perf_event: Eliminate raw->size
[safe/jmp/linux-2.6] / tools / perf / builtin-sched.c
1 #include "builtin.h"
2 #include "perf.h"
3
4 #include "util/util.h"
5 #include "util/cache.h"
6 #include "util/symbol.h"
7 #include "util/thread.h"
8 #include "util/header.h"
9
10 #include "util/parse-options.h"
11 #include "util/trace-event.h"
12
13 #include "util/debug.h"
14 #include "util/data_map.h"
15
16 #include <sys/types.h>
17 #include <sys/prctl.h>
18
19 #include <semaphore.h>
20 #include <pthread.h>
21 #include <math.h>
22
23 static char                     const *input_name = "perf.data";
24
25 static struct perf_header       *header;
26 static u64                      sample_type;
27
28 static char                     default_sort_order[] = "avg, max, switch, runtime";
29 static char                     *sort_order = default_sort_order;
30
31 static int                      profile_cpu = -1;
32
33 #define PR_SET_NAME             15               /* Set process name */
34 #define MAX_CPUS                4096
35
36 static u64                      run_measurement_overhead;
37 static u64                      sleep_measurement_overhead;
38
39 #define COMM_LEN                20
40 #define SYM_LEN                 129
41
42 #define MAX_PID                 65536
43
44 static unsigned long            nr_tasks;
45
46 struct sched_atom;
47
48 struct task_desc {
49         unsigned long           nr;
50         unsigned long           pid;
51         char                    comm[COMM_LEN];
52
53         unsigned long           nr_events;
54         unsigned long           curr_event;
55         struct sched_atom       **atoms;
56
57         pthread_t               thread;
58         sem_t                   sleep_sem;
59
60         sem_t                   ready_for_work;
61         sem_t                   work_done_sem;
62
63         u64                     cpu_usage;
64 };
65
66 enum sched_event_type {
67         SCHED_EVENT_RUN,
68         SCHED_EVENT_SLEEP,
69         SCHED_EVENT_WAKEUP,
70         SCHED_EVENT_MIGRATION,
71 };
72
73 struct sched_atom {
74         enum sched_event_type   type;
75         u64                     timestamp;
76         u64                     duration;
77         unsigned long           nr;
78         int                     specific_wait;
79         sem_t                   *wait_sem;
80         struct task_desc        *wakee;
81 };
82
83 static struct task_desc         *pid_to_task[MAX_PID];
84
85 static struct task_desc         **tasks;
86
87 static pthread_mutex_t          start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
88 static u64                      start_time;
89
90 static pthread_mutex_t          work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
91
92 static unsigned long            nr_run_events;
93 static unsigned long            nr_sleep_events;
94 static unsigned long            nr_wakeup_events;
95
96 static unsigned long            nr_sleep_corrections;
97 static unsigned long            nr_run_events_optimized;
98
99 static unsigned long            targetless_wakeups;
100 static unsigned long            multitarget_wakeups;
101
102 static u64                      cpu_usage;
103 static u64                      runavg_cpu_usage;
104 static u64                      parent_cpu_usage;
105 static u64                      runavg_parent_cpu_usage;
106
107 static unsigned long            nr_runs;
108 static u64                      sum_runtime;
109 static u64                      sum_fluct;
110 static u64                      run_avg;
111
112 static unsigned long            replay_repeat = 10;
113 static unsigned long            nr_timestamps;
114 static unsigned long            nr_unordered_timestamps;
115 static unsigned long            nr_state_machine_bugs;
116 static unsigned long            nr_context_switch_bugs;
117 static unsigned long            nr_events;
118 static unsigned long            nr_lost_chunks;
119 static unsigned long            nr_lost_events;
120
121 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
122
123 enum thread_state {
124         THREAD_SLEEPING = 0,
125         THREAD_WAIT_CPU,
126         THREAD_SCHED_IN,
127         THREAD_IGNORE
128 };
129
130 struct work_atom {
131         struct list_head        list;
132         enum thread_state       state;
133         u64                     sched_out_time;
134         u64                     wake_up_time;
135         u64                     sched_in_time;
136         u64                     runtime;
137 };
138
139 struct work_atoms {
140         struct list_head        work_list;
141         struct thread           *thread;
142         struct rb_node          node;
143         u64                     max_lat;
144         u64                     total_lat;
145         u64                     nb_atoms;
146         u64                     total_runtime;
147 };
148
149 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
150
151 static struct rb_root           atom_root, sorted_atom_root;
152
153 static u64                      all_runtime;
154 static u64                      all_count;
155
156
157 static u64 get_nsecs(void)
158 {
159         struct timespec ts;
160
161         clock_gettime(CLOCK_MONOTONIC, &ts);
162
163         return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
164 }
165
166 static void burn_nsecs(u64 nsecs)
167 {
168         u64 T0 = get_nsecs(), T1;
169
170         do {
171                 T1 = get_nsecs();
172         } while (T1 + run_measurement_overhead < T0 + nsecs);
173 }
174
175 static void sleep_nsecs(u64 nsecs)
176 {
177         struct timespec ts;
178
179         ts.tv_nsec = nsecs % 999999999;
180         ts.tv_sec = nsecs / 999999999;
181
182         nanosleep(&ts, NULL);
183 }
184
185 static void calibrate_run_measurement_overhead(void)
186 {
187         u64 T0, T1, delta, min_delta = 1000000000ULL;
188         int i;
189
190         for (i = 0; i < 10; i++) {
191                 T0 = get_nsecs();
192                 burn_nsecs(0);
193                 T1 = get_nsecs();
194                 delta = T1-T0;
195                 min_delta = min(min_delta, delta);
196         }
197         run_measurement_overhead = min_delta;
198
199         printf("run measurement overhead: %Ld nsecs\n", min_delta);
200 }
201
202 static void calibrate_sleep_measurement_overhead(void)
203 {
204         u64 T0, T1, delta, min_delta = 1000000000ULL;
205         int i;
206
207         for (i = 0; i < 10; i++) {
208                 T0 = get_nsecs();
209                 sleep_nsecs(10000);
210                 T1 = get_nsecs();
211                 delta = T1-T0;
212                 min_delta = min(min_delta, delta);
213         }
214         min_delta -= 10000;
215         sleep_measurement_overhead = min_delta;
216
217         printf("sleep measurement overhead: %Ld nsecs\n", min_delta);
218 }
219
220 static struct sched_atom *
221 get_new_event(struct task_desc *task, u64 timestamp)
222 {
223         struct sched_atom *event = zalloc(sizeof(*event));
224         unsigned long idx = task->nr_events;
225         size_t size;
226
227         event->timestamp = timestamp;
228         event->nr = idx;
229
230         task->nr_events++;
231         size = sizeof(struct sched_atom *) * task->nr_events;
232         task->atoms = realloc(task->atoms, size);
233         BUG_ON(!task->atoms);
234
235         task->atoms[idx] = event;
236
237         return event;
238 }
239
240 static struct sched_atom *last_event(struct task_desc *task)
241 {
242         if (!task->nr_events)
243                 return NULL;
244
245         return task->atoms[task->nr_events - 1];
246 }
247
248 static void
249 add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
250 {
251         struct sched_atom *event, *curr_event = last_event(task);
252
253         /*
254          * optimize an existing RUN event by merging this one
255          * to it:
256          */
257         if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
258                 nr_run_events_optimized++;
259                 curr_event->duration += duration;
