KVM: Clean up assigned_device_update_irq
[safe/jmp/linux-2.6] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44
45 #include <asm/processor.h>
46 #include <asm/io.h>
47 #include <asm/uaccess.h>
48 #include <asm/pgtable.h>
49
50 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
51 #include "coalesced_mmio.h"
52 #endif
53
54 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
55 #include <linux/pci.h>
56 #include <linux/interrupt.h>
57 #include "irq.h"
58 #endif
59
60 MODULE_AUTHOR("Qumranet");
61 MODULE_LICENSE("GPL");
62
63 DEFINE_SPINLOCK(kvm_lock);
64 LIST_HEAD(vm_list);
65
66 static cpumask_t cpus_hardware_enabled;
67
68 struct kmem_cache *kvm_vcpu_cache;
69 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
70
71 static __read_mostly struct preempt_ops kvm_preempt_ops;
72
73 struct dentry *kvm_debugfs_dir;
74
75 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
76                            unsigned long arg);
77
78 bool kvm_rebooting;
79
80 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
81 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
82                                                       int assigned_dev_id)
83 {
84         struct list_head *ptr;
85         struct kvm_assigned_dev_kernel *match;
86
87         list_for_each(ptr, head) {
88                 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
89                 if (match->assigned_dev_id == assigned_dev_id)
90                         return match;
91         }
92         return NULL;
93 }
94
95 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
96 {
97         struct kvm_assigned_dev_kernel *assigned_dev;
98
99         assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
100                                     interrupt_work);
101
102         /* This is taken to safely inject irq inside the guest. When
103          * the interrupt injection (or the ioapic code) uses a
104          * finer-grained lock, update this
105          */
106         mutex_lock(&assigned_dev->kvm->lock);
107         kvm_set_irq(assigned_dev->kvm,
108                     assigned_dev->irq_source_id,
109                     assigned_dev->guest_irq, 1);
110         mutex_unlock(&assigned_dev->kvm->lock);
111         kvm_put_kvm(assigned_dev->kvm);
112 }
113
114 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
115 {
116         struct kvm_assigned_dev_kernel *assigned_dev =
117                 (struct kvm_assigned_dev_kernel *) dev_id;
118
119         kvm_get_kvm(assigned_dev->kvm);
120         schedule_work(&assigned_dev->interrupt_work);
121         disable_irq_nosync(irq);
122         return IRQ_HANDLED;
123 }
124
125 /* Ack the irq line for an assigned device */
126 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
127 {
128         struct kvm_assigned_dev_kernel *dev;
129
130         if (kian->gsi == -1)
131                 return;
132
133         dev = container_of(kian, struct kvm_assigned_dev_kernel,
134                            ack_notifier);
135         kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
136         enable_irq(dev->host_irq);
137 }
138
139 static void kvm_free_assigned_device(struct kvm *kvm,
140                                      struct kvm_assigned_dev_kernel
141                                      *assigned_dev)
142 {
143         if (irqchip_in_kernel(kvm) && assigned_dev->irq_requested_type)
144                 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
145
146         kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
147         kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
148
149         if (cancel_work_sync(&assigned_dev->interrupt_work))
150                 /* We had pending work. That means we will have to take
151                  * care of kvm_put_kvm.
152                  */
153                 kvm_put_kvm(kvm);
154
155         pci_reset_function(assigned_dev->dev);
156
157         pci_release_regions(assigned_dev->dev);
158         pci_disable_device(assigned_dev->dev);
159         pci_dev_put(assigned_dev->dev);
160
161         list_del(&assigned_dev->list);
162         kfree(assigned_dev);
163 }
164
165 void kvm_free_all_assigned_devices(struct kvm *kvm)
166 {
167         struct list_head *ptr, *ptr2;
168         struct kvm_assigned_dev_kernel *assigned_dev;
169
170         list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
171                 assigned_dev = list_entry(ptr,
172                                           struct kvm_assigned_dev_kernel,
173                                           list);
174
175                 kvm_free_assigned_device(kvm, assigned_dev);
176         }
177 }
178
179 static int assigned_device_update_intx(struct kvm *kvm,
180                         struct kvm_assigned_dev_kernel *adev,
181                         struct kvm_assigned_irq *airq)
182 {
183         adev->guest_irq = airq->guest_irq;
184         adev->ack_notifier.gsi = airq->guest_irq;
185
186         if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_INTX)
187                 return 0;
188
189         if (irqchip_in_kernel(kvm)) {
190                 if (!capable(CAP_SYS_RAWIO))
191                         return -EPERM;
192
193                 if (airq->host_irq)
194                         adev->host_irq = airq->host_irq;
195                 else
196                         adev->host_irq = adev->dev->irq;
197
198                 /* Even though this is PCI, we don't want to use shared
199                  * interrupts. Sharing host devices with guest-assigned devices
200                  * on the same interrupt line is not a happy situation: there
201                  * are going to be long delays in accepting, acking, etc.
202                  */
203                 if (request_irq(adev->host_irq, kvm_assigned_dev_intr,
204                                 0, "kvm_assigned_intx_device", (void *)adev))
205                         return -EIO;
206         }
207
208         adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_INTX |
209                                    KVM_ASSIGNED_DEV_HOST_INTX;
210         return 0;
211 }
212
213 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
214                                    struct kvm_assigned_irq
215                                    *assigned_irq)
216 {
217         int r = 0;
218         struct kvm_assigned_dev_kernel *match;
219
220         mutex_lock(&kvm->lock);
221
222         match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
223                                       assigned_irq->assigned_dev_id);
224         if (!match) {
225                 mutex_unlock(&kvm->lock);
226                 return -EINVAL;
227         }
228
229         if (!match->irq_requested_type) {
230                 INIT_WORK(&match->interrupt_work,
231                                 kvm_assigned_dev_interrupt_work_handler);
232                 if (irqchip_in_kernel(kvm)) {
233                         /* Register ack nofitier */
234                         match->ack_notifier.gsi = -1;
235                         match->ack_notifier.irq_acked =
236                                         kvm_assigned_dev_ack_irq;
237                         kvm_register_irq_ack_notifier(kvm,
238                                         &match->ack_notifier);
239
240                         /* Request IRQ source ID */
241                         r = kvm_request_irq_source_id(kvm);
242                         if (r < 0)
243                                 goto out_release;
244                         else
245                                 match->irq_source_id = r;
246                 }
247         }
248
249         r = assigned_device_update_intx(kvm, match, assigned_irq);
250         if (r)
251                 goto out_release;
252
253         mutex_unlock(&kvm->lock);
254         return r;
255 out_release:
256         mutex_unlock(&kvm->lock);
257         kvm_free_assigned_device(kvm, match);
258         return r;
259 }
260
261 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
262                                       struct kvm_assigned_pci_dev *assigned_dev)
263 {
264         int r = 0;
265         struct kvm_assigned_dev_kernel *match;
266         struct pci_dev *dev;
267
268         mutex_lock(&kvm->lock);
269
270         match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
271                                       assigned_dev->assigned_dev_id);
272         if (match) {
273                 /* device already assigned */
274                 r = -EINVAL;
275                 goto out;
276         }
277
278         match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
279         if (match == NULL) {
280                 printk(KERN_INFO "%s: Couldn't allocate memory\n",
281                        __func__);
282                 r = -ENOMEM;
283                 goto out;
