perf session: Pass the perf_session to the event handling operations
[safe/jmp/linux-2.6] / tools / perf / builtin-sched.c
1 #include "builtin.h"
2 #include "perf.h"
3
4 #include "util/util.h"
5 #include "util/cache.h"
6 #include "util/symbol.h"
7 #include "util/thread.h"
8 #include "util/header.h"
9 #include "util/session.h"
10
11 #include "util/parse-options.h"
12 #include "util/trace-event.h"
13
14 #include "util/debug.h"
15 #include "util/data_map.h"
16
17 #include <sys/prctl.h>
18
19 #include <semaphore.h>
20 #include <pthread.h>
21 #include <math.h>
22
23 static char                     const *input_name = "perf.data";
24
25 static u64                      sample_type;
26
27 static char                     default_sort_order[] = "avg, max, switch, runtime";
28 static char                     *sort_order = default_sort_order;
29
30 static int                      profile_cpu = -1;
31
32 #define PR_SET_NAME             15               /* Set process name */
33 #define MAX_CPUS                4096
34
35 static u64                      run_measurement_overhead;
36 static u64                      sleep_measurement_overhead;
37
38 #define COMM_LEN                20
39 #define SYM_LEN                 129
40
41 #define MAX_PID                 65536
42
43 static unsigned long            nr_tasks;
44
45 struct sched_atom;
46
47 struct task_desc {
48         unsigned long           nr;
49         unsigned long           pid;
50         char                    comm[COMM_LEN];
51
52         unsigned long           nr_events;
53         unsigned long           curr_event;
54         struct sched_atom       **atoms;
55
56         pthread_t               thread;
57         sem_t                   sleep_sem;
58
59         sem_t                   ready_for_work;
60         sem_t                   work_done_sem;
61
62         u64                     cpu_usage;
63 };
64
65 enum sched_event_type {
66         SCHED_EVENT_RUN,
67         SCHED_EVENT_SLEEP,
68         SCHED_EVENT_WAKEUP,
69         SCHED_EVENT_MIGRATION,
70 };
71
72 struct sched_atom {
73         enum sched_event_type   type;
74         u64                     timestamp;
75         u64                     duration;
76         unsigned long           nr;
77         int                     specific_wait;
78         sem_t                   *wait_sem;
79         struct task_desc        *wakee;
80 };
81
82 static struct task_desc         *pid_to_task[MAX_PID];
83
84 static struct task_desc         **tasks;
85
86 static pthread_mutex_t          start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
87 static u64                      start_time;
88
89 static pthread_mutex_t          work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
90
91 static unsigned long            nr_run_events;
92 static unsigned long            nr_sleep_events;
93 static unsigned long            nr_wakeup_events;
94
95 static unsigned long            nr_sleep_corrections;
96 static unsigned long            nr_run_events_optimized;
97
98 static unsigned long            targetless_wakeups;
99 static unsigned long            multitarget_wakeups;
100
101 static u64                      cpu_usage;
102 static u64                      runavg_cpu_usage;
103 static u64                      parent_cpu_usage;
104 static u64                      runavg_parent_cpu_usage;
105
106 static unsigned long            nr_runs;
107 static u64                      sum_runtime;
108 static u64                      sum_fluct;
109 static u64                      run_avg;
110
111 static unsigned long            replay_repeat = 10;
112 static unsigned long            nr_timestamps;
113 static unsigned long            nr_unordered_timestamps;
114 static unsigned long            nr_state_machine_bugs;
115 static unsigned long            nr_context_switch_bugs;
116 static unsigned long            nr_events;
117 static unsigned long            nr_lost_chunks;
118 static unsigned long            nr_lost_events;
119
120 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
121
122 enum thread_state {
123         THREAD_SLEEPING = 0,
124         THREAD_WAIT_CPU,
125         THREAD_SCHED_IN,
126         THREAD_IGNORE
127 };
128
129 struct work_atom {
130         struct list_head        list;
131         enum thread_state       state;
132         u64                     sched_out_time;
133         u64                     wake_up_time;
134         u64                     sched_in_time;
135         u64                     runtime;
136 };
137
138 struct work_atoms {
139         struct list_head        work_list;
140         struct thread           *thread;
141         struct rb_node          node;
142         u64                     max_lat;
143         u64                     max_lat_at;
144         u64                     total_lat;
145         u64                     nb_atoms;
146         u64                     total_runtime;
147 };
148
149 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
150
151 static struct rb_root           atom_root, sorted_atom_root;
152
153 static u64                      all_runtime;
154 static u64                      all_count;
155
156
157 static u64 get_nsecs(void)
158 {
159         struct timespec ts;
160
161         clock_gettime(CLOCK_MONOTONIC, &ts);
162
163         return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
164 }
165
166 static void burn_nsecs(u64 nsecs)
167 {
168         u64 T0 = get_nsecs(), T1;
169
170         do {
171                 T1 = get_nsecs();
172         } while (T1 + run_measurement_overhead < T0 + nsecs);
173 }
174
175 static void sleep_nsecs(u64 nsecs)
176 {
177         struct timespec ts;
178
179         ts.tv_nsec = nsecs % 999999999;
180         ts.tv_sec = nsecs / 999999999;
181
182         nanosleep(&ts, NULL);
183 }
184
185 static void calibrate_run_measurement_overhead(void)
186 {
187         u64 T0, T1, delta, min_delta = 1000000000ULL;
188         int i;
189
190         for (i = 0; i < 10; i++) {
191                 T0 = get_nsecs();
192                 burn_nsecs(0);
193                 T1 = get_nsecs();
194                 delta = T1-T0;
195                 min_delta = min(min_delta, delta);
196         }
197         run_measurement_overhead = min_delta;
198
199         printf("run measurement overhead: %Ld nsecs\n", min_delta);
200 }
201
202 static void calibrate_sleep_measurement_overhead(void)
203 {
204         u64 T0, T1, delta, min_delta = 1000000000ULL;
205         int i;
206
207         for (i = 0; i < 10; i++) {
208                 T0 = get_nsecs();
209                 sleep_nsecs(10000);
210                 T1 = get_nsecs();
211                 delta = T1-T0;
212                 min_delta = min(min_delta, delta);
213         }
214         min_delta -= 10000;
215         sleep_measurement_overhead = min_delta;
216
217         printf("sleep measurement overhead: %Ld nsecs\n", min_delta);
218 }
219
220 static struct sched_atom *
221 get_new_event(struct task_desc *task, u64 timestamp)
222 {
223         struct sched_atom *event = zalloc(sizeof(*event));
224         unsigned long idx = task->nr_events;
225         size_t size;
226
227         event->timestamp = timestamp;
228         event->nr = idx;
229
230         task->nr_events++;
231         size = sizeof(struct sched_atom *) * task->nr_events;
232         task->atoms = realloc(task->atoms, size);
233         BUG_ON(!task->atoms);
234
235         task->atoms[idx] = event;
236
237         return event;
238 }
239
240 static struct sched_atom *last_event(struct task_desc *task)
241 {
242         if (!task->nr_events)
243                 return NULL;
244
245         return task->atoms[task->nr_events - 1];
246 }
247
248 static void
249 add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
250 {
251         struct sched_atom *event, *curr_event = last_event(task);
252
253         /*
254          * optimize an existing RUN event by merging this one
255          * to it:
256          */
257         if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
258                 nr_run_events_optimized++;
