/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ctree.h" #include "disk-io.h" #include "transaction.h" #include "btrfs_inode.h" #include "ioctl.h" #include "print-tree.h" struct btrfs_iget_args { u64 ino; struct btrfs_root *root; }; static struct inode_operations btrfs_dir_inode_operations; static struct inode_operations btrfs_symlink_inode_operations; static struct inode_operations btrfs_dir_ro_inode_operations; static struct inode_operations btrfs_special_inode_operations; static struct inode_operations btrfs_file_inode_operations; static struct address_space_operations btrfs_aops; static struct address_space_operations btrfs_symlink_aops; static struct file_operations btrfs_dir_file_operations; static struct extent_map_ops btrfs_extent_map_ops; static struct kmem_cache *btrfs_inode_cachep; struct kmem_cache *btrfs_trans_handle_cachep; struct kmem_cache *btrfs_transaction_cachep; struct kmem_cache *btrfs_bit_radix_cachep; struct kmem_cache *btrfs_path_cachep; #define S_SHIFT 12 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, }; static int run_delalloc_range(struct inode *inode, u64 start, u64 end) { struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_trans_handle *trans; struct btrfs_key ins; u64 alloc_hint = 0; u64 num_blocks; int ret; u64 blocksize = 1 << inode->i_blkbits; mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, inode); BUG_ON(!trans); num_blocks = (end - start + blocksize) & ~(blocksize - 1); ret = btrfs_drop_extents(trans, root, inode, start, start + num_blocks, &alloc_hint); num_blocks = num_blocks >> inode->i_blkbits; ret = btrfs_alloc_extent(trans, root, inode->i_ino, num_blocks, 0, alloc_hint, (u64)-1, &ins, 1); if (ret) { WARN_ON(1); goto out; } ret = btrfs_insert_file_extent(trans, root, inode->i_ino, start, ins.objectid, ins.offset, ins.offset); out: btrfs_end_transaction(trans, root); mutex_unlock(&root->fs_info->fs_mutex); return ret; } int btrfs_writepage_io_hook(struct page *page, u64 start, u64 end) { struct inode *inode = page->mapping->host; struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_trans_handle *trans; char *kaddr; int ret; u64 page_start = page->index << PAGE_CACHE_SHIFT; size_t offset = start - page_start; mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, inode); kaddr = kmap(page); btrfs_csum_file_block(trans, root, inode->i_ino, start, kaddr + offset, end - start + 1); kunmap(page); ret = btrfs_end_transaction(trans, root); BUG_ON(ret); mutex_unlock(&root->fs_info->fs_mutex); return ret; } int btrfs_readpage_io_hook(struct page *page, u64 start, u64 end) { int ret = 0; struct inode *inode = page->mapping->host; struct btrfs_root *root = BTRFS_I(inode)->root; struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; struct btrfs_csum_item *item; struct btrfs_path *path = NULL; u64 private; mutex_lock(&root->fs_info->fs_mutex); path = btrfs_alloc_path(); item = btrfs_lookup_csum(NULL, root, path, inode->i_ino, start, 0); if (IS_ERR(item)) { ret = PTR_ERR(item); /* a csum that isn't present is a preallocated region. */ if (ret == -ENOENT || ret == -EFBIG) ret = 0; private = 0; goto out; } memcpy((char *)&private, &item->csum, BTRFS_CRC32_SIZE); set_state_private(em_tree, start, private); out: if (path) btrfs_free_path(path); mutex_unlock(&root->fs_info->fs_mutex); return ret; } int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end) { char csum[BTRFS_CRC32_SIZE]; size_t offset = start - (page->index << PAGE_CACHE_SHIFT); struct inode *inode = page->mapping->host; struct btrfs_root *root = BTRFS_I(inode)->root; struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; char *kaddr; u64 private; int ret; ret = get_state_private(em_tree, start, &private); kaddr = kmap_atomic(page, KM_IRQ0); if (ret) { goto zeroit; } ret = btrfs_csum_data(root, kaddr + offset, end - start + 1, csum); BUG_ON(ret); if (memcmp(csum, &private, BTRFS_CRC32_SIZE)) { goto zeroit; } kunmap_atomic(kaddr, KM_IRQ0); return 0; zeroit: printk("btrfs csum failed ino %lu off %llu\n", page->mapping->host->i_ino, (unsigned long long)start); memset(kaddr + offset, 1, end - start + 1); flush_dcache_page(page); kunmap_atomic(kaddr, KM_IRQ0); return 0; } void btrfs_read_locked_inode(struct inode *inode) { struct btrfs_path *path; struct btrfs_inode_item *inode_item; struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_key location; u64 alloc_group_block; u32 rdev; int ret; path = btrfs_alloc_path(); BUG_ON(!path); mutex_lock(&root->fs_info->fs_mutex); memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); ret = btrfs_lookup_inode(NULL, root, path, &location, 0); if (ret) { btrfs_free_path(path); goto make_bad; } inode_item = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]), path->slots[0], struct btrfs_inode_item); inode->i_mode = btrfs_inode_mode(inode_item); inode->i_nlink = btrfs_inode_nlink(inode_item); inode->i_uid = btrfs_inode_uid(inode_item); inode->i_gid = btrfs_inode_gid(inode_item); inode->i_size = btrfs_inode_size(inode_item); inode->i_atime.tv_sec = btrfs_timespec_sec(&inode_item->atime); inode->i_atime.tv_nsec = btrfs_timespec_nsec(&inode_item->atime); inode->i_mtime.tv_sec = btrfs_timespec_sec(&inode_item->mtime); inode->i_mtime.tv_nsec = btrfs_timespec_nsec(&inode_item->mtime); inode->i_ctime.tv_sec = btrfs_timespec_sec(&inode_item->ctime); inode->i_ctime.tv_nsec = btrfs_timespec_nsec(&inode_item->ctime); inode->i_blocks = btrfs_inode_nblocks(inode_item); inode->i_generation = btrfs_inode_generation(inode_item); inode->i_rdev = 0; rdev = btrfs_inode_rdev(inode_item); alloc_group_block = btrfs_inode_block_group(inode_item); BTRFS_I(inode)->block_group = btrfs_lookup_block_group(root->fs_info, alloc_group_block); btrfs_free_path(path); inode_item = NULL; mutex_unlock(&root->fs_info->fs_mutex); switch (inode->i_mode & S_IFMT) { case S_IFREG: inode->i_mapping->a_ops = &btrfs_aops; BTRFS_I(inode)->extent_tree.ops = &btrfs_extent_map_ops; inode->i_fop = &btrfs_file_operations; inode->i_op = &btrfs_file_inode_operations; break; case S_IFDIR: inode->i_fop = &btrfs_dir_file_operations; if (root == root->fs_info->tree_root) inode->i_op = &btrfs_dir_ro_inode_operations; else inode->i_op = &btrfs_dir_inode_operations; break; case S_IFLNK: inode->i_op = &btrfs_symlink_inode_operations; inode->i_mapping->a_ops = &btrfs_symlink_aops; break; default: init_special_inode(inode, inode->i_mode, rdev); break; } return; make_bad: btrfs_release_path(root, path); btrfs_free_path(path); mutex_unlock(&root->fs_info->fs_mutex); make_bad_inode(inode); } static void fill_inode_item(struct btrfs_inode_item *item, struct inode *inode) { btrfs_set_inode_uid(item, inode->i_uid); btrfs_set_inode_gid(item, inode->i_gid); btrfs_set_inode_size(item, inode->i_size); btrfs_set_inode_mode(item, inode->i_mode); btrfs_set_inode_nlink(item, inode->i_nlink); btrfs_set_timespec_sec(&item->atime, inode->i_atime.tv_sec); btrfs_set_timespec_nsec(&item->atime, inode->i_atime.tv_nsec); btrfs_set_timespec_sec(&item->mtime, inode->i_mtime.tv_sec); btrfs_set_timespec_nsec(&item->mtime, inode->i_mtime.tv_nsec); btrfs_set_timespec_sec(&item->ctime, inode->i_ctime.tv_sec); btrfs_set_timespec_nsec(&item->ctime, inode->i_ctime.tv_nsec); btrfs_set_inode_nblocks(item, inode->i_blocks); btrfs_set_inode_generation(item, inode->i_generation); btrfs_set_inode_rdev(item, inode->i_rdev); btrfs_set_inode_block_group(item, BTRFS_I(inode)->block_group->key.objectid); } int