284         }
285         dev = pci_get_bus_and_slot(assigned_dev->busnr,
286                                    assigned_dev->devfn);
287         if (!dev) {
288                 printk(KERN_INFO "%s: host device not found\n", __func__);
289                 r = -EINVAL;
290                 goto out_free;
291         }
292         if (pci_enable_device(dev)) {
293                 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
294                 r = -EBUSY;
295                 goto out_put;
296         }
297         r = pci_request_regions(dev, "kvm_assigned_device");
298         if (r) {
299                 printk(KERN_INFO "%s: Could not get access to device regions\n",
300                        __func__);
301                 goto out_disable;
302         }
303
304         pci_reset_function(dev);
305
306         match->assigned_dev_id = assigned_dev->assigned_dev_id;
307         match->host_busnr = assigned_dev->busnr;
308         match->host_devfn = assigned_dev->devfn;
309         match->dev = dev;
310
311         match->kvm = kvm;
312
313         list_add(&match->list, &kvm->arch.assigned_dev_head);
314
315         if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
316                 r = kvm_iommu_map_guest(kvm, match);
317                 if (r)
318                         goto out_list_del;
319         }
320
321 out:
322         mutex_unlock(&kvm->lock);
323         return r;
324 out_list_del:
325         list_del(&match->list);
326         pci_release_regions(dev);
327 out_disable:
328         pci_disable_device(dev);
329 out_put:
330         pci_dev_put(dev);
331 out_free:
332         kfree(match);
333         mutex_unlock(&kvm->lock);
334         return r;
335 }
336 #endif
337
338 static inline int valid_vcpu(int n)
339 {
340         return likely(n >= 0 && n < KVM_MAX_VCPUS);
341 }
342
343 inline int kvm_is_mmio_pfn(pfn_t pfn)
344 {
345         if (pfn_valid(pfn))
346                 return PageReserved(pfn_to_page(pfn));
347
348         return true;
349 }
350
351 /*
352  * Switches to specified vcpu, until a matching vcpu_put()
353  */
354 void vcpu_load(struct kvm_vcpu *vcpu)
355 {
356         int cpu;
357
358         mutex_lock(&vcpu->mutex);
359         cpu = get_cpu();
360         preempt_notifier_register(&vcpu->preempt_notifier);
361         kvm_arch_vcpu_load(vcpu, cpu);
362         put_cpu();
363 }
364
365 void vcpu_put(struct kvm_vcpu *vcpu)
366 {
367         preempt_disable();
368         kvm_arch_vcpu_put(vcpu);
369         preempt_notifier_unregister(&vcpu->preempt_notifier);
370         preempt_enable();
371         mutex_unlock(&vcpu->mutex);
372 }
373
374 static void ack_flush(void *_completed)
375 {
376 }
377
378 void kvm_flush_remote_tlbs(struct kvm *kvm)
379 {
380         int i, cpu, me;
381         cpumask_t cpus;
382         struct kvm_vcpu *vcpu;
383
384         me = get_cpu();
385         cpus_clear(cpus);
386         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
387                 vcpu = kvm->vcpus[i];
388                 if (!vcpu)
389                         continue;
390                 if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
391                         continue;
392                 cpu = vcpu->cpu;
393                 if (cpu != -1 && cpu != me)
394                         cpu_set(cpu, cpus);
395         }
396         if (cpus_empty(cpus))
397                 goto out;
398         ++kvm->stat.remote_tlb_flush;
399         smp_call_function_mask(cpus, ack_flush, NULL, 1);
400 out:
401         put_cpu();
402 }
403
404 void kvm_reload_remote_mmus(struct kvm *kvm)
405 {
406         int i, cpu, me;
407         cpumask_t cpus;
408         struct kvm_vcpu *vcpu;
409
410         me = get_cpu();
411         cpus_clear(cpus);
412         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
413                 vcpu = kvm->vcpus[i];
414                 if (!vcpu)
415                         continue;
416                 if (test_and_set_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
417                         continue;
418                 cpu = vcpu->cpu;
419                 if (cpu != -1 && cpu != me)
420                         cpu_set(cpu, cpus);
421         }
422         if (cpus_empty(cpus))
423                 goto out;
424         smp_call_function_mask(cpus, ack_flush, NULL, 1);
425 out:
426         put_cpu();
427 }
428
429
430 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
431 {
432         struct page *page;
433         int r;
434
435         mutex_init(&vcpu->mutex);
436         vcpu->cpu = -1;
437         vcpu->kvm = kvm;
438         vcpu->vcpu_id = id;
439         init_waitqueue_head(&vcpu->wq);
440
441         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
442         if (!page) {
443                 r = -ENOMEM;
444                 goto fail;
445         }
446         vcpu->run = page_address(page);
447
448         r = kvm_arch_vcpu_init(vcpu);
449         if (r < 0)
450                 goto fail_free_run;
451         return 0;
452
453 fail_free_run:
454         free_page((unsigned long)vcpu->run);
455 fail:
456         return r;
457 }
458 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
459
460 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
461 {
462         kvm_arch_vcpu_uninit(vcpu);
463         free_page((unsigned long)vcpu->run);
464 }
465 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
466
467 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
468 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
469 {
470         return container_of(mn, struct kvm, mmu_notifier);
471 }
472
473 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
474                                              struct mm_struct *mm,
475                                              unsigned long address)
476 {
477         struct kvm *kvm = mmu_notifier_to_kvm(mn);
478         int need_tlb_flush;
479
480         /*
481          * When ->invalidate_page runs, the linux pte has been zapped
482          * already but the page is still allocated until
483          * ->invalidate_page returns. So if we increase the sequence
484          * here the kvm page fault will notice if the spte can't be
485          * established because the page is going to be freed. If
486          * instead the kvm page fault establishes the spte before
487          * ->invalidate_page runs, kvm_unmap_hva will release it
488          * before returning.
489          *
490          * The sequence increase only need to be seen at spin_unlock
491          * time, and not at spin_lock time.
492          *
493          * Increasing the sequence after the spin_unlock would be
494          * unsafe because the kvm page fault could then establish the
495          * pte after kvm_unmap_hva returned, without noticing the page
496          * is going to be freed.
497          */
498         spin_lock(&kvm->mmu_lock);
499         kvm->mmu_notifier_seq++;
500         need_tlb_flush = kvm_unmap_hva(kvm, address);
501         spin_unlock(&kvm->mmu_lock);
502
503         /* we've to flush the tlb before the pages can be freed */
504         if (need_tlb_flush)
505                 kvm_flush_remote_tlbs(kvm);
506
507 }
508
509 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
510                                                     struct mm_struct *mm,
511                                                     unsigned long start,
512                                                     unsigned long end)
513 {
514         struct kvm *kvm = mmu_notifier_to_kvm(mn);
515         int need_tlb_flush = 0;
516
517         spin_lock(&kvm->mmu_lock);
518         /*
519          * The count increase must become visible at unlock time as no
520          * spte can be established without taking the mmu_lock and
521          * count is also read inside the mmu_lock critical section.
522          */
523         kvm->mmu_notifier_count++;
524         for (; start < end; start += PAGE_SIZE)
525                 need_tlb_flush |= kvm_unmap_hva(kvm, start);
526         spin_unlock(&kvm->mmu_lock);
527
528         /* we've to flush the tlb before the pages can be freed */
529         if (need_tlb_flush)
530                 kvm_flush_remote_tlbs(kvm);
531 }
532
533 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
534                                                   struct mm_struct *mm,
535                                                   unsigned long start,
536                                                   unsigned long end)
537 {
538         struct kvm *kvm = mmu_notifier_to_kvm(mn);
539
540         spin_lock(&kvm->mmu_lock);
541         /*
542          * This sequence increase will notify the kvm page fault that
543          * the page that is going to be mapped in the spte could have
544          * been freed.
