/* * cx18 ADEC audio functions * * Derived from cx25840-audio.c * * Copyright (C) 2007 Hans Verkuil * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301, USA. */ #include "cx18-driver.h" static int set_audclk_freq(struct cx18 *cx, u32 freq) { struct cx18_av_state *state = &cx->av_state; if (freq != 32000 && freq != 44100 && freq != 48000) return -EINVAL; /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x10 */ cx18_av_write(cx, 0x127, 0x50); if (state->aud_input > CX18_AV_AUDIO_SERIAL2) { switch (freq) { case 32000: /* VID_PLL and AUX_PLL */ cx18_av_write4(cx, 0x108, 0x1408040f); /* AUX_PLL_FRAC */ /* 0x8.9504318a * 28,636,363.636 / 0x14 = 32000 * 384 */ cx18_av_write4(cx, 0x110, 0x012a0863); /* src3/4/6_ctl */ /* 0x1.f77f = (4 * 15734.26) / 32000 */ cx18_av_write4(cx, 0x900, 0x0801f77f); cx18_av_write4(cx, 0x904, 0x0801f77f); cx18_av_write4(cx, 0x90c, 0x0801f77f); /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x14 */ cx18_av_write(cx, 0x127, 0x54); /* AUD_COUNT = 0x2fff = 8 samples * 4 * 384 - 1 */ cx18_av_write4(cx, 0x12c, 0x11202fff); /* * EN_AV_LOCK = 1 * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 = * ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8 */ cx18_av_write4(cx, 0x128, 0xa10d2ef8); break; case 44100: /* VID_PLL and AUX_PLL */ cx18_av_write4(cx, 0x108, 0x1009040f); /* AUX_PLL_FRAC */ /* 0x9.7635e7 * 28,636,363.63 / 0x10 = 44100 * 384 */ cx18_av_write4(cx, 0x110, 0x00ec6bce); /* src3/4/6_ctl */ /* 0x1.6d59 = (4 * 15734.26) / 44100 */ cx18_av_write4(cx, 0x900, 0x08016d59); cx18_av_write4(cx, 0x904, 0x08016d59); cx18_av_write4(cx, 0x90c, 0x08016d59); /* AUD_COUNT = 0x92ff = 49 samples * 2 * 384 - 1 */ cx18_av_write4(cx, 0x12c, 0x112092ff); /* * EN_AV_LOCK = 1 * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 = * ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8 */ cx18_av_write4(cx, 0x128, 0xa11d4bf8); break; case 48000: /* VID_PLL and AUX_PLL */ cx18_av_write4(cx, 0x108, 0x100a040f); /* AUX_PLL_FRAC */ /* 0xa.4c6b6ea * 28,636,363.63 / 0x10 = 48000 * 384 */ cx18_av_write4(cx, 0x110, 0x0098d6dd); /* src3/4/6_ctl */ /* 0x1.4faa = (4 * 15734.26) / 48000 */ cx18_av_write4(cx, 0x900, 0x08014faa); cx18_av_write4(cx, 0x904, 0x08014faa); cx18_av_write4(cx, 0x90c, 0x08014faa); /* AUD_COUNT = 0x5fff = 4 samples * 16 * 384 - 1 */ cx18_av_write4(cx, 0x12c, 0x11205fff); /* * EN_AV_LOCK = 1 * VID_COUNT = 0x1193f8 = 143999.000 * 8 = * ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8 */ cx18_av_write4(cx, 0x128, 0xa11193f8); break; } } else { switch (freq) { case 32000: /* VID_PLL and AUX_PLL */ cx18_av_write4(cx, 0x108, 0x1e08040f); /* AUX_PLL_FRAC */ /* 0x8.9504318 * 28,636,363.63 / 0x1e = 32000 * 256 */ cx18_av_write4(cx, 0x110, 0x012a0863); /* src1_ctl */ /* 0x1.0000 = 32000/32000 */ cx18_av_write4(cx, 0x8f8, 0x08010000); /* src3/4/6_ctl */ /* 0x2.0000 = 2 * (32000/32000) */ cx18_av_write4(cx, 0x900, 0x08020000); cx18_av_write4(cx, 0x904, 0x08020000); cx18_av_write4(cx, 0x90c, 0x08020000); /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x14 */ cx18_av_write(cx, 0x127, 0x54); /* AUD_COUNT = 0x1fff = 8 samples * 4 * 256 - 1 */ cx18_av_write4(cx, 0x12c, 0x11201fff); /* * EN_AV_LOCK = 1 * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 = * ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8 */ cx18_av_write4(cx, 0x128, 0xa10d2ef8); break; case 44100: /* VID_PLL and AUX_PLL */ cx18_av_write4(cx, 0x108, 