259                 curr_event->duration += duration;
260                 return;
261         }
262
263         event = get_new_event(task, timestamp);
264
265         event->type = SCHED_EVENT_RUN;
266         event->duration = duration;
267
268         nr_run_events++;
269 }
270
271 static void
272 add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
273                        struct task_desc *wakee)
274 {
275         struct sched_atom *event, *wakee_event;
276
277         event = get_new_event(task, timestamp);
278         event->type = SCHED_EVENT_WAKEUP;
279         event->wakee = wakee;
280
281         wakee_event = last_event(wakee);
282         if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
283                 targetless_wakeups++;
284                 return;
285         }
286         if (wakee_event->wait_sem) {
287                 multitarget_wakeups++;
288                 return;
289         }
290
291         wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
292         sem_init(wakee_event->wait_sem, 0, 0);
293         wakee_event->specific_wait = 1;
294         event->wait_sem = wakee_event->wait_sem;
295
296         nr_wakeup_events++;
297 }
298
299 static void
300 add_sched_event_sleep(struct task_desc *task, u64 timestamp,
301                       u64 task_state __used)
302 {
303         struct sched_atom *event = get_new_event(task, timestamp);
304
305         event->type = SCHED_EVENT_SLEEP;
306
307         nr_sleep_events++;
308 }
309
310 static struct task_desc *register_pid(unsigned long pid, const char *comm)
311 {
312         struct task_desc *task;
313
314         BUG_ON(pid >= MAX_PID);
315
316         task = pid_to_task[pid];
317
318         if (task)
319                 return task;
320
321         task = zalloc(sizeof(*task));
322         task->pid = pid;
323         task->nr = nr_tasks;
324         strcpy(task->comm, comm);
325         /*
326          * every task starts in sleeping state - this gets ignored
327          * if there's no wakeup pointing to this sleep state:
328          */
329         add_sched_event_sleep(task, 0, 0);
330
331         pid_to_task[pid] = task;
332         nr_tasks++;
333         tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
334         BUG_ON(!tasks);
335         tasks[task->nr] = task;
336
337         if (verbose)
338                 printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
339
340         return task;
341 }
342
343
344 static void print_task_traces(void)
345 {
346         struct task_desc *task;
347         unsigned long i;
348
349         for (i = 0; i < nr_tasks; i++) {
350                 task = tasks[i];
351                 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
352                         task->nr, task->comm, task->pid, task->nr_events);
353         }
354 }
355
356 static void add_cross_task_wakeups(void)
357 {
358         struct task_desc *task1, *task2;
359         unsigned long i, j;
360
361         for (i = 0; i < nr_tasks; i++) {
362                 task1 = tasks[i];
363                 j = i + 1;
364                 if (j == nr_tasks)
365                         j = 0;
366                 task2 = tasks[j];
367                 add_sched_event_wakeup(task1, 0, task2);
368         }
369 }
370
371 static void
372 process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom)
373 {
374         int ret = 0;
375         u64 now;
376         long long delta;
377
378         now = get_nsecs();
379         delta = start_time + atom->timestamp - now;
380
381         switch (atom->type) {
382                 case SCHED_EVENT_RUN:
383                         burn_nsecs(atom->duration);
384                         break;
385                 case SCHED_EVENT_SLEEP:
386                         if (atom->wait_sem)
387                                 ret = sem_wait(atom->wait_sem);
388                         BUG_ON(ret);
389                         break;
390                 case SCHED_EVENT_WAKEUP:
391                         if (atom->wait_sem)
392                                 ret = sem_post(atom->wait_sem);
393                         BUG_ON(ret);
394                         break;
395                 case SCHED_EVENT_MIGRATION:
396                         break;
397                 default:
398                         BUG_ON(1);
399         }
400 }
401
402 static u64 get_cpu_usage_nsec_parent(void)
403 {
404         struct rusage ru;
405         u64 sum;
406         int err;
407
408         err = getrusage(RUSAGE_SELF, &ru);
409         BUG_ON(err);
410
411         sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
412         sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
413
414         return sum;
415 }
416
417 static int self_open_counters(void)
418 {
419         struct perf_event_attr attr;
420         int fd;
421
422         memset(&attr, 0, sizeof(attr));
423
424         attr.type = PERF_TYPE_SOFTWARE;
425         attr.config = PERF_COUNT_SW_TASK_CLOCK;
426
427         fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
428
429         if (fd < 0)
430                 die("Error: sys_perf_event_open() syscall returned"
431                     "with %d (%s)\n", fd, strerror(errno));
432         return fd;
433 }
434
435 static u64 get_cpu_usage_nsec_self(int fd)
436 {
437         u64 runtime;
438         int ret;
439
440         ret = read(fd, &runtime, sizeof(runtime));
441         BUG_ON(ret != sizeof(runtime));
442
443         return runtime;
444 }
445
446 static void *thread_func(void *ctx)
447 {
448         struct task_desc *this_task = ctx;
449         u64 cpu_usage_0, cpu_usage_1;
450         unsigned long i, ret;
451         char comm2[22];
452         int fd;
453
454         sprintf(comm2, ":%s", this_task->comm);
455         prctl(PR_SET_NAME, comm2);
456         fd = self_open_counters();
457
458 again:
459         ret = sem_post(&this_task->ready_for_work);
460         BUG_ON(ret);
461         ret = pthread_mutex_lock(&start_work_mutex);
462         BUG_ON(ret);
463         ret = pthread_mutex_unlock(&start_work_mutex);
464         BUG_ON(ret);
465
466         cpu_usage_0 = get_cpu_usage_nsec_self(fd);
467
468         for (i = 0; i < this_task->nr_events; i++) {
469                 this_task->curr_event = i;
470                 process_sched_event(this_task, this_task->atoms[i]);
471         }
472
473         cpu_usage_1 = get_cpu_usage_nsec_self(fd);
474         this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
475         ret = sem_post(&this_task->work_done_sem);
476         BUG_ON(ret);
477
478         ret = pthread_mutex_lock(&work_done_wait_mutex);
479         BUG_ON(ret);
480         ret = pthread_mutex_unlock(&work_done_wait_mutex);
481         BUG_ON(ret);
482
483         goto again;
484 }
485
486 static void create_tasks(void)
487 {
488         struct task_desc *task;
489         pthread_attr_t attr;
490         unsigned long i;
491         int err;
492
493         err = pthread_attr_init(&attr);
494         BUG_ON(err);
495         err = pthread_attr_setstacksize(&attr, (size_t)(16*1024));
496         BUG_ON(err);
497         err = pthread_mutex_lock(&start_work_mutex);
498         BUG_ON(err);
499         err = pthread_mutex_lock(&work_done_wait_mutex);
500         BUG_ON(err);
501         for (i = 0; i < nr_tasks; i++) {
502                 task = tasks[i];
503                 sem_init(&task->sleep_sem, 0, 0);
504                 sem_init(&task->ready_for_work, 0, 0);
505                 sem_init(&task->work_done_sem, 0, 0);
506                 task->curr_event = 0;
507                 err = pthread_create(&task->thread, &attr, thread_func, task);
508                 BUG_ON(err);
509         }
510 }
511
512 static void wait_for_tasks(void)
513 {
514         u64 cpu_usage_0, cpu_usage_1;
515         struct task_desc *task;
516         unsigned long i, ret;
517
518         start_time = get_nsecs();
519         cpu_usage = 0;
520         pthread_mutex_unlock(&work_done_wait_mutex);
521
522         for (i = 0; i < nr_tasks; i++) {
523                 task = tasks[i];
