[ALSA] Remove sound/driver.h
[safe/jmp/linux-2.6] / sound / pci / fm801.c
1 /*
2  *  The driver for the ForteMedia FM801 based soundcards
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *
5  *  Support FM only card by Andy Shevchenko <andy@smile.org.ua>
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/delay.h>
24 #include <linux/init.h>
25 #include <linux/interrupt.h>
26 #include <linux/pci.h>
27 #include <linux/slab.h>
28 #include <linux/moduleparam.h>
29 #include <sound/core.h>
30 #include <sound/pcm.h>
31 #include <sound/tlv.h>
32 #include <sound/ac97_codec.h>
33 #include <sound/mpu401.h>
34 #include <sound/opl3.h>
35 #include <sound/initval.h>
36
37 #include <asm/io.h>
38
39 #ifdef CONFIG_SND_FM801_TEA575X_BOOL
40 #include <sound/tea575x-tuner.h>
41 #define TEA575X_RADIO 1
42 #endif
43
44 MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>");
45 MODULE_DESCRIPTION("ForteMedia FM801");
46 MODULE_LICENSE("GPL");
47 MODULE_SUPPORTED_DEVICE("{{ForteMedia,FM801},"
48                 "{Genius,SoundMaker Live 5.1}}");
49
50 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;      /* Index 0-MAX */
51 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;       /* ID for this card */
52 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;      /* Enable this card */
53 /*
54  *  Enable TEA575x tuner
55  *    1 = MediaForte 256-PCS
56  *    2 = MediaForte 256-PCPR
57  *    3 = MediaForte 64-PCR
58  *   16 = setup tuner only (this is additional bit), i.e. SF-64-PCR FM card
59  *  High 16-bits are video (radio) device number + 1
60  */
61 static int tea575x_tuner[SNDRV_CARDS];
62
63 module_param_array(index, int, NULL, 0444);
64 MODULE_PARM_DESC(index, "Index value for the FM801 soundcard.");
65 module_param_array(id, charp, NULL, 0444);
66 MODULE_PARM_DESC(id, "ID string for the FM801 soundcard.");
67 module_param_array(enable, bool, NULL, 0444);
68 MODULE_PARM_DESC(enable, "Enable FM801 soundcard.");
69 module_param_array(tea575x_tuner, int, NULL, 0444);
70 MODULE_PARM_DESC(tea575x_tuner, "Enable TEA575x tuner.");
71
72 /*
73  *  Direct registers
74  */
75
76 #define FM801_REG(chip, reg)    (chip->port + FM801_##reg)
77
78 #define FM801_PCM_VOL           0x00    /* PCM Output Volume */
79 #define FM801_FM_VOL            0x02    /* FM Output Volume */
80 #define FM801_I2S_VOL           0x04    /* I2S Volume */
81 #define FM801_REC_SRC           0x06    /* Record Source */
82 #define FM801_PLY_CTRL          0x08    /* Playback Control */
83 #define FM801_PLY_COUNT         0x0a    /* Playback Count */
84 #define FM801_PLY_BUF1          0x0c    /* Playback Bufer I */
85 #define FM801_PLY_BUF2          0x10    /* Playback Buffer II */
86 #define FM801_CAP_CTRL          0x14    /* Capture Control */
87 #define FM801_CAP_COUNT         0x16    /* Capture Count */
88 #define FM801_CAP_BUF1          0x18    /* Capture Buffer I */
89 #define FM801_CAP_BUF2          0x1c    /* Capture Buffer II */
90 #define FM801_CODEC_CTRL        0x22    /* Codec Control */
91 #define FM801_I2S_MODE          0x24    /* I2S Mode Control */
92 #define FM801_VOLUME            0x26    /* Volume Up/Down/Mute Status */
93 #define FM801_I2C_CTRL          0x29    /* I2C Control */
94 #define FM801_AC97_CMD          0x2a    /* AC'97 Command */
95 #define FM801_AC97_DATA         0x2c    /* AC'97 Data */
96 #define FM801_MPU401_DATA       0x30    /* MPU401 Data */
