3e003237c42f555c0ca3b920fe6ead0e0b8dcdc2
[safe/jmp/linux-2.6] / tools / perf / builtin-sched.c
1 #include "builtin.h"
2 #include "perf.h"
3
4 #include "util/util.h"
5 #include "util/cache.h"
6 #include "util/symbol.h"
7 #include "util/thread.h"
8 #include "util/header.h"
9
10 #include "util/parse-options.h"
11 #include "util/trace-event.h"
12
13 #include "util/debug.h"
14
15 #include <sys/types.h>
16 #include <sys/prctl.h>
17
18 #include <semaphore.h>
19 #include <pthread.h>
20 #include <math.h>
21
22 static char                     const *input_name = "perf.data";
23 static int                      input;
24 static unsigned long            page_size;
25 static unsigned long            mmap_window = 32;
26
27 static unsigned long            total_comm = 0;
28
29 static struct rb_root           threads;
30 static struct thread            *last_match;
31
32 static struct perf_header       *header;
33 static u64                      sample_type;
34
35 static char                     default_sort_order[] = "avg, max, switch, runtime";
36 static char                     *sort_order = default_sort_order;
37
38 #define PR_SET_NAME             15               /* Set process name */
39 #define MAX_CPUS                4096
40
41 #define BUG_ON(x)               assert(!(x))
42
43 static u64                      run_measurement_overhead;
44 static u64                      sleep_measurement_overhead;
45
46 #define COMM_LEN                20
47 #define SYM_LEN                 129
48
49 #define MAX_PID                 65536
50
51 static unsigned long            nr_tasks;
52
53 struct sched_event;
54
55 struct task_desc {
56         unsigned long           nr;
57         unsigned long           pid;
58         char                    comm[COMM_LEN];
59
60         unsigned long           nr_events;
61         unsigned long           curr_event;
62         struct sched_event      **events;
63
64         pthread_t               thread;
65         sem_t                   sleep_sem;
66
67         sem_t                   ready_for_work;
68         sem_t                   work_done_sem;
69
70         u64                     cpu_usage;
71 };
72
73 enum sched_event_type {
74         SCHED_EVENT_RUN,
75         SCHED_EVENT_SLEEP,
76         SCHED_EVENT_WAKEUP,
77 };
78
79 struct sched_event {
80         enum sched_event_type   type;
81         u64                     timestamp;
82         u64                     duration;
83         unsigned long           nr;
84         int                     specific_wait;
85         sem_t                   *wait_sem;
86         struct task_desc        *wakee;
87 };
88
89 static struct task_desc         *pid_to_task[MAX_PID];
90
91 static struct task_desc         **tasks;
92
93 static pthread_mutex_t          start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
94 static u64                      start_time;
95
96 static pthread_mutex_t          work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
97
98 static unsigned long            nr_run_events;
99 static unsigned long            nr_sleep_events;
100 static unsigned long            nr_wakeup_events;
101
102 static unsigned long            nr_sleep_corrections;
103 static unsigned long            nr_run_events_optimized;
104
105 static unsigned long            targetless_wakeups;
106 static unsigned long            multitarget_wakeups;
107
108 static u64                      cpu_usage;
109 static u64                      runavg_cpu_usage;
110 static u64                      parent_cpu_usage;
111 static u64                      runavg_parent_cpu_usage;
112
113 static unsigned long            nr_runs;
114 static u64                      sum_runtime;
115 static u64                      sum_fluct;
116 static u64                      run_avg;
117
118 static unsigned long            replay_repeat = 10;
119
120 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
121
122 enum thread_state {
123         THREAD_SLEEPING = 0,
124         THREAD_WAIT_CPU,
125         THREAD_SCHED_IN,
126         THREAD_IGNORE
127 };
128
129 struct work_atom {
130         struct list_head        list;
131         enum thread_state       state;
132         u64                     sched_out_time;
133         u64                     wake_up_time;
134         u64                     sched_in_time;
135         u64                     runtime;
136 };
137
138 struct task_atoms {
139         struct list_head        atom_list;
140         struct thread           *thread;
141         struct rb_node          node;
142         u64                     max_lat;
143         u64                     total_lat;
144         u64                     nb_atoms;
145         u64                     total_runtime;
146 };
147
148 typedef int (*sort_fn_t)(struct task_atoms *, struct task_atoms *);
149
150 static struct rb_root           atom_root, sorted_atom_root;
151
152 static u64                      all_runtime;
153 static u64                      all_count;
154
155 static int read_events(void);
156
157
158 static u64 get_nsecs(void)
159 {
160         struct timespec ts;
161
162         clock_gettime(CLOCK_MONOTONIC, &ts);
163
164         return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
165 }
166
167 static void burn_nsecs(u64 nsecs)
168 {
169         u64 T0 = get_nsecs(), T1;
170
171         do {
172                 T1 = get_nsecs();
173         } while (T1 + run_measurement_overhead < T0 + nsecs);
174 }
175
176 static void sleep_nsecs(u64 nsecs)
177 {
178         struct timespec ts;
179
180         ts.tv_nsec = nsecs % 999999999;
181         ts.tv_sec = nsecs / 999999999;
182
183         nanosleep(&ts, NULL);
184 }
185
186 static void calibrate_run_measurement_overhead(void)
187 {
188         u64 T0, T1, delta, min_delta = 1000000000ULL;
189         int i;
190
191         for (i = 0; i < 10; i++) {
192                 T0 = get_nsecs();
193                 burn_nsecs(0);
194                 T1 = get_nsecs();
195                 delta = T1-T0;
196                 min_delta = min(min_delta, delta);
197         }
198         run_measurement_overhead = min_delta;
199
200         printf("run measurement overhead: %Ld nsecs\n", min_delta);
201 }
202
203 static void calibrate_sleep_measurement_overhead(void)
204 {
205         u64 T0, T1, delta, min_delta = 1000000000ULL;
206         int i;
207
208         for (i = 0; i < 10; i++) {
209                 T0 = get_nsecs();
210                 sleep_nsecs(10000);
211                 T1 = get_nsecs();
212                 delta = T1-T0;
213                 min_delta = min(min_delta, delta);
214         }
215         min_delta -= 10000;
216         sleep_measurement_overhead = min_delta;
217
218         printf("sleep measurement overhead: %Ld nsecs\n", min_delta);
219 }
220
221 static struct sched_event *
222 get_new_event(struct task_desc *task, u64 timestamp)
223 {
224         struct sched_event *event = calloc(1, sizeof(*event));
225         unsigned long idx = task->nr_events;
226         size_t size;
227
228         event->timestamp = timestamp;
229         event->nr = idx;
230
231         task->nr_events++;
232         size = sizeof(struct sched_event *) * task->nr_events;
233         task->events = realloc(task->events, size);
234         BUG_ON(!task->events);
235
236         task->events[idx] = event;
237
238         return event;
239 }
240
