perf sched: Add sched latency profiling
[safe/jmp/linux-2.6] / tools / perf / builtin-sched.c
1 #include "builtin.h"
2
3 #include "util/util.h"
4 #include "util/cache.h"
5 #include "util/symbol.h"
6 #include "util/thread.h"
7 #include "util/header.h"
8
9 #include "util/parse-options.h"
10
11 #include "perf.h"
12 #include "util/debug.h"
13
14 #include "util/trace-event.h"
15 #include <sys/types.h>
16
17
18 #define MAX_CPUS 4096
19
20 static char                     const *input_name = "perf.data";
21 static int                      input;
22 static unsigned long            page_size;
23 static unsigned long            mmap_window = 32;
24
25 static unsigned long            total_comm = 0;
26
27 static struct rb_root           threads;
28 static struct thread            *last_match;
29
30 static struct perf_header       *header;
31 static u64                      sample_type;
32
33 static int                      replay_mode;
34 static int                      lat_mode;
35
36
37 /*
38  * Scheduler benchmarks
39  */
40 #include <sys/resource.h>
41 #include <sys/types.h>
42 #include <sys/stat.h>
43 #include <sys/time.h>
44 #include <sys/prctl.h>
45
46 #include <linux/unistd.h>
47
48 #include <semaphore.h>
49 #include <pthread.h>
50 #include <signal.h>
51 #include <values.h>
52 #include <string.h>
53 #include <unistd.h>
54 #include <stdlib.h>
55 #include <assert.h>
56 #include <fcntl.h>
57 #include <time.h>
58 #include <math.h>
59
60 #include <stdio.h>
61
62 #define PR_SET_NAME     15               /* Set process name */
63
64 #define BUG_ON(x)       assert(!(x))
65
66 #define DEBUG           0
67
68 typedef unsigned long long nsec_t;
69
70 static nsec_t run_measurement_overhead;
71 static nsec_t sleep_measurement_overhead;
72
73 static nsec_t get_nsecs(void)
74 {
75         struct timespec ts;
76
77         clock_gettime(CLOCK_MONOTONIC, &ts);
78
79         return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
80 }
81
82 static void burn_nsecs(nsec_t nsecs)
83 {
84         nsec_t T0 = get_nsecs(), T1;
85
86         do {
87                 T1 = get_nsecs();
88         } while (T1 + run_measurement_overhead < T0 + nsecs);
89 }
90
91 static void sleep_nsecs(nsec_t nsecs)
92 {
93         struct timespec ts;
94
95         ts.tv_nsec = nsecs % 999999999;
96         ts.tv_sec = nsecs / 999999999;
97
98         nanosleep(&ts, NULL);
99 }
100
101 static void calibrate_run_measurement_overhead(void)
102 {
103         nsec_t T0, T1, delta, min_delta = 1000000000ULL;
104         int i;
105
106         for (i = 0; i < 10; i++) {
107                 T0 = get_nsecs();
108                 burn_nsecs(0);
109                 T1 = get_nsecs();
110                 delta = T1-T0;
111                 min_delta = min(min_delta, delta);
112         }
113         run_measurement_overhead = min_delta;
114
115         printf("run measurement overhead: %Ld nsecs\n", min_delta);
116 }
117
118 static void calibrate_sleep_measurement_overhead(void)
119 {
120         nsec_t T0, T1, delta, min_delta = 1000000000ULL;
121         int i;
122
123         for (i = 0; i < 10; i++) {
124                 T0 = get_nsecs();
125                 sleep_nsecs(10000);
126                 T1 = get_nsecs();
127                 delta = T1-T0;
128                 min_delta = min(min_delta, delta);
129         }
130         min_delta -= 10000;
131         sleep_measurement_overhead = min_delta;
132
133         printf("sleep measurement overhead: %Ld nsecs\n", min_delta);
134 }
135
136 #define COMM_LEN        20
137 #define SYM_LEN         129
138
139 #define MAX_PID         65536
140
141 static unsigned long nr_tasks;
142
143 struct sched_event;
144
145 struct task_desc {
146         unsigned long           nr;
147         unsigned long           pid;
148         char                    comm[COMM_LEN];
149
150         unsigned long           nr_events;
151         unsigned long           curr_event;
152         struct sched_event      **events;
153
154         pthread_t               thread;
155         sem_t                   sleep_sem;
156
157         sem_t                   ready_for_work;
158         sem_t                   work_done_sem;
159
160         nsec_t                  cpu_usage;
161 };
162
163 enum sched_event_type {
164         SCHED_EVENT_RUN,
165         SCHED_EVENT_SLEEP,
166         SCHED_EVENT_WAKEUP,
167 };
168
169 struct sched_event {
170         enum sched_event_type   type;
171         nsec_t                  timestamp;
172         nsec_t                  duration;
173         unsigned long           nr;
174         int                     specific_wait;
175         sem_t                   *wait_sem;
176         struct task_desc        *wakee;
177 };
178
179 static struct task_desc         *pid_to_task[MAX_PID];
180
181 static struct task_desc         **tasks;
182
183 static pthread_mutex_t          start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
184 static nsec_t                   start_time;
185
186 static pthread_mutex_t          work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
187
188 static unsigned long            nr_run_events;
189 static unsigned long            nr_sleep_events;
190 static unsigned long            nr_wakeup_events;
191
192 static unsigned long            nr_sleep_corrections;
193 static unsigned long            nr_run_events_optimized;
194
195 static struct sched_event *
196 get_new_event(struct task_desc *task, nsec_t timestamp)
197 {
198         struct sched_event *event = calloc(1, sizeof(*event));
199         unsigned long idx = task->nr_events;
200         size_t size;
201
202         event->timestamp = timestamp;
203         event->nr = idx;
204
205         task->nr_events++;
206         size = sizeof(struct sched_event *) * task->nr_events;
207         task->events = realloc(task->events, size);
208         BUG_ON(!task->events);
209
210         task->events[idx] = event;
211
212         return event;
213 }
214
215 static struct sched_event *last_event(struct task_desc *task)