btrfs_update_inode(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct inode *inode) { struct btrfs_inode_item *inode_item; struct btrfs_path *path; int ret; path = btrfs_alloc_path(); BUG_ON(!path); ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 1); if (ret) { if (ret > 0) ret = -ENOENT; goto failed; } inode_item = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]), path->slots[0], struct btrfs_inode_item); fill_inode_item(inode_item, inode); btrfs_mark_buffer_dirty(path->nodes[0]); btrfs_set_inode_last_trans(trans, inode); ret = 0; failed: btrfs_release_path(root, path); btrfs_free_path(path); return ret; } static int btrfs_unlink_trans(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct inode *dir, struct dentry *dentry) { struct btrfs_path *path; const char *name = dentry->d_name.name; int name_len = dentry->d_name.len; int ret = 0; u64 objectid; struct btrfs_dir_item *di; path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto err; } di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, name, name_len, -1); if (IS_ERR(di)) { ret = PTR_ERR(di); goto err; } if (!di) { ret = -ENOENT; goto err; } objectid = btrfs_disk_key_objectid(&di->location); ret = btrfs_delete_one_dir_name(trans, root, path, di); if (ret) goto err; btrfs_release_path(root, path); di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, objectid, name, name_len, -1); if (IS_ERR(di)) { ret = PTR_ERR(di); goto err; } if (!di) { ret = -ENOENT; goto err; } ret = btrfs_delete_one_dir_name(trans, root, path, di); dentry->d_inode->i_ctime = dir->i_ctime; err: btrfs_free_path(path); if (!ret) { dir->i_size -= name_len * 2; dir->i_mtime = dir->i_ctime = CURRENT_TIME; btrfs_update_inode(trans, root, dir); drop_nlink(dentry->d_inode); ret = btrfs_update_inode(trans, root, dentry->d_inode); dir->i_sb->s_dirt = 1; } return ret; } static int btrfs_unlink(struct inode *dir, struct dentry *dentry) { struct btrfs_root *root; struct btrfs_trans_handle *trans; int ret; root = BTRFS_I(dir)->root; mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, dir); ret = btrfs_unlink_trans(trans, root, dir, dentry); btrfs_end_transaction(trans, root); mutex_unlock(&root->fs_info->fs_mutex); btrfs_btree_balance_dirty(root); return ret; } static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) { struct inode *inode = dentry->d_inode; int err; int ret; struct btrfs_root *root = BTRFS_I(dir)->root; struct btrfs_path *path; struct btrfs_key key; struct btrfs_trans_handle *trans; struct btrfs_key found_key; int found_type; struct btrfs_leaf *leaf; char *goodnames = ".."; path = btrfs_alloc_path(); BUG_ON(!path); mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, dir); key.objectid = inode->i_ino; key.offset = (u64)-1; key.flags = (u32)-1; while(1) { ret = btrfs_search_slot(trans, root, &key, path, -1, 1); if (ret < 0) { err = ret; goto out; } BUG_ON(ret == 0); if (path->slots[0] == 0) { err = -ENOENT; goto out; } path->slots[0]--; leaf = btrfs_buffer_leaf(path->nodes[0]); btrfs_disk_key_to_cpu(&found_key, &leaf->items[path->slots[0]].key); found_type = btrfs_key_type(&found_key); if (found_key.objectid != inode->i_ino) { err = -ENOENT; goto out; } if ((found_type != BTRFS_DIR_ITEM_KEY && found_type != BTRFS_DIR_INDEX_KEY) || (!btrfs_match_dir_item_name(root, path, goodnames, 2) && !btrfs_match_dir_item_name(root, path, goodnames, 1))) { err = -ENOTEMPTY; goto out; } ret = btrfs_del_item(trans, root, path); BUG_ON(ret); if (found_type == BTRFS_DIR_ITEM_KEY && found_key.offset == 1) break; btrfs_release_path(root, path); } ret = 0; btrfs_release_path(root, path); /* now the directory is empty */ err = btrfs_unlink_trans(trans, root, dir, dentry); if (!err) { inode->i_size = 0; } out: btrfs_release_path(root, path); btrfs_free_path(path); mutex_unlock(&root->fs_info->fs_mutex); ret = btrfs_end_transaction(trans, root); btrfs_btree_balance_dirty(root); if (ret && !err) err = ret; return err; } static int btrfs_free_inode(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct inode *inode) { struct btrfs_path *path; int ret; clear_inode(inode); path = btrfs_alloc_path(); BUG_ON(!path); ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, -1); if (ret > 0) ret = -ENOENT; if (!ret) ret = btrfs_del_item(trans, root, path); btrfs_free_path(path); return ret; } /* * this can truncate away extent items, csum items and directory items. * It starts at a high offset and removes keys until it can't find * any higher than i_size. * * csum items that cross the new i_size are truncated to the new size * as well. */ static int btrfs_truncate_in_trans(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct inode *inode) { int ret; struct btrfs_path *path; struct btrfs_key key; struct btrfs_disk_key *found_key; u32 found_type; struct btrfs_leaf *leaf; struct btrfs_file_extent_item *fi; u64 extent_start = 0; u64 extent_num_blocks = 0; u64 item_end = 0; int found_extent; int del_item; btrfs_drop_extent_cache(inode, inode->i_size, (u64)-1); path = btrfs_alloc_path(); path->reada = -1; BUG_ON(!path); /* FIXME, add redo link to tree so we don't leak on crash */ key.objectid = inode->i_ino; key.offset = (u64)-1; key.flags = (u32)-1; while(1) { btrfs_init_path(path); fi = NULL; ret = btrfs_search_slot(trans, root, &key, path, -1, 1); if (ret < 0) { goto error; } if (ret > 0) { BUG_ON(path->slots[0] == 0); path->slots[0]--; } leaf = btrfs_buffer_leaf(path->nodes[0]); found_key = &leaf->items[path->slots[0]].key; found_type = btrfs_disk_key_type(found_key); if (btrfs_disk_key_objectid(found_key) != inode->i_ino) break; if (found_type != BTRFS_CSUM_ITEM_KEY && found_type != BTRFS_DIR_ITEM_KEY && found_type != BTRFS_DIR_INDEX_KEY && found_type != BTRFS_EXTENT_DATA_KEY) break; item_end = btrfs_disk_key_offset(found_key); if (found_type == BTRFS_EXTENT_DATA_KEY) { fi = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]), path->slots[0], struct btrfs_file_extent_item); if (btrfs_file_extent_type(fi) != BTRFS_FILE_EXTENT_INLINE) { item_end += btrfs_file_extent_num_blocks(fi) << inode->i_blkbits; } } if (found_type == BTRFS_CSUM_ITEM_KEY) { ret = btrfs_csum_truncate(trans, root, path, inode->i_size); BUG_ON(ret); } if (item_end < inode->i_size) { if (found_type == BTRFS_DIR_ITEM_KEY) { found_type = BTRFS_INODE_ITEM_KEY; } else if (found_type == BTRFS_EXTENT_ITEM_KEY) { found_type = BTRFS_CSUM_ITEM_KEY; } else if (found_type) { found_type--; } else { break; } btrfs_set_key_type(&key, found_type - 1); continue; } if (btrfs_disk_key_offset(found_key) >= inode->i_size) del_item = 1; else del_item = 0; found_extent = 0; /* FIXME, shrink the extent if the ref count is only 1 */ if (found_type == BTRFS_EXTENT_DATA_KEY && btrfs_file_extent_type(fi) != BTRFS_FILE_EXTENT_INLINE) { u64 num_dec; if (!del_item) { u64 orig_num_blocks = btrfs_file_extent_num_blocks(fi); extent_num_blocks = inode->i_size - btrfs_disk_key_offset(found_key) + root->blocksize - 1; extent_num_blocks >>= inode->i_blkbits; btrfs_set_file_extent_num_blocks(fi, extent_num_blocks); inode->i_blocks -= (orig_num_blocks - extent_num_blocks) << 3; btrfs_mark_buffer_dirty(path->nodes[0]); } else { extent_start = btrfs_file_extent_disk_blocknr(fi); extent_num_blocks = btrfs_file_extent_disk_num_blocks(fi); /* FIXME blocksize != 4096 */ num_dec = btrfs_file_extent_num_blocks(fi) << 3; if (extent_start != 0) { found_extent = 1; inode->i_blocks -= num_dec; } } } if (del_item) { ret = btrfs_del_item(trans, root, path); if (ret) goto error; } else { break; } btrfs_release_path(root, path); if (found_extent) { ret = btrfs_free_extent(trans, root, extent_start, extent_num_blocks, 0); BUG_ON(ret); } } ret = 0; error: btrfs_release_path(root, path); btrfs_free_path(path); inode->i_sb->s_dirt = 1; return ret; } static int btrfs_cow_one_page(struct inode *inode, struct page *page, size_t zero_start) { char *kaddr; int ret = 0; struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; u64 page_start = page->index << PAGE_CACHE_SHIFT; u64 page_end = page_start + PAGE_CACHE_SIZE - 1; if (!PagePrivate(page)) { SetPagePrivate(page); set_page_private(page, 1); WARN_ON(!page->mapping->a_ops->invalidatepage); page_cache_get(page); } lock_extent(em_tree, page_start, page_end, GFP_NOFS); set_extent_delalloc(&BTRFS_I(inode)->extent_tree, page_start, page_end, GFP_NOFS); if (zero_start != PAGE_CACHE_SIZE) { kaddr = kmap(page); memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); flush_dcache_page(page); kunmap(page); } set_page_dirty(page); unlock_extent(em_tree, page_start, page_end, GFP_NOFS); return ret; } /* * taken from block_truncate_page, but does cow as it zeros out * any bytes left in the last page in the file. */ static int btrfs_truncate_page(struct address_space *mapping, loff_t from) { struct inode *inode = mapping->host; unsigned blocksize = 1 << inode->i_blkbits; pgoff_t index = from >> PAGE_CACHE_SHIFT; unsigned offset = from & (PAGE_CACHE_SIZE-1); struct page *page; int ret = 0; u64 page_start; if ((offset & (blocksize - 1)) == 0) goto out; ret = -ENOMEM; page = grab_cache_page(mapping, index); if (!page) goto out; if (!PageUptodate(page)) { ret = btrfs_readpage(NULL, page); lock_page(page); if (!PageUptodate(page)) { ret = -EIO; goto out; } } page_start = page->index << PAGE_CACHE_SHIFT; ret = btrfs_cow_one_page(inode, page, offset); unlock_page(page); page_cache_release(page); out: return ret; } static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) { struct inode *inode = dentry->d_inode; int err; err = inode_change_ok(inode, attr); if (err) return err; if (S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) { struct btrfs_trans_handle *trans; struct btrfs_root *root = BTRFS_I(inode)->root; u64 mask = root->blocksize - 1; u64 pos = (inode->i_size + mask) & ~mask; u64 hole_size; if (attr->ia_size <= pos) goto out; btrfs_truncate_page(inode->i_mapping, inode->i_size); hole_size = (attr->ia_size - pos + mask) & ~mask; hole_size >>= inode->i_blkbits; mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, inode); err = btrfs_insert_file_extent(trans, root, inode->i_ino, pos, 0, 0, hole_size); btrfs_end_transaction(trans, root); mutex_unlock(&root->fs_info->fs_mutex); if (err) return err; } out: err = inode_setattr(inode, attr); return err; } void btrfs_delete_inode(struct inode *inode) { struct btrfs_trans_handle *trans; struct btrfs_root *root = BTRFS_I(inode)->root; int ret; truncate_inode_pages(&inode->i_data, 0); if (is_bad_inode(inode)) { goto no_delete; } inode->i_size = 0; mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, inode); ret = btrfs_truncate_in_trans(trans, root, inode); if (ret) goto no_delete_lock; ret = btrfs_free_inode(trans, root, inode); if (ret) goto no_delete_lock; btrfs_end_transaction(trans, root); mutex_unlock(&root->fs_info->fs_mutex); btrfs_btree_balance_dirty(root); return; no_delete_lock: btrfs_end_transaction(trans, root); mutex_unlock(&root->fs_info->fs_mutex); btrfs_btree_balance_dirty(root); no_delete: clear_inode(inode); } /* * this returns the key found in the dir entry in the location pointer. * If no dir entries were found, location->objectid is 0. */ static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, struct btrfs_key *location) { const char *name = dentry->d_name.name; int namelen = dentry->d_name.len; struct btrfs_dir_item *di; struct btrfs_path *path; struct btrfs_root *root = BTRFS_I(dir)->root; int ret; path = btrfs_alloc_path(); BUG_ON(!path); di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name, namelen, 0); if (!di || IS_ERR(di)) { location->objectid = 0; ret = 0; goto out; } btrfs_disk_key_to_cpu(location, &di->location); out: btrfs_release_path(root, path); btrfs_free_path(path); return ret; } /* * when we hit a tree root in a directory, the btrfs part of the inode * needs to be changed to reflect the root directory of the tree root. This * is kind of like crossing a mount point. */ static int fixup_tree_root_location(struct btrfs_root *root, struct btrfs_key *location, struct btrfs_root **sub_root, struct dentry *dentry) { struct btrfs_path *path; struct btrfs_root_item *ri; if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY) return 0; if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) return 0; path = btrfs_alloc_path(); BUG_ON(!path); mutex_lock(&root->fs_info->fs_mutex); *sub_root = btrfs_read_fs_root(root->fs_info, location, dentry->d_name.name, dentry->d_name.len); if (IS_ERR(*sub_root)) return PTR_ERR(*sub_root); ri = &(*sub_root)->root_item; location->objectid = btrfs_root_dirid(ri); location->flags = 0; btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); location->offset = 0; btrfs_free_path(path); mutex_unlock(&root->fs_info->fs_mutex); return 0; } static int btrfs_init_locked_inode(struct inode *inode, void *p) { struct btrfs_iget_args *args = p; inode->i_ino = args->ino; BTRFS_I(inode)->root = args->root; extent_map_tree_init(&BTRFS_I(inode)->extent_tree, inode->i_mapping, GFP_NOFS); return 0; } static int btrfs_find_actor(struct inode *inode, void *opaque) { struct btrfs_iget_args *args = opaque; return (args->ino == inode->i_ino && args->root == BTRFS_I(inode)->root); } struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid, struct btrfs_root *root) { struct inode *inode; struct btrfs_iget_args args; args.ino = objectid; args.root = root; inode = iget5_locked(s, objectid, btrfs_find_actor, btrfs_init_locked_inode, (void *)&args); return inode; } static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) { struct inode * inode; struct btrfs_inode *bi = BTRFS_I(dir); struct btrfs_root *root = bi->root; struct btrfs_root *sub_root = root; struct btrfs_key location; int ret; if (dentry->d_name.len > BTRFS_NAME_LEN) return ERR_PTR(-ENAMETOOLONG); mutex_lock(&root->fs_info->fs_mutex); ret = btrfs_inode_by_name(dir, dentry, &location); mutex_unlock(&root->fs_info->fs_mutex); if (ret < 0) return ERR_PTR(ret); inode = NULL; if (location.objectid) { ret = fixup_tree_root_location(root, &location, &sub_root, dentry); if (ret < 0) return ERR_PTR(ret); if (ret > 0) return ERR_PTR(-ENOENT); inode = btrfs_iget_locked(dir->i_sb, location.objectid, sub_root); if (!inode) return ERR_PTR(-EACCES); if (inode->i_state & I_NEW) { /* the inode and parent dir are two different roots */ if (sub_root != root) { igrab(inode); sub_root->inode = inode; } BTRFS_I(inode)->root = sub_root; memcpy(&BTRFS_I(inode)->location, &location, sizeof(location)); btrfs_read_locked_inode(inode); unlock_new_inode(inode); } } return d_splice_alias(inode, dentry); } static unsigned char btrfs_filetype_table[] = { DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK }; static int btrfs_readdir(struct file *filp, void *dirent, filldir_t filldir) { struct inode *inode = filp->f_path.dentry->d_inode; struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_item *item; struct btrfs_dir_item *di; struct btrfs_key key; struct btrfs_path *path; int ret; u32 nritems; struct btrfs_leaf *leaf; int slot; int advance; unsigned char d_type; int over = 0; u32 di_cur; u32 di_total; u32 di_len; int key_type = BTRFS_DIR_INDEX_KEY; /* FIXME, use a real flag for deciding about the key type */ if (root->fs_info->tree_root == root) key_type = BTRFS_DIR_ITEM_KEY; mutex_lock(&root->fs_info->fs_mutex); key.objectid = inode->i_ino; key.flags = 0; btrfs_set_key_type(&key, key_type); key.offset = filp->f_pos; path = btrfs_alloc_path(); path->reada = 2; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) goto err; advance = 0; while(1) { leaf = btrfs_buffer_leaf(path->nodes[0]); nritems = btrfs_header_nritems(&leaf->header); slot = path->slots[0]; if (advance || slot >= nritems) { if (slot >= nritems -1) { ret = btrfs_next_leaf(root, path); if (ret) break; leaf = btrfs_buffer_leaf(path->nodes[0]); nritems = btrfs_header_nritems(&leaf->header); slot = path->slots[0]; } else { slot++; path->slots[0]++; } } advance = 1; item = leaf->items + slot; if (btrfs_disk_key_objectid(&item->key) != key.objectid) break; if (btrfs_disk_key_type(&item->key) != key_type) break; if (btrfs_disk_key_offset(&item->key) < filp->f_pos) continue; filp->f_pos = btrfs_disk_key_offset(&item->key); advance = 1; di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); di_cur = 0; di_total = btrfs_item_size(leaf->items + slot); while(di_cur < di_total) { d_type = btrfs_filetype_table[btrfs_dir_type(di)]; over = filldir(dirent, (const char *)(di + 1), btrfs_dir_name_len(di), btrfs_disk_key_offset(&item->key), btrfs_disk_key_objectid(&di->location), d_type); if (over) goto nopos; di_len = btrfs_dir_name_len(di) + sizeof(*di); di_cur += di_len; di = (struct btrfs_dir_item *)((char *)di + di_len); } } filp->f_pos++; nopos: ret = 0; err: btrfs_release_path(root, path); btrfs_free_path(path); mutex_unlock(&root->fs_info->fs_mutex); return ret; } int btrfs_write_inode(struct inode *inode, int wait) { struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_trans_handle *trans; int ret = 0; if (wait) { mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, inode); ret = btrfs_commit_transaction(trans, root); mutex_unlock(&root->fs_info->fs_mutex); } return ret; } /* * This is somewhat expensive, updating the tree every time the * inode changes. But, it is most likely to find the inode in cache. * FIXME, needs more benchmarking...there are no reasons other than performance * to keep or drop this code. */ void btrfs_dirty_inode(struct inode *inode) { struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_trans_handle *trans; mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, inode); btrfs_update_inode(trans, root, inode); btrfs_end_transaction(trans, root); mutex_unlock(&root->fs_info->fs_mutex); } static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, struct btrfs_block_group_cache *group, int mode) { struct inode *inode; struct btrfs_inode_item inode_item; struct btrfs_key *location; int ret; int owner; inode = new_inode(root->fs_info->sb); if (!inode) return ERR_PTR(-ENOMEM); extent_map_tree_init(&BTRFS_I(inode)->extent_tree, inode->i_mapping, GFP_NOFS); BTRFS_I(inode)->root = root; if (mode & S_IFDIR) owner = 0; else owner = 1; group = btrfs_find_block_group(root, group, 0, 0, owner); BTRFS_I(inode)->block_group = group; inode->i_uid = current->fsuid; inode->i_gid = current->fsgid; inode->i_mode = mode; inode->i_ino = objectid; inode->i_blocks = 0; inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; fill_inode_item(&inode_item, inode); location = &BTRFS_I(inode)->location; location->objectid = objectid; location->flags = 0; location->offset = 0; btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); ret = btrfs_insert_inode(trans, root, objectid, &inode_item); if (ret) return ERR_PTR(ret); insert_inode_hash(inode); return inode; } static inline u8 btrfs_inode_type(struct inode *inode) { return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; } static int btrfs_add_link(struct btrfs_trans_handle *trans, struct dentry *dentry, struct inode *inode) { int ret; struct btrfs_key key; struct btrfs_root *root = BTRFS_I(dentry->d_parent->d_inode)->root; struct inode *parent_inode; key.objectid = inode->i_ino; key.flags = 0; btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); key.offset = 0; ret = btrfs_insert_dir_item(trans, root, dentry->d_name.name, dentry->d_name.len, dentry->d_parent->d_inode->i_ino, &key, btrfs_inode_type(inode)); if (ret == 0) { parent_inode = dentry->d_parent->d_inode; parent_inode->i_size += dentry->d_name.len * 2; parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; ret = btrfs_update_inode(trans, root, dentry->d_parent->d_inode); } return ret; } static int btrfs_add_nondir(struct btrfs_trans_handle *trans, struct dentry *dentry, struct inode *inode) { int err = btrfs_add_link(trans, dentry, inode); if (!err) { d_instantiate(dentry, inode); return 0; } if (err > 0) err = -EEXIST; return err; } static int btrfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev) { struct btrfs_trans_handle *trans; struct btrfs_root *root = BTRFS_I(dir)->root; struct inode *inode; int err; int drop_inode = 0; u64 objectid; if (!new_valid_dev(rdev)) return -EINVAL; mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, dir); err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); if (err) { err = -ENOSPC; goto out_unlock; } inode = btrfs_new_inode(trans, root, objectid, BTRFS_I(dir)->block_group, mode); err = PTR_ERR(inode); if (IS_ERR(inode)) goto out_unlock; btrfs_set_trans_block_group(trans, inode); err = btrfs_add_nondir(trans, dentry, inode); if (err) drop_inode = 1; else { inode->i_op = &btrfs_special_inode_operations; init_special_inode(inode, inode->i_mode, rdev); btrfs_update_inode(trans, root, inode); } dir->i_sb->s_dirt = 1; btrfs_update_inode_block_group(trans, inode); btrfs_update_inode_block_group(trans, dir); out_unlock: btrfs_end_transaction(trans, root); mutex_unlock(&root->fs_info->fs_mutex); if (drop_inode) { inode_dec_link_count(inode); iput(inode); } btrfs_btree_balance_dirty(root); return err; } static int btrfs_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd) { struct btrfs_trans_handle *trans; struct btrfs_root *root = BTRFS_I(dir)->root; struct inode *inode; int err; int drop_inode = 0; u64 objectid; mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, dir); err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); if (err) { err = -ENOSPC; goto out_unlock; } inode = btrfs_new_inode(trans, root, objectid, BTRFS_I(dir)->block_group, mode); err = PTR_ERR(inode); if (IS_ERR(inode)) goto out_unlock; btrfs_set_trans_block_group(trans, inode); err = btrfs_add_nondir(trans, dentry, inode); if (err) drop_inode = 1; else { inode->i_mapping->a_ops = &btrfs_aops; inode->i_fop = &btrfs_file_operations; inode->i_op = &btrfs_file_inode_operations; extent_map_tree_init(&BTRFS_I(inode)->extent_tree, inode->i_mapping, GFP_NOFS); BTRFS_I(inode)->extent_tree.ops = &btrfs_extent_map_ops; } dir->i_sb->s_dirt = 1; btrfs_update_inode_block_group(trans, inode); btrfs_update_inode_block_group(trans, dir); out_unlock: btrfs_end_transaction(trans, root); mutex_unlock(&root->fs_info->fs_mutex); if (drop_inode) { inode_dec_link_count(inode); iput(inode); } btrfs_btree_balance_dirty(root); return err; } static int btrfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) { struct btrfs_trans_handle *trans; struct btrfs_root *root = BTRFS_I(dir)->root; struct inode *inode = old_dentry->d_inode; int err; int drop_inode = 0; if (inode->i_nlink == 0) return -ENOENT; inc_nlink(inode); mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, dir); atomic_inc(&inode->i_count); err = btrfs_add_nondir(trans, dentry, inode); if (err) drop_inode = 1; dir->i_sb->s_dirt = 1; btrfs_update_inode_block_group(trans, dir); err = btrfs_update_inode(trans, root, inode); if (err) drop_inode = 1; btrfs_end_transaction(trans, root); mutex_unlock(&root->fs_info->fs_mutex); if (drop_inode) { inode_dec_link_count(inode); iput(inode); } btrfs_btree_balance_dirty(root); return err; } static int btrfs_make_empty_dir(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, u64 dirid) { int ret; char buf[2]; struct btrfs_key key; buf[0] = '.'; buf[1] = '.'; key.objectid = objectid; key.offset = 0; key.flags = 0; btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); ret = btrfs_insert_dir_item(trans, root, buf, 1, objectid, &key, BTRFS_FT_DIR); if (ret) goto error; key.objectid = dirid; ret = btrfs_insert_dir_item(trans, root, buf, 2, objectid, &key, BTRFS_FT_DIR); if (ret) goto error; error: return ret; } static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) { struct inode *inode; struct btrfs_trans_handle *trans; struct btrfs_root *root = BTRFS_I(dir)->root; int err = 0; int drop_on_err = 0; u64 objectid; mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, dir); if (IS_ERR(trans)) { err = PTR_ERR(trans); goto out_unlock; } err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); if (err) { err = -ENOSPC; goto out_unlock; } inode = btrfs_new_inode(trans, root, objectid, BTRFS_I(dir)->block_group, S_IFDIR | mode); if (IS_ERR(inode)) { err = PTR_ERR(inode); goto out_fail; } drop_on_err = 1; inode->i_op = &btrfs_dir_inode_operations; inode->i_fop = &btrfs_dir_file_operations; btrfs_set_trans_block_group(trans, inode); err = btrfs_make_empty_dir(trans, root, inode->i_ino, dir->i_ino); if (err) goto out_fail; inode->i_size = 6; err = btrfs_update_inode(trans, root, inode); if (err) goto out_fail; err = btrfs_add_link(trans, dentry, inode); if (err) goto out_fail; d_instantiate(dentry, inode); drop_on_err = 0; dir->i_sb->s_dirt = 1; btrfs_update_inode_block_group(trans, inode); btrfs_update_inode_block_group(trans, dir); out_fail: btrfs_end_transaction(trans, root); out_unlock: mutex_unlock(&root->fs_info->fs_mutex); if (drop_on_err) iput(inode); btrfs_btree_balance_dirty(root); return err; } struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, size_t page_offset, u64 start, u64 end, int create) { int ret; int err = 0; u64 blocknr; u64 extent_start = 0; u64 extent_end = 0; u64 objectid = inode->i_ino; u32 found_type; int failed_insert = 0; struct btrfs_path *path; struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_file_extent_item *item; struct btrfs_leaf *leaf; struct btrfs_disk_key *found_key; struct extent_map *em = NULL; struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; struct btrfs_trans_handle *trans = NULL; path = btrfs_alloc_path(); BUG_ON(!path); mutex_lock(&root->fs_info->fs_mutex); again: em = lookup_extent_mapping(em_tree, start, end); if (em) { goto out; } if (!em) { em = alloc_extent_map(GFP_NOFS); if (!em) { err = -ENOMEM; goto out; } em->start = 0; em->end = 0; } em->bdev = inode->i_sb->s_bdev; ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); if (ret < 0) { err = ret; goto out; } if (ret != 0) { if (path->slots[0] == 0) goto not_found; path->slots[0]--; } item = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]), path->slots[0], struct btrfs_file_extent_item); leaf = btrfs_buffer_leaf(path->nodes[0]); blocknr = btrfs_file_extent_disk_blocknr(item); blocknr += btrfs_file_extent_offset(item); /* are we inside the extent that was found? */ found_key = &leaf->items[path->slots[0]].key; found_type = btrfs_disk_key_type(found_key); if (btrfs_disk_key_objectid(found_key) != objectid || found_type != BTRFS_EXTENT_DATA_KEY) { goto not_found; } found_type = btrfs_file_extent_type(item); extent_start = btrfs_disk_key_offset(&leaf->items[path->slots[0]].key); if (found_type == BTRFS_FILE_EXTENT_REG) { extent_end = extent_start + (btrfs_file_extent_num_blocks(item) << inode->i_blkbits); err = 0; if (start < extent_start || start >= extent_end) { em->start = start; if (start < extent_start) { if (end < extent_start) goto not_found; em->end = extent_end - 1; } else { em->end = end; } goto not_found_em; } if (btrfs_file_extent_disk_blocknr(item) == 0) { em->start = extent_start; em->end = extent_end - 1; em->block_start = 0; em->block_end = 0; goto insert; } em->block_start = blocknr << inode->i_blkbits; em->block_end = em->block_start + (btrfs_file_extent_num_blocks(item) << inode->i_blkbits) - 1; em->start = extent_start; em->end = extent_end - 1; goto insert; } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { char *ptr; char *map; u32 size; size = btrfs_file_extent_inline_len(leaf->items + path->slots[0]); extent_end = extent_start + size; if (start < extent_start || start >= extent_end) { em->start = start; if (start < extent_start) { if (end < extent_start) goto not_found; em->end = extent_end - 1; } else { em->end = end; } goto not_found_em; } em->block_start = EXTENT_MAP_INLINE; em->block_end = EXTENT_MAP_INLINE; em->start = extent_start; em->end = extent_end - 1; if (!page) { goto insert; } ptr = btrfs_file_extent_inline_start(item); map = kmap(page); memcpy(map + page_offset, ptr, size); flush_dcache_page(result->b_page); kunmap(page); set_extent_uptodate(em_tree, extent_start, extent_end, GFP_NOFS); goto insert; } else { printk("unkknown found_type %d\n", found_type); WARN_ON(1); } not_found: em->start = start; em->end = end; not_found_em: em->block_start = 0; em->block_end = 0; insert: btrfs_release_path(root, path); if (em->start > start || em->end < start) { printk("bad extent! em: [%Lu %Lu] passed [%Lu %Lu]\n", em->start, em->end, start, end); err = -EIO; goto out; } ret = add_extent_mapping(em_tree, em); if (ret == -EEXIST) { free_extent_map(em); failed_insert++; if (failed_insert > 5) { printk("failing to insert %Lu %Lu\n", start, end); err = -EIO; goto out; } em = NULL; goto again; } err = 0; out: btrfs_free_path(path); if (trans) { ret = btrfs_end_transaction(trans, root); if (!err) err = ret; } mutex_unlock(&root->fs_info->fs_mutex); if (err) { free_extent_map(em); WARN_ON(1); return ERR_PTR(err); } return em; } /* * FIBMAP and others want to pass in a fake buffer head. They need to * use BTRFS_GET_BLOCK_NO_DIRECT to make sure we don't try to memcpy * any packed file data into the fake bh */ #define BTRFS_GET_BLOCK_NO_CREATE 0 #define BTRFS_GET_BLOCK_CREATE 1 #define BTRFS_GET_BLOCK_NO_DIRECT 2 /* * FIXME create==1 doe not work. */ static int btrfs_get_block_lock(struct inode *inode, sector_t iblock, struct buffer_head *result, int create) { int ret; int err = 0; u64 blocknr; u64 extent_start = 0; u64 extent_end = 0; u64 objectid = inode->i_ino; u32 found_type; u64 alloc_hint = 0; struct btrfs_path *path; struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_file_extent_item *item; struct btrfs_leaf *leaf; struct btrfs_disk_key *found_key; struct