524                 ret = sem_wait(&task->ready_for_work);
525                 BUG_ON(ret);
526                 sem_init(&task->ready_for_work, 0, 0);
527         }
528         ret = pthread_mutex_lock(&work_done_wait_mutex);
529         BUG_ON(ret);
530
531         cpu_usage_0 = get_cpu_usage_nsec_parent();
532
533         pthread_mutex_unlock(&start_work_mutex);
534
535         for (i = 0; i < nr_tasks; i++) {
536                 task = tasks[i];
537                 ret = sem_wait(&task->work_done_sem);
538                 BUG_ON(ret);
539                 sem_init(&task->work_done_sem, 0, 0);
540                 cpu_usage += task->cpu_usage;
541                 task->cpu_usage = 0;
542         }
543
544         cpu_usage_1 = get_cpu_usage_nsec_parent();
545         if (!runavg_cpu_usage)
546                 runavg_cpu_usage = cpu_usage;
547         runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
548
549         parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
550         if (!runavg_parent_cpu_usage)
551                 runavg_parent_cpu_usage = parent_cpu_usage;
552         runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
553                                    parent_cpu_usage)/10;
554
555         ret = pthread_mutex_lock(&start_work_mutex);
556         BUG_ON(ret);
557
558         for (i = 0; i < nr_tasks; i++) {
559                 task = tasks[i];
560                 sem_init(&task->sleep_sem, 0, 0);
561                 task->curr_event = 0;
562         }
563 }
564
565 static void run_one_test(void)
566 {
567         u64 T0, T1, delta, avg_delta, fluct, std_dev;
568
569         T0 = get_nsecs();
570         wait_for_tasks();
571         T1 = get_nsecs();
572
573         delta = T1 - T0;
574         sum_runtime += delta;
575         nr_runs++;
576
577         avg_delta = sum_runtime / nr_runs;
578         if (delta < avg_delta)
579                 fluct = avg_delta - delta;
580         else
581                 fluct = delta - avg_delta;
582         sum_fluct += fluct;
583         std_dev = sum_fluct / nr_runs / sqrt(nr_runs);
584         if (!run_avg)
585                 run_avg = delta;
586         run_avg = (run_avg*9 + delta)/10;
587
588         printf("#%-3ld: %0.3f, ",
589                 nr_runs, (double)delta/1000000.0);
590
591         printf("ravg: %0.2f, ",
592                 (double)run_avg/1e6);
593
594         printf("cpu: %0.2f / %0.2f",
595                 (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
596
597 #if 0
598         /*
599          * rusage statistics done by the parent, these are less
600          * accurate than the sum_exec_runtime based statistics:
601          */
602         printf(" [%0.2f / %0.2f]",
603                 (double)parent_cpu_usage/1e6,
604                 (double)runavg_parent_cpu_usage/1e6);
605 #endif
606
607         printf("\n");
608
609         if (nr_sleep_corrections)
610                 printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
611         nr_sleep_corrections = 0;
612 }
613
614 static void test_calibrations(void)
615 {
616         u64 T0, T1;
617
618         T0 = get_nsecs();
619         burn_nsecs(1e6);
620         T1 = get_nsecs();
621
622         printf("the run test took %Ld nsecs\n", T1-T0);
623
624         T0 = get_nsecs();
625         sleep_nsecs(1e6);
626         T1 = get_nsecs();
627
628         printf("the sleep test took %Ld nsecs\n", T1-T0);
629 }
630
631 #define FILL_FIELD(ptr, field, event, data)     \
632         ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
633
634 #define FILL_ARRAY(ptr, array, event, data)                     \
635 do {                                                            \
636         void *__array = raw_field_ptr(event, #array, data);     \
637         memcpy(ptr.array, __array, sizeof(ptr.array));  \
638 } while(0)
639
640 #define FILL_COMMON_FIELDS(ptr, event, data)                    \
641 do {                                                            \
642         FILL_FIELD(ptr, common_type, event, data);              \
643         FILL_FIELD(ptr, common_flags, event, data);             \
644         FILL_FIELD(ptr, common_preempt_count, event, data);     \
645         FILL_FIELD(ptr, common_pid, event, data);               \
646         FILL_FIELD(ptr, common_tgid, event, data);              \
647 } while (0)
648
649
650
651 struct trace_switch_event {
652         u32 size;
653
654         u16 common_type;
655         u8 common_flags;
656         u8 common_preempt_count;
657         u32 common_pid;
658         u32 common_tgid;
659
660         char prev_comm[16];
661         u32 prev_pid;
662         u32 prev_prio;
663         u64 prev_state;
664         char next_comm[16];
665         u32 next_pid;
666         u32 next_prio;
667 };
668
669 struct trace_runtime_event {
670         u32 size;
671
672         u16 common_type;
673         u8 common_flags;
674         u8 common_preempt_count;
675         u32 common_pid;
676         u32 common_tgid;
677
678         char comm[16];
679         u32 pid;
680         u64 runtime;
681         u64 vruntime;
682 };
683
684 struct trace_wakeup_event {
685         u32 size;
686
687         u16 common_type;
688         u8 common_flags;
689         u8 common_preempt_count;
690         u32 common_pid;
691         u32 common_tgid;
692
693         char comm[16];
694         u32 pid;
695
696         u32 prio;
697         u32 success;
698         u32 cpu;
699 };
700
701 struct trace_fork_event {
702         u32 size;
703
704         u16 common_type;
705         u8 common_flags;
706         u8 common_preempt_count;
707         u32 common_pid;
708         u32 common_tgid;
709
710         char parent_comm[16];
711         u32 parent_pid;
712         char child_comm[16];
713         u32 child_pid;
714 };
715
716 struct trace_migrate_task_event {
717         u32 size;
718
719         u16 common_type;
720         u8 common_flags;
721         u8 common_preempt_count;
722         u32 common_pid;
723         u32 common_tgid;
724
725         char comm[16];
726         u32 pid;
727
728         u32 prio;
729         u32 cpu;
730 };
731
732 struct trace_sched_handler {
733         void (*switch_event)(struct trace_switch_event *,
734                              struct event *,
735                              int cpu,
736                              u64 timestamp,
737                              struct thread *thread);
738
739         void (*runtime_event)(struct trace_runtime_event *,
740                               struct event *,
741                               int cpu,
742                               u64 timestamp,
743                               struct thread *thread);
744
745         void (*wakeup_event)(struct trace_wakeup_event *,
746                              struct event *,
747                              int cpu,
748                              u64 timestamp,
749                              struct thread *thread);
750
751         void (*fork_event)(struct trace_fork_event *,
752                            struct event *,
753                            int cpu,
754                            u64 timestamp,
755                            struct thread *thread);
756
757         void (*migrate_task_event)(struct trace_migrate_task_event *,
758                            struct event *,
759                            int cpu,
760                            u64 timestamp,
761                            struct thread *thread);
762 };
763
764
765 static void
766 replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
767                     struct event *event,
768                     int cpu __used,
769                     u64 timestamp __used,
770                     struct thread *thread __used)
771 {
772         struct task_desc *waker, *wakee;
773
774         if (verbose) {
775                 printf("sched_wakeup event %p\n", event);
776
777                 printf(" ... pid %d woke up %s/%d\n",
778                         wakeup_event->common_pid,
779                         wakeup_event->comm,
780                         wakeup_event->pid);