260                 return;
261         }
262
263         event = get_new_event(task, timestamp);
264
265         event->type = SCHED_EVENT_RUN;
266         event->duration = duration;
267
268         nr_run_events++;
269 }
270
271 static void
272 add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
273                        struct task_desc *wakee)
274 {
275         struct sched_atom *event, *wakee_event;
276
277         event = get_new_event(task, timestamp);
278         event->type = SCHED_EVENT_WAKEUP;
279         event->wakee = wakee;
280
281         wakee_event = last_event(wakee);
282         if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
283                 targetless_wakeups++;
284                 return;
285         }
286         if (wakee_event->wait_sem) {
287                 multitarget_wakeups++;
288                 return;
289         }
290
291         wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
292         sem_init(wakee_event->wait_sem, 0, 0);
293         wakee_event->specific_wait = 1;
294         event->wait_sem = wakee_event->wait_sem;
295
296         nr_wakeup_events++;
297 }
298
299 static void
300 add_sched_event_sleep(struct task_desc *task, u64 timestamp,
301                       u64 task_state __used)
302 {
303         struct sched_atom *event = get_new_event(task, timestamp);
304
305         event->type = SCHED_EVENT_SLEEP;
306
307         nr_sleep_events++;
308 }
309
310 static struct task_desc *register_pid(unsigned long pid, const char *comm)
311 {
312         struct task_desc *task;
313
314         BUG_ON(pid >= MAX_PID);
315
316         task = pid_to_task[pid];
317
318         if (task)
319                 return task;
320
321         task = zalloc(sizeof(*task));
322         task->pid = pid;
323         task->nr = nr_tasks;
324         strcpy(task->comm, comm);
325         /*
326          * every task starts in sleeping state - this gets ignored
327          * if there's no wakeup pointing to this sleep state:
328          */
329         add_sched_event_sleep(task, 0, 0);
330
331         pid_to_task[pid] = task;
332         nr_tasks++;
333         tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
334         BUG_ON(!tasks);
335         tasks[task->nr] = task;
336
337         if (verbose)
338                 printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
339
340         return task;
341 }
342
343
344 static void print_task_traces(void)
345 {
346         struct task_desc *task;
347         unsigned long i;
348
349         for (i = 0; i < nr_tasks; i++) {
350                 task = tasks[i];
351                 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
352                         task->nr, task->comm, task->pid, task->nr_events);
353         }
354 }
355
356 static void add_cross_task_wakeups(void)
357 {
358         struct task_desc *task1, *task2;
359         unsigned long i, j;
360
361         for (i = 0; i < nr_tasks; i++) {
362                 task1 = tasks[i];
363                 j = i + 1;
364                 if (j == nr_tasks)
365                         j = 0;
366                 task2 = tasks[j];
367                 add_sched_event_wakeup(task1, 0, task2);
368         }
369 }
370
371 static void
372 process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom)
373 {
374         int ret = 0;
375         u64 now;
376         long long delta;
377
378         now = get_nsecs();
379         delta = start_time + atom->timestamp - now;
380
381         switch (atom->type) {
382                 case SCHED_EVENT_RUN:
383                         burn_nsecs(atom->duration);
384                         break;
385                 case SCHED_EVENT_SLEEP:
386                         if (atom->wait_sem)
387                                 ret = sem_wait(atom->wait_sem);
388                         BUG_ON(ret);
389                         break;
390                 case SCHED_EVENT_WAKEUP:
391                         if (atom->wait_sem)
392                                 ret = sem_post(atom->wait_sem);
393                         BUG_ON(ret);
394                         break;
395                 case SCHED_EVENT_MIGRATION:
396                         break;
397                 default:
398                         BUG_ON(1);
399         }
400 }
401
402 static u64 get_cpu_usage_nsec_parent(void)
403 {
404         struct rusage ru;
405         u64 sum;
406         int err;
407
408         err = getrusage(RUSAGE_SELF, &ru);
409         BUG_ON(err);
410
411         sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
412         sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
413
414         return sum;
415 }
416
417 static u64 get_cpu_usage_nsec_self(void)
418 {
419         char filename [] = "/proc/1234567890/sched";
420         unsigned long msecs, nsecs;
421         char *line = NULL;
422         u64 total = 0;
423         size_t len = 0;
424         ssize_t chars;
425         FILE *file;
426         int ret;
427
428         sprintf(filename, "/proc/%d/sched", getpid());
429         file = fopen(filename, "r");
430         BUG_ON(!file);
431
432         while ((chars = getline(&line, &len, file)) != -1) {
433                 ret = sscanf(line, "se.sum_exec_runtime : %ld.%06ld\n",
434                         &msecs, &nsecs);
435                 if (ret == 2) {
436                         total = msecs*1e6 + nsecs;
437                         break;
438                 }
439         }
440         if (line)
441                 free(line);
442         fclose(file);
443
444         return total;
445 }
446
447 static void *thread_func(void *ctx)
448 {
449         struct task_desc *this_task = ctx;
450         u64 cpu_usage_0, cpu_usage_1;
451         unsigned long i, ret;
452         char comm2[22];
453
454         sprintf(comm2, ":%s", this_task->comm);
455         prctl(PR_SET_NAME, comm2);
456
457 again:
458         ret = sem_post(&this_task->ready_for_work);
459         BUG_ON(ret);
460         ret = pthread_mutex_lock(&start_work_mutex);
461         BUG_ON(ret);
462         ret = pthread_mutex_unlock(&start_work_mutex);
463         BUG_ON(ret);
464
465         cpu_usage_0 = get_cpu_usage_nsec_self();
466
467         for (i = 0; i < this_task->nr_events; i++) {
468                 this_task->curr_event = i;
469                 process_sched_event(this_task, this_task->atoms[i]);
470         }
471
472         cpu_usage_1 = get_cpu_usage_nsec_self();
473         this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
474
475         ret = sem_post(&this_task->work_done_sem);
476         BUG_ON(ret);
477
478         ret = pthread_mutex_lock(&work_done_wait_mutex);
479         BUG_ON(ret);
480         ret = pthread_mutex_unlock(&work_done_wait_mutex);
481         BUG_ON(ret);
482
483         goto again;
484 }
485
486 static void create_tasks(void)
487 {
488         struct task_desc *task;
489         pthread_attr_t attr;
490         unsigned long i;
491         int err;
492
493         err = pthread_attr_init(&attr);
494         BUG_ON(err);
495         err = pthread_attr_setstacksize(&attr, (size_t)(16*1024));
496         BUG_ON(err);
497         err = pthread_mutex_lock(&start_work_mutex);
498         BUG_ON(err);
499         err = pthread_mutex_lock(&work_done_wait_mutex);
500         BUG_ON(err);
501         for (i = 0; i < nr_tasks; i++) {
502                 task = tasks[i];
503                 sem_init(&task->sleep_sem, 0, 0);
504                 sem_init(&task->ready_for_work, 0, 0);
505                 sem_init(&task->work_done_sem, 0, 0);
506                 task->curr_event = 0;
507                 err = pthread_create(&task->thread, &attr, thread_func, task);
508                 BUG_ON(err);
509         }
510 }
511
512 static void wait_for_tasks(void)
513 {
514         u64 cpu_usage_0, cpu_usage_1;
515         struct task_desc *task;
516         unsigned long i, ret;
517
518         start_time = get_nsecs();
519         cpu_usage = 0;
520         pthread_mutex_unlock(&work_done_wait_mutex);
521