545          */
546         kvm->mmu_notifier_seq++;
547         /*
548          * The above sequence increase must be visible before the
549          * below count decrease but both values are read by the kvm
550          * page fault under mmu_lock spinlock so we don't need to add
551          * a smb_wmb() here in between the two.
552          */
553         kvm->mmu_notifier_count--;
554         spin_unlock(&kvm->mmu_lock);
555
556         BUG_ON(kvm->mmu_notifier_count < 0);
557 }
558
559 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
560                                               struct mm_struct *mm,
561                                               unsigned long address)
562 {
563         struct kvm *kvm = mmu_notifier_to_kvm(mn);
564         int young;
565
566         spin_lock(&kvm->mmu_lock);
567         young = kvm_age_hva(kvm, address);
568         spin_unlock(&kvm->mmu_lock);
569
570         if (young)
571                 kvm_flush_remote_tlbs(kvm);
572
573         return young;
574 }
575
576 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
577         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
578         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
579         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
580         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
581 };
582 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
583
584 static struct kvm *kvm_create_vm(void)
585 {
586         struct kvm *kvm = kvm_arch_create_vm();
587 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
588         struct page *page;
589 #endif
590
591         if (IS_ERR(kvm))
592                 goto out;
593
594 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
595         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
596         if (!page) {
597                 kfree(kvm);
598                 return ERR_PTR(-ENOMEM);
599         }
600         kvm->coalesced_mmio_ring =
601                         (struct kvm_coalesced_mmio_ring *)page_address(page);
602 #endif
603
604 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
605         {
606                 int err;
607                 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
608                 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
609                 if (err) {
610 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
611                         put_page(page);
612 #endif
613                         kfree(kvm);
614                         return ERR_PTR(err);
615                 }
616         }
617 #endif
618
619         kvm->mm = current->mm;
620         atomic_inc(&kvm->mm->mm_count);
621         spin_lock_init(&kvm->mmu_lock);
622         kvm_io_bus_init(&kvm->pio_bus);
623         mutex_init(&kvm->lock);
624         kvm_io_bus_init(&kvm->mmio_bus);
625         init_rwsem(&kvm->slots_lock);
626         atomic_set(&kvm->users_count, 1);
627         spin_lock(&kvm_lock);
628         list_add(&kvm->vm_list, &vm_list);
629         spin_unlock(&kvm_lock);
630 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
631         kvm_coalesced_mmio_init(kvm);
632 #endif
633 out:
634         return kvm;
635 }
636
637 /*
638  * Free any memory in @free but not in @dont.
639  */
640 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
641                                   struct kvm_memory_slot *dont)
642 {
643         if (!dont || free->rmap != dont->rmap)
644                 vfree(free->rmap);
645
646         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
647                 vfree(free->dirty_bitmap);
648
649         if (!dont || free->lpage_info != dont->lpage_info)
650                 vfree(free->lpage_info);
651
652         free->npages = 0;
653         free->dirty_bitmap = NULL;
654         free->rmap = NULL;
655         free->lpage_info = NULL;
656 }
657
658 void kvm_free_physmem(struct kvm *kvm)
659 {
660         int i;
661
662         for (i = 0; i < kvm->nmemslots; ++i)
663                 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
664 }
665
666 static void kvm_destroy_vm(struct kvm *kvm)
667 {
668         struct mm_struct *mm = kvm->mm;
669
670         spin_lock(&kvm_lock);
671         list_del(&kvm->vm_list);
672         spin_unlock(&kvm_lock);
673         kvm_io_bus_destroy(&kvm->pio_bus);
674         kvm_io_bus_destroy(&kvm->mmio_bus);
675 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
676         if (kvm->coalesced_mmio_ring != NULL)
677                 free_page((unsigned long)kvm->coalesced_mmio_ring);
678 #endif
679 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
680         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
681 #endif
682         kvm_arch_destroy_vm(kvm);
683         mmdrop(mm);
684 }
685
686 void kvm_get_kvm(struct kvm *kvm)
687 {
688         atomic_inc(&kvm->users_count);
689 }
690 EXPORT_SYMBOL_GPL(kvm_get_kvm);
691
692 void kvm_put_kvm(struct kvm *kvm)
693 {
694         if (atomic_dec_and_test(&kvm->users_count))
695                 kvm_destroy_vm(kvm);
696 }
697 EXPORT_SYMBOL_GPL(kvm_put_kvm);
698
699
700 static int kvm_vm_release(struct inode *inode, struct file *filp)
701 {
702         struct kvm *kvm = filp->private_data;
703
704         kvm_put_kvm(kvm);
705         return 0;
706 }
707
708 /*
709  * Allocate some memory and give it an address in the guest physical address
710  * space.
711  *
712  * Discontiguous memory is allowed, mostly for framebuffers.
713  *
714  * Must be called holding mmap_sem for write.
715  */
716 int __kvm_set_memory_region(struct kvm *kvm,
717                             struct kvm_userspace_memory_region *mem,
718                             int user_alloc)
719 {
720         int r;
721         gfn_t base_gfn;
722         unsigned long npages;
723         unsigned long i;
724         struct kvm_memory_slot *memslot;
725         struct kvm_memory_slot old, new;
726
727         r = -EINVAL;
728         /* General sanity checks */
729         if (mem->memory_size & (PAGE_SIZE - 1))
730                 goto out;
731         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
732                 goto out;
733         if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
734                 goto out;
735         if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
736                 goto out;
737         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
738                 goto out;
739
740         memslot = &kvm->memslots[mem->slot];
741         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
742         npages = mem->memory_size >> PAGE_SHIFT;
743
744         if (!npages)
745                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
746
747         new = old = *memslot;
748
749         new.base_gfn = base_gfn;
750         new.npages = npages;
751         new.flags = mem->flags;
752
753         /* Disallow changing a memory slot's size. */
754         r = -EINVAL;
755         if (npages && old.npages && npages != old.npages)
756                 goto out_free;
757
758         /* Check for overlaps */
759         r = -EEXIST;
760         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
761                 struct kvm_memory_slot *s = &kvm->memslots[i];
762
763                 if (s == memslot)
764                         continue;
765                 if (!((base_gfn + npages <= s->base_gfn) ||
766                       (base_gfn >= s->base_gfn + s->npages)))
767                         goto out_free;
768         }
769
770         /* Free page dirty bitmap if unneeded */
771         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
772                 new.dirty_bitmap = NULL;
773
774         r = -ENOMEM;
775
776         /* Allocate if a slot is being created */
777 #ifndef CONFIG_S390
778         if (npages && !new.rmap) {
779                 new.rmap = vmalloc(npages * sizeof(struct page *));
780
781                 if (!new.rmap)
782                         goto out_free;
783
784                 memset(new.rmap, 0, npages * sizeof(*new.rmap));
785
786                 new.user_alloc = user_alloc;
787                 /*
788                  * hva_to_rmmap() serialzies with the mmu_lock and to be
789                  * safe it has to ignore memslots with !user_alloc &&
790                  * !userspace_addr.