241 static struct sched_event *last_event(struct task_desc *task)
242 {
243         if (!task->nr_events)
244                 return NULL;
245
246         return task->events[task->nr_events - 1];
247 }
248
249 static void
250 add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
251 {
252         struct sched_event *event, *curr_event = last_event(task);
253
254         /*
255          * optimize an existing RUN event by merging this one
256          * to it:
257          */
258         if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
259                 nr_run_events_optimized++;
260                 curr_event->duration += duration;
261                 return;
262         }
263
264         event = get_new_event(task, timestamp);
265
266         event->type = SCHED_EVENT_RUN;
267         event->duration = duration;
268
269         nr_run_events++;
270 }
271
272 static void
273 add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
274                        struct task_desc *wakee)
275 {
276         struct sched_event *event, *wakee_event;
277
278         event = get_new_event(task, timestamp);
279         event->type = SCHED_EVENT_WAKEUP;
280         event->wakee = wakee;
281
282         wakee_event = last_event(wakee);
283         if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
284                 targetless_wakeups++;
285                 return;
286         }
287         if (wakee_event->wait_sem) {
288                 multitarget_wakeups++;
289                 return;
290         }
291
292         wakee_event->wait_sem = calloc(1, sizeof(*wakee_event->wait_sem));
293         sem_init(wakee_event->wait_sem, 0, 0);
294         wakee_event->specific_wait = 1;
295         event->wait_sem = wakee_event->wait_sem;
296
297         nr_wakeup_events++;
298 }
299
300 static void
301 add_sched_event_sleep(struct task_desc *task, u64 timestamp,
302                       u64 task_state __used)
303 {
304         struct sched_event *event = get_new_event(task, timestamp);
305
306         event->type = SCHED_EVENT_SLEEP;
307
308         nr_sleep_events++;
309 }
310
311 static struct task_desc *register_pid(unsigned long pid, const char *comm)
312 {
313         struct task_desc *task;
314
315         BUG_ON(pid >= MAX_PID);
316
317         task = pid_to_task[pid];
318
319         if (task)
320                 return task;
321
322         task = calloc(1, sizeof(*task));
323         task->pid = pid;
324         task->nr = nr_tasks;
325         strcpy(task->comm, comm);
326         /*
327          * every task starts in sleeping state - this gets ignored
328          * if there's no wakeup pointing to this sleep state:
329          */
330         add_sched_event_sleep(task, 0, 0);
331
332         pid_to_task[pid] = task;
333         nr_tasks++;
334         tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
335         BUG_ON(!tasks);
336         tasks[task->nr] = task;
337
338         if (verbose)
339                 printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
340
341         return task;
342 }
343
344
345 static void print_task_traces(void)
346 {
347         struct task_desc *task;
348         unsigned long i;
349
350         for (i = 0; i < nr_tasks; i++) {
351                 task = tasks[i];
352                 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
353                         task->nr, task->comm, task->pid, task->nr_events);
354         }
355 }
356
357 static void add_cross_task_wakeups(void)
358 {
359         struct task_desc *task1, *task2;
360         unsigned long i, j;
361
362         for (i = 0; i < nr_tasks; i++) {
363                 task1 = tasks[i];
364                 j = i + 1;
365                 if (j == nr_tasks)
366                         j = 0;
367                 task2 = tasks[j];
368                 add_sched_event_wakeup(task1, 0, task2);
369         }
370 }
371
372 static void
373 process_sched_event(struct task_desc *this_task __used, struct sched_event *event)
374 {
375         int ret = 0;
376         u64 now;
377         long long delta;
378
379         now = get_nsecs();
380         delta = start_time + event->timestamp - now;
381
382         switch (event->type) {
383                 case SCHED_EVENT_RUN:
384                         burn_nsecs(event->duration);
385                         break;
386                 case SCHED_EVENT_SLEEP:
387                         if (event->wait_sem)
388                                 ret = sem_wait(event->wait_sem);
389                         BUG_ON(ret);
390                         break;
391                 case SCHED_EVENT_WAKEUP:
392                         if (event->wait_sem)
393                                 ret = sem_post(event->wait_sem);
394                         BUG_ON(ret);
395                         break;
396                 default:
397                         BUG_ON(1);
398         }
399 }
400
401 static u64 get_cpu_usage_nsec_parent(void)
402 {
403         struct rusage ru;
404         u64 sum;
405         int err;
406
407         err = getrusage(RUSAGE_SELF, &ru);
408         BUG_ON(err);
409
410         sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
411         sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
412
413         return sum;
414 }
415
416 static u64 get_cpu_usage_nsec_self(void)
417 {
418         char filename [] = "/proc/1234567890/sched";
419         unsigned long msecs, nsecs;
420         char *line = NULL;
421         u64 total = 0;
422         size_t len = 0;
423         ssize_t chars;
424         FILE *file;
425         int ret;
426
427         sprintf(filename, "/proc/%d/sched", getpid());
428         file = fopen(filename, "r");
429         BUG_ON(!file);
430
431         while ((chars = getline(&line, &len, file)) != -1) {
432                 ret = sscanf(line, "se.sum_exec_runtime : %ld.%06ld\n",
433                         &msecs, &nsecs);
434                 if (ret == 2) {
435                         total = msecs*1e6 + nsecs;
436                         break;
437                 }
438         }
439         if (line)
440                 free(line);
441         fclose(file);
442
443         return total;
444 }
445
446 static void *thread_func(void *ctx)
447 {
448         struct task_desc *this_task = ctx;
449         u64 cpu_usage_0, cpu_usage_1;
450         unsigned long i, ret;
451         char comm2[22];
452
453         sprintf(comm2, ":%s", this_task->comm);
454         prctl(PR_SET_NAME, comm2);
455
456 again:
457         ret = sem_post(&this_task->ready_for_work);
458         BUG_ON(ret);
459         ret = pthread_mutex_lock(&start_work_mutex);
460         BUG_ON(ret);
461         ret = pthread_mutex_unlock(&start_work_mutex);
462         BUG_ON(ret);
463
464         cpu_usage_0 = get_cpu_usage_nsec_self();
465
466         for (i = 0; i < this_task->nr_events; i++) {
467                 this_task->curr_event = i;
468                 process_sched_event(this_task, this_task->events[i]);
469         }
470
471         cpu_usage_1 = get_cpu_usage_nsec_self();
472         this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
473
474         ret = sem_post(&this_task->work_done_sem);
475         BUG_ON(ret);
476
477         ret = pthread_mutex_lock(&work_done_wait_mutex);
478         BUG_ON(ret);
479         ret = pthread_mutex_unlock(&work_done_wait_mutex);
480         BUG_ON(ret);
481
482         goto again;