216 {
217         if (!task->nr_events)
218                 return NULL;
219
220         return task->events[task->nr_events - 1];
221 }
222
223 static void
224 add_sched_event_run(struct task_desc *task, nsec_t timestamp, u64 duration)
225 {
226         struct sched_event *event, *curr_event = last_event(task);
227
228         /*
229          * optimize an existing RUN event by merging this one
230          * to it:
231          */
232         if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
233                 nr_run_events_optimized++;
234                 curr_event->duration += duration;
235                 return;
236         }
237
238         event = get_new_event(task, timestamp);
239
240         event->type = SCHED_EVENT_RUN;
241         event->duration = duration;
242
243         nr_run_events++;
244 }
245
246 static unsigned long targetless_wakeups;
247 static unsigned long multitarget_wakeups;
248
249 static void
250 add_sched_event_wakeup(struct task_desc *task, nsec_t timestamp,
251                        struct task_desc *wakee)
252 {
253         struct sched_event *event, *wakee_event;
254
255         event = get_new_event(task, timestamp);
256         event->type = SCHED_EVENT_WAKEUP;
257         event->wakee = wakee;
258
259         wakee_event = last_event(wakee);
260         if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
261                 targetless_wakeups++;
262                 return;
263         }
264         if (wakee_event->wait_sem) {
265                 multitarget_wakeups++;
266                 return;
267         }
268
269         wakee_event->wait_sem = calloc(1, sizeof(*wakee_event->wait_sem));
270         sem_init(wakee_event->wait_sem, 0, 0);
271         wakee_event->specific_wait = 1;
272         event->wait_sem = wakee_event->wait_sem;
273
274         nr_wakeup_events++;
275 }
276
277 static void
278 add_sched_event_sleep(struct task_desc *task, nsec_t timestamp,
279                       u64 task_state __used)
280 {
281         struct sched_event *event = get_new_event(task, timestamp);
282
283         event->type = SCHED_EVENT_SLEEP;
284
285         nr_sleep_events++;
286 }
287
288 static struct task_desc *register_pid(unsigned long pid, const char *comm)
289 {
290         struct task_desc *task;
291
292         BUG_ON(pid >= MAX_PID);
293
294         task = pid_to_task[pid];
295
296         if (task)
297                 return task;
298
299         task = calloc(1, sizeof(*task));
300         task->pid = pid;
301         task->nr = nr_tasks;
302         strcpy(task->comm, comm);
303         /*
304          * every task starts in sleeping state - this gets ignored
305          * if there's no wakeup pointing to this sleep state:
306          */
307         add_sched_event_sleep(task, 0, 0);
308
309         pid_to_task[pid] = task;
310         nr_tasks++;
311         tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
312         BUG_ON(!tasks);
313         tasks[task->nr] = task;
314
315         if (verbose)
316                 printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
317
318         return task;
319 }
320
321
322 static void print_task_traces(void)
323 {
324         struct task_desc *task;
325         unsigned long i;
326
327         for (i = 0; i < nr_tasks; i++) {
328                 task = tasks[i];
329                 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
330                         task->nr, task->comm, task->pid, task->nr_events);
331         }
332 }
333
334 static void add_cross_task_wakeups(void)
335 {
336         struct task_desc *task1, *task2;
337         unsigned long i, j;
338
339         for (i = 0; i < nr_tasks; i++) {
340                 task1 = tasks[i];
341                 j = i + 1;
342                 if (j == nr_tasks)
343                         j = 0;
344                 task2 = tasks[j];
345                 add_sched_event_wakeup(task1, 0, task2);
346         }
347 }
348
349 static void
350 process_sched_event(struct task_desc *this_task __used, struct sched_event *event)
351 {
352         int ret = 0;
353         nsec_t now;
354         long long delta;
355
356         now = get_nsecs();
357         delta = start_time + event->timestamp - now;
358
359         switch (event->type) {
360                 case SCHED_EVENT_RUN:
361                         burn_nsecs(event->duration);
362                         break;
363                 case SCHED_EVENT_SLEEP:
364                         if (event->wait_sem)
365                                 ret = sem_wait(event->wait_sem);
366                         BUG_ON(ret);
367                         break;
368                 case SCHED_EVENT_WAKEUP:
369                         if (event->wait_sem)
370                                 ret = sem_post(event->wait_sem);
371                         BUG_ON(ret);
372                         break;
373                 default:
374                         BUG_ON(1);
375         }
376 }
377
378 static nsec_t get_cpu_usage_nsec_parent(void)
379 {
380         struct rusage ru;
381         nsec_t sum;
382         int err;
383
384         err = getrusage(RUSAGE_SELF, &ru);
385         BUG_ON(err);
386
387         sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
388         sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
389
390         return sum;
391 }
392
393 static nsec_t get_cpu_usage_nsec_self(void)
394 {
395         char filename [] = "/proc/1234567890/sched";
396         unsigned long msecs, nsecs;
397         char *line = NULL;
398         nsec_t total = 0;
399         size_t len = 0;
400         ssize_t chars;
401         FILE *file;
402         int ret;
403
404         sprintf(filename, "/proc/%d/sched", getpid());
405         file = fopen(filename, "r");
406         BUG_ON(!file);
407
408         while ((chars = getline(&line, &len, file)) != -1) {
409                 ret = sscanf(line, "se.sum_exec_runtime : %ld.%06ld\n",