522         for (i = 0; i < nr_tasks; i++) {
523                 task = tasks[i];
524                 ret = sem_wait(&task->ready_for_work);
525                 BUG_ON(ret);
526                 sem_init(&task->ready_for_work, 0, 0);
527         }
528         ret = pthread_mutex_lock(&work_done_wait_mutex);
529         BUG_ON(ret);
530
531         cpu_usage_0 = get_cpu_usage_nsec_parent();
532
533         pthread_mutex_unlock(&start_work_mutex);
534
535         for (i = 0; i < nr_tasks; i++) {
536                 task = tasks[i];
537                 ret = sem_wait(&task->work_done_sem);
538                 BUG_ON(ret);
539                 sem_init(&task->work_done_sem, 0, 0);
540                 cpu_usage += task->cpu_usage;
541                 task->cpu_usage = 0;
542         }
543
544         cpu_usage_1 = get_cpu_usage_nsec_parent();
545         if (!runavg_cpu_usage)
546                 runavg_cpu_usage = cpu_usage;
547         runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
548
549         parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
550         if (!runavg_parent_cpu_usage)
551                 runavg_parent_cpu_usage = parent_cpu_usage;
552         runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
553                                    parent_cpu_usage)/10;
554
555         ret = pthread_mutex_lock(&start_work_mutex);
556         BUG_ON(ret);
557
558         for (i = 0; i < nr_tasks; i++) {
559                 task = tasks[i];
560                 sem_init(&task->sleep_sem, 0, 0);
561                 task->curr_event = 0;
562         }
563 }
564
565 static void run_one_test(void)
566 {
567         u64 T0, T1, delta, avg_delta, fluct, std_dev;
568
569         T0 = get_nsecs();
570         wait_for_tasks();
571         T1 = get_nsecs();
572
573         delta = T1 - T0;
574         sum_runtime += delta;
575         nr_runs++;
576
577         avg_delta = sum_runtime / nr_runs;
578         if (delta < avg_delta)
579                 fluct = avg_delta - delta;
580         else
581                 fluct = delta - avg_delta;
582         sum_fluct += fluct;
583         std_dev = sum_fluct / nr_runs / sqrt(nr_runs);
584         if (!run_avg)
585                 run_avg = delta;
586         run_avg = (run_avg*9 + delta)/10;
587
588         printf("#%-3ld: %0.3f, ",
589                 nr_runs, (double)delta/1000000.0);
590
591         printf("ravg: %0.2f, ",
592                 (double)run_avg/1e6);
593
594         printf("cpu: %0.2f / %0.2f",
595                 (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
596
597 #if 0
598         /*
599          * rusage statistics done by the parent, these are less
600          * accurate than the sum_exec_runtime based statistics:
601          */
602         printf(" [%0.2f / %0.2f]",
603                 (double)parent_cpu_usage/1e6,
604                 (double)runavg_parent_cpu_usage/1e6);
605 #endif
606
607         printf("\n");
608
609         if (nr_sleep_corrections)
610                 printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
611         nr_sleep_corrections = 0;
612 }
613
614 static void test_calibrations(void)
615 {
616         u64 T0, T1;
617
618         T0 = get_nsecs();
619         burn_nsecs(1e6);
620         T1 = get_nsecs();
621
622         printf("the run test took %Ld nsecs\n", T1-T0);
623
624         T0 = get_nsecs();
625         sleep_nsecs(1e6);
626         T1 = get_nsecs();
627
628         printf("the sleep test took %Ld nsecs\n", T1-T0);
629 }
630
631 #define FILL_FIELD(ptr, field, event, data)     \
632         ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
633
634 #define FILL_ARRAY(ptr, array, event, data)                     \
635 do {                                                            \
636         void *__array = raw_field_ptr(event, #array, data);     \
637         memcpy(ptr.array, __array, sizeof(ptr.array));  \
638 } while(0)
639
640 #define FILL_COMMON_FIELDS(ptr, event, data)                    \
641 do {                                                            \
642         FILL_FIELD(ptr, common_type, event, data);              \
643         FILL_FIELD(ptr, common_flags, event, data);             \
644         FILL_FIELD(ptr, common_preempt_count, event, data);     \
645         FILL_FIELD(ptr, common_pid, event, data);               \
646         FILL_FIELD(ptr, common_tgid, event, data);              \
647 } while (0)
648
649
650
651 struct trace_switch_event {
652         u32 size;
653
654         u16 common_type;
655         u8 common_flags;
656         u8 common_preempt_count;
657         u32 common_pid;
658         u32 common_tgid;
659
660         char prev_comm[16];
661         u32 prev_pid;
662         u32 prev_prio;
663         u64 prev_state;
664         char next_comm[16];
665         u32 next_pid;
666         u32 next_prio;
667 };
668
669 struct trace_runtime_event {
670         u32 size;
671
672         u16 common_type;
673         u8 common_flags;
674         u8 common_preempt_count;
675         u32 common_pid;
676         u32 common_tgid;
677
678         char comm[16];
679         u32 pid;
680         u64 runtime;
681         u64 vruntime;
682 };
683
684 struct trace_wakeup_event {
685         u32 size;
686
687         u16 common_type;
688         u8 common_flags;
689         u8 common_preempt_count;
690         u32 common_pid;
691         u32 common_tgid;
692
693         char comm[16];
694         u32 pid;
695
696         u32 prio;
697         u32 success;
698         u32 cpu;
699 };
700
701 struct trace_fork_event {
702         u32 size;
703
704         u16 common_type;
705         u8 common_flags;
706         u8 common_preempt_count;
707         u32 common_pid;
708         u32 common_tgid;
709
710         char parent_comm[16];
711         u32 parent_pid;
712         char child_comm[16];
713         u32 child_pid;
714 };
715
716 struct trace_migrate_task_event {
717         u32 size;
718
719         u16 common_type;
720         u8 common_flags;
721         u8 common_preempt_count;
722         u32 common_pid;
723         u32 common_tgid;
724
725         char comm[16];
726         u32 pid;
727
728         u32 prio;
729         u32 cpu;
730 };
731
732 struct trace_sched_handler {
733         void (*switch_event)(struct trace_switch_event *,
734                              struct event *,
735                              int cpu,
736                              u64 timestamp,
737                              struct thread *thread);
738
739         void (*runtime_event)(struct trace_runtime_event *,
740                               struct event *,
741                               int cpu,
742                               u64 timestamp,
743                               struct thread *thread);
744
745         void (*wakeup_event)(struct trace_wakeup_event *,
746                              struct event *,
747                              int cpu,
748                              u64 timestamp,
749                              struct thread *thread);
750
751         void (*fork_event)(struct trace_fork_event *,
752                            struct event *,
753                            int cpu,
754                            u64 timestamp,
755                            struct thread *thread);
756
757         void (*migrate_task_event)(struct trace_migrate_task_event *,
758                            struct event *,
759                            int cpu,
760                            u64 timestamp,
761                            struct thread *thread);
762 };
763
764
765 static void
766 replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
767                     struct event *event,
768                     int cpu __used,
769                     u64 timestamp __used,
770                     struct thread *thread __used)
771 {
772         struct task_desc *waker, *wakee;
773
774         if (verbose) {
775                 printf("sched_wakeup event %p\n", event);
776
777                 printf(" ... pid %d woke up %s/%d\n",
778                         wakeup_event->common_pid,