0x1809040f); /* AUX_PLL_FRAC */ /* 0x9.7635e74 * 28,636,363.63 / 0x18 = 44100 * 256 */ cx18_av_write4(cx, 0x110, 0x00ec6bce); /* src1_ctl */ /* 0x1.60cd = 44100/32000 */ cx18_av_write4(cx, 0x8f8, 0x080160cd); /* src3/4/6_ctl */ /* 0x1.7385 = 2 * (32000/44100) */ cx18_av_write4(cx, 0x900, 0x08017385); cx18_av_write4(cx, 0x904, 0x08017385); cx18_av_write4(cx, 0x90c, 0x08017385); /* AUD_COUNT = 0x61ff = 49 samples * 2 * 256 - 1 */ cx18_av_write4(cx, 0x12c, 0x112061ff); /* * EN_AV_LOCK = 1 * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 = * ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8 */ cx18_av_write4(cx, 0x128, 0xa11d4bf8); break; case 48000: /* VID_PLL and AUX_PLL */ cx18_av_write4(cx, 0x108, 0x180a040f); /* AUX_PLL_FRAC */ /* 0xa.4c6b6ea * 28,636,363.63 / 0x18 = 48000 * 256 */ cx18_av_write4(cx, 0x110, 0x0098d6dd); /* src1_ctl */ /* 0x1.8000 = 48000/32000 */ cx18_av_write4(cx, 0x8f8, 0x08018000); /* src3/4/6_ctl */ /* 0x1.5555 = 2 * (32000/48000) */ cx18_av_write4(cx, 0x900, 0x08015555); cx18_av_write4(cx, 0x904, 0x08015555); cx18_av_write4(cx, 0x90c, 0x08015555); /* AUD_COUNT = 0x3fff = 4 samples * 16 * 256 - 1 */ cx18_av_write4(cx, 0x12c, 0x11203fff); /* * EN_AV_LOCK = 1 * VID_COUNT = 0x1193f8 = 143999.000 * 8 = * ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8 */ cx18_av_write4(cx, 0x128, 0xa11193f8); break; } } state->audclk_freq = freq; return 0; } void cx18_av_audio_set_path(struct cx18 *cx) { struct cx18_av_state *state = &cx->av_state; u8 v; /* stop microcontroller */ v = cx18_av_read(cx, 0x803) & ~0x10; cx18_av_write_expect(cx, 0x803, v, v, 0x1f); /* assert soft reset */ v = cx18_av_read(cx, 0x810) | 0x01; cx18_av_write_expect(cx, 0x810, v, v, 0x0f); /* Mute everything to prevent the PFFT! */ cx18_av_write(cx, 0x8d3, 0x1f); if (state->aud_input <= CX18_AV_AUDIO_SERIAL2) { /* Set Path1 to Serial Audio Input */ cx18_av_write4(cx, 0x8d0, 0x01011012); /* The microcontroller should not be started for the * non-tuner inputs: autodetection is specific for * TV audio. */ } else { /* Set Path1 to Analog Demod Main Channel */ cx18_av_write4(cx, 0x8d0, 0x1f063870); } set_audclk_freq(cx, state->audclk_freq); /* deassert soft reset */ v = cx18_av_read(cx, 0x810) & ~0x01; cx18_av_write_expect(cx, 0x810, v, v, 0x0f); if (state->aud_input > CX18_AV_AUDIO_SERIAL2) { /* When the microcontroller detects the * audio format, it will unmute the lines */ v = cx18_av_read(cx, 0x803) | 0x10; cx18_av_write_expect(cx, 0x803, v, v, 0x1f); } } static int get_volume(struct cx18 *cx) { /* Volume runs +18dB to -96dB in 1/2dB steps * change to fit the msp3400 -114dB to +12dB range */ /* check PATH1_VOLUME */ int vol = 228 - cx18_av_read(cx, 0x8d4); vol = (vol / 2) + 23; return vol << 9; } static void set_volume(struct cx18 *cx, int volume) { /* First convert the volume to msp3400 values (0-127) */ int vol = volume >> 9; /* now scale it up to cx18_av values * -114dB to -96dB maps to 0 * this should be 19, but in my testing that was 4dB too loud */ if (vol <= 23) vol = 0; else vol -= 23; /* PATH1_VOLUME */ cx18_av_write(cx, 0x8d4, 228 - (vol * 2)); } static int get_bass(struct cx18 *cx) { /* bass is 49 steps +12dB to -12dB */ /* check PATH1_EQ_BASS_VOL */ int bass = cx18_av_read(cx, 0x8d9) & 0x3f; bass = (((48 - bass) * 0xffff) + 47) / 48; return bass; } static void set_bass(struct cx18 *cx, int bass) { /* PATH1_EQ_BASS_VOL */ cx18_av_and_or(cx, 0x8d9, ~0x3f, 48 - (bass * 48 / 0xffff)); } static int get_treble(struct cx18 *cx) { /* treble is 49 steps +12dB to -12dB */ /* check PATH1_EQ_TREBLE_VOL */ int treble = cx18_av_read(cx, 0x8db) & 0x3f; treble = (((48 - treble) * 0xffff) + 47) / 48; return treble; } static void set_treble(struct cx18 *cx, int treble) { /* PATH1_EQ_TREBLE_VOL */ cx18_av_and_or(cx, 0x8db, ~0x3f, 48 - (treble * 48 / 0xffff)); } static int get_balance(struct cx18 *cx) { /* balance is 7 bit, 0 to -96dB */ /* check PATH1_BAL_LEVEL */ int balance = cx18_av_read(cx, 0x8d5) & 0x7f; /* check PATH1_BAL_LEFT */ if ((cx18_av_read(cx, 0x8d5) & 0x80) == 0) balance = 0x80 - balance; else balance = 0x80 + balance; return balance << 8; } static void set_balance(struct cx18 *cx, int balance) { int bal = balance >> 8; if (bal > 0x80) { /* PATH1_BAL_LEFT */ cx18_av_and_or(cx, 0x8d5, 0x7f, 0x80); /* PATH1_BAL_LEVEL */ cx18_av_and_or(cx, 0x8d5, ~0x7f, bal & 0x7f); } else { /* PATH1_BAL_LEFT */ cx18_av_and_or(cx, 0x8d5, 0x7f, 0x00); /* PATH1_BAL_LEVEL */ cx18_av_and_or(cx, 0x8d5, ~0x7f, 0x80 - bal); } } static int get_mute(struct cx18 *cx) { /* check SRC1_MUTE_EN */ return cx18_av_read(cx, 0x8d3) & 0x2 ? 1 : 0; } static void set_mute(struct cx18 *cx, int mute) { struct cx18_av_state *state = &cx->av_state; u8 v; if (state->aud_input > CX18_AV_AUDIO_SERIAL2) { /* Must turn off microcontroller in order to mute sound. * Not sure if this is the best method, but it does work. * If the microcontroller is running, then it will undo any * changes to the mute register. */ v = cx18_av_read(cx, 0x803); if (mute) { /* disable microcontroller */ v &= ~0x10; cx18_av_write_expect(cx, 0x803, v, v, 0x1f); cx18_av_write(cx, 0x8d3, 0x1f); } else { /* enable microcontroller */ v |= 0x10; cx18_av_write_expect(cx, 0x803, v, v, 0x1f); } } else { /* SRC1_MUTE_EN */ cx18_av_and_or(cx, 0x8d3, ~0x2, mute ? 0x02 : 0x00); } } int cx18_av_audio(struct cx18 *cx, unsigned int cmd, void *arg) { struct cx18_av_state *state = &cx->av_state; struct v4l2_control *ctrl = arg; int retval; switch (cmd) { case VIDIOC_INT_AUDIO_CLOCK_FREQ: { u8 v; if (state->aud_input > CX18_AV_AUDIO_SERIAL2) { v = cx18_av_read(cx, 0x803) & ~0x10; cx18_av_write_expect(cx, 0x803, v, v, 0x1f); cx18_av_write(cx, 0x8d3, 0x1f); } v = cx18_av_read(cx, 0x810) | 0x1; cx18_av_write_expect(cx, 0x810, v, v, 0x0f); retval = set_audclk_freq(cx, *(u32 *)arg); v = cx18_av_read(cx, 0x810) & ~0x1; cx18_av_write_expect(cx, 0x810, v, v, 0x0f); if (state->aud_input > CX18_AV_AUDIO_SERIAL2) { v = cx18_av_read(cx, 0x803) | 0x10; cx18_av_write_expect(cx, 0x803, v, v, 0x1f); } return retval; } case VIDIOC_G_CTRL: switch (ctrl->id) { case V4L2_CID_AUDIO_VOLUME: ctrl->value = get_volume(cx); break; case V4L2_CID_AUDIO_BASS: ctrl->value = get_bass(cx); break; case V4L2_CID_AUDIO_TREBLE: ctrl->value = get_treble(cx); break; case V4L2_CID_AUDIO_BALANCE: ctrl->value = get_balance(cx); break; case V4L2_CID_AUDIO_MUTE: ctrl->value = get_mute(cx); break; default: return -EINVAL; } break; case VIDIOC_S_CTRL: switch (ctrl->id) { case V4L2_CID_AUDIO_VOLUME: set_volume(cx, ctrl->value); break; case V4L2_CID_AUDIO_BASS: set_bass(cx, ctrl->value); break; case V4L2_CID_AUDIO_TREBLE: set_treble(cx, ctrl->value); break; case V4L2_CID_AUDIO_BALANCE: set_balance(cx, ctrl->value); break; case V4L2_CID_AUDIO_MUTE: set_mute(cx, ctrl->value); break; default: return -EINVAL; } break; default: return -EINVAL; } return 0; }