483 }
484
485 static void create_tasks(void)
486 {
487         struct task_desc *task;
488         pthread_attr_t attr;
489         unsigned long i;
490         int err;
491
492         err = pthread_attr_init(&attr);
493         BUG_ON(err);
494         err = pthread_attr_setstacksize(&attr, (size_t)(16*1024));
495         BUG_ON(err);
496         err = pthread_mutex_lock(&start_work_mutex);
497         BUG_ON(err);
498         err = pthread_mutex_lock(&work_done_wait_mutex);
499         BUG_ON(err);
500         for (i = 0; i < nr_tasks; i++) {
501                 task = tasks[i];
502                 sem_init(&task->sleep_sem, 0, 0);
503                 sem_init(&task->ready_for_work, 0, 0);
504                 sem_init(&task->work_done_sem, 0, 0);
505                 task->curr_event = 0;
506                 err = pthread_create(&task->thread, &attr, thread_func, task);
507                 BUG_ON(err);
508         }
509 }
510
511 static void wait_for_tasks(void)
512 {
513         u64 cpu_usage_0, cpu_usage_1;
514         struct task_desc *task;
515         unsigned long i, ret;
516
517         start_time = get_nsecs();
518         cpu_usage = 0;
519         pthread_mutex_unlock(&work_done_wait_mutex);
520
521         for (i = 0; i < nr_tasks; i++) {
522                 task = tasks[i];
523                 ret = sem_wait(&task->ready_for_work);
524                 BUG_ON(ret);
525                 sem_init(&task->ready_for_work, 0, 0);
526         }
527         ret = pthread_mutex_lock(&work_done_wait_mutex);
528         BUG_ON(ret);
529
530         cpu_usage_0 = get_cpu_usage_nsec_parent();
531
532         pthread_mutex_unlock(&start_work_mutex);
533
534         for (i = 0; i < nr_tasks; i++) {
535                 task = tasks[i];
536                 ret = sem_wait(&task->work_done_sem);
537                 BUG_ON(ret);
538                 sem_init(&task->work_done_sem, 0, 0);
539                 cpu_usage += task->cpu_usage;
540                 task->cpu_usage = 0;
541         }
542
543         cpu_usage_1 = get_cpu_usage_nsec_parent();
544         if (!runavg_cpu_usage)
545                 runavg_cpu_usage = cpu_usage;
546         runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
547
548         parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
549         if (!runavg_parent_cpu_usage)
550                 runavg_parent_cpu_usage = parent_cpu_usage;
551         runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
552                                    parent_cpu_usage)/10;
553
554         ret = pthread_mutex_lock(&start_work_mutex);
555         BUG_ON(ret);
556
557         for (i = 0; i < nr_tasks; i++) {
558                 task = tasks[i];
559                 sem_init(&task->sleep_sem, 0, 0);
560                 task->curr_event = 0;
561         }
562 }
563
564 static void run_one_test(void)
565 {
566         u64 T0, T1, delta, avg_delta, fluct, std_dev;
567
568         T0 = get_nsecs();
569         wait_for_tasks();
570         T1 = get_nsecs();
571
572         delta = T1 - T0;
573         sum_runtime += delta;
574         nr_runs++;
575
576         avg_delta = sum_runtime / nr_runs;
577         if (delta < avg_delta)
578                 fluct = avg_delta - delta;
579         else
580                 fluct = delta - avg_delta;
581         sum_fluct += fluct;
582         std_dev = sum_fluct / nr_runs / sqrt(nr_runs);
583         if (!run_avg)
584                 run_avg = delta;
585         run_avg = (run_avg*9 + delta)/10;
586
587         printf("#%-3ld: %0.3f, ",
588                 nr_runs, (double)delta/1000000.0);
589
590         printf("ravg: %0.2f, ",
591                 (double)run_avg/1e6);
592
593         printf("cpu: %0.2f / %0.2f",
594                 (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
595
596 #if 0
597         /*
598          * rusage statistics done by the parent, these are less
599          * accurate than the sum_exec_runtime based statistics:
600          */
601         printf(" [%0.2f / %0.2f]",
602                 (double)parent_cpu_usage/1e6,
603                 (double)runavg_parent_cpu_usage/1e6);
604 #endif
605
606         printf("\n");
607
608         if (nr_sleep_corrections)
609                 printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
610         nr_sleep_corrections = 0;
611 }
612
613 static void test_calibrations(void)
614 {
615         u64 T0, T1;
616
617         T0 = get_nsecs();
618         burn_nsecs(1e6);
619         T1 = get_nsecs();
620
621         printf("the run test took %Ld nsecs\n", T1-T0);
622
623         T0 = get_nsecs();
624         sleep_nsecs(1e6);
625         T1 = get_nsecs();
626
627         printf("the sleep test took %Ld nsecs\n", T1-T0);
628 }
629
630 static void __cmd_replay(void)
631 {
632         unsigned long i;
633
634         calibrate_run_measurement_overhead();
635         calibrate_sleep_measurement_overhead();
636
637         test_calibrations();
638
639         read_events();
640
641         printf("nr_run_events:        %ld\n", nr_run_events);
642         printf("nr_sleep_events:      %ld\n", nr_sleep_events);
643         printf("nr_wakeup_events:     %ld\n", nr_wakeup_events);
644
645         if (targetless_wakeups)
646                 printf("target-less wakeups:  %ld\n", targetless_wakeups);
647         if (multitarget_wakeups)
648                 printf("multi-target wakeups: %ld\n", multitarget_wakeups);
649         if (nr_run_events_optimized)
650                 printf("run events optimized: %ld\n",
651                         nr_run_events_optimized);
652
653         print_task_traces();
654         add_cross_task_wakeups();
655
656         create_tasks();
657         printf("------------------------------------------------------------\n");
658         for (i = 0; i < replay_repeat; i++)
659                 run_one_test();
660 }
661
662 static int
663 process_comm_event(event_t *event, unsigned long offset, unsigned long head)
664 {
665         struct thread *thread;
666
667         thread = threads__findnew(event->comm.pid, &threads, &last_match);
668
669         dump_printf("%p [%p]: PERF_EVENT_COMM: %s:%d\n",
670                 (void *)(offset + head),
671                 (void *)(long)(event->header.size),
672                 event->comm.comm, event->comm.pid);
673
674         if (thread == NULL ||
675             thread__set_comm(thread, event->comm.comm)) {
676                 dump_printf("problem processing PERF_EVENT_COMM, skipping event.\n");
677                 return -1;
678         }
679         total_comm++;
680
681         return 0;
682 }
683
684
685 struct raw_event_sample {
686         u32 size;
687         char data[0];
688 };
689
690 #define FILL_FIELD(ptr, field, event, data)     \
691         ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
692
693 #define FILL_ARRAY(ptr, array, event, data)                     \
694 do {                                                            \
695         void *__array = raw_field_ptr(event, #array, data);     \
696         memcpy(ptr.array, __array, sizeof(ptr.array));  \
697 } while(0)
698
699 #define FILL_COMMON_FIELDS(ptr, event, data)                    \
700 do {                                                            \
701         FILL_FIELD(ptr, common_type, event, data);              \
702         FILL_FIELD(ptr, common_flags, event, data);             \
