/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ctree.h" #include "disk-io.h" #include "transaction.h" #include "btrfs_inode.h" #include "ioctl.h" #include "print-tree.h" #include "volumes.h" static noinline int create_subvol(struct btrfs_root *root, char *name, int namelen) { struct btrfs_trans_handle *trans; struct btrfs_key key; struct btrfs_root_item root_item; struct btrfs_inode_item *inode_item; struct extent_buffer *leaf; struct btrfs_root *new_root = root; struct inode *dir; int ret; int err; u64 objectid; u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; unsigned long nr = 1; mutex_lock(&root->fs_info->fs_mutex); ret = btrfs_check_free_space(root, 1, 0); if (ret) goto fail_commit; trans = btrfs_start_transaction(root, 1); BUG_ON(!trans); ret = btrfs_find_free_objectid(trans, root->fs_info->tree_root, 0, &objectid); if (ret) goto fail; leaf = __btrfs_alloc_free_block(trans, root, root->leafsize, objectid, trans->transid, 0, 0, 0, 0); if (IS_ERR(leaf)) return PTR_ERR(leaf); btrfs_set_header_nritems(leaf, 0); btrfs_set_header_level(leaf, 0); btrfs_set_header_bytenr(leaf, leaf->start); btrfs_set_header_generation(leaf, trans->transid); btrfs_set_header_owner(leaf, objectid); write_extent_buffer(leaf, root->fs_info->fsid, (unsigned long)btrfs_header_fsid(leaf), BTRFS_FSID_SIZE); btrfs_mark_buffer_dirty(leaf); inode_item = &root_item.inode; memset(inode_item, 0, sizeof(*inode_item)); inode_item->generation = cpu_to_le64(1); inode_item->size = cpu_to_le64(3); inode_item->nlink = cpu_to_le32(1); inode_item->nblocks = cpu_to_le64(1); inode_item->mode = cpu_to_le32(S_IFDIR | 0755); btrfs_set_root_bytenr(&root_item, leaf->start); btrfs_set_root_level(&root_item, 0); btrfs_set_root_refs(&root_item, 1); btrfs_set_root_used(&root_item, 0); memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress)); root_item.drop_level = 0; free_extent_buffer(leaf); leaf = NULL; btrfs_set_root_dirid(&root_item, new_dirid); key.objectid = objectid; key.offset = 1; btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, &root_item); if (ret) goto fail; /* * insert the directory item */ key.offset = (u64)-1; dir = root->fs_info->sb->s_root->d_inode; ret = btrfs_insert_dir_item(trans, root->fs_info->tree_root, name, namelen, dir->i_ino, &key, BTRFS_FT_DIR); if (ret) goto fail; ret = btrfs_insert_inode_ref(trans, root->fs_info->tree_root, name, namelen, objectid, root->fs_info->sb->s_root->d_inode->i_ino); if (ret) goto fail; ret = btrfs_commit_transaction(trans, root); if (ret) goto fail_commit; new_root = btrfs_read_fs_root(root->fs_info, &key, name, namelen); BUG_ON(!new_root); trans = btrfs_start_transaction(new_root, 1); BUG_ON(!trans); ret = btrfs_create_subvol_root(new_root, trans, new_dirid, BTRFS_I(dir)->block_group); if (ret) goto fail; /* Invalidate existing dcache entry for new subvolume. */ btrfs_invalidate_dcache_root(root, name, namelen); fail: nr = trans->blocks_used; err = btrfs_commit_transaction(trans, new_root); if (err && !ret) ret = err; fail_commit: mutex_unlock(&root->fs_info->fs_mutex); btrfs_btree_balance_dirty(root, nr); btrfs_throttle(root); return ret; } static int create_snapshot(struct btrfs_root *root, char *name, int namelen) { struct btrfs_pending_snapshot *pending_snapshot; struct btrfs_trans_handle *trans; int ret; int err; unsigned long nr = 0; if (!root->ref_cows) return -EINVAL; mutex_lock(&root->fs_info->fs_mutex); ret = btrfs_check_free_space(root, 1, 0); if (ret) goto fail_unlock; pending_snapshot = kmalloc(sizeof(*pending_snapshot), GFP_NOFS); if (!pending_snapshot) { ret = -ENOMEM; goto fail_unlock; } pending_snapshot->name = kmalloc(namelen + 1, GFP_NOFS); if (!pending_snapshot->name) { ret = -ENOMEM; kfree(pending_snapshot); goto fail_unlock; } memcpy(pending_snapshot->name, name, namelen); pending_snapshot->name[namelen] = '\0'; trans = btrfs_start_transaction(root, 1); BUG_ON(!trans); pending_snapshot->root = root; list_add(&pending_snapshot->list, &trans->transaction->pending_snapshots); ret = btrfs_update_inode(trans, root, root->inode); err = btrfs_commit_transaction(trans, root); fail_unlock: mutex_unlock(&root->fs_info->fs_mutex); btrfs_btree_balance_dirty(root, nr); btrfs_throttle(root); return ret; } int btrfs_defrag_file(struct file *file) { struct inode *inode = fdentry(file)->d_inode; struct btrfs_root *root = BTRFS_I(inode)->root; struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; struct page *page; unsigned long last_index; unsigned long ra_pages = root->fs_info->bdi.ra_pages; unsigned long total_read = 0; u64 page_start; u64 page_end; unsigned long i; int ret; mutex_lock(&root->fs_info->fs_mutex); ret = btrfs_check_free_space(root, inode->i_size, 0); mutex_unlock(&root->fs_info->fs_mutex); if (ret) return -ENOSPC; mutex_lock(&inode->i_mutex); last_index = inode->i_size >> PAGE_CACHE_SHIFT; for (i = 0; i <= last_index; i++) { if (total_read % ra_pages == 0) { btrfs_force_ra(inode->i_mapping, &file->f_ra, file, i, min(last_index, i + ra_pages - 1)); } total_read++; page = grab_cache_page(inode->i_mapping, i); if (!page) goto out_unlock; if (!PageUptodate(page)) { btrfs_readpage(NULL, page); lock_page(page); if (!PageUptodate(page)) { unlock_page(page); page_cache_release(page); goto out_unlock; } } #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18) ClearPageDirty(page); #else cancel_dirty_page(page, PAGE_CACHE_SIZE); #endif wait_on_page_writeback(page); set_page_extent_mapped(page); page_start = (u64)page->index << PAGE_CACHE_SHIFT; page_end = page_start + PAGE_CACHE_SIZE - 1; lock_extent(io_tree, page_start, page_end, GFP_NOFS); set_extent_delalloc(io_tree, page_start, page_end, GFP_NOFS); unlock_extent(io_tree, page_start, page_end, GFP_NOFS); set_page_dirty(page); unlock_page(page); page_cache_release(page); balance_dirty_pages_ratelimited_nr(inode->i_mapping, 1); } out_unlock: mutex_unlock(&inode->i_mutex); return 0; } /* * Called inside transaction, so use GFP_NOFS */ static int btrfs_ioctl_resize(struct btrfs_root *root, void __user *arg) { u64 new_size; u64 old_size; u64 devid = 1; struct btrfs_ioctl_vol_args *vol_args; struct btrfs_trans_handle *trans; struct btrfs_device *device = NULL; char *sizestr; char *devstr = NULL; int ret = 0; int namelen; int mod = 0; vol_args = kmalloc(sizeof(*vol_args), GFP_NOFS); if (!vol_args) return -ENOMEM; if (copy_from_user(vol_args, arg, sizeof(*vol_args))) { ret = -EFAULT; goto out; } namelen = strlen(vol_args->name); if (namelen > BTRFS_VOL_NAME_MAX) { ret = -EINVAL; goto out; } mutex_lock(&root->fs_info->fs_mutex); sizestr = vol_args->name; devstr = strchr(sizestr, ':'); if (devstr) { char *end; sizestr = devstr + 1; *devstr = '\0'; devstr = vol_args->name; devid = simple_strtoull(devstr, &end, 10); printk(KERN_INFO "resizing devid %llu\n", devid); } device = btrfs_find_device(root, devid, NULL); if (!device) { printk(KERN_INFO "resizer unable to find device %llu\n", devid); ret = -EINVAL; goto out_unlock; } if (!strcmp(sizestr, "max")) new_size = device->bdev->bd_inode->i_size; else { if (sizestr[0] == '-') { mod = -1; sizestr++; } else if (sizestr[0] == '+') { mod = 1; sizestr++; } new_size = btrfs_parse_size(sizestr); if (new_size == 0) { ret = -EINVAL; goto out_unlock; } } old_size = device->total_bytes; if (mod < 0) { if (new_size > old_size) { ret = -EINVAL; goto out_unlock; } new_size = old_size - new_size; } else if (mod > 0) { new_size = old_size + new_size; } if (new_size < 256 * 1024 * 1024) { ret = -EINVAL; goto out_unlock; } if (new_size > device->bdev->bd_inode->i_size) { ret = -EFBIG; goto out_unlock; } do_div(new_size, root->sectorsize); new_size *= root->sectorsize; printk(KERN_INFO "new size for %s is %llu\n", device->name, (unsigned long long)new_size); if (new_size > old_size) { trans = btrfs_start_transaction(root, 1); ret = btrfs_grow_device(trans, device, new_size); btrfs_commit_transaction(trans, root); } else { ret = btrfs_shrink_device(device, new_size); } out_unlock: mutex_unlock(&root->fs_info->fs_mutex); out: kfree(vol_args); return ret; } static noinline int btrfs_ioctl_snap_create(struct btrfs_root *root, void __user *arg) { struct btrfs_ioctl_vol_args *vol_args; struct btrfs_dir_item *di; struct btrfs_path *path; u64 root_dirid; int namelen; int ret; vol_args = kmalloc(sizeof(*vol_args), GFP_NOFS); if (!vol_args) return -ENOMEM; if (copy_from_user(vol_args, arg, sizeof(*vol_args))) { ret = -EFAULT; goto out; } namelen = strlen(vol_args->name); if (namelen > BTRFS_VOL_NAME_MAX) { ret = -EINVAL; goto out; } if (strchr(vol_args->name, '/')) { ret = -EINVAL; goto out; } path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto out; } root_dirid = root->fs_info->sb->s_root->d_inode->i_ino, mutex_lock(&root->fs_info->fs_mutex); di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path, root_dirid, vol_args->name, namelen, 0); mutex_unlock(&root->fs_info->fs_mutex); btrfs_free_path(path); if (di && !IS_ERR(di)) { ret = -EEXIST; goto out; } if (IS_ERR(di)) { ret = PTR_ERR(di); goto out; } if (root == root->fs_info->tree_root) ret = create_subvol(root, vol_args->name, namelen); else ret = create_snapshot(root, vol_args->name, namelen); out: kfree(vol_args); return ret; } static int btrfs_ioctl_defrag(struct file *file) { struct inode *inode = fdentry(file)->d_inode; struct btrfs_root *root = BTRFS_I(inode)->root; switch (inode->i_mode & S_IFMT) { case S_IFDIR: mutex_lock(&root->fs_info->fs_mutex); btrfs_defrag_root(root, 0); btrfs_defrag_root(root->fs_info->extent_root, 0); mutex_unlock(&root->fs_info->fs_mutex); break; case S_IFREG: btrfs_defrag_file(file); break; } return 0; } long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg) { struct btrfs_ioctl_vol_args *vol_args; int ret; vol_args = kmalloc(sizeof(*vol_args), GFP_NOFS); if (!vol_args) return -ENOMEM; if (copy_from_user(vol_args, arg, sizeof(*vol_args))) { ret = -EFAULT; goto out; } ret = btrfs_init_new_device(root, vol_args->name); out: kfree(vol_args); return ret; } long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg) { struct btrfs_ioctl_vol_args *vol_args; int ret; vol_args = kmalloc(sizeof(*vol_args), GFP_NOFS); if (!vol_args) return -ENOMEM; if (copy_from_user(vol_args, arg, sizeof(*vol_args))) { ret = -EFAULT; goto out; } ret = btrfs_rm_device(root, vol_args->name); out: kfree(vol_args); return ret; } int dup_item_to_inode(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct extent_buffer *leaf, int slot, struct btrfs_key *key, u64 destino) { char *dup; int len = btrfs_item_size_nr(leaf, slot); struct btrfs_key ckey = *key; int ret = 0; dup = kmalloc(len, GFP_NOFS); if (!dup) return -ENOMEM; read_extent_buffer(leaf, dup, btrfs_item_ptr_offset(leaf, slot), len); btrfs_release_path(root, path); ckey.objectid = destino; ret = btrfs_insert_item(trans, root, &ckey, dup, len); kfree(dup); return ret; } long btrfs_ioctl_clone(struct file *file, unsigned long src_fd) { struct inode *inode = fdentry(file)->d_inode; struct btrfs_root *root = BTRFS_I(inode)->root; struct file *src_file; struct inode *src; struct btrfs_trans_handle *trans; int ret; u64 pos; struct btrfs_path *path; struct btrfs_key key; struct extent_buffer *leaf; u32 nritems; int slot; src_file = fget(src_fd); if (!src_file) return -EBADF; src = src_file->f_dentry->d_inode; ret = -EXDEV; if (src->i_sb != inode->i_sb) goto out_fput; if (inode < src) { mutex_lock(&inode->i_mutex); mutex_lock(&src->i_mutex); } else { mutex_lock(&src->i_mutex); mutex_lock(&inode->i_mutex); } ret = -ENOTEMPTY; if (inode->i_size) goto out_unlock; /* do any pending delalloc/csum calc on src, one way or another, and lock file content */ while (1) { filemap_write_and_wait(src->i_mapping); lock_extent(&BTRFS_I(src)->io_tree, 0, (u64)-1, GFP_NOFS); if (BTRFS_I(src)->delalloc_bytes == 0) break; unlock_extent(&BTRFS_I(src)->io_tree, 0, (u64)-1, GFP_NOFS); } mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 0); path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto out; } key.offset = 0; key.type = BTRFS_EXTENT_DATA_KEY; key.objectid = src->i_ino; pos = 0; path->reada = 2; while (1) { /* * note the key will change type as we walk through the * tree. */ ret = btrfs_search_slot(trans, root, &key, path, 0, 0); if (ret < 0) goto out; if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { ret = btrfs_next_leaf(root, path); if (ret < 0) goto out; if (ret > 0) break; } leaf = path->nodes[0]; slot = path->slots[0]; btrfs_item_key_to_cpu(leaf, &key, slot); nritems = btrfs_header_nritems(leaf); if (btrfs_key_type(&key) > BTRFS_CSUM_ITEM_KEY || key.objectid != src->i_ino) break; if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) { struct btrfs_file_extent_item *extent; int found_type; pos = key.offset; extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); found_type = btrfs_file_extent_type(leaf, extent); if (found_type == BTRFS_FILE_EXTENT_REG) { u64 len = btrfs_file_extent_num_bytes(leaf, extent); u64 ds = btrfs_file_extent_disk_bytenr(leaf, extent); u64 dl = btrfs_file_extent_disk_num_bytes(leaf, extent); u64 off = btrfs_file_extent_offset(leaf, extent); btrfs_insert_file_extent(trans, root, inode->i_ino, pos, ds, dl, len, off); /* ds == 0 means there's a hole */ if (ds != 0) { btrfs_inc_extent_ref(trans, root, ds, dl, root->root_key.objectid, trans->transid, inode->i_ino, pos); } pos = key.offset + len; } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { ret = dup_item_to_inode(trans, root, path, leaf, slot, &key, inode->i_ino); if (ret) goto out; pos = key.offset + btrfs_item_size_nr(leaf, slot); } } else if (btrfs_key_type(&key) == BTRFS_CSUM_ITEM_KEY) { ret = dup_item_to_inode(trans, root, path, leaf, slot, &key, inode->i_ino); if (ret) goto out; } key.offset++; btrfs_release_path(root, path); } ret = 0; out: btrfs_free_path(path); inode->i_blocks = src->i_blocks; i_size_write(inode, src->i_size); btrfs_update_inode(trans, root, inode); unlock_extent(&BTRFS_I(src)->io_tree, 0, (u64)-1, GFP_NOFS); btrfs_end_transaction(trans, root); mutex_unlock(&root->fs_info->fs_mutex); out_unlock: mutex_unlock(&src->i_mutex); mutex_unlock(&inode->i_mutex); out_fput: fput(src_file); return ret; } /* * there are many ways the trans_start and trans_end ioctls can lead * to deadlocks. They should only be used by applications that * basically own the machine, and have a very in depth understanding * of all the possible deadlocks and enospc problems. */ long btrfs_ioctl_trans_start(struct file *file) { struct inode *inode = fdentry(file)->d_inode; struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_trans_handle *trans; int ret = 0; if (!capable(CAP_SYS_ADMIN)) return -EPERM; mutex_lock(&root->fs_info->fs_mutex); if (file->private_data) { ret = -EINPROGRESS; goto out; } trans = btrfs_start_transaction(root, 0); if (trans) file->private_data = trans; else ret = -ENOMEM; /*printk(KERN_INFO "btrfs_ioctl_trans_start on %p\n", file);*/ out: mutex_unlock(&root->fs_info->fs_mutex); return ret; } /* * there are many ways the trans_start and trans_end ioctls can lead * to deadlocks. They should only be used by applications that * basically own the machine, and have a very in depth understanding * of all the possible deadlocks and enospc problems. */ long btrfs_ioctl_trans_end(struct file *file) { struct inode *inode = fdentry(file)->d_inode; struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_trans_handle *trans; int ret = 0; mutex_lock(&root->fs_info->fs_mutex); trans = file->private_data; if (!trans) { ret = -EINVAL; goto out; } btrfs_end_transaction(trans, root); file->private_data = 0; out: mutex_unlock(&root->fs_info->fs_mutex); return ret; } long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; switch (cmd) { case BTRFS_IOC_SNAP_CREATE: return btrfs_ioctl_snap_create(root, (void __user *)arg); case BTRFS_IOC_DEFRAG: return btrfs_ioctl_defrag(file); case BTRFS_IOC_RESIZE: return btrfs_ioctl_resize(root, (void __user *)arg); case BTRFS_IOC_ADD_DEV: return btrfs_ioctl_add_dev(root, (void __user *)arg); case BTRFS_IOC_RM_DEV: return btrfs_ioctl_rm_dev(root, (void __user *)arg); case BTRFS_IOC_BALANCE: return btrfs_balance(root->fs_info->dev_root); case BTRFS_IOC_CLONE: return btrfs_ioctl_clone(file, arg); case BTRFS_IOC_TRANS_START: return btrfs_ioctl_trans_start(file); case BTRFS_IOC_TRANS_END: return btrfs_ioctl_trans_end(file); case BTRFS_IOC_SYNC: btrfs_sync_fs(file->f_dentry->d_sb, 1); return 0; } return -ENOTTY; }