btrfs_trans_handle *trans = NULL; path = btrfs_alloc_path(); BUG_ON(!path); if (create & BTRFS_GET_BLOCK_CREATE) { /* * danger!, this only works if the page is properly up * to date somehow */ trans = btrfs_start_transaction(root, 1); if (!trans) { err = -ENOMEM; goto out; } ret = btrfs_drop_extents(trans, root, inode, iblock << inode->i_blkbits, (iblock + 1) << inode->i_blkbits, &alloc_hint); BUG_ON(ret); } ret = btrfs_lookup_file_extent(NULL, root, path, objectid, iblock << inode->i_blkbits, 0); if (ret < 0) { err = ret; goto out; } if (ret != 0) { if (path->slots[0] == 0) { btrfs_release_path(root, path); goto not_found; } path->slots[0]--; } item = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]), path->slots[0], struct btrfs_file_extent_item); leaf = btrfs_buffer_leaf(path->nodes[0]); blocknr = btrfs_file_extent_disk_blocknr(item); blocknr += btrfs_file_extent_offset(item); /* are we inside the extent that was found? */ found_key = &leaf->items[path->slots[0]].key; found_type = btrfs_disk_key_type(found_key); if (btrfs_disk_key_objectid(found_key) != objectid || found_type != BTRFS_EXTENT_DATA_KEY) { extent_end = 0; extent_start = 0; goto not_found; } found_type = btrfs_file_extent_type(item); extent_start = btrfs_disk_key_offset(&leaf->items[path->slots[0]].key); if (found_type == BTRFS_FILE_EXTENT_REG) { extent_start = extent_start >> inode->i_blkbits; extent_end = extent_start + btrfs_file_extent_num_blocks(item); err = 0; if (btrfs_file_extent_disk_blocknr(item) == 0) goto out; if (iblock >= extent_start && iblock < extent_end) { btrfs_map_bh_to_logical(root, result, blocknr + iblock - extent_start); goto out; } } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { char *ptr; char *map; u32 size; if (create & BTRFS_GET_BLOCK_NO_DIRECT) { err = -EINVAL; goto out; } size = btrfs_file_extent_inline_len(leaf->items + path->slots[0]); extent_end = (extent_start + size) >> inode->i_blkbits; extent_start >>= inode->i_blkbits; if (iblock < extent_start || iblock > extent_end) { goto not_found; } ptr = btrfs_file_extent_inline_start(item); map = kmap(result->b_page); memcpy(map, ptr, size); memset(map + size, 0, PAGE_CACHE_SIZE - size); flush_dcache_page(result->b_page); kunmap(result->b_page); set_buffer_uptodate(result); SetPageChecked(result->b_page); btrfs_map_bh_to_logical(root, result, 0); } not_found: if (create & BTRFS_GET_BLOCK_CREATE) { struct btrfs_key ins; ret = btrfs_alloc_extent(trans, root, inode->i_ino, 1, 0, alloc_hint, (u64)-1, &ins, 1); if (ret) { err = ret; goto out; } ret = btrfs_insert_file_extent(trans, root, inode->i_ino, iblock << inode->i_blkbits, ins.objectid, ins.offset, ins.offset); if (ret) { err = ret; goto out; } btrfs_map_bh_to_logical(root, result, ins.objectid); } out: if (trans) { ret = btrfs_end_transaction(trans, root); if (!err) err = ret; } btrfs_free_path(path); return err; } int btrfs_get_block(struct inode *inode, sector_t iblock, struct buffer_head *result, int create) { int err; struct btrfs_root *root = BTRFS_I(inode)->root; mutex_lock(&root->fs_info->fs_mutex); err = btrfs_get_block_lock(inode, iblock, result, create); mutex_unlock(&root->fs_info->fs_mutex); return err; } static int btrfs_get_block_bmap(struct inode *inode, sector_t iblock, struct buffer_head *result, int create) { struct btrfs_root *root = BTRFS_I(inode)->root; u64 start = iblock << inode->i_blkbits; u64 end = start + root->blocksize -1; struct extent_map *em; em = btrfs_get_extent(inode, NULL, 0, start, end, 0); if (em && !IS_ERR(em) && em->block_start != EXTENT_MAP_INLINE && em->block_start != 0) { u64 offset; offset = start - em->start; start = (em->block_start + offset) >> inode->i_blkbits; btrfs_map_bh_to_logical(root, result, start); } return 0; } static sector_t btrfs_bmap(struct address_space *as, sector_t block) { return generic_block_bmap(as, block, btrfs_get_block_bmap); } static int btrfs_prepare_write(struct file *file, struct page *page, unsigned from, unsigned to) { return extent_prepare_write(&BTRFS_I(page->mapping->host)->extent_tree, page->mapping->host, page, from, to, btrfs_get_extent); } int btrfs_readpage(struct file *file, struct page *page) { struct extent_map_tree *tree; tree = &BTRFS_I(page->mapping->host)->extent_tree; return extent_read_full_page(tree, page, btrfs_get_extent); } static int btrfs_writepage(struct page *page, struct writeback_control *wbc) { struct extent_map_tree *tree; if (current->flags & PF_MEMALLOC) { redirty_page_for_writepage(wbc, page); unlock_page(page); return 0; } tree = &BTRFS_I(page->mapping->host)->extent_tree; return extent_write_full_page(tree, page, btrfs_get_extent, wbc); } static int btrfs_releasepage(struct page *page, gfp_t unused_gfp_flags) { struct extent_map_tree *tree; int ret; if (page->private != 1) { WARN_ON(1); return try_to_free_buffers(page); } tree = &BTRFS_I(page->mapping->host)->extent_tree; ret = try_release_extent_mapping(tree, page); if (ret == 1) { ClearPagePrivate(page); set_page_private(page, 0); page_cache_release(page); } return ret; } static void btrfs_invalidatepage(struct page *page, unsigned long offset) { struct extent_map_tree *tree; tree = &BTRFS_I(page->mapping->host)->extent_tree; extent_invalidatepage(tree, page, offset); btrfs_releasepage(page, GFP_NOFS); } /* * btrfs_page_mkwrite() is not allowed to change the file size as it gets * called from a page fault handler when a page is first dirtied. Hence we must * be careful to check for EOF conditions here. We set the page up correctly * for a written page which means we get ENOSPC checking when writing into * holes and correct delalloc and unwritten extent mapping on filesystems that * support these features. * * We are not allowed to take the i_mutex here so we have to play games to * protect against truncate races as the page could now be beyond EOF. Because * vmtruncate() writes the inode size before removing pages, once we have the * page lock we can determine safely if the page is beyond EOF. If it is not * beyond EOF, then the page is guaranteed safe against truncation until we * unlock the page. */ int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page) { struct inode *inode = vma->vm_file->f_path.dentry->d_inode; unsigned long end; loff_t size; int ret = -EINVAL; u64 page_start; lock_page(page); wait_on_page_writeback(page); size = i_size_read(inode); page_start = page->index << PAGE_CACHE_SHIFT; if ((page->mapping != inode->i_mapping) || (page_start > size)) { /* page got truncated out from underneath us */ goto out_unlock; } /* page is wholly or partially inside EOF */ if (page_start + PAGE_CACHE_SIZE > size) end = size & ~PAGE_CACHE_MASK; else end = PAGE_CACHE_SIZE; ret = btrfs_cow_one_page(inode, page, end); out_unlock: unlock_page(page); return ret; } static void btrfs_truncate(struct inode *inode) { struct btrfs_root *root = BTRFS_I(inode)->root; int ret; struct btrfs_trans_handle *trans; if (!S_ISREG(inode->i_mode)) return; if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) return; btrfs_truncate_page(inode->i_mapping, inode->i_size); mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, inode); /* FIXME, add redo link to tree so we don't leak on crash */ ret = btrfs_truncate_in_trans(trans, root, inode); btrfs_update_inode(trans, root, inode); ret = btrfs_end_transaction(trans, root); BUG_ON(ret); mutex_unlock(&root->fs_info->fs_mutex); btrfs_btree_balance_dirty(root); } int