hwmon: (f71882fg) Add documentation
[safe/jmp/linux-2.6] / Documentation / cpusets.txt
index 85eeab5..5c86c25 100644 (file)
@@ -8,6 +8,7 @@ Portions Copyright (c) 2004-2006 Silicon Graphics, Inc.
 Modified by Paul Jackson <pj@sgi.com>
 Modified by Christoph Lameter <clameter@sgi.com>
 Modified by Paul Menage <menage@google.com>
+Modified by Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
 
 CONTENTS:
 =========
@@ -19,7 +20,9 @@ CONTENTS:
   1.4 What are exclusive cpusets ?
   1.5 What is memory_pressure ?
   1.6 What is memory spread ?
-  1.7 How do I use cpusets ?
+  1.7 What is sched_load_balance ?
+  1.8 What is sched_relax_domain_level ?
+  1.9 How do I use cpusets ?
 2. Usage Examples and Syntax
   2.1 Basic Usage
   2.2 Adding/removing cpus
@@ -45,7 +48,7 @@ hooks, beyond what is already present, required to manage dynamic
 job placement on large systems.
 
 Cpusets use the generic cgroup subsystem described in
-Documentation/cgroup.txt.
+Documentation/cgroups/cgroups.txt.
 
 Requests by a task, using the sched_setaffinity(2) system call to
 include CPUs in its CPU affinity mask, and using the mbind(2) and
@@ -151,13 +154,15 @@ browsing and modifying the cpusets presently known to the kernel.  No
 new system calls are added for cpusets - all support for querying and
 modifying cpusets is via this cpuset file system.
 
-The /proc/<pid>/status file for each task has two added lines,
+The /proc/<pid>/status file for each task has four added lines,
 displaying the tasks cpus_allowed (on which CPUs it may be scheduled)
 and mems_allowed (on which Memory Nodes it may obtain memory),
-in the format seen in the following example:
+in the two formats seen in the following example:
 
   Cpus_allowed:   ffffffff,ffffffff,ffffffff,ffffffff
+  Cpus_allowed_list:      0-127
   Mems_allowed:   ffffffff,ffffffff
+  Mems_allowed_list:      0-63
 
 Each cpuset is represented by a directory in the cgroup file system
 containing (on top of the standard cgroup files) the following
@@ -168,6 +173,7 @@ files describing that cpuset:
  - memory_migrate flag: if set, move pages to cpusets nodes
  - cpu_exclusive flag: is cpu placement exclusive?
  - mem_exclusive flag: is memory placement exclusive?
+ - mem_hardwall flag:  is memory allocation hardwalled
  - memory_pressure: measure of how much paging pressure in cpuset
 
 In addition, the root cpuset only has the following file:
@@ -195,7 +201,7 @@ using the sched_setaffinity, mbind and set_mempolicy system calls.
 The following rules apply to each cpuset:
 
  - Its CPUs and Memory Nodes must be a subset of its parents.
- - It can only be marked exclusive if its parent is.
+ - It can't be marked exclusive unless its parent is.
  - If its cpu or memory is exclusive, they may not overlap any sibling.
 
 These rules, and the natural hierarchy of cpusets, enable efficient
@@ -208,7 +214,7 @@ and name space for cpusets, with a minimum of additional kernel code.
 The cpus and mems files in the root (top_cpuset) cpuset are
 read-only.  The cpus file automatically tracks the value of
 cpu_online_map using a CPU hotplug notifier, and the mems file
-automatically tracks the value of node_states[N_MEMORY]--i.e.,
+automatically tracks the value of node_states[N_HIGH_MEMORY]--i.e.,
 nodes with memory--using the cpuset_track_online_nodes() hook.
 
 
@@ -219,17 +225,18 @@ If a cpuset is cpu or mem exclusive, no other cpuset, other than
 a direct ancestor or descendent, may share any of the same CPUs or
 Memory Nodes.
 
-A cpuset that is mem_exclusive restricts kernel allocations for
-page, buffer and other data commonly shared by the kernel across
-multiple users.  All cpusets, whether mem_exclusive or not, restrict
-allocations of memory for user space.  This enables configuring a
-system so that several independent jobs can share common kernel data,
-such as file system pages, while isolating each jobs user allocation in
-its own cpuset.  To do this, construct a large mem_exclusive cpuset to
-hold all the jobs, and construct child, non-mem_exclusive cpusets for
-each individual job.  Only a small amount of typical kernel memory,
-such as requests from interrupt handlers, is allowed to be taken
-outside even a mem_exclusive cpuset.
+A cpuset that is mem_exclusive *or* mem_hardwall is "hardwalled",
+i.e. it restricts kernel allocations for page, buffer and other data
+commonly shared by the kernel across multiple users.  All cpusets,
+whether hardwalled or not, restrict allocations of memory for user
+space.  This enables configuring a system so that several independent
+jobs can share common kernel data, such as file system pages, while
+isolating each job's user allocation in its own cpuset.  To do this,
+construct a large mem_exclusive cpuset to hold all the jobs, and
+construct child, non-mem_exclusive cpusets for each individual job.
+Only a small amount of typical kernel memory, such as requests from
+interrupt handlers, is allowed to be taken outside even a
+mem_exclusive cpuset.
 