410                         &msecs, &nsecs);
411                 if (ret == 2) {
412                         total = msecs*1e6 + nsecs;
413                         break;
414                 }
415         }
416         if (line)
417                 free(line);
418         fclose(file);
419
420         return total;
421 }
422
423 static void *thread_func(void *ctx)
424 {
425         struct task_desc *this_task = ctx;
426         nsec_t cpu_usage_0, cpu_usage_1;
427         unsigned long i, ret;
428         char comm2[22];
429
430         sprintf(comm2, ":%s", this_task->comm);
431         prctl(PR_SET_NAME, comm2);
432
433 again:
434         ret = sem_post(&this_task->ready_for_work);
435         BUG_ON(ret);
436         ret = pthread_mutex_lock(&start_work_mutex);
437         BUG_ON(ret);
438         ret = pthread_mutex_unlock(&start_work_mutex);
439         BUG_ON(ret);
440
441         cpu_usage_0 = get_cpu_usage_nsec_self();
442
443         for (i = 0; i < this_task->nr_events; i++) {
444                 this_task->curr_event = i;
445                 process_sched_event(this_task, this_task->events[i]);
446         }
447
448         cpu_usage_1 = get_cpu_usage_nsec_self();
449         this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
450
451         ret = sem_post(&this_task->work_done_sem);
452         BUG_ON(ret);
453
454         ret = pthread_mutex_lock(&work_done_wait_mutex);
455         BUG_ON(ret);
456         ret = pthread_mutex_unlock(&work_done_wait_mutex);
457         BUG_ON(ret);
458
459         goto again;
460 }
461
462 static void create_tasks(void)
463 {
464         struct task_desc *task;
465         pthread_attr_t attr;
466         unsigned long i;
467         int err;
468
469         err = pthread_attr_init(&attr);
470         BUG_ON(err);
471         err = pthread_attr_setstacksize(&attr, (size_t)(16*1024));
472         BUG_ON(err);
473         err = pthread_mutex_lock(&start_work_mutex);
474         BUG_ON(err);
475         err = pthread_mutex_lock(&work_done_wait_mutex);
476         BUG_ON(err);
477         for (i = 0; i < nr_tasks; i++) {
478                 task = tasks[i];
479                 sem_init(&task->sleep_sem, 0, 0);
480                 sem_init(&task->ready_for_work, 0, 0);
481                 sem_init(&task->work_done_sem, 0, 0);
482                 task->curr_event = 0;
483                 err = pthread_create(&task->thread, &attr, thread_func, task);
484                 BUG_ON(err);
485         }
486 }
487
488 static nsec_t cpu_usage;
489 static nsec_t runavg_cpu_usage;
490 static nsec_t parent_cpu_usage;
491 static nsec_t runavg_parent_cpu_usage;
492
493 static void wait_for_tasks(void)
494 {
495         nsec_t cpu_usage_0, cpu_usage_1;
496         struct task_desc *task;
497         unsigned long i, ret;
498
499         start_time = get_nsecs();
500         cpu_usage = 0;
501         pthread_mutex_unlock(&work_done_wait_mutex);
502
503         for (i = 0; i < nr_tasks; i++) {
504                 task = tasks[i];
505                 ret = sem_wait(&task->ready_for_work);
506                 BUG_ON(ret);
507                 sem_init(&task->ready_for_work, 0, 0);
508         }
509         ret = pthread_mutex_lock(&work_done_wait_mutex);
510         BUG_ON(ret);
511
512         cpu_usage_0 = get_cpu_usage_nsec_parent();
513
514         pthread_mutex_unlock(&start_work_mutex);
515
516         for (i = 0; i < nr_tasks; i++) {
517                 task = tasks[i];
518                 ret = sem_wait(&task->work_done_sem);
519                 BUG_ON(ret);
520                 sem_init(&task->work_done_sem, 0, 0);
521                 cpu_usage += task->cpu_usage;
522                 task->cpu_usage = 0;
523         }
524
525         cpu_usage_1 = get_cpu_usage_nsec_parent();
526         if (!runavg_cpu_usage)
527                 runavg_cpu_usage = cpu_usage;
528         runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
529
530         parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
531         if (!runavg_parent_cpu_usage)
532                 runavg_parent_cpu_usage = parent_cpu_usage;
533         runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
534                                    parent_cpu_usage)/10;
535
536         ret = pthread_mutex_lock(&start_work_mutex);
537         BUG_ON(ret);
538
539         for (i = 0; i < nr_tasks; i++) {
540                 task = tasks[i];
541                 sem_init(&task->sleep_sem, 0, 0);
542                 task->curr_event = 0;
543         }
544 }
545
546 static int __cmd_sched(void);
547
548 static void parse_trace(void)
549 {
550         __cmd_sched();
551
552         printf("nr_run_events:        %ld\n", nr_run_events);
553         printf("nr_sleep_events:      %ld\n", nr_sleep_events);
554         printf("nr_wakeup_events:     %ld\n", nr_wakeup_events);
555
556         if (targetless_wakeups)
557                 printf("target-less wakeups:  %ld\n", targetless_wakeups);
558         if (multitarget_wakeups)
559                 printf("multi-target wakeups: %ld\n", multitarget_wakeups);
560         if (nr_run_events_optimized)
561                 printf("run events optimized: %ld\n",
562                         nr_run_events_optimized);
563 }
564
565 static unsigned long nr_runs;
566 static nsec_t sum_runtime;
567 static nsec_t sum_fluct;
568 static nsec_t run_avg;
569
570 static void run_one_test(void)
571 {
572         nsec_t T0, T1, delta, avg_delta, fluct, std_dev;
573
574         T0 = get_nsecs();
575         wait_for_tasks();
576         T1 = get_nsecs();
577
578         delta = T1 - T0;
579         sum_runtime += delta;
580         nr_runs++;
581
582         avg_delta = sum_runtime / nr_runs;
583         if (delta < avg_delta)
584                 fluct = avg_delta - delta;
585         else
586                 fluct = delta - avg_delta;
587         sum_fluct += fluct;
588         std_dev = sum_fluct / nr_runs / sqrt(nr_runs);
589         if (!run_avg)