703         FILL_FIELD(ptr, common_preempt_count, event, data);     \
704         FILL_FIELD(ptr, common_pid, event, data);               \
705         FILL_FIELD(ptr, common_tgid, event, data);              \
706 } while (0)
707
708
709
710 struct trace_switch_event {
711         u32 size;
712
713         u16 common_type;
714         u8 common_flags;
715         u8 common_preempt_count;
716         u32 common_pid;
717         u32 common_tgid;
718
719         char prev_comm[16];
720         u32 prev_pid;
721         u32 prev_prio;
722         u64 prev_state;
723         char next_comm[16];
724         u32 next_pid;
725         u32 next_prio;
726 };
727
728
729 struct trace_wakeup_event {
730         u32 size;
731
732         u16 common_type;
733         u8 common_flags;
734         u8 common_preempt_count;
735         u32 common_pid;
736         u32 common_tgid;
737
738         char comm[16];
739         u32 pid;
740
741         u32 prio;
742         u32 success;
743         u32 cpu;
744 };
745
746 struct trace_fork_event {
747         u32 size;
748
749         u16 common_type;
750         u8 common_flags;
751         u8 common_preempt_count;
752         u32 common_pid;
753         u32 common_tgid;
754
755         char parent_comm[16];
756         u32 parent_pid;
757         char child_comm[16];
758         u32 child_pid;
759 };
760
761 struct trace_sched_handler {
762         void (*switch_event)(struct trace_switch_event *,
763                              struct event *,
764                              int cpu,
765                              u64 timestamp,
766                              struct thread *thread);
767
768         void (*wakeup_event)(struct trace_wakeup_event *,
769                              struct event *,
770                              int cpu,
771                              u64 timestamp,
772                              struct thread *thread);
773
774         void (*fork_event)(struct trace_fork_event *,
775                            struct event *,
776                            int cpu,
777                            u64 timestamp,
778                            struct thread *thread);
779 };
780
781
782 static void
783 replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
784                     struct event *event,
785                     int cpu __used,
786                     u64 timestamp __used,
787                     struct thread *thread __used)
788 {
789         struct task_desc *waker, *wakee;
790
791         if (verbose) {
792                 printf("sched_wakeup event %p\n", event);
793
794                 printf(" ... pid %d woke up %s/%d\n",
795                         wakeup_event->common_pid,
796                         wakeup_event->comm,
797                         wakeup_event->pid);
798         }
799
800         waker = register_pid(wakeup_event->common_pid, "<unknown>");
801         wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
802
803         add_sched_event_wakeup(waker, timestamp, wakee);
804 }
805
806 static unsigned long cpu_last_switched[MAX_CPUS];
807
808 static void
809 replay_switch_event(struct trace_switch_event *switch_event,
810                     struct event *event,
811                     int cpu,
812                     u64 timestamp,
813                     struct thread *thread __used)
814 {
815         struct task_desc *prev, *next;
816         u64 timestamp0;
817         s64 delta;
818
819         if (verbose)
820                 printf("sched_switch event %p\n", event);
821
822         if (cpu >= MAX_CPUS || cpu < 0)
823                 return;
824
825         timestamp0 = cpu_last_switched[cpu];
826         if (timestamp0)
827                 delta = timestamp - timestamp0;
828         else
829                 delta = 0;
830
831         if (delta < 0)
832                 die("hm, delta: %Ld < 0 ?\n", delta);
833
834         if (verbose) {
835                 printf(" ... switch from %s/%d to %s/%d [ran %Ld nsecs]\n",
836                         switch_event->prev_comm, switch_event->prev_pid,
837                         switch_event->next_comm, switch_event->next_pid,
838                         delta);
839         }
840
841         prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
842         next = register_pid(switch_event->next_pid, switch_event->next_comm);
843
844         cpu_last_switched[cpu] = timestamp;
845
846         add_sched_event_run(prev, timestamp, delta);
847         add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
848 }
849
850
851 static void
852 replay_fork_event(struct trace_fork_event *fork_event,
853                   struct event *event,
854                   int cpu __used,
855                   u64 timestamp __used,
856                   struct thread *thread __used)
857 {
858         if (verbose) {
859                 printf("sched_fork event %p\n", event);
860                 printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
861                 printf("...  child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
862         }
863         register_pid(fork_event->parent_pid, fork_event->parent_comm);
864         register_pid(fork_event->child_pid, fork_event->child_comm);
865 }
866
867 static struct trace_sched_handler replay_ops  = {
868         .wakeup_event           = replay_wakeup_event,
869         .switch_event           = replay_switch_event,
870         .fork_event             = replay_fork_event,
871 };
872
873 struct sort_dimension {
874         const char              *name;
875         sort_fn_t               cmp;
876         struct list_head        list;
877 };
878
879 static LIST_HEAD(cmp_pid);
880
881 static int
882 thread_lat_cmp(struct list_head *list, struct task_atoms *l, struct task_atoms *r)
883 {
884         struct sort_dimension *sort;
885         int ret = 0;
886
887         BUG_ON(list_empty(list));
888
889         list_for_each_entry(sort, list, list) {
890                 ret = sort->cmp(l, r);
891                 if (ret)
892                         return ret;
893         }
894
895         return ret;
896 }
897
898 static struct task_atoms *
899 thread_atoms_search(struct rb_root *root, struct thread *thread,
900                          struct list_head *sort_list)
901 {
902         struct rb_node *node = root->rb_node;
903         struct task_atoms key = { .thread = thread };
904
905         while (node) {
906                 struct task_atoms *atoms;
907                 int cmp;
908
909                 atoms = container_of(node, struct task_atoms, node);
910
911                 cmp = thread_lat_cmp(sort_list, &key, atoms);
912                 if (cmp > 0)
913                         node = node->rb_left;
914                 else if (cmp < 0)
915                         node = node->rb_right;
916                 else {
917                         BUG_ON(thread != atoms->thread);
918                         return atoms;
919                 }
920         }
921         return NULL;
922 }
923
924 static void
925 __thread_latency_insert(struct rb_root *root, struct task_atoms *data,
926                          struct list_head *sort_list)
927 {
928         struct rb_node **new = &(root->rb_node), *parent = NULL;
929
930         while (*new) {
931                 struct task_atoms *this;
932                 int cmp;
933
934                 this = container_of(*new, struct task_atoms, node);