791                  */
792                 if (user_alloc)
793                         new.userspace_addr = mem->userspace_addr;
794                 else
795                         new.userspace_addr = 0;
796         }
797         if (npages && !new.lpage_info) {
798                 int largepages = npages / KVM_PAGES_PER_HPAGE;
799                 if (npages % KVM_PAGES_PER_HPAGE)
800                         largepages++;
801                 if (base_gfn % KVM_PAGES_PER_HPAGE)
802                         largepages++;
803
804                 new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
805
806                 if (!new.lpage_info)
807                         goto out_free;
808
809                 memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
810
811                 if (base_gfn % KVM_PAGES_PER_HPAGE)
812                         new.lpage_info[0].write_count = 1;
813                 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
814                         new.lpage_info[largepages-1].write_count = 1;
815         }
816
817         /* Allocate page dirty bitmap if needed */
818         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
819                 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
820
821                 new.dirty_bitmap = vmalloc(dirty_bytes);
822                 if (!new.dirty_bitmap)
823                         goto out_free;
824                 memset(new.dirty_bitmap, 0, dirty_bytes);
825         }
826 #endif /* not defined CONFIG_S390 */
827
828         if (!npages)
829                 kvm_arch_flush_shadow(kvm);
830
831         spin_lock(&kvm->mmu_lock);
832         if (mem->slot >= kvm->nmemslots)
833                 kvm->nmemslots = mem->slot + 1;
834
835         *memslot = new;
836         spin_unlock(&kvm->mmu_lock);
837
838         r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
839         if (r) {
840                 spin_lock(&kvm->mmu_lock);
841                 *memslot = old;
842                 spin_unlock(&kvm->mmu_lock);
843                 goto out_free;
844         }
845
846         kvm_free_physmem_slot(&old, &new);
847 #ifdef CONFIG_DMAR
848         /* map the pages in iommu page table */
849         r = kvm_iommu_map_pages(kvm, base_gfn, npages);
850         if (r)
851                 goto out;
852 #endif
853         return 0;
854
855 out_free:
856         kvm_free_physmem_slot(&new, &old);
857 out:
858         return r;
859
860 }
861 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
862
863 int kvm_set_memory_region(struct kvm *kvm,
864                           struct kvm_userspace_memory_region *mem,
865                           int user_alloc)
866 {
867         int r;
868
869         down_write(&kvm->slots_lock);
870         r = __kvm_set_memory_region(kvm, mem, user_alloc);
871         up_write(&kvm->slots_lock);
872         return r;
873 }
874 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
875
876 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
877                                    struct
878                                    kvm_userspace_memory_region *mem,
879                                    int user_alloc)
880 {
881         if (mem->slot >= KVM_MEMORY_SLOTS)
882                 return -EINVAL;
883         return kvm_set_memory_region(kvm, mem, user_alloc);
884 }
885
886 int kvm_get_dirty_log(struct kvm *kvm,
887                         struct kvm_dirty_log *log, int *is_dirty)
888 {
889         struct kvm_memory_slot *memslot;
890         int r, i;
891         int n;
892         unsigned long any = 0;
893
894         r = -EINVAL;
895         if (log->slot >= KVM_MEMORY_SLOTS)
896                 goto out;
897
898         memslot = &kvm->memslots[log->slot];
899         r = -ENOENT;
900         if (!memslot->dirty_bitmap)
901                 goto out;
902
903         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
904
905         for (i = 0; !any && i < n/sizeof(long); ++i)
906                 any = memslot->dirty_bitmap[i];
907
908         r = -EFAULT;
909         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
910                 goto out;
911
912         if (any)
913                 *is_dirty = 1;
914
915         r = 0;
916 out:
917         return r;
918 }
919
920 int is_error_page(struct page *page)
921 {
922         return page == bad_page;
923 }
924 EXPORT_SYMBOL_GPL(is_error_page);
925
926 int is_error_pfn(pfn_t pfn)
927 {
928         return pfn == bad_pfn;
929 }
930 EXPORT_SYMBOL_GPL(is_error_pfn);
931
932 static inline unsigned long bad_hva(void)
933 {
934         return PAGE_OFFSET;
935 }
936
937 int kvm_is_error_hva(unsigned long addr)
938 {
939         return addr == bad_hva();
940 }
941 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
942
943 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
944 {
945         int i;
946
947         for (i = 0; i < kvm->nmemslots; ++i) {
948                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
949
950                 if (gfn >= memslot->base_gfn
951                     && gfn < memslot->base_gfn + memslot->npages)
952                         return memslot;
953         }
954         return NULL;
955 }
956 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
957
958 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
959 {
960         gfn = unalias_gfn(kvm, gfn);
961         return gfn_to_memslot_unaliased(kvm, gfn);
962 }
963
964 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
965 {
966         int i;
967
968         gfn = unalias_gfn(kvm, gfn);
969         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
970                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
971
972                 if (gfn >= memslot->base_gfn
973                     && gfn < memslot->base_gfn + memslot->npages)
974                         return 1;
975         }
976         return 0;
977 }
978 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
979
980 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
981 {
982         struct kvm_memory_slot *slot;
983
984         gfn = unalias_gfn(kvm, gfn);
985         slot = gfn_to_memslot_unaliased(kvm, gfn);
986         if (!slot)
987                 return bad_hva();
988         return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
989 }
990 EXPORT_SYMBOL_GPL(gfn_to_hva);
991
992 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
993 {
994         struct page *page[1];
995         unsigned long addr;
996         int npages;
997         pfn_t pfn;
998
999         might_sleep();
1000
1001         addr = gfn_to_hva(kvm, gfn);
1002         if (kvm_is_error_hva(addr)) {
1003                 get_page(bad_page);
1004                 return page_to_pfn(bad_page);
1005         }
1006
1007         npages = get_user_pages_fast(addr, 1, 1, page);
1008
1009         if (unlikely(npages != 1)) {
1010                 struct vm_area_struct *vma;
1011
1012                 down_read(&current->mm->mmap_sem);
1013                 vma = find_vma(current->mm, addr);
1014
1015                 if (vma == NULL || addr < vma->vm_start ||
1016                     !(vma->vm_flags & VM_PFNMAP)) {
1017                         up_read(&current->mm->mmap_sem);
1018                         get_page(bad_page);
1019                         return page_to_pfn(bad_page);
1020                 }
1021
1022                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1023                 up_read(&current->mm->mmap_sem);
1024                 BUG_ON(!kvm_is_mmio_pfn(pfn));
1025         } else
1026                 pfn = page_to_pfn(page[0]);
1027
1028         return pfn;
1029 }
1030
1031 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1032
1033 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1034 {
1035         pfn_t pfn;
1036
1037         pfn = gfn_to_pfn(kvm, gfn);
1038         if (!kvm_is_mmio_pfn(pfn))
1039                 return pfn_to_page(pfn);
1040
1041         WARN_ON(kvm_is_mmio_pfn(pfn));
1042
1043         get_page(bad_page);
1044         return bad_page;
1045 }
1046
1047 EXPORT_SYMBOL_GPL(gfn_to_page);
1048
1049 void kvm_release_page_clean(struct page *page)
1050 {
1051         kvm_release_pfn_clean(page_to_pfn(page));
1052 }
1053 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1054
1055 void kvm_release_pfn_clean(pfn_t pfn)
1056 {
1057         if (!kvm_is_mmio_pfn(pfn))
1058                 put_page(pfn_to_page(pfn));
1059 }
1060 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1061
1062 void kvm_release_page_dirty(struct page *page)
1063 {
1064         kvm_release_pfn_dirty(page_to_pfn(page));
1065 }
1066 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1067