590                 run_avg = delta;
591         run_avg = (run_avg*9 + delta)/10;
592
593         printf("#%-3ld: %0.3f, ",
594                 nr_runs, (double)delta/1000000.0);
595
596 #if 0
597         printf("%0.2f +- %0.2f, ",
598                 (double)avg_delta/1e6, (double)std_dev/1e6);
599 #endif
600         printf("ravg: %0.2f, ",
601                 (double)run_avg/1e6);
602
603         printf("cpu: %0.2f / %0.2f",
604                 (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
605
606 #if 0
607         /*
608          * rusage statistics done by the parent, these are less
609          * accurate than the sum_exec_runtime based statistics:
610          */
611         printf(" [%0.2f / %0.2f]",
612                 (double)parent_cpu_usage/1e6,
613                 (double)runavg_parent_cpu_usage/1e6);
614 #endif
615
616         printf("\n");
617
618         if (nr_sleep_corrections)
619                 printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
620         nr_sleep_corrections = 0;
621 }
622
623 static void test_calibrations(void)
624 {
625         nsec_t T0, T1;
626
627         T0 = get_nsecs();
628         burn_nsecs(1e6);
629         T1 = get_nsecs();
630
631         printf("the run test took %Ld nsecs\n", T1-T0);
632
633         T0 = get_nsecs();
634         sleep_nsecs(1e6);
635         T1 = get_nsecs();
636
637         printf("the sleep test took %Ld nsecs\n", T1-T0);
638 }
639
640 static int
641 process_comm_event(event_t *event, unsigned long offset, unsigned long head)
642 {
643         struct thread *thread;
644
645         thread = threads__findnew(event->comm.pid, &threads, &last_match);
646
647         dump_printf("%p [%p]: PERF_EVENT_COMM: %s:%d\n",
648                 (void *)(offset + head),
649                 (void *)(long)(event->header.size),
650                 event->comm.comm, event->comm.pid);
651
652         if (thread == NULL ||
653             thread__set_comm(thread, event->comm.comm)) {
654                 dump_printf("problem processing PERF_EVENT_COMM, skipping event.\n");
655                 return -1;
656         }
657         total_comm++;
658
659         return 0;
660 }
661
662
663 struct raw_event_sample {
664         u32 size;
665         char data[0];
666 };
667
668 #define FILL_FIELD(ptr, field, event, data)     \
669         ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
670
671 #define FILL_ARRAY(ptr, array, event, data)                     \
672 do {                                                            \
673         void *__array = raw_field_ptr(event, #array, data);     \
674         memcpy(ptr.array, __array, sizeof(ptr.array));  \
675 } while(0)
676
677 #define FILL_COMMON_FIELDS(ptr, event, data)                    \
678 do {                                                            \
679         FILL_FIELD(ptr, common_type, event, data);              \
680         FILL_FIELD(ptr, common_flags, event, data);             \
681         FILL_FIELD(ptr, common_preempt_count, event, data);     \
682         FILL_FIELD(ptr, common_pid, event, data);               \
683         FILL_FIELD(ptr, common_tgid, event, data);              \
684 } while (0)
685
686
687
688 struct trace_switch_event {
689         u32 size;
690
691         u16 common_type;
692         u8 common_flags;
693         u8 common_preempt_count;
694         u32 common_pid;
695         u32 common_tgid;
696
697         char prev_comm[16];
698         u32 prev_pid;
699         u32 prev_prio;
700         u64 prev_state;
701         char next_comm[16];
702         u32 next_pid;
703         u32 next_prio;
704 };
705
706
707 struct trace_wakeup_event {
708         u32 size;
709
710         u16 common_type;
711         u8 common_flags;
712         u8 common_preempt_count;
713         u32 common_pid;
714         u32 common_tgid;
715
716         char comm[16];
717         u32 pid;
718
719         u32 prio;
720         u32 success;
721         u32 cpu;
722 };
723
724 struct trace_fork_event {
725         u32 size;
726
727         u16 common_type;
728         u8 common_flags;
729         u8 common_preempt_count;
730         u32 common_pid;
731         u32 common_tgid;
732
733         char parent_comm[16];
734         u32 parent_pid;
735         char child_comm[16];
736         u32 child_pid;
737 };
738
739 struct trace_sched_handler {
740         void (*switch_event)(struct trace_switch_event *,
741                              struct event *,
742                              int cpu,
743                              u64 timestamp,
744                              struct thread *thread);
745
746         void (*wakeup_event)(struct trace_wakeup_event *,
747                              struct event *,
748                              int cpu,
749                              u64 timestamp,
750                              struct thread *thread);
751
752         void (*fork_event)(struct trace_fork_event *,
753                            struct event *,
754                            int cpu,
755                            u64 timestamp,
756                            struct thread *thread);
757 };
758
759
760 static void
761 replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
762                     struct event *event,
763                     int cpu __used,
764                     u64 timestamp __used,
765                     struct thread *thread __used)
766 {
767         struct task_desc *waker, *wakee;
768
769         if (verbose) {
770                 printf("sched_wakeup event %p\n", event);
771
772                 printf(" ... pid %d woke up %s/%d\n",
773                         wakeup_event->common_pid,
774                         wakeup_event->comm,
775                         wakeup_event->pid);
776         }
777
778         waker = register_pid(wakeup_event->common_pid, "<unknown>");
779         wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
780
781         add_sched_event_wakeup(waker, timestamp, wakee);
782 }
783
