/* * Copyright 2002 Andi Kleen, SuSE Labs. * Thanks to Ben LaHaise for precious feedback. */ #include #include #include #include #include #include #include #include #include #include #include #include static inline int within(unsigned long addr, unsigned long start, unsigned long end) { return addr >= start && addr < end; } /* * Flushing functions */ void clflush_cache_range(void *addr, int size) { int i; for (i = 0; i < size; i += boot_cpu_data.x86_clflush_size) clflush(addr+i); } static void flush_kernel_map(void *arg) { /* * Flush all to work around Errata in early athlons regarding * large page flushing. */ __flush_tlb_all(); if (boot_cpu_data.x86_model >= 4) wbinvd(); } static void global_flush_tlb(void) { BUG_ON(irqs_disabled()); on_each_cpu(flush_kernel_map, NULL, 1, 1); } /* * Certain areas of memory on x86 require very specific protection flags, * for example the BIOS area or kernel text. Callers don't always get this * right (again, ioremap() on BIOS memory is not uncommon) so this function * checks and fixes these known static required protection bits. */ static inline pgprot_t static_protections(pgprot_t prot, unsigned long address) { pgprot_t forbidden = __pgprot(0); /* * The BIOS area between 640k and 1Mb needs to be executable for * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support. */ if (within(__pa(address), BIOS_BEGIN, BIOS_END)) pgprot_val(forbidden) |= _PAGE_NX; /* * The kernel text needs to be executable for obvious reasons * Does not cover __inittext since that is gone later on */ if (within(address, (unsigned long)_text, (unsigned long)_etext)) pgprot_val(forbidden) |= _PAGE_NX; #ifdef CONFIG_DEBUG_RODATA /* The .rodata section needs to be read-only */ if (within(address, (unsigned long)__start_rodata, (unsigned long)__end_rodata)) pgprot_val(forbidden) |= _PAGE_RW; #endif prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden)); return prot; } pte_t *lookup_address(unsigned long address, int *level) { pgd_t *pgd = pgd_offset_k(address); pud_t *pud; pmd_t *pmd; *level = PG_LEVEL_NONE; if (pgd_none(*pgd)) return NULL; pud = pud_offset(pgd, address); if (pud_none(*pud)) return NULL; pmd = pmd_offset(pud, address); if (pmd_none(*pmd)) return NULL; *level = PG_LEVEL_2M; if (pmd_large(*pmd)) return (pte_t *)pmd; *level = PG_LEVEL_4K; return pte_offset_kernel(pmd, address); } static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte) { /* change init_mm */ set_pte_atomic(kpte, pte); #ifdef CONFIG_X86_32 if (!SHARED_KERNEL_PMD) { struct page *page; for (page = pgd_list; page; page = (struct page *)page->index) { pgd_t *pgd; pud_t *pud; pmd_t *pmd; pgd = (pgd_t *)page_address(page) + pgd_index(address); pud = pud_offset(pgd, address); pmd = pmd_offset(pud, address); set_pte_atomic((pte_t *)pmd, pte); } } #endif } static int split_large_page(pte_t *kpte, unsigned long address) { pgprot_t ref_prot = pte_pgprot(pte_clrhuge(*kpte)); gfp_t gfp_flags = GFP_KERNEL; unsigned long flags; unsigned long addr; pte_t *pbase, *tmp; struct page *base; int i, level; #ifdef CONFIG_DEBUG_PAGEALLOC gfp_flags = GFP_ATOMIC; #endif base = alloc_pages(gfp_flags, 0); if (!base) return -ENOMEM; spin_lock_irqsave(&pgd_lock, flags); /* * Check for races, another CPU might have split this page * up for us already: */ tmp = lookup_address(address, &level); if (tmp != kpte) { WARN_ON_ONCE(1); goto out_unlock; } address = __pa(address); addr = address & LARGE_PAGE_MASK; pbase = (pte_t *)page_address(base); #ifdef CONFIG_X86_32 paravirt_alloc_pt(&init_mm, page_to_pfn(base)); #endif for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) set_pte(&pbase[i], pfn_pte(addr >> PAGE_SHIFT, ref_prot)); /* * Install the new, split up pagetable. Important detail here: * * On Intel the NX bit of all levels must be cleared to make a * page executable. See section 4.13.2 of Intel 64 and IA-32 * Architectures Software Developer's Manual). */ ref_prot = pte_pgprot(pte_mkexec(pte_clrhuge(*kpte))); __set_pmd_pte(kpte, address, mk_pte(base, ref_prot)); base = NULL; out_unlock: spin_unlock_irqrestore(&pgd_lock, flags); if (base) __free_pages(base, 0); return 0; } static int __change_page_attr(unsigned long address, unsigned long pfn, pgprot_t prot) { struct page *kpte_page; int level, err = 0; pte_t *kpte; #ifdef CONFIG_X86_32 BUG_ON(pfn > max_low_pfn); #endif repeat: kpte = lookup_address(address, &level); if (!kpte) return -EINVAL; kpte_page = virt_to_page(kpte); BUG_ON(PageLRU(kpte_page)); BUG_ON(PageCompound(kpte_page)); prot = static_protections(prot, address); if (level == PG_LEVEL_4K) { set_pte_atomic(kpte, pfn_pte(pfn, canon_pgprot(prot))); } else { err = split_large_page(kpte, address); if (!err) goto repeat; } return err; } /** * change_page_attr_addr - Change page table attributes in linear mapping * @address: Virtual address in linear mapping. * @numpages: Number of pages to change * @prot: New page table attribute (PAGE_*) * * Change page attributes of a page in the direct mapping. This is a variant * of change_page_attr() that also works on memory holes that do not have * mem_map entry (pfn_valid() is false). * * See change_page_attr() documentation for more details. * * Modules and drivers should use the set_memory_* APIs instead. */ static int change_page_attr_addr(unsigned long address, int numpages, pgprot_t prot) { int err = 0, kernel_map = 0, i; #ifdef CONFIG_X86_64 if (address >= __START_KERNEL_map && address < __START_KERNEL_map + KERNEL_TEXT_SIZE) { address = (unsigned long)__va(__pa(address)); kernel_map = 1; } #endif for (i = 0; i < numpages; i++, address += PAGE_SIZE) { unsigned long pfn = __pa(address) >> PAGE_SHIFT; if (!kernel_map || pte_present(pfn_pte(0, prot))) { err = __change_page_attr(address, pfn, prot); if (err) break; } #ifdef CONFIG_X86_64 /* * Handle kernel mapping too which aliases part of * lowmem: */ if (__pa(address) < KERNEL_TEXT_SIZE) { unsigned long addr2; pgprot_t prot2; addr2 = __START_KERNEL_map + __pa(address); /* Make sure the kernel mappings stay executable */ prot2 = pte_pgprot(pte_mkexec(pfn_pte(0, prot))); err = __change_page_attr(addr2, pfn, prot2); } #endif } return err; } /** * change_page_attr_set - Change page table attributes in the linear mapping. * @addr: Virtual address in linear mapping. * @numpages: Number of pages to change * @prot: Protection/caching type bits to set (PAGE_*) * * Returns 0 on success, otherwise a negated errno. * * This should be used when a page is mapped with a different caching policy * than write-back somewhere - some CPUs do not like it when mappings with * different caching policies exist. This changes the page attributes of the * in kernel linear mapping too. * * The caller needs to ensure that there are no conflicting mappings elsewhere * (e.g. in user space) * This function only deals with the kernel linear map. * * This function is different from change_page_attr() in that only selected bits * are impacted, all other bits remain as is. */ static int change_page_attr_set(unsigned long addr, int numpages, pgprot_t prot) { pgprot_t current_prot; int level; pte_t *pte; pte = lookup_address(addr, &level); if (pte) current_prot = pte_pgprot(*pte); else pgprot_val(current_prot) = 0; pgprot_val(prot) = pgprot_val(current_prot) | pgprot_val(prot); return change_page_attr_addr(addr, numpages, prot); } /** * change_page_attr_clear - Change page table attributes in the linear mapping. * @addr: Virtual address in linear mapping. * @numpages: Number of pages to change * @prot: Protection/caching type bits to clear (PAGE_*) * * Returns 0 on success, otherwise a negated errno. * * This should be used when a page is mapped with a different caching policy * than write-back somewhere - some CPUs do not like it when mappings with * different caching policies exist. This changes the page attributes of the * in kernel linear mapping too. * * The caller needs to ensure that there are no conflicting mappings elsewhere * (e.g. in user space) * This function only deals with the kernel linear map. * * This