779                         wakeup_event->comm,
780                         wakeup_event->pid);
781         }
782
783         waker = register_pid(wakeup_event->common_pid, "<unknown>");
784         wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
785
786         add_sched_event_wakeup(waker, timestamp, wakee);
787 }
788
789 static u64 cpu_last_switched[MAX_CPUS];
790
791 static void
792 replay_switch_event(struct trace_switch_event *switch_event,
793                     struct event *event,
794                     int cpu,
795                     u64 timestamp,
796                     struct thread *thread __used)
797 {
798         struct task_desc *prev, *next;
799         u64 timestamp0;
800         s64 delta;
801
802         if (verbose)
803                 printf("sched_switch event %p\n", event);
804
805         if (cpu >= MAX_CPUS || cpu < 0)
806                 return;
807
808         timestamp0 = cpu_last_switched[cpu];
809         if (timestamp0)
810                 delta = timestamp - timestamp0;
811         else
812                 delta = 0;
813
814         if (delta < 0)
815                 die("hm, delta: %Ld < 0 ?\n", delta);
816
817         if (verbose) {
818                 printf(" ... switch from %s/%d to %s/%d [ran %Ld nsecs]\n",
819                         switch_event->prev_comm, switch_event->prev_pid,
820                         switch_event->next_comm, switch_event->next_pid,
821                         delta);
822         }
823
824         prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
825         next = register_pid(switch_event->next_pid, switch_event->next_comm);
826
827         cpu_last_switched[cpu] = timestamp;
828
829         add_sched_event_run(prev, timestamp, delta);
830         add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
831 }
832
833
834 static void
835 replay_fork_event(struct trace_fork_event *fork_event,
836                   struct event *event,
837                   int cpu __used,
838                   u64 timestamp __used,
839                   struct thread *thread __used)
840 {
841         if (verbose) {
842                 printf("sched_fork event %p\n", event);
843                 printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
844                 printf("...  child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
845         }
846         register_pid(fork_event->parent_pid, fork_event->parent_comm);
847         register_pid(fork_event->child_pid, fork_event->child_comm);
848 }
849
850 static struct trace_sched_handler replay_ops  = {
851         .wakeup_event           = replay_wakeup_event,
852         .switch_event           = replay_switch_event,
853         .fork_event             = replay_fork_event,
854 };
855
856 struct sort_dimension {
857         const char              *name;
858         sort_fn_t               cmp;
859         struct list_head        list;
860 };
861
862 static LIST_HEAD(cmp_pid);
863
864 static int
865 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
866 {
867         struct sort_dimension *sort;
868         int ret = 0;
869
870         BUG_ON(list_empty(list));
871
872         list_for_each_entry(sort, list, list) {
873                 ret = sort->cmp(l, r);
874                 if (ret)
875                         return ret;
876         }
877
878         return ret;
879 }
880
881 static struct work_atoms *
882 thread_atoms_search(struct rb_root *root, struct thread *thread,
883                          struct list_head *sort_list)
884 {
885         struct rb_node *node = root->rb_node;
886         struct work_atoms key = { .thread = thread };
887
888         while (node) {
889                 struct work_atoms *atoms;
890                 int cmp;
891
892                 atoms = container_of(node, struct work_atoms, node);
893
894                 cmp = thread_lat_cmp(sort_list, &key, atoms);
895                 if (cmp > 0)
896                         node = node->rb_left;
897                 else if (cmp < 0)
898                         node = node->rb_right;
899                 else {
900                         BUG_ON(thread != atoms->thread);
901                         return atoms;
902                 }
903         }
904         return NULL;
905 }
906
907 static void
908 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
909                          struct list_head *sort_list)
910 {
911         struct rb_node **new = &(root->rb_node), *parent = NULL;
912
913         while (*new) {
914                 struct work_atoms *this;
915                 int cmp;
916
917                 this = container_of(*new, struct work_atoms, node);
918                 parent = *new;
919
920                 cmp = thread_lat_cmp(sort_list, data, this);
921
922                 if (cmp > 0)
923                         new = &((*new)->rb_left);
924                 else
925                         new = &((*new)->rb_right);
926         }
927
928         rb_link_node(&data->node, parent, new);
929         rb_insert_color(&data->node, root);
930 }
931
932 static void thread_atoms_insert(struct thread *thread)
933 {
934         struct work_atoms *atoms = zalloc(sizeof(*atoms));
935         if (!atoms)
936                 die("No memory");
937
938         atoms->thread = thread;
939         INIT_LIST_HEAD(&atoms->work_list);
940         __thread_latency_insert(&atom_root, atoms, &cmp_pid);
941 }
942
943 static void
944 latency_fork_event(struct trace_fork_event *fork_event __used,
945                    struct event *event __used,
946                    int cpu __used,
947                    u64 timestamp __used,
948                    struct thread *thread __used)
949 {
950         /* should insert the newcomer */
951 }
952
953 __used
954 static char sched_out_state(struct trace_switch_event *switch_event)
955 {
956         const char *str = TASK_STATE_TO_CHAR_STR;
957
958         return str[switch_event->prev_state];
959 }
960
961 static void
962 add_sched_out_event(struct work_atoms *atoms,
963                     char run_state,
964                     u64 timestamp)
965 {
966         struct work_atom *atom = zalloc(sizeof(*atom));
967         if (!atom)
968                 die("Non memory");
969
970         atom->sched_out_time = timestamp;
971
972         if (run_state == 'R') {
973                 atom->state = THREAD_WAIT_CPU;
974                 atom->wake_up_time = atom->sched_out_time;
975         }
976
977         list_add_tail(&atom->list, &atoms->work_list);
978 }
979
980 static void
981 add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used)
982 {
983         struct work_atom *atom;
984
985         BUG_ON(list_empty(&atoms->work_list));
986
987         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
988
989         atom->runtime += delta;
990         atoms->total_runtime += delta;
991 }
992
993 static void
994 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
995 {
996         struct work_atom *atom;
997         u64 delta;
998
999         if (list_empty(&atoms->work_list))
1000                 return;
1001
1002         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1003
1004         if (atom->state != THREAD_WAIT_CPU)
1005                 return;
1006
1007         if (timestamp < atom->wake_up_time) {
1008                 atom->state = THREAD_IGNORE;
1009                 return;
1010         }
1011
1012         atom->state = THREAD_SCHED_IN;
1013         atom->sched_in_time = timestamp;
1014
1015         delta = atom->sched_in_time - atom->wake_up_time;
1016         atoms->total_lat += delta;
1017         if (delta > atoms->max_lat)
1018                 atoms->max_lat = delta;
1019         atoms->nb_atoms++;
1020 }
1021
1022 static void
1023 latency_switch_event(struct trace_switch_event *switch_event,
1024                      struct event *event __used,
1025                      int cpu,
1026                      u64 timestamp,
1027                      struct thread *thread __used)
1028 {
1029         struct work_atoms *out_events, *in_events;
1030         struct thread *sched_out, *sched_in;