 
 1.5 What is memory_pressure ?
@@ -340,7 +347,7 @@ is modified to perform an inline check for this PF_SPREAD_PAGE task
 flag, and if set, a call to a new routine cpuset_mem_spread_node()
 returns the node to prefer for the allocation.
 
-Similarly, setting 'memory_spread_cache' turns on the flag
+Similarly, setting 'memory_spread_slab' turns on the flag
 PF_SPREAD_SLAB, and appropriately marked slab caches will allocate
 pages from the node returned by cpuset_mem_spread_node().
 
@@ -359,8 +366,213 @@ policy, especially for jobs that might have one thread reading in the
 data set, the memory allocation across the nodes in the jobs cpuset
 can become very uneven.
 
+1.7 What is sched_load_balance ?
+--------------------------------
 
-1.7 How do I use cpusets ?
+The kernel scheduler (kernel/sched.c) automatically load balances
+tasks.  If one CPU is underutilized, kernel code running on that
+CPU will look for tasks on other more overloaded CPUs and move those
+tasks to itself, within the constraints of such placement mechanisms
+as cpusets and sched_setaffinity.
+
+The algorithmic cost of load balancing and its impact on key shared
+kernel data structures such as the task list increases more than
+linearly with the number of CPUs being balanced.  So the scheduler
+has support to  partition the systems CPUs into a number of sched
+domains such that it only load balances within each sched domain.
+Each sched domain covers some subset of the CPUs in the system;
+no two sched domains overlap; some CPUs might not be in any sched
+domain and hence won't be load balanced.
+
+Put simply, it costs less to balance between two smaller sched domains
+than one big one, but doing so means that overloads in one of the
+two domains won't be load balanced to the other one.
+
+By default, there is one sched domain covering all CPUs, except those
+marked isolated using the kernel boot time "isolcpus=" argument.
+
+This default load balancing across all CPUs is not well suited for
+the following two situations:
+ 1) On large systems, load balancing across many CPUs is expensive.
+    If the system is managed using cpusets to place independent jobs
+    on separate sets of CPUs, full load balancing is unnecessary.
+ 2) Systems supporting realtime on some CPUs need to minimize
+    system overhead on those CPUs, including avoiding task load
+    balancing if that is not needed.
+
+When the per-cpuset flag "sched_load_balance" is enabled (the default
+setting), it requests that all the CPUs in that cpusets allowed 'cpus'
+be contained in a single sched domain, ensuring that load balancing
+can move a task (not otherwised pinned, as by sched_setaffinity)
+from any CPU in that cpuset to any other.
+
+When the per-cpuset flag "sched_load_balance" is disabled, then the
+scheduler will avoid load balancing across the CPUs in that cpuset,
+--except-- in so far as is necessary because some overlapping cpuset
+has "sched_load_balance" enabled.
+
+So, for example, if the top cpuset has the flag "sched_load_balance"
+enabled, then the scheduler will have one sched domain covering all
+CPUs, and the setting of the "sched_load_balance" flag in any other
+cpusets won't matter, as we're already fully load balancing.
+
+Therefore in the above two situations, the top cpuset flag
+"sched_load_balance" should be disabled, and only some of the smaller,
+child cpusets have this flag enabled.
+
+When doing this, you don't usually want to leave any unpinned tasks in
+the top cpuset that might use non-trivial amounts of CPU, as such tasks
+may be artificially constrained to some subset of CPUs, depending on
+the particulars of this flag setting in descendent cpusets.  Even if
+such a task could use spare CPU cycles in some other CPUs, the kernel
+scheduler might not consider the possibility of load balancing that
+task to that underused CPU.
+
+Of course, tasks pinned to a particular CPU can be left in a cpuset
+that disables "sched_load_balance" as those tasks aren't going anywhere
+else anyway.
+
+There is an impedance mismatch here, between cpusets and sched domains.
+Cpusets are hierarchical and nest.  Sched domains are flat; they don't
+overlap and each CPU is in at most one sched domain.
+
+It is necessary for sched domains to be flat because load balancing
+across partially overlapping sets of CPUs would risk unstable dynamics
+that would be beyond our understanding.  So if each of two partially
+overlapping cpusets enables the flag 'sched_load_balance', then we
+form a single sched domain that is a superset of both.  We won't move
+a task to a CPU outside it cpuset, but the scheduler load balancing
+code might waste some compute cycles considering that possibility.
+
+This mismatch is why there is not a simple one-to-one relation
+between which cpusets have the flag "sched_load_balance" enabled,
+and the sched domain configuration.  If a cpuset enables the flag, it
+will get balancing across all its CPUs, but if it disables the flag,
+it will only be assured of no load balancing if no other overlapping
+cpuset enables the flag.
+
+If two cpusets have partially overlapping 'cpus' allowed, and only
+one of them has this flag enabled, then the other may find its
+tasks only partially load balanced, just on the overlapping CPUs.
+This is just the general case of the top_cpuset example given a few
+paragraphs above.  In the general case, as in the top cpuset case,
+don't leave tasks that might use non-trivial amounts of CPU in
+such partially load balanced cpusets, as they may be artificially