97 #define FM801_MPU401_CMD        0x31    /* MPU401 Command */
98 #define FM801_GPIO_CTRL         0x52    /* General Purpose I/O Control */
99 #define FM801_GEN_CTRL          0x54    /* General Control */
100 #define FM801_IRQ_MASK          0x56    /* Interrupt Mask */
101 #define FM801_IRQ_STATUS        0x5a    /* Interrupt Status */
102 #define FM801_OPL3_BANK0        0x68    /* OPL3 Status Read / Bank 0 Write */
103 #define FM801_OPL3_DATA0        0x69    /* OPL3 Data 0 Write */
104 #define FM801_OPL3_BANK1        0x6a    /* OPL3 Bank 1 Write */
105 #define FM801_OPL3_DATA1        0x6b    /* OPL3 Bank 1 Write */
106 #define FM801_POWERDOWN         0x70    /* Blocks Power Down Control */
107
108 /* codec access */
109 #define FM801_AC97_READ         (1<<7)  /* read=1, write=0 */
110 #define FM801_AC97_VALID        (1<<8)  /* port valid=1 */
111 #define FM801_AC97_BUSY         (1<<9)  /* busy=1 */
112 #define FM801_AC97_ADDR_SHIFT   10      /* codec id (2bit) */
113
114 /* playback and record control register bits */
115 #define FM801_BUF1_LAST         (1<<1)
116 #define FM801_BUF2_LAST         (1<<2)
117 #define FM801_START             (1<<5)
118 #define FM801_PAUSE             (1<<6)
119 #define FM801_IMMED_STOP        (1<<7)
120 #define FM801_RATE_SHIFT        8
121 #define FM801_RATE_MASK         (15 << FM801_RATE_SHIFT)
122 #define FM801_CHANNELS_4        (1<<12) /* playback only */
123 #define FM801_CHANNELS_6        (2<<12) /* playback only */
124 #define FM801_CHANNELS_6MS      (3<<12) /* playback only */
125 #define FM801_CHANNELS_MASK     (3<<12)
126 #define FM801_16BIT             (1<<14)
127 #define FM801_STEREO            (1<<15)
128
129 /* IRQ status bits */
130 #define FM801_IRQ_PLAYBACK      (1<<8)
131 #define FM801_IRQ_CAPTURE       (1<<9)
132 #define FM801_IRQ_VOLUME        (1<<14)
133 #define FM801_IRQ_MPU           (1<<15)
134
135 /* GPIO control register */
136 #define FM801_GPIO_GP0          (1<<0)  /* read/write */
137 #define FM801_GPIO_GP1          (1<<1)
138 #define FM801_GPIO_GP2          (1<<2)
139 #define FM801_GPIO_GP3          (1<<3)
140 #define FM801_GPIO_GP(x)        (1<<(0+(x)))
141 #define FM801_GPIO_GD0          (1<<8)  /* directions: 1 = input, 0 = output*/
142 #define FM801_GPIO_GD1          (1<<9)
143 #define FM801_GPIO_GD2          (1<<10)
144 #define FM801_GPIO_GD3          (1<<11)
145 #define FM801_GPIO_GD(x)        (1<<(8+(x)))
146 #define FM801_GPIO_GS0          (1<<12) /* function select: */
147 #define FM801_GPIO_GS1          (1<<13) /*    1 = GPIO */
148 #define FM801_GPIO_GS2          (1<<14) /*    0 = other (S/PDIF, VOL) */
149 #define FM801_GPIO_GS3          (1<<15)
150 #define FM801_GPIO_GS(x)        (1<<(12+(x)))
151         
152 /*
153
154  */
155
156 struct fm801 {
157         int irq;
158
159         unsigned long port;     /* I/O port number */
160         unsigned int multichannel: 1,   /* multichannel support */
161                      secondary: 1;      /* secondary codec */
162         unsigned char secondary_addr;   /* address of the secondary codec */
163         unsigned int tea575x_tuner;     /* tuner flags */
164
165         unsigned short ply_ctrl; /* playback control */
166         unsigned short cap_ctrl; /* capture control */
167
168         unsigned long ply_buffer;
169         unsigned int ply_buf;
170         unsigned int ply_count;
171         unsigned int ply_size;