935                 parent = *new;
936
937                 cmp = thread_lat_cmp(sort_list, data, this);
938
939                 if (cmp > 0)
940                         new = &((*new)->rb_left);
941                 else
942                         new = &((*new)->rb_right);
943         }
944
945         rb_link_node(&data->node, parent, new);
946         rb_insert_color(&data->node, root);
947 }
948
949 static void thread_atoms_insert(struct thread *thread)
950 {
951         struct task_atoms *atoms;
952
953         atoms = calloc(sizeof(*atoms), 1);
954         if (!atoms)
955                 die("No memory");
956
957         atoms->thread = thread;
958         INIT_LIST_HEAD(&atoms->atom_list);
959         __thread_latency_insert(&atom_root, atoms, &cmp_pid);
960 }
961
962 static void
963 latency_fork_event(struct trace_fork_event *fork_event __used,
964                    struct event *event __used,
965                    int cpu __used,
966                    u64 timestamp __used,
967                    struct thread *thread __used)
968 {
969         /* should insert the newcomer */
970 }
971
972 __used
973 static char sched_out_state(struct trace_switch_event *switch_event)
974 {
975         const char *str = TASK_STATE_TO_CHAR_STR;
976
977         return str[switch_event->prev_state];
978 }
979
980 static void
981 lat_sched_out(struct task_atoms *atoms,
982               struct trace_switch_event *switch_event __used,
983               u64 delta,
984               u64 timestamp)
985 {
986         struct work_atom *atom;
987
988         atom = calloc(sizeof(*atom), 1);
989         if (!atom)
990                 die("Non memory");
991
992         atom->sched_out_time = timestamp;
993
994         if (sched_out_state(switch_event) == 'R') {
995                 atom->state = THREAD_WAIT_CPU;
996                 atom->wake_up_time = atom->sched_out_time;
997         }
998
999         atom->runtime = delta;
1000         list_add_tail(&atom->list, &atoms->atom_list);
1001 }
1002
1003 static void
1004 lat_sched_in(struct task_atoms *atoms, u64 timestamp)
1005 {
1006         struct work_atom *atom;
1007         u64 delta;
1008
1009         if (list_empty(&atoms->atom_list))
1010                 return;
1011
1012         atom = list_entry(atoms->atom_list.prev, struct work_atom, list);
1013
1014         if (atom->state != THREAD_WAIT_CPU)
1015                 return;
1016
1017         if (timestamp < atom->wake_up_time) {
1018                 atom->state = THREAD_IGNORE;
1019                 return;
1020         }
1021
1022         atom->state = THREAD_SCHED_IN;
1023         atom->sched_in_time = timestamp;
1024
1025         delta = atom->sched_in_time - atom->wake_up_time;
1026         atoms->total_lat += delta;
1027         if (delta > atoms->max_lat)
1028                 atoms->max_lat = delta;
1029         atoms->nb_atoms++;
1030         atoms->total_runtime += atom->runtime;
1031 }
1032
1033 static void
1034 latency_switch_event(struct trace_switch_event *switch_event,
1035                      struct event *event __used,
1036                      int cpu,
1037                      u64 timestamp,
1038                      struct thread *thread __used)
1039 {
1040         struct task_atoms *out_atoms, *in_atoms;
1041         struct thread *sched_out, *sched_in;
1042         u64 timestamp0;
1043         s64 delta;
1044
1045         if (cpu >= MAX_CPUS || cpu < 0)
1046                 return;
1047
1048         timestamp0 = cpu_last_switched[cpu];
1049         cpu_last_switched[cpu] = timestamp;
1050         if (timestamp0)
1051                 delta = timestamp - timestamp0;
1052         else
1053                 delta = 0;
1054
1055         if (delta < 0)
1056                 die("hm, delta: %Ld < 0 ?\n", delta);
1057
1058
1059         sched_out = threads__findnew(switch_event->prev_pid, &threads, &last_match);
1060         sched_in = threads__findnew(switch_event->next_pid, &threads, &last_match);
1061
1062         in_atoms = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1063         if (!in_atoms) {
1064                 thread_atoms_insert(sched_in);
1065                 in_atoms = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1066                 if (!in_atoms)
1067                         die("in-atom: Internal tree error");
1068         }
1069
1070         out_atoms = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1071         if (!out_atoms) {
1072                 thread_atoms_insert(sched_out);
1073                 out_atoms = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1074                 if (!out_atoms)
1075                         die("out-atom: Internal tree error");
1076         }
1077
1078         lat_sched_in(in_atoms, timestamp);
1079         lat_sched_out(out_atoms, switch_event, delta, timestamp);
1080 }
1081
1082 static void
1083 latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
1084                      struct event *event __used,
1085                      int cpu __used,
1086                      u64 timestamp,
1087                      struct thread *thread __used)
1088 {
1089         struct task_atoms *atoms;
1090         struct work_atom *atom;
1091         struct thread *wakee;
1092
1093         /* Note for later, it may be interesting to observe the failing cases */
1094         if (!wakeup_event->success)
1095                 return;
1096
1097         wakee = threads__findnew(wakeup_event->pid, &threads, &last_match);
1098         atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1099         if (!atoms) {
1100                 thread_atoms_insert(wakee);
1101                 return;
1102         }
1103
1104         if (list_empty(&atoms->atom_list))
1105                 return;
1106
1107         atom = list_entry(atoms->atom_list.prev, struct work_atom, list);
1108
1109         if (atom->state != THREAD_SLEEPING)
1110                 return;
1111
1112         if (atom->sched_out_time > timestamp)
1113                 return;
1114
1115         atom->state = THREAD_WAIT_CPU;
1116         atom->wake_up_time = timestamp;
1117 }
1118
1119 static struct trace_sched_handler lat_ops  = {
1120         .wakeup_event           = latency_wakeup_event,
1121         .switch_event           = latency_switch_event,
1122         .fork_event             = latency_fork_event,
1123 };
1124
1125 static void output_lat_thread(struct task_atoms *atom_list)
1126 {
1127         int i;
1128         int ret;
1129         u64 avg;
1130
1131         if (!atom_list->nb_atoms)
1132                 return;
1133
1134         all_runtime += atom_list->total_runtime;
1135         all_count += atom_list->nb_atoms;
1136
1137         ret = printf(" %s ", atom_list->thread->comm);
1138
1139         for (i = 0; i < 19 - ret; i++)
1140                 printf(" ");
1141
1142         avg = atom_list->total_lat / atom_list->nb_atoms;
1143
1144         printf("|%9.3f ms |%9llu | avg:%9.3f ms | max:%9.3f ms |\n",
1145               (double)atom_list->total_runtime / 1e6,
1146                  atom_list->nb_atoms, (double)avg / 1e6,
1147                  (double)atom_list->max_lat / 1e6);
1148 }
1149
1150 static int pid_cmp(struct task_atoms *l, struct task_atoms *r)
1151 {
1152         if (l->thread->pid < r->thread->pid)
1153                 return -1;
1154         if (l->thread->pid > r->thread->pid)