1031         u64 timestamp0;
1032         s64 delta;
1033
1034         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1035
1036         timestamp0 = cpu_last_switched[cpu];
1037         cpu_last_switched[cpu] = timestamp;
1038         if (timestamp0)
1039                 delta = timestamp - timestamp0;
1040         else
1041                 delta = 0;
1042
1043         if (delta < 0)
1044                 die("hm, delta: %Ld < 0 ?\n", delta);
1045
1046
1047         sched_out = threads__findnew(switch_event->prev_pid);
1048         sched_in = threads__findnew(switch_event->next_pid);
1049
1050         out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1051         if (!out_events) {
1052                 thread_atoms_insert(sched_out);
1053                 out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1054                 if (!out_events)
1055                         die("out-event: Internal tree error");
1056         }
1057         add_sched_out_event(out_events, sched_out_state(switch_event), timestamp);
1058
1059         in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1060         if (!in_events) {
1061                 thread_atoms_insert(sched_in);
1062                 in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1063                 if (!in_events)
1064                         die("in-event: Internal tree error");
1065                 /*
1066                  * Take came in we have not heard about yet,
1067                  * add in an initial atom in runnable state:
1068                  */
1069                 add_sched_out_event(in_events, 'R', timestamp);
1070         }
1071         add_sched_in_event(in_events, timestamp);
1072 }
1073
1074 static void
1075 latency_runtime_event(struct trace_runtime_event *runtime_event,
1076                      struct event *event __used,
1077                      int cpu,
1078                      u64 timestamp,
1079                      struct thread *this_thread __used)
1080 {
1081         struct thread *thread = threads__findnew(runtime_event->pid);
1082         struct work_atoms *atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1083
1084         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1085         if (!atoms) {
1086                 thread_atoms_insert(thread);
1087                 atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1088                 if (!atoms)
1089                         die("in-event: Internal tree error");
1090                 add_sched_out_event(atoms, 'R', timestamp);
1091         }
1092
1093         add_runtime_event(atoms, runtime_event->runtime, timestamp);
1094 }
1095
1096 static void
1097 latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
1098                      struct event *__event __used,
1099                      int cpu __used,
1100                      u64 timestamp,
1101                      struct thread *thread __used)
1102 {
1103         struct work_atoms *atoms;
1104         struct work_atom *atom;
1105         struct thread *wakee;
1106
1107         /* Note for later, it may be interesting to observe the failing cases */
1108         if (!wakeup_event->success)
1109                 return;
1110
1111         wakee = threads__findnew(wakeup_event->pid);
1112         atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1113         if (!atoms) {
1114                 thread_atoms_insert(wakee);
1115                 atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1116                 if (!atoms)
1117                         die("wakeup-event: Internal tree error");
1118                 add_sched_out_event(atoms, 'S', timestamp);
1119         }
1120
1121         BUG_ON(list_empty(&atoms->work_list));
1122
1123         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1124
1125         /*
1126          * You WILL be missing events if you've recorded only
1127          * one CPU, or are only looking at only one, so don't
1128          * make useless noise.
1129          */
1130         if (profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1131                 nr_state_machine_bugs++;
1132
1133         nr_timestamps++;
1134         if (atom->sched_out_time > timestamp) {
1135                 nr_unordered_timestamps++;
1136                 return;
1137         }
1138
1139         atom->state = THREAD_WAIT_CPU;
1140         atom->wake_up_time = timestamp;
1141 }
1142
1143 static void
1144 latency_migrate_task_event(struct trace_migrate_task_event *migrate_task_event,
1145                      struct event *__event __used,
1146                      int cpu __used,
1147                      u64 timestamp,
1148                      struct thread *thread __used)
1149 {
1150         struct work_atoms *atoms;
1151         struct work_atom *atom;
1152         struct thread *migrant;
1153
1154         /*
1155          * Only need to worry about migration when profiling one CPU.
1156          */
1157         if (profile_cpu == -1)
1158                 return;
1159
1160         migrant = threads__findnew(migrate_task_event->pid);
1161         atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1162         if (!atoms) {
1163                 thread_atoms_insert(migrant);
1164                 register_pid(migrant->pid, migrant->comm);
1165                 atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1166                 if (!atoms)
1167                         die("migration-event: Internal tree error");
1168                 add_sched_out_event(atoms, 'R', timestamp);
1169         }
1170
1171         BUG_ON(list_empty(&atoms->work_list));
1172
1173         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1174         atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1175
1176         nr_timestamps++;
1177
1178         if (atom->sched_out_time > timestamp)
1179                 nr_unordered_timestamps++;
1180 }
1181
1182 static struct trace_sched_handler lat_ops  = {
1183         .wakeup_event           = latency_wakeup_event,
1184         .switch_event           = latency_switch_event,
1185         .runtime_event          = latency_runtime_event,
1186         .fork_event             = latency_fork_event,
1187         .migrate_task_event     = latency_migrate_task_event,
1188 };
1189
1190 static void output_lat_thread(struct work_atoms *work_list)
1191 {
1192         int i;
1193         int ret;
1194         u64 avg;
1195
1196         if (!work_list->nb_atoms)
1197                 return;
1198         /*
1199          * Ignore idle threads:
1200          */
1201         if (!strcmp(work_list->thread->comm, "swapper"))
1202                 return;
1203
1204         all_runtime += work_list->total_runtime;
1205         all_count += work_list->nb_atoms;
1206
1207         ret = printf("  %s:%d ", work_list->thread->comm, work_list->thread->pid);
1208
1209         for (i = 0; i < 24 - ret; i++)
1210                 printf(" ");
1211
1212         avg = work_list->total_lat / work_list->nb_atoms;
1213
1214         printf("|%11.3f ms |%9llu | avg:%9.3f ms | max:%9.3f ms |\n",
1215               (double)work_list->total_runtime / 1e6,
1216                  work_list->nb_atoms, (double)avg / 1e6,
1217                  (double)work_list->max_lat / 1e6);
1218 }
1219
1220 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1221 {
1222         if (l->thread->pid < r->thread->pid)
1223                 return -1;
1224         if (l->thread->pid > r->thread->pid)
1225                 return 1;
1226
1227         return 0;
1228 }
1229
1230 static struct sort_dimension pid_sort_dimension = {
1231         .name                   = "pid",
1232         .cmp                    = pid_cmp,
1233 };
1234
1235 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1236 {
1237         u64 avgl, avgr;
1238
1239         if (!l->nb_atoms)
1240                 return -1;
1241
1242         if (!r->nb_atoms)
1243                 return 1;
1244
1245         avgl = l->total_lat / l->nb_atoms;
1246         avgr = r->total_lat / r->nb_atoms;
1247
1248         if (avgl < avgr)