172         unsigned int ply_pos;
173
174         unsigned long cap_buffer;
175         unsigned int cap_buf;
176         unsigned int cap_count;
177         unsigned int cap_size;
178         unsigned int cap_pos;
179
180         struct snd_ac97_bus *ac97_bus;
181         struct snd_ac97 *ac97;
182         struct snd_ac97 *ac97_sec;
183
184         struct pci_dev *pci;
185         struct snd_card *card;
186         struct snd_pcm *pcm;
187         struct snd_rawmidi *rmidi;
188         struct snd_pcm_substream *playback_substream;
189         struct snd_pcm_substream *capture_substream;
190         unsigned int p_dma_size;
191         unsigned int c_dma_size;
192
193         spinlock_t reg_lock;
194         struct snd_info_entry *proc_entry;
195
196 #ifdef TEA575X_RADIO
197         struct snd_tea575x tea;
198 #endif
199
200 #ifdef CONFIG_PM
201         u16 saved_regs[0x20];
202 #endif
203 };
204
205 static struct pci_device_id snd_fm801_ids[] = {
206         { 0x1319, 0x0801, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, },   /* FM801 */
207         { 0x5213, 0x0510, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, },   /* Gallant Odyssey Sound 4 */
208         { 0, }
209 };
210
211 MODULE_DEVICE_TABLE(pci, snd_fm801_ids);
212
213 /*
214  *  common I/O routines
215  */
216
217 static int snd_fm801_update_bits(struct fm801 *chip, unsigned short reg,
218                                  unsigned short mask, unsigned short value)
219 {
220         int change;
221         unsigned long flags;
222         unsigned short old, new;
223
224         spin_lock_irqsave(&chip->reg_lock, flags);
225         old = inw(chip->port + reg);
226         new = (old & ~mask) | value;
227         change = old != new;
228         if (change)
229                 outw(new, chip->port + reg);
230         spin_unlock_irqrestore(&chip->reg_lock, flags);
231         return change;
232 }
233
234 static void snd_fm801_codec_write(struct snd_ac97 *ac97,
235                                   unsigned short reg,
236                                   unsigned short val)
237 {
238         struct fm801 *chip = ac97->private_data;
239         int idx;
240
241         /*
242          *  Wait until the codec interface is not ready..
243          */
244         for (idx = 0; idx < 100; idx++) {
245                 if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
246                         goto ok1;
247                 udelay(10);
248         }
249         snd_printk(KERN_ERR "AC'97 interface is busy (1)\n");
250         return;
251
252  ok1:
253         /* write data and address */
254         outw(val, FM801_REG(chip, AC97_DATA));
255         outw(reg | (ac97->addr << FM801_AC97_ADDR_SHIFT), FM801_REG(chip, AC97_CMD));
256         /*
257          *  Wait until the write command is not completed..
258          */
259         for (idx = 0; idx < 1000; idx++) {
260                 if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
261                         return;
262                 udelay(10);
263         }
264         snd_printk(KERN_ERR "AC'97 interface #%d is busy (2)\n", ac97->num);
265 }
266
267 static unsigned short snd_fm801_codec_read(struct snd_ac97 *ac97, unsigned short reg)
268 {
269         struct fm801 *chip = ac97->private_data;
270         int idx;
271
272         /*
273          *  Wait until the codec interface is not ready..