1155                 return 1;
1156
1157         return 0;
1158 }
1159
1160 static struct sort_dimension pid_sort_dimension = {
1161         .name                   = "pid",
1162         .cmp                    = pid_cmp,
1163 };
1164
1165 static int avg_cmp(struct task_atoms *l, struct task_atoms *r)
1166 {
1167         u64 avgl, avgr;
1168
1169         if (!l->nb_atoms)
1170                 return -1;
1171
1172         if (!r->nb_atoms)
1173                 return 1;
1174
1175         avgl = l->total_lat / l->nb_atoms;
1176         avgr = r->total_lat / r->nb_atoms;
1177
1178         if (avgl < avgr)
1179                 return -1;
1180         if (avgl > avgr)
1181                 return 1;
1182
1183         return 0;
1184 }
1185
1186 static struct sort_dimension avg_sort_dimension = {
1187         .name                   = "avg",
1188         .cmp                    = avg_cmp,
1189 };
1190
1191 static int max_cmp(struct task_atoms *l, struct task_atoms *r)
1192 {
1193         if (l->max_lat < r->max_lat)
1194                 return -1;
1195         if (l->max_lat > r->max_lat)
1196                 return 1;
1197
1198         return 0;
1199 }
1200
1201 static struct sort_dimension max_sort_dimension = {
1202         .name                   = "max",
1203         .cmp                    = max_cmp,
1204 };
1205
1206 static int switch_cmp(struct task_atoms *l, struct task_atoms *r)
1207 {
1208         if (l->nb_atoms < r->nb_atoms)
1209                 return -1;
1210         if (l->nb_atoms > r->nb_atoms)
1211                 return 1;
1212
1213         return 0;
1214 }
1215
1216 static struct sort_dimension switch_sort_dimension = {
1217         .name                   = "switch",
1218         .cmp                    = switch_cmp,
1219 };
1220
1221 static int runtime_cmp(struct task_atoms *l, struct task_atoms *r)
1222 {
1223         if (l->total_runtime < r->total_runtime)
1224                 return -1;
1225         if (l->total_runtime > r->total_runtime)
1226                 return 1;
1227
1228         return 0;
1229 }
1230
1231 static struct sort_dimension runtime_sort_dimension = {
1232         .name                   = "runtime",
1233         .cmp                    = runtime_cmp,
1234 };
1235
1236 static struct sort_dimension *available_sorts[] = {
1237         &pid_sort_dimension,
1238         &avg_sort_dimension,
1239         &max_sort_dimension,
1240         &switch_sort_dimension,
1241         &runtime_sort_dimension,
1242 };
1243
1244 #define NB_AVAILABLE_SORTS      (int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
1245
1246 static LIST_HEAD(sort_list);
1247
1248 static int sort_dimension__add(char *tok, struct list_head *list)
1249 {
1250         int i;
1251
1252         for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
1253                 if (!strcmp(available_sorts[i]->name, tok)) {
1254                         list_add_tail(&available_sorts[i]->list, list);
1255
1256                         return 0;
1257                 }
1258         }
1259
1260         return -1;
1261 }
1262
1263 static void setup_sorting(void);
1264
1265 static void sort_lat(void)
1266 {
1267         struct rb_node *node;
1268
1269         for (;;) {
1270                 struct task_atoms *data;
1271                 node = rb_first(&atom_root);
1272                 if (!node)
1273                         break;
1274
1275                 rb_erase(node, &atom_root);
1276                 data = rb_entry(node, struct task_atoms, node);
1277                 __thread_latency_insert(&sorted_atom_root, data, &sort_list);
1278         }
1279 }
1280
1281 static void __cmd_lat(void)
1282 {
1283         struct rb_node *next;
1284
1285         setup_pager();
1286         read_events();
1287         sort_lat();
1288
1289         printf("-----------------------------------------------------------------------------------\n");
1290         printf(" Task              |  Runtime ms | Switches | Average delay ms | Maximum delay ms |\n");
1291         printf("-----------------------------------------------------------------------------------\n");
1292
1293         next = rb_first(&sorted_atom_root);
1294
1295         while (next) {
1296                 struct task_atoms *atom_list;
1297
1298                 atom_list = rb_entry(next, struct task_atoms, node);
1299                 output_lat_thread(atom_list);
1300                 next = rb_next(next);
1301         }
1302
1303         printf("-----------------------------------------------------------------------------------\n");
1304         printf(" TOTAL:            |%9.3f ms |%9Ld |\n",
1305                 (double)all_runtime/1e6, all_count);
1306         printf("---------------------------------------------\n");
1307 }
1308
1309 static struct trace_sched_handler *trace_handler;
1310
1311 static void
1312 process_sched_wakeup_event(struct raw_event_sample *raw,
1313                            struct event *event,
1314                            int cpu __used,
1315                            u64 timestamp __used,
1316                            struct thread *thread __used)
1317 {
1318         struct trace_wakeup_event wakeup_event;
1319
1320         FILL_COMMON_FIELDS(wakeup_event, event, raw->data);
1321
1322         FILL_ARRAY(wakeup_event, comm, event, raw->data);
1323         FILL_FIELD(wakeup_event, pid, event, raw->data);
1324         FILL_FIELD(wakeup_event, prio, event, raw->data);
1325         FILL_FIELD(wakeup_event, success, event, raw->data);
1326         FILL_FIELD(wakeup_event, cpu, event, raw->data);
1327
1328         trace_handler->wakeup_event(&wakeup_event, event, cpu, timestamp, thread);
1329 }
1330
1331 static void
1332 process_sched_switch_event(struct raw_event_sample *raw,
1333                            struct event *event,
1334                            int cpu __used,
1335                            u64 timestamp __used,
1336                            struct thread *thread __used)
1337 {
1338         struct trace_switch_event switch_event;
1339
1340         FILL_COMMON_FIELDS(switch_event, event, raw->data);
1341
1342         FILL_ARRAY(switch_event, prev_comm, event, raw->data);
1343         FILL_FIELD(switch_event, prev_pid, event, raw->data);
1344         FILL_FIELD(switch_event, prev_prio, event, raw->data);
1345         FILL_FIELD(switch_event, prev_state, event, raw->data);
1346         FILL_ARRAY(switch_event, next_comm, event, raw->data);
1347         FILL_FIELD(switch_event, next_pid, event, raw->data);
1348         FILL_FIELD(switch_event, next_prio, event, raw->data);
1349
1350         trace_handler->switch_event(&switch_event, event, cpu, timestamp, thread);
1351 }
1352
1353 static void
1354 process_sched_fork_event(struct raw_event_sample *raw,
1355                          struct event *event,
1356                          int cpu __used,
1357                          u64 timestamp __used,
1358                          struct thread *thread __used)
1359 {
1360         struct trace_fork_event fork_event;
1361
1362         FILL_COMMON_FIELDS(fork_event, event, raw->data);
1363
1364         FILL_ARRAY(fork_event, parent_comm, event, raw->data);
1365         FILL_FIELD(fork_event, parent_pid, event, raw->data);
1366         FILL_ARRAY(fork_event, child_comm, event, raw->data);
1367         FILL_FIELD(fork_event, child_pid, event, raw->data);
1368
1369         trace_handler->fork_event(&fork_event, event, cpu, timestamp, thread);