784 static unsigned long cpu_last_switched[MAX_CPUS];
785
786 static void
787 replay_switch_event(struct trace_switch_event *switch_event,
788                     struct event *event,
789                     int cpu,
790                     u64 timestamp,
791                     struct thread *thread __used)
792 {
793         struct task_desc *prev, *next;
794         u64 timestamp0;
795         s64 delta;
796
797         if (verbose)
798                 printf("sched_switch event %p\n", event);
799
800         if (cpu >= MAX_CPUS || cpu < 0)
801                 return;
802
803         timestamp0 = cpu_last_switched[cpu];
804         if (timestamp0)
805                 delta = timestamp - timestamp0;
806         else
807                 delta = 0;
808
809         if (delta < 0)
810                 die("hm, delta: %Ld < 0 ?\n", delta);
811
812         if (verbose) {
813                 printf(" ... switch from %s/%d to %s/%d [ran %Ld nsecs]\n",
814                         switch_event->prev_comm, switch_event->prev_pid,
815                         switch_event->next_comm, switch_event->next_pid,
816                         delta);
817         }
818
819         prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
820         next = register_pid(switch_event->next_pid, switch_event->next_comm);
821
822         cpu_last_switched[cpu] = timestamp;
823
824         add_sched_event_run(prev, timestamp, delta);
825         add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
826 }
827
828
829 static void
830 replay_fork_event(struct trace_fork_event *fork_event,
831                   struct event *event,
832                   int cpu __used,
833                   u64 timestamp __used,
834                   struct thread *thread __used)
835 {
836         if (verbose) {
837                 printf("sched_fork event %p\n", event);
838                 printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
839                 printf("...  child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
840         }
841         register_pid(fork_event->parent_pid, fork_event->parent_comm);
842         register_pid(fork_event->child_pid, fork_event->child_comm);
843 }
844
845 static struct trace_sched_handler replay_ops  = {
846         .wakeup_event = replay_wakeup_event,
847         .switch_event = replay_switch_event,
848         .fork_event = replay_fork_event,
849 };
850
851 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
852
853 enum thread_state {
854         THREAD_SLEEPING,
855         THREAD_WAKED_UP,
856         THREAD_SCHED_IN,
857         THREAD_IGNORE
858 };
859
860 struct lat_snapshot {
861         struct list_head        list;
862         enum thread_state       state;
863         u64                     wake_up_time;
864         u64                     sched_in_time;
865 };
866
867 struct thread_latency {
868         struct list_head        snapshot_list;
869         struct thread           *thread;
870         struct rb_node          node;
871 };
872
873 static struct rb_root lat_snapshot_root;
874
875 static struct thread_latency *
876 thread_latency_search(struct rb_root *root, struct thread *thread)
877 {
878         struct rb_node *node = root->rb_node;
879
880         while (node) {
881                 struct thread_latency *lat;
882
883                 lat = container_of(node, struct thread_latency, node);
884                 if (thread->pid < lat->thread->pid)
885                         node = node->rb_left;
886                 else if (thread->pid > lat->thread->pid)
887                         node = node->rb_right;
888                 else {
889                         return lat;
890                 }
891         }
892         return NULL;
893 }
894
895 static void
896 __thread_latency_insert(struct rb_root *root, struct thread_latency *data)
897 {
898         struct rb_node **new = &(root->rb_node), *parent = NULL;
899
900         while (*new) {
901                 struct thread_latency *this;
902
903                 this = container_of(*new, struct thread_latency, node);
904                 parent = *new;
905                 if (data->thread->pid < this->thread->pid)
906                         new = &((*new)->rb_left);
907                 else if (data->thread->pid > this->thread->pid)
908                         new = &((*new)->rb_right);
909                 else
910                         die("Double thread insertion\n");
911         }
912
913         rb_link_node(&data->node, parent, new);
914         rb_insert_color(&data->node, root);
915 }
916
917 static void thread_latency_insert(struct thread *thread)
918 {
919         struct thread_latency *lat;
920         lat = calloc(sizeof(*lat), 1);
921         if (!lat)
922                 die("No memory");
923
924         lat->thread = thread;
925         INIT_LIST_HEAD(&lat->snapshot_list);
926         __thread_latency_insert(&lat_snapshot_root, lat);
927 }
928
929 static void
930 latency_fork_event(struct trace_fork_event *fork_event __used,
931                    struct event *event __used,
932                    int cpu __used,
933                    u64 timestamp __used,
934                    struct thread *thread __used)
935 {
936         /* should insert the newcomer */
937 }
938
939 static char sched_out_state(struct trace_switch_event *switch_event)
940 {
941         const char *str = TASK_STATE_TO_CHAR_STR;
942
943         return str[switch_event->prev_state];
944 }
945
946 static void
947 lat_sched_out(struct thread_latency *lat,
948              struct trace_switch_event *switch_event)
949 {
950         struct lat_snapshot *snapshot;
951
952         if (sched_out_state(switch_event) == 'R')
953                 return;
954
955         snapshot = calloc(sizeof(*snapshot), 1);
956         if (!snapshot)
957                 die("Non memory");
958
959         list_add_tail(&snapshot->list, &lat->snapshot_list);
960 }
961
962 static void
963 lat_sched_in(struct thread_latency *lat, u64 timestamp)