+constrained to some subset of the CPUs allowed to them, for lack of
+load balancing to the other CPUs.
+
+1.7.1 sched_load_balance implementation details.
+------------------------------------------------
+
+The per-cpuset flag 'sched_load_balance' defaults to enabled (contrary
+to most cpuset flags.)  When enabled for a cpuset, the kernel will
+ensure that it can load balance across all the CPUs in that cpuset
+(makes sure that all the CPUs in the cpus_allowed of that cpuset are
+in the same sched domain.)
+
+If two overlapping cpusets both have 'sched_load_balance' enabled,
+then they will be (must be) both in the same sched domain.
+
+If, as is the default, the top cpuset has 'sched_load_balance' enabled,
+then by the above that means there is a single sched domain covering
+the whole system, regardless of any other cpuset settings.
+
+The kernel commits to user space that it will avoid load balancing
+where it can.  It will pick as fine a granularity partition of sched
+domains as it can while still providing load balancing for any set
+of CPUs allowed to a cpuset having 'sched_load_balance' enabled.
+
+The internal kernel cpuset to scheduler interface passes from the
+cpuset code to the scheduler code a partition of the load balanced
+CPUs in the system. This partition is a set of subsets (represented
+as an array of cpumask_t) of CPUs, pairwise disjoint, that cover all
+the CPUs that must be load balanced.
+
+Whenever the 'sched_load_balance' flag changes, or CPUs come or go
+from a cpuset with this flag enabled, or a cpuset with this flag
+enabled is removed, the cpuset code builds a new such partition and
+passes it to the scheduler sched domain setup code, to have the sched
+domains rebuilt as necessary.
+
+This partition exactly defines what sched domains the scheduler should
+setup - one sched domain for each element (cpumask_t) in the partition.
+
+The scheduler remembers the currently active sched domain partitions.
+When the scheduler routine partition_sched_domains() is invoked from
+the cpuset code to update these sched domains, it compares the new
+partition requested with the current, and updates its sched domains,
+removing the old and adding the new, for each change.
+
+
+1.8 What is sched_relax_domain_level ?
+--------------------------------------
+
+In sched domain, the scheduler migrates tasks in 2 ways; periodic load
+balance on tick, and at time of some schedule events.
+
+When a task is woken up, scheduler try to move the task on idle CPU.
+For example, if a task A running on CPU X activates another task B
+on the same CPU X, and if CPU Y is X's sibling and performing idle,
+then scheduler migrate task B to CPU Y so that task B can start on
+CPU Y without waiting task A on CPU X.
+
+And if a CPU run out of tasks in its runqueue, the CPU try to pull
+extra tasks from other busy CPUs to help them before it is going to
+be idle.
+
+Of course it takes some searching cost to find movable tasks and/or
+idle CPUs, the scheduler might not search all CPUs in the domain
+everytime.  In fact, in some architectures, the searching ranges on
+events are limited in the same socket or node where the CPU locates,
+while the load balance on tick searchs all.
+
+For example, assume CPU Z is relatively far from CPU X.  Even if CPU Z
+is idle while CPU X and the siblings are busy, scheduler can't migrate
+woken task B from X to Z since it is out of its searching range.
+As the result, task B on CPU X need to wait task A or wait load balance
+on the next tick.  For some applications in special situation, waiting
+1 tick may be too long.
+
+The 'sched_relax_domain_level' file allows you to request changing
+this searching range as you like.  This file takes int value which
+indicates size of searching range in levels ideally as follows,
+otherwise initial value -1 that indicates the cpuset has no request.
+
+  -1  : no request. use system default or follow request of others.
+   0  : no search.
+   1  : search siblings (hyperthreads in a core).
+   2  : search cores in a package.
+   3  : search cpus in a node [= system wide on non-NUMA system]
+ ( 4  : search nodes in a chunk of node [on NUMA system] )
+ ( 5  : search system wide [on NUMA system] )
+
+The system default is architecture dependent.  The system default
+can be changed using the relax_domain_level= boot parameter.
+
+This file is per-cpuset and affect the sched domain where the cpuset
+belongs to.  Therefore if the flag 'sched_load_balance' of a cpuset
+is disabled, then 'sched_relax_domain_level' have no effect since
+there is no sched domain belonging the cpuset.
+
+If multiple cpusets are overlapping and hence they form a single sched
+domain, the largest value among those is used.  Be careful, if one
+requests 0 and others are -1 then 0 is used.
+
+Note that modifying this file will have both good and bad effects,
+and whether it is acceptable or not will be depend on your situation.
+Don't modify this file if you are not sure.
+
+If your situation is:
+ - The migration costs between each cpu can be assumed considerably
+   small(for you) due to your special application's behavior or
+   special hardware support for CPU cache etc.
+ - The searching cost doesn't have impact(for you) or you can make
+   the searching cost enough small by managing cpuset to compact etc.
+ - The latency is required even it sacrifices cache hit rate etc.
+then increasing 'sched_relax_domain_level' would benefit you.
+
+
+1.9 How do I use cpusets ?
 --------------------------
 