1249                 return -1;
1250         if (avgl > avgr)
1251                 return 1;
1252
1253         return 0;
1254 }
1255
1256 static struct sort_dimension avg_sort_dimension = {
1257         .name                   = "avg",
1258         .cmp                    = avg_cmp,
1259 };
1260
1261 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1262 {
1263         if (l->max_lat < r->max_lat)
1264                 return -1;
1265         if (l->max_lat > r->max_lat)
1266                 return 1;
1267
1268         return 0;
1269 }
1270
1271 static struct sort_dimension max_sort_dimension = {
1272         .name                   = "max",
1273         .cmp                    = max_cmp,
1274 };
1275
1276 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1277 {
1278         if (l->nb_atoms < r->nb_atoms)
1279                 return -1;
1280         if (l->nb_atoms > r->nb_atoms)
1281                 return 1;
1282
1283         return 0;
1284 }
1285
1286 static struct sort_dimension switch_sort_dimension = {
1287         .name                   = "switch",
1288         .cmp                    = switch_cmp,
1289 };
1290
1291 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1292 {
1293         if (l->total_runtime < r->total_runtime)
1294                 return -1;
1295         if (l->total_runtime > r->total_runtime)
1296                 return 1;
1297
1298         return 0;
1299 }
1300
1301 static struct sort_dimension runtime_sort_dimension = {
1302         .name                   = "runtime",
1303         .cmp                    = runtime_cmp,
1304 };
1305
1306 static struct sort_dimension *available_sorts[] = {
1307         &pid_sort_dimension,
1308         &avg_sort_dimension,
1309         &max_sort_dimension,
1310         &switch_sort_dimension,
1311         &runtime_sort_dimension,
1312 };
1313
1314 #define NB_AVAILABLE_SORTS      (int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
1315
1316 static LIST_HEAD(sort_list);
1317
1318 static int sort_dimension__add(const char *tok, struct list_head *list)
1319 {
1320         int i;
1321
1322         for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
1323                 if (!strcmp(available_sorts[i]->name, tok)) {
1324                         list_add_tail(&available_sorts[i]->list, list);
1325
1326                         return 0;
1327                 }
1328         }
1329
1330         return -1;
1331 }
1332
1333 static void setup_sorting(void);
1334
1335 static void sort_lat(void)
1336 {
1337         struct rb_node *node;
1338
1339         for (;;) {
1340                 struct work_atoms *data;
1341                 node = rb_first(&atom_root);
1342                 if (!node)
1343                         break;
1344
1345                 rb_erase(node, &atom_root);
1346                 data = rb_entry(node, struct work_atoms, node);
1347                 __thread_latency_insert(&sorted_atom_root, data, &sort_list);
1348         }
1349 }
1350
1351 static struct trace_sched_handler *trace_handler;
1352
1353 static void
1354 process_sched_wakeup_event(void *data,
1355                            struct event *event,
1356                            int cpu __used,
1357                            u64 timestamp __used,
1358                            struct thread *thread __used)
1359 {
1360         struct trace_wakeup_event wakeup_event;
1361
1362         FILL_COMMON_FIELDS(wakeup_event, event, data);
1363
1364         FILL_ARRAY(wakeup_event, comm, event, data);
1365         FILL_FIELD(wakeup_event, pid, event, data);
1366         FILL_FIELD(wakeup_event, prio, event, data);
1367         FILL_FIELD(wakeup_event, success, event, data);
1368         FILL_FIELD(wakeup_event, cpu, event, data);
1369
1370         if (trace_handler->wakeup_event)
1371                 trace_handler->wakeup_event(&wakeup_event, event, cpu, timestamp, thread);
1372 }
1373
1374 /*
1375  * Track the current task - that way we can know whether there's any
1376  * weird events, such as a task being switched away that is not current.
1377  */
1378 static int max_cpu;
1379
1380 static u32 curr_pid[MAX_CPUS] = { [0 ... MAX_CPUS-1] = -1 };
1381
1382 static struct thread *curr_thread[MAX_CPUS];
1383
1384 static char next_shortname1 = 'A';
1385 static char next_shortname2 = '0';
1386
1387 static void
1388 map_switch_event(struct trace_switch_event *switch_event,
1389                  struct event *event __used,
1390                  int this_cpu,
1391                  u64 timestamp,
1392                  struct thread *thread __used)
1393 {
1394         struct thread *sched_out, *sched_in;
1395         int new_shortname;
1396         u64 timestamp0;
1397         s64 delta;
1398         int cpu;
1399
1400         BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1401
1402         if (this_cpu > max_cpu)
1403                 max_cpu = this_cpu;
1404
1405         timestamp0 = cpu_last_switched[this_cpu];
1406         cpu_last_switched[this_cpu] = timestamp;
1407         if (timestamp0)
1408                 delta = timestamp - timestamp0;
1409         else
1410                 delta = 0;
1411
1412         if (delta < 0)
1413                 die("hm, delta: %Ld < 0 ?\n", delta);
1414
1415
1416         sched_out = threads__findnew(switch_event->prev_pid);
1417         sched_in = threads__findnew(switch_event->next_pid);
1418
1419         curr_thread[this_cpu] = sched_in;
1420
1421         printf("  ");
1422
1423         new_shortname = 0;
1424         if (!sched_in->shortname[0]) {
1425                 sched_in->shortname[0] = next_shortname1;
1426                 sched_in->shortname[1] = next_shortname2;
1427
1428                 if (next_shortname1 < 'Z') {
1429                         next_shortname1++;
1430                 } else {
1431                         next_shortname1='A';
1432                         if (next_shortname2 < '9') {
1433                                 next_shortname2++;
1434                         } else {
1435                                 next_shortname2='0';
1436                         }
1437                 }
1438                 new_shortname = 1;
1439         }
1440
1441         for (cpu = 0; cpu <= max_cpu; cpu++) {
1442                 if (cpu != this_cpu)
1443                         printf(" ");
1444                 else
1445                         printf("*");
1446
1447                 if (curr_thread[cpu]) {
1448                         if (curr_thread[cpu]->pid)
1449                                 printf("%2s ", curr_thread[cpu]->shortname);
1450                         else
1451                                 printf(".  ");
1452                 } else
1453                         printf("   ");
1454         }
1455
1456         printf("  %12.6f secs ", (double)timestamp/1e9);
1457         if (new_shortname) {
1458                 printf("%s => %s:%d\n",
1459                         sched_in->shortname, sched_in->comm, sched_in->pid);
1460         } else {
1461                 printf("\n");
1462         }
1463 }
1464
1465
1466 static void
1467 process_sched_switch_event(void *data,
1468                            struct event *event,
1469                            int this_cpu,
1470                            u64 timestamp __used,
1471                            struct thread *thread __used)
1472 {
1473         struct trace_switch_event switch_event;
1474
1475         FILL_COMMON_FIELDS(switch_event, event, data);
1476
1477         FILL_ARRAY(switch_event, prev_comm, event, data);
1478         FILL_FIELD(switch_event, prev_pid, event, data);
1479         FILL_FIELD(switch_event, prev_prio, event, data);
1480         FILL_FIELD(switch_event, prev_state, event, data);
1481         FILL_ARRAY(switch_event, next_comm, event, data);
1482         FILL_FIELD(switch_event, next_pid, event, data);
1483         FILL_FIELD(switch_event, next_prio, event, data);
1484
1485         if (curr_pid[this_cpu] != (u32)-1) {
1486                 /*
1487                  * Are we trying to switch away a PID that is
1488                  * not current?