1068 void kvm_release_pfn_dirty(pfn_t pfn)
1069 {
1070         kvm_set_pfn_dirty(pfn);
1071         kvm_release_pfn_clean(pfn);
1072 }
1073 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1074
1075 void kvm_set_page_dirty(struct page *page)
1076 {
1077         kvm_set_pfn_dirty(page_to_pfn(page));
1078 }
1079 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1080
1081 void kvm_set_pfn_dirty(pfn_t pfn)
1082 {
1083         if (!kvm_is_mmio_pfn(pfn)) {
1084                 struct page *page = pfn_to_page(pfn);
1085                 if (!PageReserved(page))
1086                         SetPageDirty(page);
1087         }
1088 }
1089 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1090
1091 void kvm_set_pfn_accessed(pfn_t pfn)
1092 {
1093         if (!kvm_is_mmio_pfn(pfn))
1094                 mark_page_accessed(pfn_to_page(pfn));
1095 }
1096 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1097
1098 void kvm_get_pfn(pfn_t pfn)
1099 {
1100         if (!kvm_is_mmio_pfn(pfn))
1101                 get_page(pfn_to_page(pfn));
1102 }
1103 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1104
1105 static int next_segment(unsigned long len, int offset)
1106 {
1107         if (len > PAGE_SIZE - offset)
1108                 return PAGE_SIZE - offset;
1109         else
1110                 return len;
1111 }
1112
1113 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1114                         int len)
1115 {
1116         int r;
1117         unsigned long addr;
1118
1119         addr = gfn_to_hva(kvm, gfn);
1120         if (kvm_is_error_hva(addr))
1121                 return -EFAULT;
1122         r = copy_from_user(data, (void __user *)addr + offset, len);
1123         if (r)
1124                 return -EFAULT;
1125         return 0;
1126 }
1127 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1128
1129 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1130 {
1131         gfn_t gfn = gpa >> PAGE_SHIFT;
1132         int seg;
1133         int offset = offset_in_page(gpa);
1134         int ret;
1135
1136         while ((seg = next_segment(len, offset)) != 0) {
1137                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1138                 if (ret < 0)
1139                         return ret;
1140                 offset = 0;
1141                 len -= seg;
1142                 data += seg;
1143                 ++gfn;
1144         }
1145         return 0;
1146 }
1147 EXPORT_SYMBOL_GPL(kvm_read_guest);
1148
1149 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1150                           unsigned long len)
1151 {
1152         int r;
1153         unsigned long addr;
1154         gfn_t gfn = gpa >> PAGE_SHIFT;
1155         int offset = offset_in_page(gpa);
1156
1157         addr = gfn_to_hva(kvm, gfn);
1158         if (kvm_is_error_hva(addr))
1159                 return -EFAULT;
1160         pagefault_disable();
1161         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1162         pagefault_enable();
1163         if (r)
1164                 return -EFAULT;
1165         return 0;
1166 }
1167 EXPORT_SYMBOL(kvm_read_guest_atomic);
1168
1169 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1170                          int offset, int len)
1171 {
1172         int r;
1173         unsigned long addr;
1174
1175         addr = gfn_to_hva(kvm, gfn);
1176         if (kvm_is_error_hva(addr))
1177                 return -EFAULT;
1178         r = copy_to_user((void __user *)addr + offset, data, len);
1179         if (r)
1180                 return -EFAULT;
1181         mark_page_dirty(kvm, gfn);
1182         return 0;
1183 }
1184 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1185
1186 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1187                     unsigned long len)
1188 {
1189         gfn_t gfn = gpa >> PAGE_SHIFT;
1190         int seg;
1191         int offset = offset_in_page(gpa);
1192         int ret;
1193
1194         while ((seg = next_segment(len, offset)) != 0) {
1195                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1196                 if (ret < 0)
1197                         return ret;
1198                 offset = 0;
1199                 len -= seg;
1200                 data += seg;
1201                 ++gfn;
1202         }
1203         return 0;
1204 }
1205
1206 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1207 {
1208         return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1209 }
1210 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1211
1212 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1213 {
1214         gfn_t gfn = gpa >> PAGE_SHIFT;
1215         int seg;
1216         int offset = offset_in_page(gpa);
1217         int ret;
1218
1219         while ((seg = next_segment(len, offset)) != 0) {
1220                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1221                 if (ret < 0)
1222                         return ret;
1223                 offset = 0;
1224                 len -= seg;
1225                 ++gfn;
1226         }
1227         return 0;
1228 }
1229 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1230
1231 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1232 {
1233         struct kvm_memory_slot *memslot;
1234
1235         gfn = unalias_gfn(kvm, gfn);
1236         memslot = gfn_to_memslot_unaliased(kvm, gfn);
1237         if (memslot && memslot->dirty_bitmap) {
1238                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1239
1240                 /* avoid RMW */
1241                 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1242                         set_bit(rel_gfn, memslot->dirty_bitmap);
1243         }
1244 }
1245
1246 /*
1247  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1248  */
1249 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1250 {
1251         DEFINE_WAIT(wait);
1252
1253         for (;;) {
1254                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1255
1256                 if (kvm_cpu_has_interrupt(vcpu) ||
1257                     kvm_cpu_has_pending_timer(vcpu) ||
1258                     kvm_arch_vcpu_runnable(vcpu)) {
1259                         set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1260                         break;
1261                 }
1262                 if (signal_pending(current))
1263                         break;
1264
1265                 vcpu_put(vcpu);
1266                 schedule();
1267                 vcpu_load(vcpu);
1268         }
1269
1270         finish_wait(&vcpu->wq, &wait);
1271 }
1272
1273 void kvm_resched(struct kvm_vcpu *vcpu)
1274 {
1275         if (!need_resched())
1276                 return;
1277         cond_resched();
1278 }
1279 EXPORT_SYMBOL_GPL(kvm_resched);
1280
1281 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1282 {
1283         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1284         struct page *page;
1285
1286         if (vmf->pgoff == 0)
1287                 page = virt_to_page(vcpu->run);
1288 #ifdef CONFIG_X86
1289         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1290                 page = virt_to_page(vcpu->arch.pio_data);
1291 #endif
1292 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1293         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1294                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1295 #endif
1296         else
1297                 return VM_FAULT_SIGBUS;
1298         get_page(page);
1299         vmf->page = page;
1300         return 0;
1301 }
1302
1303 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1304         .fault = kvm_vcpu_fault,
1305 };
1306
1307 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1308 {
1309         vma->vm_ops = &kvm_vcpu_vm_ops;
1310         return 0;
1311 }
1312
1313 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1314 {
1315         struct kvm_vcpu *vcpu = filp->private_data;
1316
1317         kvm_put_kvm(vcpu->kvm);
1318         return 0;
1319 }
1320
1321 static const struct file_operations kvm_vcpu_fops = {
1322         .release        = kvm_vcpu_release,
1323         .unlocked_ioctl = kvm_vcpu_ioctl,
1324         .compat_ioctl   = kvm_vcpu_ioctl,
1325         .mmap           = kvm_vcpu_mmap,
1326 };
1327
1328 /*
1329  * Allocates an inode for the vcpu.
1330  */
1331 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1332 {
1333         int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1334         if (fd < 0)
1335                 kvm_put_kvm(vcpu->kvm);
1336         return fd;
1337 }
1338
1339 /*
1340  * Creates some virtual cpus.  Good luck creating more than one.