274          */
275         for (idx = 0; idx < 100; idx++) {
276                 if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
277                         goto ok1;
278                 udelay(10);
279         }
280         snd_printk(KERN_ERR "AC'97 interface is busy (1)\n");
281         return 0;
282
283  ok1:
284         /* read command */
285         outw(reg | (ac97->addr << FM801_AC97_ADDR_SHIFT) | FM801_AC97_READ,
286              FM801_REG(chip, AC97_CMD));
287         for (idx = 0; idx < 100; idx++) {
288                 if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
289                         goto ok2;
290                 udelay(10);
291         }
292         snd_printk(KERN_ERR "AC'97 interface #%d is busy (2)\n", ac97->num);
293         return 0;
294
295  ok2:
296         for (idx = 0; idx < 1000; idx++) {
297                 if (inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_VALID)
298                         goto ok3;
299                 udelay(10);
300         }
301         snd_printk(KERN_ERR "AC'97 interface #%d is not valid (2)\n", ac97->num);
302         return 0;
303
304  ok3:
305         return inw(FM801_REG(chip, AC97_DATA));
306 }
307
308 static unsigned int rates[] = {
309   5500,  8000,  9600, 11025,
310   16000, 19200, 22050, 32000,
311   38400, 44100, 48000
312 };
313
314 static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
315         .count = ARRAY_SIZE(rates),
316         .list = rates,
317         .mask = 0,
318 };
319
320 static unsigned int channels[] = {
321   2, 4, 6
322 };
323
324 static struct snd_pcm_hw_constraint_list hw_constraints_channels = {
325         .count = ARRAY_SIZE(channels),
326         .list = channels,
327         .mask = 0,
328 };
329
330 /*
331  *  Sample rate routines
332  */
333
334 static unsigned short snd_fm801_rate_bits(unsigned int rate)
335 {
336         unsigned int idx;
337
338         for (idx = 0; idx < ARRAY_SIZE(rates); idx++)
339                 if (rates[idx] == rate)
340                         return idx;
341         snd_BUG();
342         return ARRAY_SIZE(rates) - 1;
343 }
344
345 /*
346  *  PCM part
347  */
348
349 static int snd_fm801_playback_trigger(struct snd_pcm_substream *substream,
350                                       int cmd)
351 {
352         struct fm801 *chip = snd_pcm_substream_chip(substream);
353
354         spin_lock(&chip->reg_lock);
355         switch (cmd) {
356         case SNDRV_PCM_TRIGGER_START:
357                 chip->ply_ctrl &= ~(FM801_BUF1_LAST |
358                                      FM801_BUF2_LAST |
359                                      FM801_PAUSE);
360                 chip->ply_ctrl |= FM801_START |
361                                    FM801_IMMED_STOP;
362                 break;
363         case SNDRV_PCM_TRIGGER_STOP:
364                 chip->ply_ctrl &= ~(FM801_START | FM801_PAUSE);
365                 break;
366         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
367         case SNDRV_PCM_TRIGGER_SUSPEND:
368                 chip->ply_ctrl |= FM801_PAUSE;
369                 break;
370         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
371         case SNDRV_PCM_TRIGGER_RESUME:
372                 chip->ply_ctrl &= ~FM801_PAUSE;
373                 break;
374         default:
375                 spin_unlock(&chip->reg_lock);
376                 snd_BUG();
377                 return -EINVAL;
378         }
379         outw(chip->ply_ctrl, FM801_REG(chip, PLY_CTRL));
380         spin_unlock(&chip->reg_lock);
381         return 0;
382 }
383
384 static int snd_fm801_capture_trigger(struct snd_pcm_substream *substream,
385                                      int cmd)
386 {
387         struct fm801 *chip = snd_pcm_substream_chip(substream);
388
389         spin_lock(&chip->reg_lock);
390         switch (cmd) {
391         case SNDRV_PCM_TRIGGER_START:
392                 chip->cap_ctrl &= ~(FM801_BUF1_LAST |
393                                      FM801_BUF2_LAST |
394                                      FM801_PAUSE);
395                 chip->cap_ctrl |= FM801_START |
396                                    FM801_IMMED_STOP;
397                 break;
398         case SNDRV_PCM_TRIGGER_STOP:
399                 chip->cap_ctrl &= ~(FM801_START | FM801_PAUSE);
400                 break;
401         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
402         case SNDRV_PCM_TRIGGER_SUSPEND:
403                 chip->cap_ctrl |= FM801_PAUSE;
404                 break;
405         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
406         case SNDRV_PCM_TRIGGER_RESUME:
407                 chip->cap_ctrl &= ~FM801_PAUSE;
408                 break;
409         default:
410                 spin_unlock(&chip->reg_lock);
411                 snd_BUG();
412                 return -EINVAL;
413         }
414         outw(chip->cap_ctrl, FM801_REG(chip, CAP_CTRL));
415         spin_unlock(&chip->reg_lock);
416         return 0;
417 }
418
419 static int snd_fm801_hw_params(struct snd_pcm_substream *substream,
420                                struct snd_pcm_hw_params *hw_params)
421 {
422         return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
423 }
424
425 static int snd_fm801_hw_free(struct snd_pcm_substream *substream)
426 {
427         return snd_pcm_lib_free_pages(substream);
428 }
429
430 static int snd_fm801_playback_prepare(struct snd_pcm_substream *substream)
431 {
432         struct fm801 *chip = snd_pcm_substream_chip(substream);
433         struct snd_pcm_runtime *runtime = substream->runtime;
434
435         chip->ply_size = snd_pcm_lib_buffer_bytes(substream);
436         chip->ply_count = snd_pcm_lib_period_bytes(substream);
437         spin_lock_irq(&chip->reg_lock);
438         chip->ply_ctrl &= ~(FM801_START | FM801_16BIT |
439                              FM801_STEREO | FM801_RATE_MASK |
440                              FM801_CHANNELS_MASK);
441         if (snd_pcm_format_width(runtime->format) == 16)
442                 chip->ply_ctrl |= FM801_16BIT;
443         if (runtime->channels > 1) {
444                 chip->ply_ctrl |= FM801_STEREO;
445                 if (runtime->channels == 4)
446                         chip->ply_ctrl |= FM801_CHANNELS_4;
447                 else if (runtime->channels == 6)
448                         chip->ply_ctrl |= FM801_CHANNELS_6;
449         }
450         chip->ply_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT;
451         chip->ply_buf = 0;
452         outw(chip->ply_ctrl, FM801_REG(chip, PLY_CTRL));
453         outw(chip->ply_count - 1, FM801_REG(chip, PLY_COUNT));
454         chip->ply_buffer = runtime->dma_addr;
455         chip->ply_pos = 0;
456         outl(chip->ply_buffer, FM801_REG(chip, PLY_BUF1));
457         outl(chip->ply_buffer + (chip->ply_count % chip->ply_size), FM801_REG(chip, PLY_BUF2));
458         spin_unlock_irq(&chip->reg_lock);
459         return 0;
460 }
461
462 static int snd_fm801_capture_prepare(struct snd_pcm_substream *substream)
463 {
464         struct fm801 *chip = snd_pcm_substream_chip(substream);
465         struct snd_pcm_runtime *runtime = substream->runtime;
466
467         chip->cap_size = snd_pcm_lib_buffer_bytes(substream);
468         chip->cap_count = snd_pcm_lib_period_bytes(substream);
469         spin_lock_irq(&chip->reg_lock);
470         chip->cap_ctrl &= ~(FM801_START | FM801_16BIT |
471                              FM801_STEREO | FM801_RATE_MASK);
472         if (snd_pcm_format_width(runtime->format) == 16)
473                 chip->cap_ctrl |= FM801_16BIT;
474         if (runtime->channels > 1)
475                 chip->cap_ctrl |= FM801_STEREO;
476         chip->cap_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT;
477         chip->cap_buf = 0;
478         outw(chip->cap_ctrl, FM801_REG(chip, CAP_CTRL));
479         outw(chip->cap_count - 1, FM801_REG(chip, CAP_COUNT));
480         chip->cap_buffer = runtime->dma_addr;
481         chip->cap_pos = 0;
482         outl(chip->cap_buffer, FM801_REG(chip, CAP_BUF1));
483         outl(chip->cap_buffer + (chip->cap_count % chip->cap_size), FM801_REG(chip, CAP_BUF2));
484         spin_unlock_irq(&chip->reg_lock);
485         return 0;
486 }
487
488 static snd_pcm_uframes_t snd_fm801_playback_pointer(struct snd_pcm_substream *substream)
489 {
490         struct fm801 *chip = snd_pcm_substream_chip(substream);
491         size_t ptr;
492
493         if (!(chip->ply_ctrl & FM801_START))
494                 return 0;
495         spin_lock(&chip->reg_lock);
496         ptr = chip->ply_pos + (chip->ply_count - 1) - inw(FM801_REG(chip, PLY_COUNT));
497         if (inw(FM801_REG(chip, IRQ_STATUS)) & FM801_IRQ_PLAYBACK) {
498                 ptr += chip->ply_count;
499                 ptr %= chip->ply_size;
500         }
501         spin_unlock(&chip->reg_lock);