1489                  */
1490                 if (curr_pid[this_cpu] != switch_event.prev_pid)
1491                         nr_context_switch_bugs++;
1492         }
1493         if (trace_handler->switch_event)
1494                 trace_handler->switch_event(&switch_event, event, this_cpu, timestamp, thread);
1495
1496         curr_pid[this_cpu] = switch_event.next_pid;
1497 }
1498
1499 static void
1500 process_sched_runtime_event(void *data,
1501                            struct event *event,
1502                            int cpu __used,
1503                            u64 timestamp __used,
1504                            struct thread *thread __used)
1505 {
1506         struct trace_runtime_event runtime_event;
1507
1508         FILL_ARRAY(runtime_event, comm, event, data);
1509         FILL_FIELD(runtime_event, pid, event, data);
1510         FILL_FIELD(runtime_event, runtime, event, data);
1511         FILL_FIELD(runtime_event, vruntime, event, data);
1512
1513         if (trace_handler->runtime_event)
1514                 trace_handler->runtime_event(&runtime_event, event, cpu, timestamp, thread);
1515 }
1516
1517 static void
1518 process_sched_fork_event(void *data,
1519                          struct event *event,
1520                          int cpu __used,
1521                          u64 timestamp __used,
1522                          struct thread *thread __used)
1523 {
1524         struct trace_fork_event fork_event;
1525
1526         FILL_COMMON_FIELDS(fork_event, event, data);
1527
1528         FILL_ARRAY(fork_event, parent_comm, event, data);
1529         FILL_FIELD(fork_event, parent_pid, event, data);
1530         FILL_ARRAY(fork_event, child_comm, event, data);
1531         FILL_FIELD(fork_event, child_pid, event, data);
1532
1533         if (trace_handler->fork_event)
1534                 trace_handler->fork_event(&fork_event, event, cpu, timestamp, thread);
1535 }
1536
1537 static void
1538 process_sched_exit_event(struct event *event,
1539                          int cpu __used,
1540                          u64 timestamp __used,
1541                          struct thread *thread __used)
1542 {
1543         if (verbose)
1544                 printf("sched_exit event %p\n", event);
1545 }
1546
1547 static void
1548 process_sched_migrate_task_event(void *data,
1549                            struct event *event,
1550                            int cpu __used,
1551                            u64 timestamp __used,
1552                            struct thread *thread __used)
1553 {
1554         struct trace_migrate_task_event migrate_task_event;
1555
1556         FILL_COMMON_FIELDS(migrate_task_event, event, data);
1557
1558         FILL_ARRAY(migrate_task_event, comm, event, data);
1559         FILL_FIELD(migrate_task_event, pid, event, data);
1560         FILL_FIELD(migrate_task_event, prio, event, data);
1561         FILL_FIELD(migrate_task_event, cpu, event, data);
1562
1563         if (trace_handler->migrate_task_event)
1564                 trace_handler->migrate_task_event(&migrate_task_event, event, cpu, timestamp, thread);
1565 }
1566
1567 static void
1568 process_raw_event(event_t *raw_event __used, void *data,
1569                   int cpu, u64 timestamp, struct thread *thread)
1570 {
1571         struct event *event;
1572         int type;
1573
1574
1575         type = trace_parse_common_type(data);
1576         event = trace_find_event(type);
1577
1578         if (!strcmp(event->name, "sched_switch"))
1579                 process_sched_switch_event(data, event, cpu, timestamp, thread);
1580         if (!strcmp(event->name, "sched_stat_runtime"))
1581                 process_sched_runtime_event(data, event, cpu, timestamp, thread);
1582         if (!strcmp(event->name, "sched_wakeup"))
1583                 process_sched_wakeup_event(data, event, cpu, timestamp, thread);
1584         if (!strcmp(event->name, "sched_wakeup_new"))
1585                 process_sched_wakeup_event(data, event, cpu, timestamp, thread);
1586         if (!strcmp(event->name, "sched_process_fork"))
1587                 process_sched_fork_event(data, event, cpu, timestamp, thread);
1588         if (!strcmp(event->name, "sched_process_exit"))
1589                 process_sched_exit_event(event, cpu, timestamp, thread);
1590         if (!strcmp(event->name, "sched_migrate_task"))
1591                 process_sched_migrate_task_event(data, event, cpu, timestamp, thread);
1592 }
1593
1594 static int process_sample_event(event_t *event)
1595 {
1596         struct sample_data data;
1597         struct thread *thread;
1598
1599         if (!(sample_type & PERF_SAMPLE_RAW))
1600                 return 0;
1601
1602         memset(&data, 0, sizeof(data));
1603         data.time = -1;
1604         data.cpu = -1;
1605         data.period = -1;
1606
1607         event__parse_sample(event, sample_type, &data);
1608
1609         dump_printf("(IP, %d): %d/%d: %p period: %Ld\n",
1610                 event->header.misc,
1611                 data.pid, data.tid,
1612                 (void *)(long)data.ip,
1613                 (long long)data.period);
1614
1615         thread = threads__findnew(data.pid);
1616         if (thread == NULL) {
1617                 pr_debug("problem processing %d event, skipping it.\n",
1618                          event->header.type);
1619                 return -1;
1620         }
1621
1622         dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
1623
1624         if (profile_cpu != -1 && profile_cpu != (int)data.cpu)
1625                 return 0;
1626
1627         process_raw_event(event, data.raw_data, data.cpu, data.time, thread);
1628
1629         return 0;
1630 }
1631
1632 static int process_lost_event(event_t *event __used)
1633 {
1634         nr_lost_chunks++;
1635         nr_lost_events += event->lost.lost;
1636
1637         return 0;
1638 }
1639
1640 static int sample_type_check(u64 type)
1641 {
1642         sample_type = type;
1643
1644         if (!(sample_type & PERF_SAMPLE_RAW)) {
1645                 fprintf(stderr,
1646                         "No trace sample to read. Did you call perf record "
1647                         "without -R?");
1648                 return -1;
1649         }
1650
1651         return 0;
1652 }
1653
1654 static struct perf_file_handler file_handler = {
1655         .process_sample_event   = process_sample_event,
1656         .process_comm_event     = event__process_comm,
1657         .process_lost_event     = process_lost_event,
1658         .sample_type_check      = sample_type_check,
1659 };
1660
1661 static int read_events(void)
1662 {
1663         register_idle_thread();
1664         register_perf_file_handler(&file_handler);
1665
1666         return mmap_dispatch_perf_file(&header, input_name, 0, 0,
1667                                        &event__cwdlen, &event__cwd);
1668 }
1669
1670 static void print_bad_events(void)
1671 {
1672         if (nr_unordered_timestamps && nr_timestamps) {
1673                 printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1674                         (double)nr_unordered_timestamps/(double)nr_timestamps*100.0,
1675                         nr_unordered_timestamps, nr_timestamps);
1676         }
1677         if (nr_lost_events && nr_events) {
1678                 printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1679                         (double)nr_lost_events/(double)nr_events*100.0,
1680                         nr_lost_events, nr_events, nr_lost_chunks);
1681         }
1682         if (nr_state_machine_bugs && nr_timestamps) {
1683                 printf("  INFO: %.3f%% state machine bugs (%ld out of %ld)",
1684                         (double)nr_state_machine_bugs/(double)nr_timestamps*100.0,
1685                         nr_state_machine_bugs, nr_timestamps);
1686                 if (nr_lost_events)
1687                         printf(" (due to lost events?)");
1688                 printf("\n");
1689         }
1690         if (nr_context_switch_bugs && nr_timestamps) {
1691                 printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
1692                         (double)nr_context_switch_bugs/(double)nr_timestamps*100.0,
1693                         nr_context_switch_bugs, nr_timestamps);
1694                 if (nr_lost_events)
1695                         printf(" (due to lost events?)");
1696                 printf("\n");