781         }
782
783         waker = register_pid(wakeup_event->common_pid, "<unknown>");
784         wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
785
786         add_sched_event_wakeup(waker, timestamp, wakee);
787 }
788
789 static u64 cpu_last_switched[MAX_CPUS];
790
791 static void
792 replay_switch_event(struct trace_switch_event *switch_event,
793                     struct event *event,
794                     int cpu,
795                     u64 timestamp,
796                     struct thread *thread __used)
797 {
798         struct task_desc *prev, *next;
799         u64 timestamp0;
800         s64 delta;
801
802         if (verbose)
803                 printf("sched_switch event %p\n", event);
804
805         if (cpu >= MAX_CPUS || cpu < 0)
806                 return;
807
808         timestamp0 = cpu_last_switched[cpu];
809         if (timestamp0)
810                 delta = timestamp - timestamp0;
811         else
812                 delta = 0;
813
814         if (delta < 0)
815                 die("hm, delta: %Ld < 0 ?\n", delta);
816
817         if (verbose) {
818                 printf(" ... switch from %s/%d to %s/%d [ran %Ld nsecs]\n",
819                         switch_event->prev_comm, switch_event->prev_pid,
820                         switch_event->next_comm, switch_event->next_pid,
821                         delta);
822         }
823
824         prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
825         next = register_pid(switch_event->next_pid, switch_event->next_comm);
826
827         cpu_last_switched[cpu] = timestamp;
828
829         add_sched_event_run(prev, timestamp, delta);
830         add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
831 }
832
833
834 static void
835 replay_fork_event(struct trace_fork_event *fork_event,
836                   struct event *event,
837                   int cpu __used,
838                   u64 timestamp __used,
839                   struct thread *thread __used)
840 {
841         if (verbose) {
842                 printf("sched_fork event %p\n", event);
843                 printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
844                 printf("...  child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
845         }
846         register_pid(fork_event->parent_pid, fork_event->parent_comm);
847         register_pid(fork_event->child_pid, fork_event->child_comm);
848 }
849
850 static struct trace_sched_handler replay_ops  = {
851         .wakeup_event           = replay_wakeup_event,
852         .switch_event           = replay_switch_event,
853         .fork_event             = replay_fork_event,
854 };
855
856 struct sort_dimension {
857         const char              *name;
858         sort_fn_t               cmp;
859         struct list_head        list;
860 };
861
862 static LIST_HEAD(cmp_pid);
863
864 static int
865 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
866 {
867         struct sort_dimension *sort;
868         int ret = 0;
869
870         BUG_ON(list_empty(list));
871
872         list_for_each_entry(sort, list, list) {
873                 ret = sort->cmp(l, r);
874                 if (ret)
875                         return ret;
876         }
877
878         return ret;
879 }
880
881 static struct work_atoms *
882 thread_atoms_search(struct rb_root *root, struct thread *thread,
883                          struct list_head *sort_list)
884 {
885         struct rb_node *node = root->rb_node;
886         struct work_atoms key = { .thread = thread };
887
888         while (node) {
889                 struct work_atoms *atoms;
890                 int cmp;
891
892                 atoms = container_of(node, struct work_atoms, node);
893
894                 cmp = thread_lat_cmp(sort_list, &key, atoms);
895                 if (cmp > 0)
896                         node = node->rb_left;
897                 else if (cmp < 0)
898                         node = node->rb_right;
899                 else {
900                         BUG_ON(thread != atoms->thread);
901                         return atoms;
902                 }
903         }
904         return NULL;
905 }
906
907 static void
908 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
909                          struct list_head *sort_list)
910 {
911         struct rb_node **new = &(root->rb_node), *parent = NULL;
912
913         while (*new) {
914                 struct work_atoms *this;
915                 int cmp;
916
917                 this = container_of(*new, struct work_atoms, node);
918                 parent = *new;
919
920                 cmp = thread_lat_cmp(sort_list, data, this);
921
922                 if (cmp > 0)
923                         new = &((*new)->rb_left);
924                 else
925                         new = &((*new)->rb_right);
926         }
927
928         rb_link_node(&data->node, parent, new);
929         rb_insert_color(&data->node, root);
930 }
931
932 static void thread_atoms_insert(struct thread *thread)
933 {
934         struct work_atoms *atoms = zalloc(sizeof(*atoms));
935         if (!atoms)
936                 die("No memory");
937
938         atoms->thread = thread;
939         INIT_LIST_HEAD(&atoms->work_list);
940         __thread_latency_insert(&atom_root, atoms, &cmp_pid);
941 }
942
943 static void
944 latency_fork_event(struct trace_fork_event *fork_event __used,
945                    struct event *event __used,
946                    int cpu __used,
947                    u64 timestamp __used,
948                    struct thread *thread __used)
949 {
950         /* should insert the newcomer */
951 }
952
953 __used
954 static char sched_out_state(struct trace_switch_event *switch_event)
955 {
956         const char *str = TASK_STATE_TO_CHAR_STR;
957
958         return str[switch_event->prev_state];
959 }
960
961 static void
962 add_sched_out_event(struct work_atoms *atoms,
963                     char run_state,
964                     u64 timestamp)
965 {
966         struct work_atom *atom = zalloc(sizeof(*atom));
967         if (!atom)
968                 die("Non memory");
969
970         atom->sched_out_time = timestamp;
971
972         if (run_state == 'R') {
973                 atom->state = THREAD_WAIT_CPU;
974                 atom->wake_up_time = atom->sched_out_time;
975         }
976
977         list_add_tail(&atom->list, &atoms->work_list);
978 }
979
980 static void
981 add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used)
982 {
983         struct work_atom *atom;
984
985         BUG_ON(list_empty(&atoms->work_list));
986
987         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
988
989         atom->runtime += delta;
990         atoms->total_runtime += delta;
991 }
992
993 static void
994 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
995 {
996         struct work_atom *atom;
997         u64 delta;
998
999         if (list_empty(&atoms->work_list))
1000                 return;
1001
1002         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1003
1004         if (atom->state != THREAD_WAIT_CPU)
1005                 return;
1006
1007         if (timestamp < atom->wake_up_time) {
1008                 atom->state = THREAD_IGNORE;
1009                 return;
1010         }
1011
1012         atom->state = THREAD_SCHED_IN;
1013         atom->sched_in_time = timestamp;
1014
1015         delta = atom->sched_in_time - atom->wake_up_time;
1016         atoms->total_lat += delta;
1017         if (delta > atoms->max_lat) {
1018                 atoms->max_lat = delta;
1019                 atoms->max_lat_at = timestamp;
1020         }
1021         atoms->nb_atoms++;
1022 }
1023
1024 static void
1025 latency_switch_event(struct trace_switch_event *switch_event,
1026                      struct event *event __used,
1027                      int cpu,
1028                      u64 timestamp,
1029                      struct thread *thread __used)
1030 {
1031         struct work_atoms *out_events, *in_events;
1032         struct thread *sched_out, *sched_in;
1033         u64 timestamp0;