1370 }
1371
1372 static void
1373 process_sched_exit_event(struct event *event,
1374                          int cpu __used,
1375                          u64 timestamp __used,
1376                          struct thread *thread __used)
1377 {
1378         if (verbose)
1379                 printf("sched_exit event %p\n", event);
1380 }
1381
1382 static void
1383 process_raw_event(event_t *raw_event __used, void *more_data,
1384                   int cpu, u64 timestamp, struct thread *thread)
1385 {
1386         struct raw_event_sample *raw = more_data;
1387         struct event *event;
1388         int type;
1389
1390         type = trace_parse_common_type(raw->data);
1391         event = trace_find_event(type);
1392
1393         if (!strcmp(event->name, "sched_switch"))
1394                 process_sched_switch_event(raw, event, cpu, timestamp, thread);
1395         if (!strcmp(event->name, "sched_wakeup"))
1396                 process_sched_wakeup_event(raw, event, cpu, timestamp, thread);
1397         if (!strcmp(event->name, "sched_wakeup_new"))
1398                 process_sched_wakeup_event(raw, event, cpu, timestamp, thread);
1399         if (!strcmp(event->name, "sched_process_fork"))
1400                 process_sched_fork_event(raw, event, cpu, timestamp, thread);
1401         if (!strcmp(event->name, "sched_process_exit"))
1402                 process_sched_exit_event(event, cpu, timestamp, thread);
1403 }
1404
1405 static int
1406 process_sample_event(event_t *event, unsigned long offset, unsigned long head)
1407 {
1408         char level;
1409         int show = 0;
1410         struct dso *dso = NULL;
1411         struct thread *thread;
1412         u64 ip = event->ip.ip;
1413         u64 timestamp = -1;
1414         u32 cpu = -1;
1415         u64 period = 1;
1416         void *more_data = event->ip.__more_data;
1417         int cpumode;
1418
1419         thread = threads__findnew(event->ip.pid, &threads, &last_match);
1420
1421         if (sample_type & PERF_SAMPLE_TIME) {
1422                 timestamp = *(u64 *)more_data;
1423                 more_data += sizeof(u64);
1424         }
1425
1426         if (sample_type & PERF_SAMPLE_CPU) {
1427                 cpu = *(u32 *)more_data;
1428                 more_data += sizeof(u32);
1429                 more_data += sizeof(u32); /* reserved */
1430         }
1431
1432         if (sample_type & PERF_SAMPLE_PERIOD) {
1433                 period = *(u64 *)more_data;
1434                 more_data += sizeof(u64);
1435         }
1436
1437         dump_printf("%p [%p]: PERF_EVENT_SAMPLE (IP, %d): %d/%d: %p period: %Ld\n",
1438                 (void *)(offset + head),
1439                 (void *)(long)(event->header.size),
1440                 event->header.misc,
1441                 event->ip.pid, event->ip.tid,
1442                 (void *)(long)ip,
1443                 (long long)period);
1444
1445         dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
1446
1447         if (thread == NULL) {
1448                 eprintf("problem processing %d event, skipping it.\n",
1449                         event->header.type);
1450                 return -1;
1451         }
1452
1453         cpumode = event->header.misc & PERF_EVENT_MISC_CPUMODE_MASK;
1454
1455         if (cpumode == PERF_EVENT_MISC_KERNEL) {
1456                 show = SHOW_KERNEL;
1457                 level = 'k';
1458
1459                 dso = kernel_dso;
1460
1461                 dump_printf(" ...... dso: %s\n", dso->name);
1462
1463         } else if (cpumode == PERF_EVENT_MISC_USER) {
1464
1465                 show = SHOW_USER;
1466                 level = '.';
1467
1468         } else {
1469                 show = SHOW_HV;
1470                 level = 'H';
1471
1472                 dso = hypervisor_dso;
1473
1474                 dump_printf(" ...... dso: [hypervisor]\n");
1475         }
1476
1477         if (sample_type & PERF_SAMPLE_RAW)
1478                 process_raw_event(event, more_data, cpu, timestamp, thread);
1479
1480         return 0;
1481 }
1482
1483 static int
1484 process_event(event_t *event, unsigned long offset, unsigned long head)
1485 {
1486         trace_event(event);
1487
1488         switch (event->header.type) {
1489         case PERF_EVENT_MMAP ... PERF_EVENT_LOST:
1490                 return 0;
1491
1492         case PERF_EVENT_COMM:
1493                 return process_comm_event(event, offset, head);
1494
1495         case PERF_EVENT_EXIT ... PERF_EVENT_READ:
1496                 return 0;
1497
1498         case PERF_EVENT_SAMPLE:
1499                 return process_sample_event(event, offset, head);
1500
1501         case PERF_EVENT_MAX:
1502         default:
1503                 return -1;
1504         }
1505
1506         return 0;
1507 }
1508
1509 static int read_events(void)
1510 {
1511         int ret, rc = EXIT_FAILURE;
1512         unsigned long offset = 0;
1513         unsigned long head = 0;
1514         struct stat perf_stat;
1515         event_t *event;
1516         uint32_t size;
1517         char *buf;
1518
1519         trace_report();
1520         register_idle_thread(&threads, &last_match);
1521
1522         input = open(input_name, O_RDONLY);
1523         if (input < 0) {
1524                 perror("failed to open file");
1525                 exit(-1);
1526         }
1527
1528         ret = fstat(input, &perf_stat);
1529         if (ret < 0) {
1530                 perror("failed to stat file");
1531                 exit(-1);
1532         }
1533
1534         if (!perf_stat.st_size) {
1535                 fprintf(stderr, "zero-sized file, nothing to do!\n");
1536                 exit(0);
1537         }
1538         header = perf_header__read(input);
1539         head = header->data_offset;
1540         sample_type = perf_header__sample_type(header);
1541
1542         if (!(sample_type & PERF_SAMPLE_RAW))
1543                 die("No trace sample to read. Did you call perf record "
1544                     "without -R?");
1545
1546         if (load_kernel() < 0) {
1547                 perror("failed to load kernel symbols");
1548                 return EXIT_FAILURE;
1549         }
1550
1551 remap:
1552         buf = (char *)mmap(NULL, page_size * mmap_window, PROT_READ,
1553                            MAP_SHARED, input, offset);
1554         if (buf == MAP_FAILED) {
1555                 perror("failed to mmap file");
1556                 exit(-1);
1557         }
1558
1559 more:
1560         event = (event_t *)(buf + head);
1561
1562         size = event->header.size;
1563         if (!size)
1564                 size = 8;
1565
1566         if (head + event->header.size >= page_size * mmap_window) {
1567                 unsigned long shift = page_size * (head / page_size);
1568                 int res;
1569
1570                 res = munmap(buf, page_size * mmap_window);
1571                 assert(res == 0);
1572
1573                 offset += shift;
1574                 head -= shift;
1575                 goto remap;
1576         }
1577
1578         size = event->header.size;
1579
1580
1581         if (!size || process_event(event, offset, head) < 0) {
1582
1583                 /*
1584                  * assume we lost track of the stream, check alignment, and
1585                  * increment a single u64 in the hope to catch on again 'soon'.