1697         }
1698 }
1699
1700 static void __cmd_lat(void)
1701 {
1702         struct rb_node *next;
1703
1704         setup_pager();
1705         read_events();
1706         sort_lat();
1707
1708         printf("\n -----------------------------------------------------------------------------------------\n");
1709         printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms |\n");
1710         printf(" -----------------------------------------------------------------------------------------\n");
1711
1712         next = rb_first(&sorted_atom_root);
1713
1714         while (next) {
1715                 struct work_atoms *work_list;
1716
1717                 work_list = rb_entry(next, struct work_atoms, node);
1718                 output_lat_thread(work_list);
1719                 next = rb_next(next);
1720         }
1721
1722         printf(" -----------------------------------------------------------------------------------------\n");
1723         printf("  TOTAL:                |%11.3f ms |%9Ld |\n",
1724                 (double)all_runtime/1e6, all_count);
1725
1726         printf(" ---------------------------------------------------\n");
1727
1728         print_bad_events();
1729         printf("\n");
1730
1731 }
1732
1733 static struct trace_sched_handler map_ops  = {
1734         .wakeup_event           = NULL,
1735         .switch_event           = map_switch_event,
1736         .runtime_event          = NULL,
1737         .fork_event             = NULL,
1738 };
1739
1740 static void __cmd_map(void)
1741 {
1742         max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1743
1744         setup_pager();
1745         read_events();
1746         print_bad_events();
1747 }
1748
1749 static void __cmd_replay(void)
1750 {
1751         unsigned long i;
1752
1753         calibrate_run_measurement_overhead();
1754         calibrate_sleep_measurement_overhead();
1755
1756         test_calibrations();
1757
1758         read_events();
1759
1760         printf("nr_run_events:        %ld\n", nr_run_events);
1761         printf("nr_sleep_events:      %ld\n", nr_sleep_events);
1762         printf("nr_wakeup_events:     %ld\n", nr_wakeup_events);
1763
1764         if (targetless_wakeups)
1765                 printf("target-less wakeups:  %ld\n", targetless_wakeups);
1766         if (multitarget_wakeups)
1767                 printf("multi-target wakeups: %ld\n", multitarget_wakeups);
1768         if (nr_run_events_optimized)
1769                 printf("run atoms optimized: %ld\n",
1770                         nr_run_events_optimized);
1771
1772         print_task_traces();
1773         add_cross_task_wakeups();
1774
1775         create_tasks();
1776         printf("------------------------------------------------------------\n");
1777         for (i = 0; i < replay_repeat; i++)
1778                 run_one_test();
1779 }
1780
1781
1782 static const char * const sched_usage[] = {
1783         "perf sched [<options>] {record|latency|map|replay|trace}",
1784         NULL
1785 };
1786
1787 static const struct option sched_options[] = {
1788         OPT_STRING('i', "input", &input_name, "file",
1789                     "input file name"),
1790         OPT_BOOLEAN('v', "verbose", &verbose,
1791                     "be more verbose (show symbol address, etc)"),
1792         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1793                     "dump raw trace in ASCII"),
1794         OPT_END()
1795 };
1796
1797 static const char * const latency_usage[] = {
1798         "perf sched latency [<options>]",
1799         NULL
1800 };
1801
1802 static const struct option latency_options[] = {
1803         OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
1804                    "sort by key(s): runtime, switch, avg, max"),
1805         OPT_BOOLEAN('v', "verbose", &verbose,
1806                     "be more verbose (show symbol address, etc)"),
1807         OPT_INTEGER('C', "CPU", &profile_cpu,
1808                     "CPU to profile on"),
1809         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1810                     "dump raw trace in ASCII"),
1811         OPT_END()
1812 };
1813
1814 static const char * const replay_usage[] = {
1815         "perf sched replay [<options>]",
1816         NULL
1817 };
1818
1819 static const struct option replay_options[] = {
1820         OPT_INTEGER('r', "repeat", &replay_repeat,
1821                     "repeat the workload replay N times (-1: infinite)"),
1822         OPT_BOOLEAN('v', "verbose", &verbose,
1823                     "be more verbose (show symbol address, etc)"),
1824         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1825                     "dump raw trace in ASCII"),
1826         OPT_END()
1827 };
1828
1829 static void setup_sorting(void)
1830 {
1831         char *tmp, *tok, *str = strdup(sort_order);
1832
1833         for (tok = strtok_r(str, ", ", &tmp);
1834                         tok; tok = strtok_r(NULL, ", ", &tmp)) {
1835                 if (sort_dimension__add(tok, &sort_list) < 0) {
1836                         error("Unknown --sort key: `%s'", tok);
1837                         usage_with_options(latency_usage, latency_options);
1838                 }
1839         }
1840
1841         free(str);
1842
1843         sort_dimension__add("pid", &cmp_pid);
1844 }
1845
1846 static const char *record_args[] = {
1847         "record",
1848         "-a",
1849         "-R",
1850         "-M",
1851         "-f",
1852         "-m", "1024",
1853         "-c", "1",
1854         "-e", "sched:sched_switch:r",
1855         "-e", "sched:sched_stat_wait:r",
1856         "-e", "sched:sched_stat_sleep:r",
1857         "-e", "sched:sched_stat_iowait:r",
1858         "-e", "sched:sched_stat_runtime:r",
1859         "-e", "sched:sched_process_exit:r",
1860         "-e", "sched:sched_process_fork:r",
1861         "-e", "sched:sched_wakeup:r",
1862         "-e", "sched:sched_migrate_task:r",
1863 };
1864
1865 static int __cmd_record(int argc, const char **argv)
1866 {
1867         unsigned int rec_argc, i, j;
1868         const char **rec_argv;
1869
1870         rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1871         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1872
1873         for (i = 0; i < ARRAY_SIZE(record_args); i++)
1874                 rec_argv[i] = strdup(record_args[i]);
1875
1876         for (j = 1; j < (unsigned int)argc; j++, i++)
1877                 rec_argv[i] = argv[j];
1878
1879         BUG_ON(i != rec_argc);
1880
1881         return cmd_record(i, rec_argv, NULL);
1882 }
1883
1884 int cmd_sched(int argc, const char **argv, const char *prefix __used)
1885 {
1886         argc = parse_options(argc, argv, sched_options, sched_usage,
1887                              PARSE_OPT_STOP_AT_NON_OPTION);
1888         if (!argc)
1889                 usage_with_options(sched_usage, sched_options);
1890
1891         /*
1892          * Aliased to 'perf trace' for now:
1893          */
1894         if (!strcmp(argv[0], "trace"))
1895                 return cmd_trace(argc, argv, prefix);
1896
1897         symbol__init(0);
1898         if (!strncmp(argv[0], "rec", 3)) {
1899                 return __cmd_record(argc, argv);
1900         } else if (!strncmp(argv[0], "lat", 3)) {
1901                 trace_handler = &lat_ops;
1902                 if (argc > 1) {
1903                         argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1904                         if (argc)
1905                                 usage_with_options(latency_usage, latency_options);
1906                 }
1907                 setup_sorting();
1908                 __cmd_lat();
1909         } else if (!strcmp(argv[0], "map")) {
1910                 trace_handler = &map_ops;
1911                 setup_sorting();
1912                 __cmd_map();
1913         } else if (!strncmp(argv[0], "rep", 3)) {
1914                 trace_handler = &replay_ops;
1915                 if (argc) {
1916                         argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1917                         if (argc)
1918                                 usage_with_options(replay_usage, replay_options);
1919                 }
1920                 __cmd_replay();
1921         } else {
1922                 usage_with_options(sched_usage, sched_options);
1923         }
1924
1925         return 0;
1926 }