1341  */
1342 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1343 {
1344         int r;
1345         struct kvm_vcpu *vcpu;
1346
1347         if (!valid_vcpu(n))
1348                 return -EINVAL;
1349
1350         vcpu = kvm_arch_vcpu_create(kvm, n);
1351         if (IS_ERR(vcpu))
1352                 return PTR_ERR(vcpu);
1353
1354         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1355
1356         r = kvm_arch_vcpu_setup(vcpu);
1357         if (r)
1358                 return r;
1359
1360         mutex_lock(&kvm->lock);
1361         if (kvm->vcpus[n]) {
1362                 r = -EEXIST;
1363                 goto vcpu_destroy;
1364         }
1365         kvm->vcpus[n] = vcpu;
1366         mutex_unlock(&kvm->lock);
1367
1368         /* Now it's all set up, let userspace reach it */
1369         kvm_get_kvm(kvm);
1370         r = create_vcpu_fd(vcpu);
1371         if (r < 0)
1372                 goto unlink;
1373         return r;
1374
1375 unlink:
1376         mutex_lock(&kvm->lock);
1377         kvm->vcpus[n] = NULL;
1378 vcpu_destroy:
1379         mutex_unlock(&kvm->lock);
1380         kvm_arch_vcpu_destroy(vcpu);
1381         return r;
1382 }
1383
1384 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1385 {
1386         if (sigset) {
1387                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1388                 vcpu->sigset_active = 1;
1389                 vcpu->sigset = *sigset;
1390         } else
1391                 vcpu->sigset_active = 0;
1392         return 0;
1393 }
1394
1395 static long kvm_vcpu_ioctl(struct file *filp,
1396                            unsigned int ioctl, unsigned long arg)
1397 {
1398         struct kvm_vcpu *vcpu = filp->private_data;
1399         void __user *argp = (void __user *)arg;
1400         int r;
1401         struct kvm_fpu *fpu = NULL;
1402         struct kvm_sregs *kvm_sregs = NULL;
1403
1404         if (vcpu->kvm->mm != current->mm)
1405                 return -EIO;
1406         switch (ioctl) {
1407         case KVM_RUN:
1408                 r = -EINVAL;
1409                 if (arg)
1410                         goto out;
1411                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1412                 break;
1413         case KVM_GET_REGS: {
1414                 struct kvm_regs *kvm_regs;
1415
1416                 r = -ENOMEM;
1417                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1418                 if (!kvm_regs)
1419                         goto out;
1420                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1421                 if (r)
1422                         goto out_free1;
1423                 r = -EFAULT;
1424                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1425                         goto out_free1;
1426                 r = 0;
1427 out_free1:
1428                 kfree(kvm_regs);
1429                 break;
1430         }
1431         case KVM_SET_REGS: {
1432                 struct kvm_regs *kvm_regs;
1433
1434                 r = -ENOMEM;
1435                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1436                 if (!kvm_regs)
1437                         goto out;
1438                 r = -EFAULT;
1439                 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1440                         goto out_free2;
1441                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1442                 if (r)
1443                         goto out_free2;
1444                 r = 0;
1445 out_free2:
1446                 kfree(kvm_regs);
1447                 break;
1448         }
1449         case KVM_GET_SREGS: {
1450                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1451                 r = -ENOMEM;
1452                 if (!kvm_sregs)
1453                         goto out;
1454                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1455                 if (r)
1456                         goto out;
1457                 r = -EFAULT;
1458                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1459                         goto out;
1460                 r = 0;
1461                 break;
1462         }
1463         case KVM_SET_SREGS: {
1464                 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1465                 r = -ENOMEM;
1466                 if (!kvm_sregs)
1467                         goto out;
1468                 r = -EFAULT;
1469                 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1470                         goto out;
1471                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1472                 if (r)
1473                         goto out;
1474                 r = 0;
1475                 break;
1476         }
1477         case KVM_GET_MP_STATE: {
1478                 struct kvm_mp_state mp_state;
1479
1480                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1481                 if (r)
1482                         goto out;
1483                 r = -EFAULT;
1484                 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1485                         goto out;
1486                 r = 0;
1487                 break;
1488         }
1489         case KVM_SET_MP_STATE: {
1490                 struct kvm_mp_state mp_state;
1491
1492                 r = -EFAULT;
1493                 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1494                         goto out;
1495                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1496                 if (r)
1497                         goto out;
1498                 r = 0;
1499                 break;
1500         }
1501         case KVM_TRANSLATE: {
1502                 struct kvm_translation tr;
1503
1504                 r = -EFAULT;
1505                 if (copy_from_user(&tr, argp, sizeof tr))
1506                         goto out;
1507                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1508                 if (r)
1509                         goto out;
1510                 r = -EFAULT;
1511                 if (copy_to_user(argp, &tr, sizeof tr))
1512                         goto out;
1513                 r = 0;
1514                 break;
1515         }
1516         case KVM_DEBUG_GUEST: {
1517                 struct kvm_debug_guest dbg;
1518
1519                 r = -EFAULT;
1520                 if (copy_from_user(&dbg, argp, sizeof dbg))
1521                         goto out;
1522                 r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
1523                 if (r)
1524                         goto out;
1525                 r = 0;
1526                 break;
1527         }
1528         case KVM_SET_SIGNAL_MASK: {
1529                 struct kvm_signal_mask __user *sigmask_arg = argp;
1530                 struct kvm_signal_mask kvm_sigmask;
1531                 sigset_t sigset, *p;
1532
1533                 p = NULL;
1534                 if (argp) {
1535                         r = -EFAULT;
1536                         if (copy_from_user(&kvm_sigmask, argp,
1537                                            sizeof kvm_sigmask))
1538                                 goto out;
1539                         r = -EINVAL;
1540                         if (kvm_sigmask.len != sizeof sigset)
1541                                 goto out;
1542                         r = -EFAULT;
1543                         if (copy_from_user(&sigset, sigmask_arg->sigset,
1544                                            sizeof sigset))
1545                                 goto out;
1546                         p = &sigset;
1547                 }
1548                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1549                 break;
1550         }
1551         case KVM_GET_FPU: {
1552                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1553                 r = -ENOMEM;
1554                 if (!fpu)
1555                         goto out;
1556                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1557                 if (r)
1558                         goto out;
1559                 r = -EFAULT;
1560                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1561                         goto out;
1562                 r = 0;
1563                 break;
1564         }
1565         case KVM_SET_FPU: {
1566                 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1567                 r = -ENOMEM;
1568                 if (!fpu)
1569                         goto out;
1570                 r = -EFAULT;
1571                 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1572                         goto out;
1573                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1574                 if (r)
1575                         goto out;
1576                 r = 0;
1577                 break;
1578         }
1579         default:
1580                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1581         }
1582 out:
1583         kfree(fpu);
1584         kfree(kvm_sregs);
1585         return r;
1586 }
1587
1588 static long kvm_vm_ioctl(struct file *filp,
1589                            unsigned int ioctl, unsigned long arg)