964 {
965         struct lat_snapshot *snapshot;
966
967         if (list_empty(&lat->snapshot_list))
968                 return;
969
970         snapshot = list_entry(lat->snapshot_list.prev, struct lat_snapshot,
971                               list);
972
973         if (snapshot->state != THREAD_WAKED_UP)
974                 return;
975
976         if (timestamp < snapshot->wake_up_time) {
977                 snapshot->state = THREAD_IGNORE;
978                 return;
979         }
980
981         snapshot->state = THREAD_SCHED_IN;
982         snapshot->sched_in_time = timestamp;
983 }
984
985
986 static void
987 latency_switch_event(struct trace_switch_event *switch_event,
988                      struct event *event __used,
989                      int cpu __used,
990                      u64 timestamp,
991                      struct thread *thread __used)
992 {
993         struct thread_latency *out_lat, *in_lat;
994         struct thread *sched_out, *sched_in;
995
996         sched_out = threads__findnew(switch_event->prev_pid, &threads, &last_match);
997         sched_in = threads__findnew(switch_event->next_pid, &threads, &last_match);
998
999         in_lat = thread_latency_search(&lat_snapshot_root, sched_in);
1000         if (!in_lat) {
1001                 thread_latency_insert(sched_in);
1002                 in_lat = thread_latency_search(&lat_snapshot_root, sched_in);
1003                 if (!in_lat)
1004                         die("Internal latency tree error");
1005         }
1006
1007         out_lat = thread_latency_search(&lat_snapshot_root, sched_out);
1008         if (!out_lat) {
1009                 thread_latency_insert(sched_out);
1010                 out_lat = thread_latency_search(&lat_snapshot_root, sched_out);
1011                 if (!out_lat)
1012                         die("Internal latency tree error");
1013         }
1014
1015         lat_sched_in(in_lat, timestamp);
1016         lat_sched_out(out_lat, switch_event);
1017 }
1018
1019 static void
1020 latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
1021                      struct event *event __used,
1022                      int cpu __used,
1023                      u64 timestamp,
1024                      struct thread *thread __used)
1025 {
1026         struct thread_latency *lat;
1027         struct lat_snapshot *snapshot;
1028         struct thread *wakee;
1029
1030         /* Note for later, it may be interesting to observe the failing cases */
1031         if (!wakeup_event->success)
1032                 return;
1033
1034         wakee = threads__findnew(wakeup_event->pid, &threads, &last_match);
1035         lat = thread_latency_search(&lat_snapshot_root, wakee);
1036         if (!lat) {
1037                 thread_latency_insert(wakee);
1038                 return;
1039         }
1040
1041         if (list_empty(&lat->snapshot_list))
1042                 return;
1043
1044         snapshot = list_entry(lat->snapshot_list.prev, struct lat_snapshot,
1045                               list);
1046
1047         if (snapshot->state != THREAD_SLEEPING)
1048                 return;
1049
1050         snapshot->state = THREAD_WAKED_UP;
1051         snapshot->wake_up_time = timestamp;
1052 }
1053
1054 static struct trace_sched_handler lat_ops  = {
1055         .wakeup_event = latency_wakeup_event,
1056         .switch_event = latency_switch_event,
1057         .fork_event = latency_fork_event,
1058 };
1059
1060 static void output_lat_thread(struct thread_latency *lat)
1061 {
1062         struct lat_snapshot *shot;
1063         int count = 0;
1064         int i;
1065         int ret;
1066         u64 max = 0, avg;
1067         u64 total = 0, delta;
1068
1069         list_for_each_entry(shot, &lat->snapshot_list, list) {
1070                 if (shot->state != THREAD_SCHED_IN)
1071                         continue;
1072
1073                 count++;
1074
1075                 delta = shot->sched_in_time - shot->wake_up_time;
1076                 if (delta > max)
1077                         max = delta;
1078                 total += delta;
1079         }
1080
1081         if (!count)
1082                 return;
1083
1084         ret = printf("%s", lat->thread->comm);
1085
1086         for (i = 0; i < 25 - ret; i++)
1087                 printf(" ");
1088
1089         avg = total / count;
1090
1091         printf("%5d        %10llu       %10llu      %10llu\n", count, total, avg, max);
1092 }
1093
1094 static void output_lat_results(void)
1095 {
1096         struct rb_node *next;
1097
1098         printf(" Tasks");
1099         printf("                     count");
1100         printf("          total");
1101         printf("              avg");
1102         printf("            max\n\n");
1103
1104         next = rb_first(&lat_snapshot_root);
1105
1106         while (next) {
1107                 struct thread_latency *lat;
1108
1109                 lat = rb_entry(next, struct thread_latency, node);
1110                 output_lat_thread(lat);
1111                 next = rb_next(next);
1112         }
1113 }
1114
1115 static struct trace_sched_handler *trace_handler;
1116
1117 static void
1118 process_sched_wakeup_event(struct raw_event_sample *raw,
1119                            struct event *event,
1120                            int cpu __used,
1121                            u64 timestamp __used,
1122                            struct thread *thread __used)
1123 {
1124         struct trace_wakeup_event wakeup_event;
1125
1126         FILL_COMMON_FIELDS(wakeup_event, event, raw->data);
1127
1128         FILL_ARRAY(wakeup_event, comm, event, raw->data);
1129         FILL_FIELD(wakeup_event, pid, event, raw->data);
1130         FILL_FIELD(wakeup_event, prio, event, raw->data);
1131         FILL_FIELD(wakeup_event, success, event, raw->data);
1132         FILL_FIELD(wakeup_event, cpu, event, raw->data);
1133
1134         trace_handler->wakeup_event(&wakeup_event, event, cpu, timestamp, thread);