function is different from change_page_attr() in that only selected bits * are impacted, all other bits remain as is. */ static int change_page_attr_clear(unsigned long addr, int numpages, pgprot_t prot) { pgprot_t current_prot; int level; pte_t *pte; pte = lookup_address(addr, &level); if (pte) current_prot = pte_pgprot(*pte); else pgprot_val(current_prot) = 0; pgprot_val(prot) = pgprot_val(current_prot) & ~pgprot_val(prot); return change_page_attr_addr(addr, numpages, prot); } int set_memory_uc(unsigned long addr, int numpages) { int err; err = change_page_attr_set(addr, numpages, __pgprot(_PAGE_PCD | _PAGE_PWT)); global_flush_tlb(); return err; } EXPORT_SYMBOL(set_memory_uc); int set_memory_wb(unsigned long addr, int numpages) { int err; err = change_page_attr_clear(addr, numpages, __pgprot(_PAGE_PCD | _PAGE_PWT)); global_flush_tlb(); return err; } EXPORT_SYMBOL(set_memory_wb); int set_memory_x(unsigned long addr, int numpages) { int err; err = change_page_attr_clear(addr, numpages, __pgprot(_PAGE_NX)); global_flush_tlb(); return err; } EXPORT_SYMBOL(set_memory_x); int set_memory_nx(unsigned long addr, int numpages) { int err; err = change_page_attr_set(addr, numpages, __pgprot(_PAGE_NX)); global_flush_tlb(); return err; } EXPORT_SYMBOL(set_memory_nx); int set_memory_ro(unsigned long addr, int numpages) { int err; err = change_page_attr_clear(addr, numpages, __pgprot(_PAGE_RW)); global_flush_tlb(); return err; } int set_memory_rw(unsigned long addr, int numpages) { int err; err = change_page_attr_set(addr, numpages, __pgprot(_PAGE_RW)); global_flush_tlb(); return err; } int set_memory_np(unsigned long addr, int numpages) { int err; err = change_page_attr_clear(addr, numpages, __pgprot(_PAGE_PRESENT)); global_flush_tlb(); return err; } int set_pages_uc(struct page *page, int numpages) { unsigned long addr = (unsigned long)page_address(page); return set_memory_uc(addr, numpages); } EXPORT_SYMBOL(set_pages_uc); int set_pages_wb(struct page *page, int numpages) { unsigned long addr = (unsigned long)page_address(page); return set_memory_wb(addr, numpages); } EXPORT_SYMBOL(set_pages_wb); int set_pages_x(struct page *page, int numpages) { unsigned long addr = (unsigned long)page_address(page); return set_memory_x(addr, numpages); } EXPORT_SYMBOL(set_pages_x); int set_pages_nx(struct page *page, int numpages) { unsigned long addr = (unsigned long)page_address(page); return set_memory_nx(addr, numpages); } EXPORT_SYMBOL(set_pages_nx); int set_pages_ro(struct page *page, int numpages) { unsigned long addr = (unsigned long)page_address(page); return set_memory_ro(addr, numpages); } int set_pages_rw(struct page *page, int numpages) { unsigned long addr = (unsigned long)page_address(page); return set_memory_rw(addr, numpages); } #ifdef CONFIG_DEBUG_PAGEALLOC static int __set_pages_p(struct page *page, int numpages) { unsigned long addr = (unsigned long)page_address(page); return change_page_attr_set(addr, numpages, __pgprot(_PAGE_PRESENT | _PAGE_RW)); } static int __set_pages_np(struct page *page, int numpages) { unsigned long addr = (unsigned long)page_address(page); return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_PRESENT)); } void kernel_map_pages(struct page *page, int numpages, int enable) { if (PageHighMem(page)) return; if (!enable) { debug_check_no_locks_freed(page_address(page), numpages * PAGE_SIZE); } /* * If page allocator is not up yet then do not call c_p_a(): */ if (!debug_pagealloc_enabled) return; /* * The return value is ignored - the calls cannot fail, * large pages are disabled at boot time: */ if (enable) __set_pages_p(page, numpages); else __set_pages_np(page, numpages); /* * We should perform an IPI and flush all tlbs, * but that can deadlock->flush only current cpu: */ __flush_tlb_all(); } #endif /* * The testcases use internal knowledge of the implementation that shouldn't * be exposed to the rest of the kernel. Include these directly here. */ #ifdef CONFIG_CPA_DEBUG #include "pageattr-test.c" #endif