1590 {
1591         struct kvm *kvm = filp->private_data;
1592         void __user *argp = (void __user *)arg;
1593         int r;
1594
1595         if (kvm->mm != current->mm)
1596                 return -EIO;
1597         switch (ioctl) {
1598         case KVM_CREATE_VCPU:
1599                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1600                 if (r < 0)
1601                         goto out;
1602                 break;
1603         case KVM_SET_USER_MEMORY_REGION: {
1604                 struct kvm_userspace_memory_region kvm_userspace_mem;
1605
1606                 r = -EFAULT;
1607                 if (copy_from_user(&kvm_userspace_mem, argp,
1608                                                 sizeof kvm_userspace_mem))
1609                         goto out;
1610
1611                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1612                 if (r)
1613                         goto out;
1614                 break;
1615         }
1616         case KVM_GET_DIRTY_LOG: {
1617                 struct kvm_dirty_log log;
1618
1619                 r = -EFAULT;
1620                 if (copy_from_user(&log, argp, sizeof log))
1621                         goto out;
1622                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1623                 if (r)
1624                         goto out;
1625                 break;
1626         }
1627 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1628         case KVM_REGISTER_COALESCED_MMIO: {
1629                 struct kvm_coalesced_mmio_zone zone;
1630                 r = -EFAULT;
1631                 if (copy_from_user(&zone, argp, sizeof zone))
1632                         goto out;
1633                 r = -ENXIO;
1634                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1635                 if (r)
1636                         goto out;
1637                 r = 0;
1638                 break;
1639         }
1640         case KVM_UNREGISTER_COALESCED_MMIO: {
1641                 struct kvm_coalesced_mmio_zone zone;
1642                 r = -EFAULT;
1643                 if (copy_from_user(&zone, argp, sizeof zone))
1644                         goto out;
1645                 r = -ENXIO;
1646                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1647                 if (r)
1648                         goto out;
1649                 r = 0;
1650                 break;
1651         }
1652 #endif
1653 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
1654         case KVM_ASSIGN_PCI_DEVICE: {
1655                 struct kvm_assigned_pci_dev assigned_dev;
1656
1657                 r = -EFAULT;
1658                 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
1659                         goto out;
1660                 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
1661                 if (r)
1662                         goto out;
1663                 break;
1664         }
1665         case KVM_ASSIGN_IRQ: {
1666                 struct kvm_assigned_irq assigned_irq;
1667
1668                 r = -EFAULT;
1669                 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
1670                         goto out;
1671                 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
1672                 if (r)
1673                         goto out;
1674                 break;
1675         }
1676 #endif
1677         default:
1678                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1679         }
1680 out:
1681         return r;
1682 }
1683
1684 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1685 {
1686         struct page *page[1];
1687         unsigned long addr;
1688         int npages;
1689         gfn_t gfn = vmf->pgoff;
1690         struct kvm *kvm = vma->vm_file->private_data;
1691
1692         addr = gfn_to_hva(kvm, gfn);
1693         if (kvm_is_error_hva(addr))
1694                 return VM_FAULT_SIGBUS;
1695
1696         npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1697                                 NULL);
1698         if (unlikely(npages != 1))
1699                 return VM_FAULT_SIGBUS;
1700
1701         vmf->page = page[0];
1702         return 0;
1703 }
1704
1705 static struct vm_operations_struct kvm_vm_vm_ops = {
1706         .fault = kvm_vm_fault,
1707 };
1708
1709 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1710 {
1711         vma->vm_ops = &kvm_vm_vm_ops;
1712         return 0;
1713 }
1714
1715 static const struct file_operations kvm_vm_fops = {
1716         .release        = kvm_vm_release,
1717         .unlocked_ioctl = kvm_vm_ioctl,
1718         .compat_ioctl   = kvm_vm_ioctl,
1719         .mmap           = kvm_vm_mmap,
1720 };
1721
1722 static int kvm_dev_ioctl_create_vm(void)
1723 {
1724         int fd;
1725         struct kvm *kvm;
1726
1727         kvm = kvm_create_vm();
1728         if (IS_ERR(kvm))
1729                 return PTR_ERR(kvm);
1730         fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
1731         if (fd < 0)
1732                 kvm_put_kvm(kvm);
1733
1734         return fd;
1735 }
1736
1737 static long kvm_dev_ioctl(struct file *filp,
1738                           unsigned int ioctl, unsigned long arg)
1739 {
1740         long r = -EINVAL;
1741
1742         switch (ioctl) {
1743         case KVM_GET_API_VERSION:
1744                 r = -EINVAL;
1745                 if (arg)
1746                         goto out;
1747                 r = KVM_API_VERSION;
1748                 break;
1749         case KVM_CREATE_VM:
1750                 r = -EINVAL;
1751                 if (arg)
1752                         goto out;
1753                 r = kvm_dev_ioctl_create_vm();
1754                 break;
1755         case KVM_CHECK_EXTENSION:
1756                 r = kvm_dev_ioctl_check_extension(arg);
1757                 break;
1758         case KVM_GET_VCPU_MMAP_SIZE:
1759                 r = -EINVAL;
1760                 if (arg)
1761                         goto out;
1762                 r = PAGE_SIZE;     /* struct kvm_run */
1763 #ifdef CONFIG_X86
1764                 r += PAGE_SIZE;    /* pio data page */
1765 #endif
1766 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1767                 r += PAGE_SIZE;    /* coalesced mmio ring page */
1768 #endif
1769                 break;
1770         case KVM_TRACE_ENABLE:
1771         case KVM_TRACE_PAUSE:
1772         case KVM_TRACE_DISABLE:
1773                 r = kvm_trace_ioctl(ioctl, arg);
1774                 break;
1775         default:
1776                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1777         }
1778 out:
1779         return r;
1780 }
1781
1782 static struct file_operations kvm_chardev_ops = {
1783         .unlocked_ioctl = kvm_dev_ioctl,
1784         .compat_ioctl   = kvm_dev_ioctl,
1785 };
1786
1787 static struct miscdevice kvm_dev = {
1788         KVM_MINOR,
1789         "kvm",
1790         &kvm_chardev_ops,
1791 };
1792
1793 static void hardware_enable(void *junk)
1794 {
1795         int cpu = raw_smp_processor_id();
1796
1797         if (cpu_isset(cpu, cpus_hardware_enabled))
1798                 return;
1799         cpu_set(cpu, cpus_hardware_enabled);
1800         kvm_arch_hardware_enable(NULL);
1801 }
1802
1803 static void hardware_disable(void *junk)
1804 {
1805         int cpu = raw_smp_processor_id();
1806
1807         if (!cpu_isset(cpu, cpus_hardware_enabled))
1808                 return;
1809         cpu_clear(cpu, cpus_hardware_enabled);
1810         kvm_arch_hardware_disable(NULL);
1811 }
1812
1813 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1814                            void *v)
1815 {
1816         int cpu = (long)v;
1817
1818         val &= ~CPU_TASKS_FROZEN;
1819         switch (val) {
1820         case CPU_DYING:
1821                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1822                        cpu);
1823                 hardware_disable(NULL);
1824                 break;
1825         case CPU_UP_CANCELED:
1826                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1827                        cpu);
1828                 smp_call_function_single(cpu, hardware_disable, NULL, 1);
1829                 break;
1830         case CPU_ONLINE:
1831                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1832                        cpu);
1833                 smp_call_function_single(cpu, hardware_enable, NULL, 1);
1834                 break;
1835         }
1836         return NOTIFY_OK;
1837 }
1838
1839
1840 asmlinkage void kvm_handle_fault_on_reboot(void)
1841 {
1842         if (kvm_rebooting)
1843                 /* spin while reset goes on */
1844                 while (true)
1845                         ;
1846         /* Fault while not rebooting.  We want the trace. */
1847         BUG();
1848 }
1849 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
1850
1851 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1852                       void *v)
1853 {
1854         if (val == SYS_RESTART) {
1855                 /*
1856                  * Some (well, at least mine) BIOSes hang on reboot if
1857                  * in vmx root mode.