 In order to minimize the impact of cpusets on critical kernel
@@ -386,21 +598,14 @@ from one cpuset to another, then the kernel will adjust the tasks
 memory placement, as above, the next time that the kernel attempts
 to allocate a page of memory for that task.
 
-If a cpuset has its CPUs modified, then each task using that
-cpuset does _not_ change its behavior automatically.  In order to
-minimize the impact on the critical scheduling code in the kernel,
-tasks will continue to use their prior CPU placement until they
-are rebound to their cpuset, by rewriting their pid to the 'tasks'
-file of their cpuset.  If a task had been bound to some subset of its
-cpuset using the sched_setaffinity() call, and if any of that subset
-is still allowed in its new cpuset settings, then the task will be
-restricted to the intersection of the CPUs it was allowed on before,
-and its new cpuset CPU placement.  If, on the other hand, there is
-no overlap between a tasks prior placement and its new cpuset CPU
-placement, then the task will be allowed to run on any CPU allowed
-in its new cpuset.  If a task is moved from one cpuset to another,
-its CPU placement is updated in the same way as if the tasks pid is
-rewritten to the 'tasks' file of its current cpuset.
+If a cpuset has its 'cpus' modified, then each task in that cpuset
+will have its allowed CPU placement changed immediately.  Similarly,
+if a tasks pid is written to a cpusets 'tasks' file, in either its
+current cpuset or another cpuset, then its allowed CPU placement is
+changed immediately.  If such a task had been bound to some subset
+of its cpuset using the sched_setaffinity() call, the task will be
+allowed to run on any CPU allowed in its new cpuset, negating the
+affect of the prior sched_setaffinity() call.
 
 In summary, the memory placement of a task whose cpuset is changed is
 updated by the kernel, on the next allocation of a page for that task,
@@ -430,14 +635,16 @@ prior 'mems' setting, will not be moved.
 
 There is an exception to the above.  If hotplug functionality is used
 to remove all the CPUs that are currently assigned to a cpuset,
-then the kernel will automatically update the cpus_allowed of all
-tasks attached to CPUs in that cpuset to allow all CPUs.  When memory
-hotplug functionality for removing Memory Nodes is available, a
-similar exception is expected to apply there as well.  In general,
-the kernel prefers to violate cpuset placement, over starving a task
-that has had all its allowed CPUs or Memory Nodes taken offline.  User
-code should reconfigure cpusets to only refer to online CPUs and Memory
-Nodes when using hotplug to add or remove such resources.
+then all the tasks in that cpuset will be moved to the nearest ancestor
+with non-empty cpus.  But the moving of some (or all) tasks might fail if
+cpuset is bound with another cgroup subsystem which has some restrictions
+on task attaching.  In this failing case, those tasks will stay
+in the original cpuset, and the kernel will automatically update
+their cpus_allowed to allow all online CPUs.  When memory hotplug
+functionality for removing Memory Nodes is available, a similar exception
+is expected to apply there as well.  In general, the kernel prefers to
+violate cpuset placement, over starving a task that has had all
+its allowed CPUs or Memory Nodes taken offline.
 
 There is a second exception to the above.  GFP_ATOMIC requests are
 kernel internal allocations that must be satisfied, immediately.
@@ -509,7 +716,10 @@ Now you want to do something with this cpuset.
 
 In this directory you can find several files:
 # ls
-cpus  cpu_exclusive  mems  mem_exclusive  tasks
+cpu_exclusive  memory_migrate      mems                      tasks
+cpus           memory_pressure     notify_on_release
+mem_exclusive  memory_spread_page  sched_load_balance
+mem_hardwall   memory_spread_slab  sched_relax_domain_level
 
 Reading them will give you information about the state of this cpuset:
 the CPUs and Memory Nodes it can use, the processes that are using