btrfs_commit_write(struct file *file, struct page *page, unsigned from, unsigned to) { return extent_commit_write(&BTRFS_I(page->mapping->host)->extent_tree, page->mapping->host, page, from, to); } static int create_subvol(struct btrfs_root *root, char *name, int namelen) { struct btrfs_trans_handle *trans; struct btrfs_key key; struct btrfs_root_item root_item; struct btrfs_inode_item *inode_item; struct buffer_head *subvol; struct btrfs_leaf *leaf; struct btrfs_root *new_root; struct inode *inode; struct inode *dir; int ret; int err; u64 objectid; u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); BUG_ON(!trans); subvol = btrfs_alloc_free_block(trans, root, 0, 0); if (IS_ERR(subvol)) return PTR_ERR(subvol); leaf = btrfs_buffer_leaf(subvol); btrfs_set_header_nritems(&leaf->header, 0); btrfs_set_header_level(&leaf->header, 0); btrfs_set_header_blocknr(&leaf->header, bh_blocknr(subvol)); btrfs_set_header_generation(&leaf->header, trans->transid); btrfs_set_header_owner(&leaf->header, root->root_key.objectid); memcpy(leaf->header.fsid, root->fs_info->disk_super->fsid, sizeof(leaf->header.fsid)); btrfs_mark_buffer_dirty(subvol); inode_item = &root_item.inode; memset(inode_item, 0, sizeof(*inode_item)); btrfs_set_inode_generation(inode_item, 1); btrfs_set_inode_size(inode_item, 3); btrfs_set_inode_nlink(inode_item, 1); btrfs_set_inode_nblocks(inode_item, 1); btrfs_set_inode_mode(inode_item, S_IFDIR | 0755); btrfs_set_root_blocknr(&root_item, bh_blocknr(subvol)); btrfs_set_root_refs(&root_item, 1); btrfs_set_root_blocks_used(&root_item, 0); memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress)); root_item.drop_level = 0; brelse(subvol); subvol = NULL; ret = btrfs_find_free_objectid(trans, root->fs_info->tree_root, 0, &objectid); if (ret) goto fail; btrfs_set_root_dirid(&root_item, new_dirid); key.objectid = objectid; key.offset = 1; key.flags = 0; btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, &root_item); if (ret) goto fail; /* * insert the directory item */ key.offset = (u64)-1; dir = root->fs_info->sb->s_root->d_inode; ret = btrfs_insert_dir_item(trans, root->fs_info->tree_root, name, namelen, dir->i_ino, &key, BTRFS_FT_DIR); if (ret) goto fail; ret = btrfs_commit_transaction(trans, root); if (ret) goto fail_commit; new_root = btrfs_read_fs_root(root->fs_info, &key, name, namelen); BUG_ON(!new_root); trans = btrfs_start_transaction(new_root, 1); BUG_ON(!trans); inode = btrfs_new_inode(trans, new_root, new_dirid, BTRFS_I(dir)->block_group, S_IFDIR | 0700); if (IS_ERR(inode)) goto fail; inode->i_op = &btrfs_dir_inode_operations; inode->i_fop = &btrfs_dir_file_operations; new_root->inode = inode; ret = btrfs_make_empty_dir(trans, new_root, new_dirid, new_dirid); if (ret) goto fail; inode->i_nlink = 1; inode->i_size = 6; ret = btrfs_update_inode(trans, new_root, inode); if (ret) goto fail; fail: err = btrfs_commit_transaction(trans, root); if (err && !ret) ret = err; fail_commit: mutex_unlock(&root->fs_info->fs_mutex); btrfs_btree_balance_dirty(root); return ret; } static int create_snapshot(struct btrfs_root *root, char *name, int namelen) { struct btrfs_trans_handle *trans; struct btrfs_key key; struct btrfs_root_item new_root_item; struct buffer_head *tmp; int ret; int err; u64 objectid; if (!root->ref_cows) return -EINVAL; mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); BUG_ON(!trans); ret = btrfs_update_inode(trans, root, root->inode); if (ret) goto fail; ret = btrfs_find_free_objectid(trans, root->fs_info->tree_root, 0, &objectid); if (ret) goto fail; memcpy(&new_root_item, &root->root_item, sizeof(new_root_item)); key.objectid = objectid; key.offset = 1; key.flags = 0; btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); btrfs_cow_block(trans, root, root->node, NULL, 0, &tmp); btrfs_set_root_blocknr(&new_root_item, bh_blocknr(root->node)); ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, &new_root_item); if (ret) goto fail; /* * insert the directory item */ key.offset = (u64)-1; ret = btrfs_insert_dir_item(trans, root->fs_info->tree_root, name, namelen, root->fs_info->sb->s_root->d_inode->i_ino, &key, BTRFS_FT_DIR); if (ret) goto fail; ret = btrfs_inc_root_ref(trans, root); if (ret) goto fail; fail: err = btrfs_commit_transaction(trans, root); if (err && !ret) ret = err; mutex_unlock(&root->fs_info->fs_mutex); btrfs_btree_balance_dirty(root); return ret; } int btrfs_ioctl(struct inode *inode, struct file *filp, unsigned int cmd, unsigned long arg) { struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_ioctl_vol_args vol_args; int ret = 0; struct btrfs_dir_item *di; int namelen; struct btrfs_path *path; u64 root_dirid; switch (cmd) { case BTRFS_IOC_SNAP_CREATE: if (copy_from_user(&vol_args, (struct btrfs_ioctl_vol_args __user *)arg, sizeof(vol_args))) return -EFAULT; namelen = strlen(vol_args.name); if (namelen > BTRFS_VOL_NAME_MAX) return -EINVAL; if (strchr(vol_args.name, '/')) return -EINVAL; path = btrfs_alloc_path(); if (!path) return -ENOMEM; root_dirid = root->fs_info->sb->s_root->d_inode->i_ino, mutex_lock(&root->fs_info->fs_mutex); di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path, root_dirid, vol_args.name, namelen, 0); mutex_unlock(&root->fs_info->fs_mutex); btrfs_free_path(path); if (di && !IS_ERR(di)) return -EEXIST; if (IS_ERR(di)) return PTR_ERR(di); if (root == root->fs_info->tree_root) ret = create_subvol(root, vol_args.name, namelen); else ret = create_snapshot(root, vol_args.name, namelen); break; case BTRFS_IOC_DEFRAG: mutex_lock(&root->fs_info->fs_mutex); btrfs_defrag_root(root, 0); btrfs_defrag_root(root->fs_info->extent_root, 0); mutex_unlock(&root->fs_info->fs_mutex); ret = 0; break; default: return -ENOTTY; } return ret; } #ifdef CONFIG_COMPAT long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct inode *inode = file->f_path.dentry->d_inode; int ret; lock_kernel(); ret = btrfs_ioctl(inode, file, cmd, (unsigned long) compat_ptr(arg)); unlock_kernel(); return ret; } #endif /* * Called inside transaction, so use GFP_NOFS */ struct inode *btrfs_alloc_inode(struct super_block *sb) { struct btrfs_inode *ei; ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); if (!ei) return NULL; ei->last_trans = 0; return &ei->vfs_inode; } void btrfs_destroy_inode(struct inode *inode) { WARN_ON(!list_empty(&inode->i_dentry)); WARN_ON(inode->i_data.nrpages); kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); } static void init_once(void * foo, struct kmem_cache * cachep, unsigned long flags) { struct btrfs_inode *ei = (struct btrfs_inode *) foo; inode_init_once(&ei->vfs_inode); } void btrfs_destroy_cachep(void) { if (btrfs_inode_cachep) kmem_cache_destroy(btrfs_inode_cachep); if (btrfs_trans_handle_cachep) kmem_cache_destroy(btrfs_trans_handle_cachep); if (btrfs_transaction_cachep) kmem_cache_destroy(btrfs_transaction_cachep); if (btrfs_bit_radix_cachep) kmem_cache_destroy(btrfs_bit_radix_cachep); if (btrfs_path_cachep) kmem_cache_destroy(btrfs_path_cachep); } static struct kmem_cache *cache_create(const char *name, size_t size, unsigned long extra_flags, void (*ctor)(void *, struct kmem_cache *, unsigned long)) { return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | extra_flags), ctor #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23) ,NULL #endif ); } int btrfs_init_cachep(void) { btrfs_inode_cachep = cache_create("btrfs_inode_cache", sizeof(struct