502         return bytes_to_frames(substream->runtime, ptr);
503 }
504
505 static snd_pcm_uframes_t snd_fm801_capture_pointer(struct snd_pcm_substream *substream)
506 {
507         struct fm801 *chip = snd_pcm_substream_chip(substream);
508         size_t ptr;
509
510         if (!(chip->cap_ctrl & FM801_START))
511                 return 0;
512         spin_lock(&chip->reg_lock);
513         ptr = chip->cap_pos + (chip->cap_count - 1) - inw(FM801_REG(chip, CAP_COUNT));
514         if (inw(FM801_REG(chip, IRQ_STATUS)) & FM801_IRQ_CAPTURE) {
515                 ptr += chip->cap_count;
516                 ptr %= chip->cap_size;
517         }
518         spin_unlock(&chip->reg_lock);
519         return bytes_to_frames(substream->runtime, ptr);
520 }
521
522 static irqreturn_t snd_fm801_interrupt(int irq, void *dev_id)
523 {
524         struct fm801 *chip = dev_id;
525         unsigned short status;
526         unsigned int tmp;
527
528         status = inw(FM801_REG(chip, IRQ_STATUS));
529         status &= FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU|FM801_IRQ_VOLUME;
530         if (! status)
531                 return IRQ_NONE;
532         /* ack first */
533         outw(status, FM801_REG(chip, IRQ_STATUS));
534         if (chip->pcm && (status & FM801_IRQ_PLAYBACK) && chip->playback_substream) {
535                 spin_lock(&chip->reg_lock);
536                 chip->ply_buf++;
537                 chip->ply_pos += chip->ply_count;
538                 chip->ply_pos %= chip->ply_size;
539                 tmp = chip->ply_pos + chip->ply_count;
540                 tmp %= chip->ply_size;
541                 outl(chip->ply_buffer + tmp,
542                                 (chip->ply_buf & 1) ?
543                                         FM801_REG(chip, PLY_BUF1) :
544                                         FM801_REG(chip, PLY_BUF2));
545                 spin_unlock(&chip->reg_lock);
546                 snd_pcm_period_elapsed(chip->playback_substream);
547         }
548         if (chip->pcm && (status & FM801_IRQ_CAPTURE) && chip->capture_substream) {
549                 spin_lock(&chip->reg_lock);
550                 chip->cap_buf++;
551                 chip->cap_pos += chip->cap_count;
552                 chip->cap_pos %= chip->cap_size;
553                 tmp = chip->cap_pos + chip->cap_count;
554                 tmp %= chip->cap_size;
555                 outl(chip->cap_buffer + tmp,
556                                 (chip->cap_buf & 1) ?
557                                         FM801_REG(chip, CAP_BUF1) :
558                                         FM801_REG(chip, CAP_BUF2));
559                 spin_unlock(&chip->reg_lock);
560                 snd_pcm_period_elapsed(chip->capture_substream);
561         }
562         if (chip->rmidi && (status & FM801_IRQ_MPU))
563                 snd_mpu401_uart_interrupt(irq, chip->rmidi->private_data);
564         if (status & FM801_IRQ_VOLUME)
565                 ;/* TODO */
566
567         return IRQ_HANDLED;
568 }
569
570 static struct snd_pcm_hardware snd_fm801_playback =
571 {
572         .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
573                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
574                                  SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME |
575                                  SNDRV_PCM_INFO_MMAP_VALID),
576         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
577         .rates =                SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
578         .rate_min =             5500,
579         .rate_max =             48000,
580         .channels_min =         1,
581         .channels_max =         2,
582         .buffer_bytes_max =     (128*1024),
583         .period_bytes_min =     64,
584         .period_bytes_max =     (128*1024),
585         .periods_min =          1,
586         .periods_max =          1024,
587         .fifo_size =            0,
588 };
589
590 static struct snd_pcm_hardware snd_fm801_capture =
591 {
592         .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
593                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
594                                  SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME |
595                                  SNDRV_PCM_INFO_MMAP_VALID),
596         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
597         .rates =                SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