1586                  */
1587
1588                 if (unlikely(head & 7))
1589                         head &= ~7ULL;
1590
1591                 size = 8;
1592         }
1593
1594         head += size;
1595
1596         if (offset + head < (unsigned long)perf_stat.st_size)
1597                 goto more;
1598
1599         rc = EXIT_SUCCESS;
1600         close(input);
1601
1602         return rc;
1603 }
1604
1605 static const char * const sched_usage[] = {
1606         "perf sched [<options>] {record|latency|replay|trace}",
1607         NULL
1608 };
1609
1610 static const struct option sched_options[] = {
1611         OPT_BOOLEAN('v', "verbose", &verbose,
1612                     "be more verbose (show symbol address, etc)"),
1613         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1614                     "dump raw trace in ASCII"),
1615         OPT_END()
1616 };
1617
1618 static const char * const latency_usage[] = {
1619         "perf sched latency [<options>]",
1620         NULL
1621 };
1622
1623 static const struct option latency_options[] = {
1624         OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
1625                    "sort by key(s): runtime, switch, avg, max"),
1626         OPT_BOOLEAN('v', "verbose", &verbose,
1627                     "be more verbose (show symbol address, etc)"),
1628         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1629                     "dump raw trace in ASCII"),
1630         OPT_END()
1631 };
1632
1633 static const char * const replay_usage[] = {
1634         "perf sched replay [<options>]",
1635         NULL
1636 };
1637
1638 static const struct option replay_options[] = {
1639         OPT_INTEGER('r', "repeat", &replay_repeat,
1640                     "repeat the workload replay N times (-1: infinite)"),
1641         OPT_BOOLEAN('v', "verbose", &verbose,
1642                     "be more verbose (show symbol address, etc)"),
1643         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1644                     "dump raw trace in ASCII"),
1645         OPT_END()
1646 };
1647
1648 static void setup_sorting(void)
1649 {
1650         char *tmp, *tok, *str = strdup(sort_order);
1651
1652         for (tok = strtok_r(str, ", ", &tmp);
1653                         tok; tok = strtok_r(NULL, ", ", &tmp)) {
1654                 if (sort_dimension__add(tok, &sort_list) < 0) {
1655                         error("Unknown --sort key: `%s'", tok);
1656                         usage_with_options(latency_usage, latency_options);
1657                 }
1658         }
1659
1660         free(str);
1661
1662         sort_dimension__add((char *)"pid", &cmp_pid);
1663 }
1664
1665 static const char *record_args[] = {
1666         "record",
1667         "-a",
1668         "-R",
1669         "-M",
1670         "-g",
1671         "-c", "1",
1672         "-e", "sched:sched_switch:r",
1673         "-e", "sched:sched_stat_wait:r",
1674         "-e", "sched:sched_stat_sleep:r",
1675         "-e", "sched:sched_stat_iowait:r",
1676         "-e", "sched:sched_process_exit:r",
1677         "-e", "sched:sched_process_fork:r",
1678         "-e", "sched:sched_wakeup:r",
1679         "-e", "sched:sched_migrate_task:r",
1680 };
1681
1682 static int __cmd_record(int argc, const char **argv)
1683 {
1684         unsigned int rec_argc, i, j;
1685         const char **rec_argv;
1686
1687         rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1688         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1689
1690         for (i = 0; i < ARRAY_SIZE(record_args); i++)
1691                 rec_argv[i] = strdup(record_args[i]);
1692
1693         for (j = 1; j < (unsigned int)argc; j++, i++)
1694                 rec_argv[i] = argv[j];
1695
1696         BUG_ON(i != rec_argc);
1697
1698         return cmd_record(i, rec_argv, NULL);
1699 }
1700
1701 int cmd_sched(int argc, const char **argv, const char *prefix __used)
1702 {
1703         symbol__init();
1704         page_size = getpagesize();
1705
1706         argc = parse_options(argc, argv, sched_options, sched_usage,
1707                              PARSE_OPT_STOP_AT_NON_OPTION);
1708         if (!argc)
1709                 usage_with_options(sched_usage, sched_options);
1710
1711         if (!strncmp(argv[0], "rec", 3)) {
1712                 return __cmd_record(argc, argv);
1713         } else if (!strncmp(argv[0], "lat", 3)) {
1714                 trace_handler = &lat_ops;
1715                 if (argc > 1) {
1716                         argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1717                         if (argc)
1718                                 usage_with_options(latency_usage, latency_options);
1719                 }
1720                 setup_sorting();
1721                 __cmd_lat();
1722         } else if (!strncmp(argv[0], "rep", 3)) {
1723                 trace_handler = &replay_ops;
1724                 if (argc) {
1725                         argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1726                         if (argc)
1727                                 usage_with_options(replay_usage, replay_options);
1728                 }
1729                 __cmd_replay();
1730         } else if (!strcmp(argv[0], "trace")) {
1731                 /*
1732                  * Aliased to 'perf trace' for now:
1733                  */
1734                 return cmd_trace(argc, argv, prefix);
1735         } else {
1736                 usage_with_options(sched_usage, sched_options);
1737         }
1738
1739         return 0;
1740 }