1034         s64 delta;
1035
1036         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1037
1038         timestamp0 = cpu_last_switched[cpu];
1039         cpu_last_switched[cpu] = timestamp;
1040         if (timestamp0)
1041                 delta = timestamp - timestamp0;
1042         else
1043                 delta = 0;
1044
1045         if (delta < 0)
1046                 die("hm, delta: %Ld < 0 ?\n", delta);
1047
1048
1049         sched_out = threads__findnew(switch_event->prev_pid);
1050         sched_in = threads__findnew(switch_event->next_pid);
1051
1052         out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1053         if (!out_events) {
1054                 thread_atoms_insert(sched_out);
1055                 out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1056                 if (!out_events)
1057                         die("out-event: Internal tree error");
1058         }
1059         add_sched_out_event(out_events, sched_out_state(switch_event), timestamp);
1060
1061         in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1062         if (!in_events) {
1063                 thread_atoms_insert(sched_in);
1064                 in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1065                 if (!in_events)
1066                         die("in-event: Internal tree error");
1067                 /*
1068                  * Take came in we have not heard about yet,
1069                  * add in an initial atom in runnable state:
1070                  */
1071                 add_sched_out_event(in_events, 'R', timestamp);
1072         }
1073         add_sched_in_event(in_events, timestamp);
1074 }
1075
1076 static void
1077 latency_runtime_event(struct trace_runtime_event *runtime_event,
1078                      struct event *event __used,
1079                      int cpu,
1080                      u64 timestamp,
1081                      struct thread *this_thread __used)
1082 {
1083         struct thread *thread = threads__findnew(runtime_event->pid);
1084         struct work_atoms *atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1085
1086         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1087         if (!atoms) {
1088                 thread_atoms_insert(thread);
1089                 atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1090                 if (!atoms)
1091                         die("in-event: Internal tree error");
1092                 add_sched_out_event(atoms, 'R', timestamp);
1093         }
1094
1095         add_runtime_event(atoms, runtime_event->runtime, timestamp);
1096 }
1097
1098 static void
1099 latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
1100                      struct event *__event __used,
1101                      int cpu __used,
1102                      u64 timestamp,
1103                      struct thread *thread __used)
1104 {
1105         struct work_atoms *atoms;
1106         struct work_atom *atom;
1107         struct thread *wakee;
1108
1109         /* Note for later, it may be interesting to observe the failing cases */
1110         if (!wakeup_event->success)
1111                 return;
1112
1113         wakee = threads__findnew(wakeup_event->pid);
1114         atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1115         if (!atoms) {
1116                 thread_atoms_insert(wakee);
1117                 atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1118                 if (!atoms)
1119                         die("wakeup-event: Internal tree error");
1120                 add_sched_out_event(atoms, 'S', timestamp);
1121         }
1122
1123         BUG_ON(list_empty(&atoms->work_list));
1124
1125         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1126
1127         /*
1128          * You WILL be missing events if you've recorded only
1129          * one CPU, or are only looking at only one, so don't
1130          * make useless noise.
1131          */
1132         if (profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1133                 nr_state_machine_bugs++;
1134
1135         nr_timestamps++;
1136         if (atom->sched_out_time > timestamp) {
1137                 nr_unordered_timestamps++;
1138                 return;
1139         }
1140
1141         atom->state = THREAD_WAIT_CPU;
1142         atom->wake_up_time = timestamp;
1143 }
1144
1145 static void
1146 latency_migrate_task_event(struct trace_migrate_task_event *migrate_task_event,
1147                      struct event *__event __used,
1148                      int cpu __used,
1149                      u64 timestamp,
1150                      struct thread *thread __used)
1151 {
1152         struct work_atoms *atoms;
1153         struct work_atom *atom;
1154         struct thread *migrant;
1155
1156         /*
1157          * Only need to worry about migration when profiling one CPU.
1158          */
1159         if (profile_cpu == -1)
1160                 return;
1161
1162         migrant = threads__findnew(migrate_task_event->pid);
1163         atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1164         if (!atoms) {
1165                 thread_atoms_insert(migrant);
1166                 register_pid(migrant->pid, migrant->comm);
1167                 atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1168                 if (!atoms)
1169                         die("migration-event: Internal tree error");
1170                 add_sched_out_event(atoms, 'R', timestamp);
1171         }
1172
1173         BUG_ON(list_empty(&atoms->work_list));
1174
1175         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1176         atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1177
1178         nr_timestamps++;
1179
1180         if (atom->sched_out_time > timestamp)
1181                 nr_unordered_timestamps++;
1182 }
1183
1184 static struct trace_sched_handler lat_ops  = {
1185         .wakeup_event           = latency_wakeup_event,
1186         .switch_event           = latency_switch_event,
1187         .runtime_event          = latency_runtime_event,
1188         .fork_event             = latency_fork_event,
1189         .migrate_task_event     = latency_migrate_task_event,
1190 };
1191
1192 static void output_lat_thread(struct work_atoms *work_list)
1193 {
1194         int i;
1195         int ret;
1196         u64 avg;
1197
1198         if (!work_list->nb_atoms)
1199                 return;
1200         /*
1201          * Ignore idle threads:
1202          */
1203         if (!strcmp(work_list->thread->comm, "swapper"))
1204                 return;
1205
1206         all_runtime += work_list->total_runtime;
1207         all_count += work_list->nb_atoms;
1208
1209         ret = printf("  %s:%d ", work_list->thread->comm, work_list->thread->pid);
1210
1211         for (i = 0; i < 24 - ret; i++)
1212                 printf(" ");
1213
1214         avg = work_list->total_lat / work_list->nb_atoms;
1215
1216         printf("|%11.3f ms |%9llu | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
1217               (double)work_list->total_runtime / 1e6,
1218                  work_list->nb_atoms, (double)avg / 1e6,
1219                  (double)work_list->max_lat / 1e6,
1220                  (double)work_list->max_lat_at / 1e9);
1221 }
1222
1223 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1224 {
1225         if (l->thread->pid < r->thread->pid)
1226                 return -1;
1227         if (l->thread->pid > r->thread->pid)
1228                 return 1;
1229
1230         return 0;
1231 }
1232
1233 static struct sort_dimension pid_sort_dimension = {
1234         .name                   = "pid",
1235         .cmp                    = pid_cmp,
1236 };
1237
1238 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1239 {
1240         u64 avgl, avgr;
1241
1242         if (!l->nb_atoms)
1243                 return -1;
1244
1245         if (!r->nb_atoms)
1246                 return 1;
1247
1248         avgl = l->total_lat / l->nb_atoms;
1249         avgr = r->total_lat / r->nb_atoms;
1250