598         .rate_min =             5500,
599         .rate_max =             48000,
600         .channels_min =         1,
601         .channels_max =         2,
602         .buffer_bytes_max =     (128*1024),
603         .period_bytes_min =     64,
604         .period_bytes_max =     (128*1024),
605         .periods_min =          1,
606         .periods_max =          1024,
607         .fifo_size =            0,
608 };
609
610 static int snd_fm801_playback_open(struct snd_pcm_substream *substream)
611 {
612         struct fm801 *chip = snd_pcm_substream_chip(substream);
613         struct snd_pcm_runtime *runtime = substream->runtime;
614         int err;
615
616         chip->playback_substream = substream;
617         runtime->hw = snd_fm801_playback;
618         snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
619                                    &hw_constraints_rates);
620         if (chip->multichannel) {
621                 runtime->hw.channels_max = 6;
622                 snd_pcm_hw_constraint_list(runtime, 0,
623                                            SNDRV_PCM_HW_PARAM_CHANNELS,
624                                            &hw_constraints_channels);
625         }
626         if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
627                 return err;
628         return 0;
629 }
630
631 static int snd_fm801_capture_open(struct snd_pcm_substream *substream)
632 {
633         struct fm801 *chip = snd_pcm_substream_chip(substream);
634         struct snd_pcm_runtime *runtime = substream->runtime;
635         int err;
636
637         chip->capture_substream = substream;
638         runtime->hw = snd_fm801_capture;
639         snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
640                                    &hw_constraints_rates);
641         if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
642                 return err;
643         return 0;
644 }
645
646 static int snd_fm801_playback_close(struct snd_pcm_substream *substream)
647 {
648         struct fm801 *chip = snd_pcm_substream_chip(substream);
649
650         chip->playback_substream = NULL;
651         return 0;
652 }
653
654 static int snd_fm801_capture_close(struct snd_pcm_substream *substream)
655 {
656         struct fm801 *chip = snd_pcm_substream_chip(substream);
657
658         chip->capture_substream = NULL;
659         return 0;
660 }
661
662 static struct snd_pcm_ops snd_fm801_playback_ops = {
663         .open =         snd_fm801_playback_open,
664         .close =        snd_fm801_playback_close,
665         .ioctl =        snd_pcm_lib_ioctl,
666         .hw_params =    snd_fm801_hw_params,
667         .hw_free =      snd_fm801_hw_free,
668         .prepare =      snd_fm801_playback_prepare,
669         .trigger =      snd_fm801_playback_trigger,
670         .pointer =      snd_fm801_playback_pointer,
671 };
672
673 static struct snd_pcm_ops snd_fm801_capture_ops = {
674         .open =         snd_fm801_capture_open,
675         .close =        snd_fm801_capture_close,
676         .ioctl =        snd_pcm_lib_ioctl,
677         .hw_params =    snd_fm801_hw_params,
678         .hw_free =      snd_fm801_hw_free,
679         .prepare =      snd_fm801_capture_prepare,
680         .trigger =      snd_fm801_capture_trigger,
681         .pointer =      snd_fm801_capture_pointer,
682 };
683
684 static int __devinit snd_fm801_pcm(struct fm801 *chip, int device, struct snd_pcm ** rpcm)
685 {
686         struct snd_pcm *pcm;
687         int err;
688
689         if (rpcm)
690                 *rpcm = NULL;
691         if ((err = snd_pcm_new(chip->card, "FM801", device, 1, 1, &pcm)) < 0)
692                 return err;
693
694         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_fm801_playback_ops);
695         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_fm801_capture_ops);
696
697         pcm->private_data = chip;
698         pcm->info_flags = 0;
699         strcpy(pcm->name, "FM801");
700         chip->pcm = pcm;
701
702         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
703                                               snd_dma_pci_data(chip->pci),
704                                               chip->multichannel ? 128*1024 : 64*1024, 128*1024);
705
706         if (rpcm)
707                 *rpcm = pcm;
708         return 0;
709 }
710
711 /*
712  *  TEA5757 radio
713  */
714