1135 }
1136
1137 static void
1138 process_sched_switch_event(struct raw_event_sample *raw,
1139                            struct event *event,
1140                            int cpu __used,
1141                            u64 timestamp __used,
1142                            struct thread *thread __used)
1143 {
1144         struct trace_switch_event switch_event;
1145
1146         FILL_COMMON_FIELDS(switch_event, event, raw->data);
1147
1148         FILL_ARRAY(switch_event, prev_comm, event, raw->data);
1149         FILL_FIELD(switch_event, prev_pid, event, raw->data);
1150         FILL_FIELD(switch_event, prev_prio, event, raw->data);
1151         FILL_FIELD(switch_event, prev_state, event, raw->data);
1152         FILL_ARRAY(switch_event, next_comm, event, raw->data);
1153         FILL_FIELD(switch_event, next_pid, event, raw->data);
1154         FILL_FIELD(switch_event, next_prio, event, raw->data);
1155
1156         trace_handler->switch_event(&switch_event, event, cpu, timestamp, thread);
1157 }
1158
1159 static void
1160 process_sched_fork_event(struct raw_event_sample *raw,
1161                          struct event *event,
1162                          int cpu __used,
1163                          u64 timestamp __used,
1164                          struct thread *thread __used)
1165 {
1166         struct trace_fork_event fork_event;
1167
1168         FILL_COMMON_FIELDS(fork_event, event, raw->data);
1169
1170         FILL_ARRAY(fork_event, parent_comm, event, raw->data);
1171         FILL_FIELD(fork_event, parent_pid, event, raw->data);
1172         FILL_ARRAY(fork_event, child_comm, event, raw->data);
1173         FILL_FIELD(fork_event, child_pid, event, raw->data);
1174
1175         trace_handler->fork_event(&fork_event, event, cpu, timestamp, thread);
1176 }
1177
1178 static void
1179 process_sched_exit_event(struct event *event,
1180                          int cpu __used,
1181                          u64 timestamp __used,
1182                          struct thread *thread __used)
1183 {
1184         if (verbose)
1185                 printf("sched_exit event %p\n", event);
1186 }
1187
1188 static void
1189 process_raw_event(event_t *raw_event __used, void *more_data,
1190                   int cpu, u64 timestamp, struct thread *thread)
1191 {
1192         struct raw_event_sample *raw = more_data;
1193         struct event *event;
1194         int type;
1195
1196         type = trace_parse_common_type(raw->data);
1197         event = trace_find_event(type);
1198
1199         if (!strcmp(event->name, "sched_switch"))
1200                 process_sched_switch_event(raw, event, cpu, timestamp, thread);
1201         if (!strcmp(event->name, "sched_wakeup"))
1202                 process_sched_wakeup_event(raw, event, cpu, timestamp, thread);
1203         if (!strcmp(event->name, "sched_wakeup_new"))
1204                 process_sched_wakeup_event(raw, event, cpu, timestamp, thread);
1205         if (!strcmp(event->name, "sched_process_fork"))
1206                 process_sched_fork_event(raw, event, cpu, timestamp, thread);
1207         if (!strcmp(event->name, "sched_process_exit"))
1208                 process_sched_exit_event(event, cpu, timestamp, thread);
1209 }
1210
1211 static int
1212 process_sample_event(event_t *event, unsigned long offset, unsigned long head)
1213 {
1214         char level;
1215         int show = 0;
1216         struct dso *dso = NULL;
1217         struct thread *thread;
1218         u64 ip = event->ip.ip;
1219         u64 timestamp = -1;
1220         u32 cpu = -1;
1221         u64 period = 1;
1222         void *more_data = event->ip.__more_data;
1223         int cpumode;
1224
1225         thread = threads__findnew(event->ip.pid, &threads, &last_match);
1226
1227         if (sample_type & PERF_SAMPLE_TIME) {
1228                 timestamp = *(u64 *)more_data;
1229                 more_data += sizeof(u64);
1230         }
1231
1232         if (sample_type & PERF_SAMPLE_CPU) {
1233                 cpu = *(u32 *)more_data;
1234                 more_data += sizeof(u32);
1235                 more_data += sizeof(u32); /* reserved */
1236         }
1237
1238         if (sample_type & PERF_SAMPLE_PERIOD) {
1239                 period = *(u64 *)more_data;
1240                 more_data += sizeof(u64);
1241         }
1242
1243         dump_printf("%p [%p]: PERF_EVENT_SAMPLE (IP, %d): %d/%d: %p period: %Ld\n",
1244                 (void *)(offset + head),
1245                 (void *)(long)(event->header.size),
1246                 event->header.misc,
1247                 event->ip.pid, event->ip.tid,
1248                 (void *)(long)ip,
1249                 (long long)period);
1250
1251         dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
1252
1253         if (thread == NULL) {
1254                 eprintf("problem processing %d event, skipping it.\n",
1255                         event->header.type);
1256                 return -1;
1257         }
1258
1259         cpumode = event->header.misc & PERF_EVENT_MISC_CPUMODE_MASK;
1260
1261         if (cpumode == PERF_EVENT_MISC_KERNEL) {
1262                 show = SHOW_KERNEL;
1263                 level = 'k';
1264
1265                 dso = kernel_dso;
1266
1267                 dump_printf(" ...... dso: %s\n", dso->name);
1268
1269         } else if (cpumode == PERF_EVENT_MISC_USER) {
1270
1271                 show = SHOW_USER;
1272                 level = '.';
1273
1274         } else {
1275                 show = SHOW_HV;
1276                 level = 'H';
1277
1278                 dso = hypervisor_dso;
1279
1280                 dump_printf(" ...... dso: [hypervisor]\n");
1281         }
1282
1283         if (sample_type & PERF_SAMPLE_RAW)
1284                 process_raw_event(event, more_data, cpu, timestamp, thread);
1285
1286         return 0;
1287 }
1288
1289 static int
1290 process_event(event_t *event, unsigned long offset, unsigned long head)
1291 {