1251         if (avgl < avgr)
1252                 return -1;
1253         if (avgl > avgr)
1254                 return 1;
1255
1256         return 0;
1257 }
1258
1259 static struct sort_dimension avg_sort_dimension = {
1260         .name                   = "avg",
1261         .cmp                    = avg_cmp,
1262 };
1263
1264 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1265 {
1266         if (l->max_lat < r->max_lat)
1267                 return -1;
1268         if (l->max_lat > r->max_lat)
1269                 return 1;
1270
1271         return 0;
1272 }
1273
1274 static struct sort_dimension max_sort_dimension = {
1275         .name                   = "max",
1276         .cmp                    = max_cmp,
1277 };
1278
1279 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1280 {
1281         if (l->nb_atoms < r->nb_atoms)
1282                 return -1;
1283         if (l->nb_atoms > r->nb_atoms)
1284                 return 1;
1285
1286         return 0;
1287 }
1288
1289 static struct sort_dimension switch_sort_dimension = {
1290         .name                   = "switch",
1291         .cmp                    = switch_cmp,
1292 };
1293
1294 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1295 {
1296         if (l->total_runtime < r->total_runtime)
1297                 return -1;
1298         if (l->total_runtime > r->total_runtime)
1299                 return 1;
1300
1301         return 0;
1302 }
1303
1304 static struct sort_dimension runtime_sort_dimension = {
1305         .name                   = "runtime",
1306         .cmp                    = runtime_cmp,
1307 };
1308
1309 static struct sort_dimension *available_sorts[] = {
1310         &pid_sort_dimension,
1311         &avg_sort_dimension,
1312         &max_sort_dimension,
1313         &switch_sort_dimension,
1314         &runtime_sort_dimension,
1315 };
1316
1317 #define NB_AVAILABLE_SORTS      (int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
1318
1319 static LIST_HEAD(sort_list);
1320
1321 static int sort_dimension__add(const char *tok, struct list_head *list)
1322 {
1323         int i;
1324
1325         for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
1326                 if (!strcmp(available_sorts[i]->name, tok)) {
1327                         list_add_tail(&available_sorts[i]->list, list);
1328
1329                         return 0;
1330                 }
1331         }
1332
1333         return -1;
1334 }
1335
1336 static void setup_sorting(void);
1337
1338 static void sort_lat(void)
1339 {
1340         struct rb_node *node;
1341
1342         for (;;) {
1343                 struct work_atoms *data;
1344                 node = rb_first(&atom_root);
1345                 if (!node)
1346                         break;
1347
1348                 rb_erase(node, &atom_root);
1349                 data = rb_entry(node, struct work_atoms, node);
1350                 __thread_latency_insert(&sorted_atom_root, data, &sort_list);
1351         }
1352 }
1353
1354 static struct trace_sched_handler *trace_handler;
1355
1356 static void
1357 process_sched_wakeup_event(void *data,
1358                            struct event *event,
1359                            int cpu __used,
1360                            u64 timestamp __used,
1361                            struct thread *thread __used)
1362 {
1363         struct trace_wakeup_event wakeup_event;
1364
1365         FILL_COMMON_FIELDS(wakeup_event, event, data);
1366
1367         FILL_ARRAY(wakeup_event, comm, event, data);
1368         FILL_FIELD(wakeup_event, pid, event, data);
1369         FILL_FIELD(wakeup_event, prio, event, data);
1370         FILL_FIELD(wakeup_event, success, event, data);
1371         FILL_FIELD(wakeup_event, cpu, event, data);
1372
1373         if (trace_handler->wakeup_event)
1374                 trace_handler->wakeup_event(&wakeup_event, event, cpu, timestamp, thread);
1375 }
1376
1377 /*
1378  * Track the current task - that way we can know whether there's any
1379  * weird events, such as a task being switched away that is not current.
1380  */
1381 static int max_cpu;
1382
1383 static u32 curr_pid[MAX_CPUS] = { [0 ... MAX_CPUS-1] = -1 };
1384
1385 static struct thread *curr_thread[MAX_CPUS];
1386
1387 static char next_shortname1 = 'A';
1388 static char next_shortname2 = '0';
1389
1390 static void
1391 map_switch_event(struct trace_switch_event *switch_event,
1392                  struct event *event __used,
1393                  int this_cpu,
1394                  u64 timestamp,
1395                  struct thread *thread __used)
1396 {
1397         struct thread *sched_out, *sched_in;
1398         int new_shortname;
1399         u64 timestamp0;
1400         s64 delta;
1401         int cpu;
1402
1403         BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1404
1405         if (this_cpu > max_cpu)
1406                 max_cpu = this_cpu;
1407
1408         timestamp0 = cpu_last_switched[this_cpu];
1409         cpu_last_switched[this_cpu] = timestamp;
1410         if (timestamp0)
1411                 delta = timestamp - timestamp0;
1412         else
1413                 delta = 0;
1414
1415         if (delta < 0)
1416                 die("hm, delta: %Ld < 0 ?\n", delta);
1417
1418
1419         sched_out = threads__findnew(switch_event->prev_pid);
1420         sched_in = threads__findnew(switch_event->next_pid);
1421
1422         curr_thread[this_cpu] = sched_in;
1423
1424         printf("  ");
1425
1426         new_shortname = 0;
1427         if (!sched_in->shortname[0]) {
1428                 sched_in->shortname[0] = next_shortname1;
1429                 sched_in->shortname[1] = next_shortname2;
1430
1431                 if (next_shortname1 < 'Z') {
1432                         next_shortname1++;
1433                 } else {
1434                         next_shortname1='A';
1435                         if (next_shortname2 < '9') {
1436                                 next_shortname2++;
1437                         } else {
1438                                 next_shortname2='0';
1439                         }
1440                 }
1441                 new_shortname = 1;
1442         }
1443
1444         for (cpu = 0; cpu <= max_cpu; cpu++) {
1445                 if (cpu != this_cpu)
1446                         printf(" ");
1447                 else
1448                         printf("*");
1449
1450                 if (curr_thread[cpu]) {
1451                         if (curr_thread[cpu]->pid)
1452                                 printf("%2s ", curr_thread[cpu]->shortname);
1453                         else
1454                                 printf(".  ");
1455                 } else
1456                         printf("   ");
1457         }
1458
1459         printf("  %12.6f secs ", (double)timestamp/1e9);
1460         if (new_shortname) {
1461                 printf("%s => %s:%d\n",
1462                         sched_in->shortname, sched_in->comm, sched_in->pid);
1463         } else {
1464                 printf("\n");
1465         }
1466 }
1467
1468
1469 static void
1470 process_sched_switch_event(void *data,
1471                            struct event *event,
1472                            int this_cpu,
1473                            u64 timestamp __used,
1474                            struct thread *thread __used)
1475 {
1476         struct trace_switch_event switch_event;
1477
1478         FILL_COMMON_FIELDS(switch_event, event, data);
1479
1480         FILL_ARRAY(switch_event, prev_comm, event, data);
1481         FILL_FIELD(switch_event, prev_pid, event, data);
1482         FILL_FIELD(switch_event, prev_prio, event, data);
1483         FILL_FIELD(switch_event, prev_state, event, data);
1484         FILL_ARRAY(switch_event, next_comm, event, data);
1485         FILL_FIELD(switch_event, next_pid, event, data);
1486         FILL_FIELD(switch_event, next_prio, event, data);
1487
1488         if (curr_pid[this_cpu] != (u32)-1) {
1489                 /*
1490                  * Are we trying to switch away a PID that is
1491                  * not current?
