;
+               }
+       }
 
+       /* The options are fairly straight-forward */
        while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
                switch (c) {
                case 'v':
                        verbose = true;
                        break;
-               case 's':
-                       setup_net_file(optarg, &device_list);
-                       break;
                case 't':
-                       setup_tun_net(optarg, &device_list);
+                       setup_tun_net(optarg);
                        break;
                case 'b':
-                       setup_block_file(optarg, &device_list);
+                       setup_block_file(optarg);
+                       break;
+               case 'r':
+                       setup_rng();
                        break;
                case 'i':
                        initrd_name = optarg;
@@ -967,46 +1966,84 @@ int main(int argc, char *argv[])
                        usage();
                }
        }
+       /*
+        * After the other arguments we expect memory and kernel image name,
+        * followed by command line arguments for the kernel.
+        */
        if (optind + 2 > argc)
                usage();
 
-       /* We need a console device */
-       setup_console(&device_list);
+       verbose("Guest base is at %p\n", guest_base);
 
-       /* First we map /dev/zero over all of guest-physical memory. */
-       mem = atoi(argv[optind]) * 1024 * 1024;
-       map_zeroed_pages(0, mem / getpagesize());
+       /* We always have a console device */
+       setup_console();
 
        /* Now we load the kernel */
-       start = load_kernel(open_or_die(argv[optind+1], O_RDONLY),
-                           &page_offset);
+       start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
 
-       /* Write the device descriptors into memory. */
-       map_device_descriptors(&device_list, mem);
+       /* Boot information is stashed at physical address 0 */
+       boot = from_guest_phys(0);
 
-       /* Map the initrd image if requested */
+       /* Map the initrd image if requested (at top of physical memory) */
        if (initrd_name) {
                initrd_size = load_initrd(initrd_name, mem);
-               *(unsigned long *)(boot+0x218) = mem - initrd_size;
-               *(unsigned long *)(boot+0x21c) = initrd_size;
-               *(unsigned char *)(boot+0x210) = 0xFF;
+               /*
+                * These are the location in the Linux boot header where the
+                * start and size of the initrd are expected to be found.
+                */
+               boot->hdr.ramdisk_image = mem - initrd_size;
+               boot->hdr.ramdisk_size = initrd_size;
+               /* The bootloader type 0xFF means "unknown"; that's OK. */
+               boot->hdr.type_of_loader = 0xFF;
        }
 
-       /* Set up the initial linar pagetables. */
-       pgdir = setup_pagetables(mem, initrd_size, page_offset);
-
-       /* E820 memory map: ours is a simple, single region. */
-       *(char*)(boot+E820NR) = 1;
-       *((struct e820entry *)(boot+E820MAP))
-               = ((struct e820entry) { 0, mem, E820_RAM });
-       /* Command line pointer and command line (at 4096) */
-       *(void **)(boot + 0x228) = boot + 4096;
-       concat(boot + 4096, argv+optind+2);
-       /* Paravirt type: 1 == lguest */
-       *(int *)(boot + 0x23c) = 1;
-
-       lguest_fd = tell_kernel(pgdir, start, page_offset);
-       waker_fd = setup_waker(lguest_fd, &device_list);
-
-       run_guest(lguest_fd, &device_list);
+       /*
+        * The Linux boot header contains an "E820" memory map: ours is a
+        * simple, single region.
+        */
+       boot->e820_entries = 1;
+       boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
+       /*
+        * The boot header contains a command line pointer: we put the command
+        * line after the boot header.
+        */
+       boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
+       /* We use a simple helper to copy the arguments separated by spaces. */
+       concat((char *)(boot + 1), argv+optind+2);
+
+       /* Boot protocol version: 2.07 supports the fields for lguest. */
+       boot->hdr.version = 0x207;
+
+       /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
+       boot->hdr.hardware_subarch = 1;
+
+       /* Tell the entry path not to try to reload segment registers. */
+       boot->hdr.loadflags |= KEEP_SEGMENTS;
+
+       /*
+        * We tell the kernel to initialize the Guest: this returns the open
+        * /dev/lguest file descriptor.
+        */
+       tell_kernel(start);
+
+       /* Ensure that we terminate if a device-servicing child dies. */
+       signal(SIGCHLD, kill_launcher);
+
+       /* If we exit via err(), this kills all the threads, restores tty. */
+       atexit(cleanup_devices);
+
+       /* Finally, run the Guest.  This doesn't return. */
+       run_guest();
 }
+/*:*/
+
+/*M:999
+ * Mastery is done: you now know everything I do.
+ *
+ * But surely you have seen code, features and bugs in your wanderings which
+ * you now yearn to attack?  That is the real game, and I look forward to you
+ * patching and forking lguest into the Your-Name-Here-visor.
+ *
+ * Farewell, and good coding!
+ * Rusty Russell.
+ */