1292         trace_event(event);
1293
1294         switch (event->header.type) {
1295         case PERF_EVENT_MMAP ... PERF_EVENT_LOST:
1296                 return 0;
1297
1298         case PERF_EVENT_COMM:
1299                 return process_comm_event(event, offset, head);
1300
1301         case PERF_EVENT_EXIT ... PERF_EVENT_READ:
1302                 return 0;
1303
1304         case PERF_EVENT_SAMPLE:
1305                 return process_sample_event(event, offset, head);
1306
1307         case PERF_EVENT_MAX:
1308         default:
1309                 return -1;
1310         }
1311
1312         return 0;
1313 }
1314
1315 static int __cmd_sched(void)
1316 {
1317         int ret, rc = EXIT_FAILURE;
1318         unsigned long offset = 0;
1319         unsigned long head = 0;
1320         struct stat perf_stat;
1321         event_t *event;
1322         uint32_t size;
1323         char *buf;
1324
1325         trace_report();
1326         register_idle_thread(&threads, &last_match);
1327
1328         input = open(input_name, O_RDONLY);
1329         if (input < 0) {
1330                 perror("failed to open file");
1331                 exit(-1);
1332         }
1333
1334         ret = fstat(input, &perf_stat);
1335         if (ret < 0) {
1336                 perror("failed to stat file");
1337                 exit(-1);
1338         }
1339
1340         if (!perf_stat.st_size) {
1341                 fprintf(stderr, "zero-sized file, nothing to do!\n");
1342                 exit(0);
1343         }
1344         header = perf_header__read(input);
1345         head = header->data_offset;
1346         sample_type = perf_header__sample_type(header);
1347
1348         if (!(sample_type & PERF_SAMPLE_RAW))
1349                 die("No trace sample to read. Did you call perf record "
1350                     "without -R?");
1351
1352         if (load_kernel() < 0) {
1353                 perror("failed to load kernel symbols");
1354                 return EXIT_FAILURE;
1355         }
1356
1357 remap:
1358         buf = (char *)mmap(NULL, page_size * mmap_window, PROT_READ,
1359                            MAP_SHARED, input, offset);
1360         if (buf == MAP_FAILED) {
1361                 perror("failed to mmap file");
1362                 exit(-1);
1363         }
1364
1365 more:
1366         event = (event_t *)(buf + head);
1367
1368         size = event->header.size;
1369         if (!size)
1370                 size = 8;
1371
1372         if (head + event->header.size >= page_size * mmap_window) {
1373                 unsigned long shift = page_size * (head / page_size);
1374                 int res;
1375
1376                 res = munmap(buf, page_size * mmap_window);
1377                 assert(res == 0);
1378
1379                 offset += shift;
1380                 head -= shift;
1381                 goto remap;
1382         }
1383
1384         size = event->header.size;
1385
1386
1387         if (!size || process_event(event, offset, head) < 0) {
1388
1389                 /*
1390                  * assume we lost track of the stream, check alignment, and
1391                  * increment a single u64 in the hope to catch on again 'soon'.
1392                  */
1393
1394                 if (unlikely(head & 7))
1395                         head &= ~7ULL;
1396
1397                 size = 8;
1398         }
1399
1400         head += size;
1401
1402         if (offset + head < (unsigned long)perf_stat.st_size)
1403                 goto more;
1404
1405         rc = EXIT_SUCCESS;
1406         close(input);
1407
1408         return rc;
1409 }
1410
1411 static const char * const annotate_usage[] = {
1412         "perf trace [<options>] <command>",
1413         NULL
1414 };
1415
1416 static const struct option options[] = {
1417         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1418                     "dump raw trace in ASCII"),
1419         OPT_BOOLEAN('r', "replay", &replay_mode,
1420                     "replay sched behaviour from traces"),
1421         OPT_BOOLEAN('l', "latency", &lat_mode,
1422                     "measure various latencies"),
1423         OPT_BOOLEAN('v', "verbose", &verbose,
1424                     "be more verbose (show symbol address, etc)"),
1425         OPT_END()
1426 };
1427
1428 int cmd_sched(int argc, const char **argv, const char *prefix __used)
1429 {
1430         long nr_iterations = 10, i;
1431
1432         symbol__init();
1433         page_size = getpagesize();
1434
1435         argc = parse_options(argc, argv, options, annotate_usage, 0);
1436         if (argc) {
1437                 /*
1438                  * Special case: if there's an argument left then assume tha
1439                  * it's a symbol filter:
1440                  */
1441                 if (argc > 1)
1442                         usage_with_options(annotate_usage, options);
1443         }
1444
1445 //      setup_pager();
1446
1447         if (replay_mode)
1448                 trace_handler = &replay_ops;
1449         else if (lat_mode)
1450                 trace_handler = &lat_ops;
1451         else /* We may need a default subcommand (perf trace?) */
1452                 die("Please select a sub command (-r)\n");
1453
1454         if (replay_mode) {
1455                 calibrate_run_measurement_overhead();
1456                 calibrate_sleep_measurement_overhead();
1457
1458                 test_calibrations();
1459
1460                 parse_trace();
1461                 print_task_traces();
1462                 add_cross_task_wakeups();
1463
1464                 create_tasks();
1465                 printf("------------------------------------------------------------\n");
1466                 for (i = 0; i < nr_iterations; i++)
1467                         run_one_test();
1468         } else if (lat_mode) {
1469                 setup_pager();
1470                 __cmd_sched();
1471                 output_lat_results();
1472         }
1473
1474         return 0;
1475 }