1492                  */
1493                 if (curr_pid[this_cpu] != switch_event.prev_pid)
1494                         nr_context_switch_bugs++;
1495         }
1496         if (trace_handler->switch_event)
1497                 trace_handler->switch_event(&switch_event, event, this_cpu, timestamp, thread);
1498
1499         curr_pid[this_cpu] = switch_event.next_pid;
1500 }
1501
1502 static void
1503 process_sched_runtime_event(void *data,
1504                            struct event *event,
1505                            int cpu __used,
1506                            u64 timestamp __used,
1507                            struct thread *thread __used)
1508 {
1509         struct trace_runtime_event runtime_event;
1510
1511         FILL_ARRAY(runtime_event, comm, event, data);
1512         FILL_FIELD(runtime_event, pid, event, data);
1513         FILL_FIELD(runtime_event, runtime, event, data);
1514         FILL_FIELD(runtime_event, vruntime, event, data);
1515
1516         if (trace_handler->runtime_event)
1517                 trace_handler->runtime_event(&runtime_event, event, cpu, timestamp, thread);
1518 }
1519
1520 static void
1521 process_sched_fork_event(void *data,
1522                          struct event *event,
1523                          int cpu __used,
1524                          u64 timestamp __used,
1525                          struct thread *thread __used)
1526 {
1527         struct trace_fork_event fork_event;
1528
1529         FILL_COMMON_FIELDS(fork_event, event, data);
1530
1531         FILL_ARRAY(fork_event, parent_comm, event, data);
1532         FILL_FIELD(fork_event, parent_pid, event, data);
1533         FILL_ARRAY(fork_event, child_comm, event, data);
1534         FILL_FIELD(fork_event, child_pid, event, data);
1535
1536         if (trace_handler->fork_event)
1537                 trace_handler->fork_event(&fork_event, event, cpu, timestamp, thread);
1538 }
1539
1540 static void
1541 process_sched_exit_event(struct event *event,
1542                          int cpu __used,
1543                          u64 timestamp __used,
1544                          struct thread *thread __used)
1545 {
1546         if (verbose)
1547                 printf("sched_exit event %p\n", event);
1548 }
1549
1550 static void
1551 process_sched_migrate_task_event(void *data,
1552                            struct event *event,
1553                            int cpu __used,
1554                            u64 timestamp __used,
1555                            struct thread *thread __used)
1556 {
1557         struct trace_migrate_task_event migrate_task_event;
1558
1559         FILL_COMMON_FIELDS(migrate_task_event, event, data);
1560
1561         FILL_ARRAY(migrate_task_event, comm, event, data);
1562         FILL_FIELD(migrate_task_event, pid, event, data);
1563         FILL_FIELD(migrate_task_event, prio, event, data);
1564         FILL_FIELD(migrate_task_event, cpu, event, data);
1565
1566         if (trace_handler->migrate_task_event)
1567                 trace_handler->migrate_task_event(&migrate_task_event, event, cpu, timestamp, thread);
1568 }
1569
1570 static void
1571 process_raw_event(event_t *raw_event __used, void *data,
1572                   int cpu, u64 timestamp, struct thread *thread)
1573 {
1574         struct event *event;
1575         int type;
1576
1577
1578         type = trace_parse_common_type(data);
1579         event = trace_find_event(type);
1580
1581         if (!strcmp(event->name, "sched_switch"))
1582                 process_sched_switch_event(data, event, cpu, timestamp, thread);
1583         if (!strcmp(event->name, "sched_stat_runtime"))
1584                 process_sched_runtime_event(data, event, cpu, timestamp, thread);
1585         if (!strcmp(event->name, "sched_wakeup"))
1586                 process_sched_wakeup_event(data, event, cpu, timestamp, thread);
1587         if (!strcmp(event->name, "sched_wakeup_new"))
1588                 process_sched_wakeup_event(data, event, cpu, timestamp, thread);
1589         if (!strcmp(event->name, "sched_process_fork"))
1590                 process_sched_fork_event(data, event, cpu, timestamp, thread);
1591         if (!strcmp(event->name, "sched_process_exit"))
1592                 process_sched_exit_event(event, cpu, timestamp, thread);
1593         if (!strcmp(event->name, "sched_migrate_task"))
1594                 process_sched_migrate_task_event(data, event, cpu, timestamp, thread);
1595 }
1596
1597 static int process_sample_event(event_t *event,
1598                                 struct perf_session *session __used)
1599 {
1600         struct sample_data data;
1601         struct thread *thread;
1602
1603         if (!(sample_type & PERF_SAMPLE_RAW))
1604                 return 0;
1605
1606         memset(&data, 0, sizeof(data));
1607         data.time = -1;
1608         data.cpu = -1;
1609         data.period = -1;
1610
1611         event__parse_sample(event, sample_type, &data);
1612
1613         dump_printf("(IP, %d): %d/%d: %p period: %Ld\n",
1614                 event->header.misc,
1615                 data.pid, data.tid,
1616                 (void *)(long)data.ip,
1617                 (long long)data.period);
1618
1619         thread = threads__findnew(data.pid);
1620         if (thread == NULL) {
1621                 pr_debug("problem processing %d event, skipping it.\n",
1622                          event->header.type);
1623                 return -1;
1624         }
1625
1626         dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
1627
1628         if (profile_cpu != -1 && profile_cpu != (int)data.cpu)
1629                 return 0;
1630
1631         process_raw_event(event, data.raw_data, data.cpu, data.time, thread);
1632
1633         return 0;
1634 }
1635
1636 static int process_lost_event(event_t *event __used,
1637                               struct perf_session *session __used)
1638 {
1639         nr_lost_chunks++;
1640         nr_lost_events += event->lost.lost;
1641
1642         return 0;
1643 }
1644
1645 static int sample_type_check(u64 type)
1646 {
1647         sample_type = type;
1648
1649         if (!(sample_type & PERF_SAMPLE_RAW)) {
1650                 fprintf(stderr,
1651                         "No trace sample to read. Did you call perf record "
1652                         "without -R?");
1653                 return -1;
1654         }
1655
1656         return 0;
1657 }
1658
1659 static struct perf_file_handler file_handler = {
1660         .process_sample_event   = process_sample_event,
1661         .process_comm_event     = event__process_comm,
1662         .process_lost_event     = process_lost_event,
1663         .sample_type_check      = sample_type_check,
1664 };
1665
1666 static int read_events(void)
1667 {
1668         int err;
1669         struct perf_session *session = perf_session__new(input_name, O_RDONLY, 0);
1670
1671         if (session == NULL)
1672                 return -ENOMEM;
1673
1674         register_idle_thread();
1675         register_perf_file_handler(&file_handler);
1676
1677         err = perf_session__process_events(session, 0, &event__cwdlen, &event__cwd);
1678         perf_session__delete(session);
1679         return err;
1680 }
1681
1682 static void print_bad_events(void)
1683 {
1684         if (nr_unordered_timestamps && nr_timestamps) {
1685                 printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1686                         (double)nr_unordered_timestamps/(double)nr_timestamps*100.0,
1687                         nr_unordered_timestamps, nr_timestamps);
1688         }
1689         if (nr_lost_events && nr_events) {
1690                 printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1691                         (double)nr_lost_events/(double)nr_events*100.0,
1692                         nr_lost_events, nr_events, nr_lost_chunks);
1693         }
1694         if (nr_state_machine_bugs && nr_timestamps) {
1695                 printf("  INFO: %.3f%% state machine bugs (%ld out of %ld)",
1696                         (double)nr_state_machine_bugs/(double)nr_timestamps*100.0,
1697                         nr_state_machine_bugs, nr_timestamps);
1698                 if (nr_lost_events)
1699                         printf(" (due to lost events?)");
1700                 printf("\n");
1701         }
1702         if (nr_context_switch_bugs && nr_timestamps) {
1703                 printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
1704                         (double)nr_context_switch_bugs/(double)nr_timestamps*100.0,
1705                         nr_context_switch_bugs, nr_timestamps);