1858                  */
1859                 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1860                 kvm_rebooting = true;
1861                 on_each_cpu(hardware_disable, NULL, 1);
1862         }
1863         return NOTIFY_OK;
1864 }
1865
1866 static struct notifier_block kvm_reboot_notifier = {
1867         .notifier_call = kvm_reboot,
1868         .priority = 0,
1869 };
1870
1871 void kvm_io_bus_init(struct kvm_io_bus *bus)
1872 {
1873         memset(bus, 0, sizeof(*bus));
1874 }
1875
1876 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
1877 {
1878         int i;
1879
1880         for (i = 0; i < bus->dev_count; i++) {
1881                 struct kvm_io_device *pos = bus->devs[i];
1882
1883                 kvm_iodevice_destructor(pos);
1884         }
1885 }
1886
1887 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
1888                                           gpa_t addr, int len, int is_write)
1889 {
1890         int i;
1891
1892         for (i = 0; i < bus->dev_count; i++) {
1893                 struct kvm_io_device *pos = bus->devs[i];
1894
1895                 if (pos->in_range(pos, addr, len, is_write))
1896                         return pos;
1897         }
1898
1899         return NULL;
1900 }
1901
1902 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
1903 {
1904         BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
1905
1906         bus->devs[bus->dev_count++] = dev;
1907 }
1908
1909 static struct notifier_block kvm_cpu_notifier = {
1910         .notifier_call = kvm_cpu_hotplug,
1911         .priority = 20, /* must be > scheduler priority */
1912 };
1913
1914 static int vm_stat_get(void *_offset, u64 *val)
1915 {
1916         unsigned offset = (long)_offset;
1917         struct kvm *kvm;
1918
1919         *val = 0;
1920         spin_lock(&kvm_lock);
1921         list_for_each_entry(kvm, &vm_list, vm_list)
1922                 *val += *(u32 *)((void *)kvm + offset);
1923         spin_unlock(&kvm_lock);
1924         return 0;
1925 }
1926
1927 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
1928
1929 static int vcpu_stat_get(void *_offset, u64 *val)
1930 {
1931         unsigned offset = (long)_offset;
1932         struct kvm *kvm;
1933         struct kvm_vcpu *vcpu;
1934         int i;
1935
1936         *val = 0;
1937         spin_lock(&kvm_lock);
1938         list_for_each_entry(kvm, &vm_list, vm_list)
1939                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
1940                         vcpu = kvm->vcpus[i];
1941                         if (vcpu)
1942                                 *val += *(u32 *)((void *)vcpu + offset);
1943                 }
1944         spin_unlock(&kvm_lock);
1945         return 0;
1946 }
1947
1948 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
1949
1950 static struct file_operations *stat_fops[] = {
1951         [KVM_STAT_VCPU] = &vcpu_stat_fops,
1952         [KVM_STAT_VM]   = &vm_stat_fops,
1953 };
1954
1955 static void kvm_init_debug(void)
1956 {
1957         struct kvm_stats_debugfs_item *p;
1958
1959         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
1960         for (p = debugfs_entries; p->name; ++p)
1961                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
1962                                                 (void *)(long)p->offset,
1963                                                 stat_fops[p->kind]);
1964 }
1965
1966 static void kvm_exit_debug(void)
1967 {
1968         struct kvm_stats_debugfs_item *p;
1969
1970         for (p = debugfs_entries; p->name; ++p)
1971                 debugfs_remove(p->dentry);
1972         debugfs_remove(kvm_debugfs_dir);
1973 }
1974
1975 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
1976 {
1977         hardware_disable(NULL);
1978         return 0;
1979 }
1980
1981 static int kvm_resume(struct sys_device *dev)
1982 {
1983         hardware_enable(NULL);
1984         return 0;
1985 }
1986
1987 static struct sysdev_class kvm_sysdev_class = {
1988         .name = "kvm",
1989         .suspend = kvm_suspend,
1990         .resume = kvm_resume,
1991 };
1992
1993 static struct sys_device kvm_sysdev = {
1994         .id = 0,
1995         .cls = &kvm_sysdev_class,
1996 };
1997
1998 struct page *bad_page;
1999 pfn_t bad_pfn;
2000
2001 static inline
2002 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2003 {
2004         return container_of(pn, struct kvm_vcpu, preempt_notifier);
2005 }
2006
2007 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2008 {
2009         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2010
2011         kvm_arch_vcpu_load(vcpu, cpu);
2012 }
2013
2014 static void kvm_sched_out(struct preempt_notifier *pn,
2015                           struct task_struct *next)
2016 {
2017         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2018
2019         kvm_arch_vcpu_put(vcpu);
2020 }
2021
2022 int kvm_init(void *opaque, unsigned int vcpu_size,
2023                   struct module *module)
2024 {
2025         int r;
2026         int cpu;
2027
2028         kvm_init_debug();
2029
2030         r = kvm_arch_init(opaque);
2031         if (r)
2032                 goto out_fail;
2033
2034         bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2035
2036         if (bad_page == NULL) {
2037                 r = -ENOMEM;
2038                 goto out;
2039         }
2040
2041         bad_pfn = page_to_pfn(bad_page);
2042
2043         r = kvm_arch_hardware_setup();
2044         if (r < 0)
2045                 goto out_free_0;
2046
2047         for_each_online_cpu(cpu) {
2048                 smp_call_function_single(cpu,
2049                                 kvm_arch_check_processor_compat,
2050                                 &r, 1);
2051                 if (r < 0)
2052                         goto out_free_1;
2053         }
2054
2055         on_each_cpu(hardware_enable, NULL, 1);
2056         r = register_cpu_notifier(&kvm_cpu_notifier);
2057         if (r)
2058                 goto out_free_2;
2059         register_reboot_notifier(&kvm_reboot_notifier);
2060
2061         r = sysdev_class_register(&kvm_sysdev_class);
2062         if (r)
2063                 goto out_free_3;
2064
2065         r = sysdev_register(&kvm_sysdev);
2066         if (r)
2067                 goto out_free_4;
2068
2069         /* A kmem cache lets us meet the alignment requirements of fx_save. */
2070         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2071                                            __alignof__(struct kvm_vcpu),
2072                                            0, NULL);
2073         if (!kvm_vcpu_cache) {
2074                 r = -ENOMEM;
2075                 goto out_free_5;
2076         }
2077
2078         kvm_chardev_ops.owner = module;
2079
2080         r = misc_register(&kvm_dev);
2081         if (r) {
2082                 printk(KERN_ERR "kvm: misc device register failed\n");
2083                 goto out_free;
2084         }
2085
2086         kvm_preempt_ops.sched_in = kvm_sched_in;
2087         kvm_preempt_ops.sched_out = kvm_sched_out;
2088
2089         return 0;
2090
2091 out_free:
2092         kmem_cache_destroy(kvm_vcpu_cache);
2093 out_free_5:
2094         sysdev_unregister(&kvm_sysdev);
2095 out_free_4:
2096         sysdev_class_unregister(&kvm_sysdev_class);
2097 out_free_3:
2098         unregister_reboot_notifier(&kvm_reboot_notifier);
2099         unregister_cpu_notifier(&kvm_cpu_notifier);
2100 out_free_2:
2101         on_each_cpu(hardware_disable, NULL, 1);
2102 out_free_1:
2103         kvm_arch_hardware_unsetup();
2104 out_free_0:
2105         __free_page(bad_page);
2106 out:
2107         kvm_arch_exit();
2108         kvm_exit_debug();
2109 out_fail:
2110         return r;
2111 }
2112 EXPORT_SYMBOL_GPL(kvm_init);
2113
2114 void kvm_exit(void)
2115 {
2116         kvm_trace_cleanup();
2117         misc_deregister(&kvm_dev);
2118         kmem_cache_destroy(kvm_vcpu_cache);
2119         sysdev_unregister(&kvm_sysdev);
2120         sysdev_class_unregister(&kvm_sysdev_class);
2121         unregister_reboot_notifier(&kvm_reboot_notifier);
2122         unregister_cpu_notifier(&kvm_cpu_notifier);
2123         on_each_cpu(hardware_disable, NULL, 1);
2124         kvm_arch_hardware_unsetup();
2125         kvm_arch_exit();
2126         kvm_exit_debug();
2127         __free_page(bad_page);
2128 }
2129 EXPORT_SYMBOL_GPL(kvm_exit);