btrfs_inode), 0, init_once); if (!btrfs_inode_cachep) goto fail; btrfs_trans_handle_cachep = cache_create("btrfs_trans_handle_cache", sizeof(struct btrfs_trans_handle), 0, NULL); if (!btrfs_trans_handle_cachep) goto fail; btrfs_transaction_cachep = cache_create("btrfs_transaction_cache", sizeof(struct btrfs_transaction), 0, NULL); if (!btrfs_transaction_cachep) goto fail; btrfs_path_cachep = cache_create("btrfs_path_cache", sizeof(struct btrfs_transaction), 0, NULL); if (!btrfs_path_cachep) goto fail; btrfs_bit_radix_cachep = cache_create("btrfs_radix", 256, SLAB_DESTROY_BY_RCU, NULL); if (!btrfs_bit_radix_cachep) goto fail; return 0; fail: btrfs_destroy_cachep(); return -ENOMEM; } static int btrfs_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) { struct inode *inode = dentry->d_inode; generic_fillattr(inode, stat); stat->blksize = 256 * 1024; return 0; } static int btrfs_rename(struct inode * old_dir, struct dentry *old_dentry, struct inode * new_dir,struct dentry *new_dentry) { struct btrfs_trans_handle *trans; struct btrfs_root *root = BTRFS_I(old_dir)->root; struct inode *new_inode = new_dentry->d_inode; struct inode *old_inode = old_dentry->d_inode; struct timespec ctime = CURRENT_TIME; struct btrfs_path *path; struct btrfs_dir_item *di; int ret; if (S_ISDIR(old_inode->i_mode) && new_inode && new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) { return -ENOTEMPTY; } mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, new_dir); path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto out_fail; } old_dentry->d_inode->i_nlink++; old_dir->i_ctime = old_dir->i_mtime = ctime; new_dir->i_ctime = new_dir->i_mtime = ctime; old_inode->i_ctime = ctime; if (S_ISDIR(old_inode->i_mode) && old_dir != new_dir) { struct btrfs_key *location = &BTRFS_I(new_dir)->location; u64 old_parent_oid; di = btrfs_lookup_dir_item(trans, root, path, old_inode->i_ino, "..", 2, -1); if (IS_ERR(di)) { ret = PTR_ERR(di); goto out_fail; } if (!di) { ret = -ENOENT; goto out_fail; } old_parent_oid = btrfs_disk_key_objectid(&di->location); ret = btrfs_del_item(trans, root, path); if (ret) { goto out_fail; } btrfs_release_path(root, path); di = btrfs_lookup_dir_index_item(trans, root, path, old_inode->i_ino, old_parent_oid, "..", 2, -1); if (IS_ERR(di)) { ret = PTR_ERR(di); goto out_fail; } if (!di) { ret = -ENOENT; goto out_fail; } ret = btrfs_del_item(trans, root, path); if (ret) { goto out_fail; } btrfs_release_path(root, path); ret = btrfs_insert_dir_item(trans, root, "..", 2, old_inode->i_ino, location, BTRFS_FT_DIR); if (ret) goto out_fail; } ret = btrfs_unlink_trans(trans, root, old_dir, old_dentry); if (ret) goto out_fail; if (new_inode) { new_inode->i_ctime = CURRENT_TIME; ret = btrfs_unlink_trans(trans, root, new_dir, new_dentry); if (ret) goto out_fail; if (S_ISDIR(new_inode->i_mode)) clear_nlink(new_inode); else drop_nlink(new_inode); ret = btrfs_update_inode(trans, root, new_inode); if (ret) goto out_fail; } ret = btrfs_add_link(trans, new_dentry, old_inode); if (ret) goto out_fail; out_fail: btrfs_free_path(path); btrfs_end_transaction(trans, root); mutex_unlock(&root->fs_info->fs_mutex); return ret; } static int btrfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) { struct btrfs_trans_handle *trans; struct btrfs_root *root = BTRFS_I(dir)->root; struct btrfs_path *path; struct btrfs_key key; struct inode *inode; int err; int drop_inode = 0; u64 objectid; int name_len; int datasize; char *ptr; struct btrfs_file_extent_item *ei; name_len = strlen(symname) + 1; if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) return -ENAMETOOLONG; mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, dir); err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); if (err) { err = -ENOSPC; goto out_unlock; } inode = btrfs_new_inode(trans, root, objectid, BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO); err = PTR_ERR(inode); if (IS_ERR(inode)) goto out_unlock; btrfs_set_trans_block_group(trans, inode); err = btrfs_add_nondir(trans, dentry, inode); if (err) drop_inode = 1; else { inode->i_mapping->a_ops = &btrfs_aops; inode->i_fop = &btrfs_file_operations; inode->i_op = &btrfs_file_inode_operations; extent_map_tree_init(&BTRFS_I(inode)->extent_tree, inode->i_mapping, GFP_NOFS); BTRFS_I(inode)->extent_tree.ops = &btrfs_extent_map_ops; } dir->i_sb->s_dirt = 1; btrfs_update_inode_block_group(trans, inode); btrfs_update_inode_block_group(trans, dir); if (drop_inode) goto out_unlock; path = btrfs_alloc_path(); BUG_ON(!path); key.objectid = inode->i_ino; key.offset = 0; key.flags = 0; btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); datasize = btrfs_file_extent_calc_inline_size(name_len); err = btrfs_insert_empty_item(trans, root, path, &key, datasize); if (err) { drop_inode = 1; goto out_unlock; } ei = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]), path->slots[0], struct btrfs_file_extent_item); btrfs_set_file_extent_generation(ei, trans->transid); btrfs_set_file_extent_type(ei, BTRFS_FILE_EXTENT_INLINE); ptr = btrfs_file_extent_inline_start(ei); btrfs_memcpy(root, path->nodes[0]->b_data, ptr, symname, name_len); btrfs_mark_buffer_dirty(path->nodes[0]); btrfs_free_path(path); inode->i_op = &btrfs_symlink_inode_operations; inode->i_mapping->a_ops = &btrfs_symlink_aops; inode->i_size = name_len - 1; err = btrfs_update_inode(trans, root, inode); if (err) drop_inode = 1; out_unlock: btrfs_end_transaction(trans, root); mutex_unlock(&root->fs_info->fs_mutex); if (drop_inode) { inode_dec_link_count(inode); iput(inode); } btrfs_btree_balance_dirty(root); return err; } static struct inode_operations btrfs_dir_inode_operations = { .lookup = btrfs_lookup, .create = btrfs_create, .unlink = btrfs_unlink, .link = btrfs_link, .mkdir = btrfs_mkdir, .rmdir = btrfs_rmdir, .rename = btrfs_rename, .symlink = btrfs_symlink, .setattr = btrfs_setattr, .mknod = btrfs_mknod, }; static struct inode_operations btrfs_dir_ro_inode_operations = { .lookup = btrfs_lookup, }; static struct file_operations btrfs_dir_file_operations = { .llseek = generic_file_llseek, .read = generic_read_dir, .readdir = btrfs_readdir, .ioctl = btrfs_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = btrfs_compat_ioctl, #endif }; static struct extent_map_ops btrfs_extent_map_ops = { .fill_delalloc = run_delalloc_range, .writepage_io_hook = btrfs_writepage_io_hook, .readpage_io_hook = btrfs_readpage_io_hook, .readpage_end_io_hook = btrfs_readpage_end_io_hook, }; static struct address_space_operations btrfs_aops = { .readpage = btrfs_readpage, .writepage = btrfs_writepage, .sync_page = block_sync_page, .prepare_write = btrfs_prepare_write, .commit_write = btrfs_commit_write, .bmap = btrfs_bmap, .invalidatepage = btrfs_invalidatepage, .releasepage = btrfs_releasepage, .set_page_dirty = __set_page_dirty_nobuffers, }; static struct address_space_operations btrfs_symlink_aops = { .readpage = btrfs_readpage, .writepage = btrfs_writepage, }; static struct inode_operations btrfs_file_inode_operations = { .truncate = btrfs_truncate, .getattr = btrfs_getattr, .setattr = btrfs_setattr, }; static struct inode_operations btrfs_special_inode_operations = { .getattr = btrfs_getattr, .setattr = btrfs_setattr, }; static struct inode_operations btrfs_symlink_inode_operations = { .readlink = generic_readlink, .follow_link = page_follow_link_light, .put_link = page_put_link, };