1706                 if (nr_lost_events)
1707                         printf(" (due to lost events?)");
1708                 printf("\n");
1709         }
1710 }
1711
1712 static void __cmd_lat(void)
1713 {
1714         struct rb_node *next;
1715
1716         setup_pager();
1717         read_events();
1718         sort_lat();
1719
1720         printf("\n ---------------------------------------------------------------------------------------------------------------\n");
1721         printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at     |\n");
1722         printf(" ---------------------------------------------------------------------------------------------------------------\n");
1723
1724         next = rb_first(&sorted_atom_root);
1725
1726         while (next) {
1727                 struct work_atoms *work_list;
1728
1729                 work_list = rb_entry(next, struct work_atoms, node);
1730                 output_lat_thread(work_list);
1731                 next = rb_next(next);
1732         }
1733
1734         printf(" -----------------------------------------------------------------------------------------\n");
1735         printf("  TOTAL:                |%11.3f ms |%9Ld |\n",
1736                 (double)all_runtime/1e6, all_count);
1737
1738         printf(" ---------------------------------------------------\n");
1739
1740         print_bad_events();
1741         printf("\n");
1742
1743 }
1744
1745 static struct trace_sched_handler map_ops  = {
1746         .wakeup_event           = NULL,
1747         .switch_event           = map_switch_event,
1748         .runtime_event          = NULL,
1749         .fork_event             = NULL,
1750 };
1751
1752 static void __cmd_map(void)
1753 {
1754         max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1755
1756         setup_pager();
1757         read_events();
1758         print_bad_events();
1759 }
1760
1761 static void __cmd_replay(void)
1762 {
1763         unsigned long i;
1764
1765         calibrate_run_measurement_overhead();
1766         calibrate_sleep_measurement_overhead();
1767
1768         test_calibrations();
1769
1770         read_events();
1771
1772         printf("nr_run_events:        %ld\n", nr_run_events);
1773         printf("nr_sleep_events:      %ld\n", nr_sleep_events);
1774         printf("nr_wakeup_events:     %ld\n", nr_wakeup_events);
1775
1776         if (targetless_wakeups)
1777                 printf("target-less wakeups:  %ld\n", targetless_wakeups);
1778         if (multitarget_wakeups)
1779                 printf("multi-target wakeups: %ld\n", multitarget_wakeups);
1780         if (nr_run_events_optimized)
1781                 printf("run atoms optimized: %ld\n",
1782                         nr_run_events_optimized);
1783
1784         print_task_traces();
1785         add_cross_task_wakeups();
1786
1787         create_tasks();
1788         printf("------------------------------------------------------------\n");
1789         for (i = 0; i < replay_repeat; i++)
1790                 run_one_test();
1791 }
1792
1793
1794 static const char * const sched_usage[] = {
1795         "perf sched [<options>] {record|latency|map|replay|trace}",
1796         NULL
1797 };
1798
1799 static const struct option sched_options[] = {
1800         OPT_STRING('i', "input", &input_name, "file",
1801                     "input file name"),
1802         OPT_BOOLEAN('v', "verbose", &verbose,
1803                     "be more verbose (show symbol address, etc)"),
1804         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1805                     "dump raw trace in ASCII"),
1806         OPT_END()
1807 };
1808
1809 static const char * const latency_usage[] = {
1810         "perf sched latency [<options>]",
1811         NULL
1812 };
1813
1814 static const struct option latency_options[] = {
1815         OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
1816                    "sort by key(s): runtime, switch, avg, max"),
1817         OPT_BOOLEAN('v', "verbose", &verbose,
1818                     "be more verbose (show symbol address, etc)"),
1819         OPT_INTEGER('C', "CPU", &profile_cpu,
1820                     "CPU to profile on"),
1821         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1822                     "dump raw trace in ASCII"),
1823         OPT_END()
1824 };
1825
1826 static const char * const replay_usage[] = {
1827         "perf sched replay [<options>]",
1828         NULL
1829 };
1830
1831 static const struct option replay_options[] = {
1832         OPT_INTEGER('r', "repeat", &replay_repeat,
1833                     "repeat the workload replay N times (-1: infinite)"),
1834         OPT_BOOLEAN('v', "verbose", &verbose,
1835                     "be more verbose (show symbol address, etc)"),
1836         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1837                     "dump raw trace in ASCII"),
1838         OPT_END()
1839 };
1840
1841 static void setup_sorting(void)
1842 {
1843         char *tmp, *tok, *str = strdup(sort_order);
1844
1845         for (tok = strtok_r(str, ", ", &tmp);
1846                         tok; tok = strtok_r(NULL, ", ", &tmp)) {
1847                 if (sort_dimension__add(tok, &sort_list) < 0) {
1848                         error("Unknown --sort key: `%s'", tok);
1849                         usage_with_options(latency_usage, latency_options);
1850                 }
1851         }
1852
1853         free(str);
1854
1855         sort_dimension__add("pid", &cmp_pid);
1856 }
1857
1858 static const char *record_args[] = {
1859         "record",
1860         "-a",
1861         "-R",
1862         "-M",
1863         "-f",
1864         "-m", "1024",
1865         "-c", "1",
1866         "-e", "sched:sched_switch:r",
1867         "-e", "sched:sched_stat_wait:r",
1868         "-e", "sched:sched_stat_sleep:r",
1869         "-e", "sched:sched_stat_iowait:r",
1870         "-e", "sched:sched_stat_runtime:r",
1871         "-e", "sched:sched_process_exit:r",
1872         "-e", "sched:sched_process_fork:r",
1873         "-e", "sched:sched_wakeup:r",
1874         "-e", "sched:sched_migrate_task:r",
1875 };
1876
1877 static int __cmd_record(int argc, const char **argv)
1878 {
1879         unsigned int rec_argc, i, j;
1880         const char **rec_argv;
1881
1882         rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1883         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1884
1885         for (i = 0; i < ARRAY_SIZE(record_args); i++)
1886                 rec_argv[i] = strdup(record_args[i]);
1887
1888         for (j = 1; j < (unsigned int)argc; j++, i++)
1889                 rec_argv[i] = argv[j];
1890
1891         BUG_ON(i != rec_argc);
1892
1893         return cmd_record(i, rec_argv, NULL);
1894 }
1895
1896 int cmd_sched(int argc, const char **argv, const char *prefix __used)
1897 {
1898         argc = parse_options(argc, argv, sched_options, sched_usage,
1899                              PARSE_OPT_STOP_AT_NON_OPTION);
1900         if (!argc)
1901                 usage_with_options(sched_usage, sched_options);
1902
1903         /*
1904          * Aliased to 'perf trace' for now:
1905          */
1906         if (!strcmp(argv[0], "trace"))
1907                 return cmd_trace(argc, argv, prefix);
1908
1909         symbol__init(0);
1910         if (!strncmp(argv[0], "rec", 3)) {
1911                 return __cmd_record(argc, argv);
1912         } else if (!strncmp(argv[0], "lat", 3)) {
1913                 trace_handler = &lat_ops;
1914                 if (argc > 1) {
1915                         argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1916                         if (argc)
1917                                 usage_with_options(latency_usage, latency_options);
1918                 }
1919                 setup_sorting();
1920                 __cmd_lat();
1921         } else if (!strcmp(argv[0], "map")) {
1922                 trace_handler = &map_ops;
1923                 setup_sorting();
1924                 __cmd_map();
1925         } else if (!strncmp(argv[0], "rep", 3)) {
1926                 trace_handler = &replay_ops;
1927                 if (argc) {
1928                         argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1929                         if (argc)
1930                                 usage_with_options(replay_usage, replay_options);
1931                 }
1932                 __cmd_replay();
1933         } else {
1934                 usage_with_options(sched_usage, sched_options);
1935         }
1936
1937         return 0;
1938 }