715 #ifdef TEA575X_RADIO
716
717 /* 256PCS GPIO numbers */
718 #define TEA_256PCS_DATA                 1
719 #define TEA_256PCS_WRITE_ENABLE         2       /* inverted */
720 #define TEA_256PCS_BUS_CLOCK            3
721
722 static void snd_fm801_tea575x_256pcs_write(struct snd_tea575x *tea, unsigned int val)
723 {
724         struct fm801 *chip = tea->private_data;
725         unsigned short reg;
726         int i = 25;
727
728         spin_lock_irq(&chip->reg_lock);
729         reg = inw(FM801_REG(chip, GPIO_CTRL));
730         /* use GPIO lines and set write enable bit */
731         reg |= FM801_GPIO_GS(TEA_256PCS_DATA) |
732                FM801_GPIO_GS(TEA_256PCS_WRITE_ENABLE) |
733                FM801_GPIO_GS(TEA_256PCS_BUS_CLOCK);
734         /* all of lines are in the write direction */
735         /* clear data and clock lines */
736         reg &= ~(FM801_GPIO_GD(TEA_256PCS_DATA) |
737                  FM801_GPIO_GD(TEA_256PCS_WRITE_ENABLE) |
738                  FM801_GPIO_GD(TEA_256PCS_BUS_CLOCK) |
739                  FM801_GPIO_GP(TEA_256PCS_DATA) |
740                  FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK) |
741                  FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE));
742         outw(reg, FM801_REG(chip, GPIO_CTRL));
743         udelay(1);
744
745         while (i--) {
746                 if (val & (1 << i))
747                         reg |= FM801_GPIO_GP(TEA_256PCS_DATA);
748                 else
749                         reg &= ~FM801_GPIO_GP(TEA_256PCS_DATA);
750                 outw(reg, FM801_REG(chip, GPIO_CTRL));
751                 udelay(1);
752                 reg |= FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
753                 outw(reg, FM801_REG(chip, GPIO_CTRL));
754                 reg &= ~FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
755                 outw(reg, FM801_REG(chip, GPIO_CTRL));
756                 udelay(1);
757         }
758
759         /* and reset the write enable bit */
760         reg |= FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE) |
761                FM801_GPIO_GP(TEA_256PCS_DATA);
762         outw(reg, FM801_REG(chip, GPIO_CTRL));
763         spin_unlock_irq(&chip->reg_lock);
764 }
765
766 static unsigned int snd_fm801_tea575x_256pcs_read(struct snd_tea575x *tea)
767 {
768         struct fm801 *chip = tea->private_data;
769         unsigned short reg;
770         unsigned int val = 0;
771         int i;
772         
773         spin_lock_irq(&chip->reg_lock);
774         reg = inw(FM801_REG(chip, GPIO_CTRL));
775         /* use GPIO lines, set data direction to input */
776         reg |= FM801_GPIO_GS(TEA_256PCS_DATA) |
777                FM801_GPIO_GS(TEA_256PCS_WRITE_ENABLE) |
778                FM801_GPIO_GS(TEA_256PCS_BUS_CLOCK) |
779                FM801_GPIO_GD(TEA_256PCS_DATA) |
780                FM801_GPIO_GP(TEA_256PCS_DATA) |
781                FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE);
782         /* all of lines are in the write direction, except data */
783         /* clear data, write enable and clock lines */
784         reg &= ~(FM801_GPIO_GD(TEA_256PCS_WRITE_ENABLE) |
785                  FM801_GPIO_GD(TEA_256PCS_BUS_CLOCK) |
786                  FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK));
787
788         for (i = 0; i < 24; i++) {
789                 reg &= ~FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
790                 outw(reg, FM801_REG(chip, GPIO_CTRL));
791                 udelay(1);
792                 reg |= FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
793                 outw(reg, FM801_REG(chip, GPIO_CTRL));
794                 udelay(1);
795                 val <<= 1;
796                 if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_256PCS_DATA))
797                         val |= 1;
798         }
799
800         spin_unlock_irq(&chip->reg_lock);
801
802         return val;
803 }
804
805 /* 256PCPR GPIO numbers */
806 #define TEA_256PCPR_BUS_CLOCK           0
807 #define TEA_256PCPR_DATA                1
808 #define TEA_256PCPR_WRITE_ENABLE        2       /* inverted */
809
810 static void snd_fm801_tea575x_256pcpr_write(struct snd_tea575x *tea, unsigned int val)
811 {
812         struct fm801 *chip = tea->private_data;
813         unsigned short reg;
814         int i = 25;
815
816         spin_lock_irq(&chip->reg_lock);
817         reg = inw(FM801_REG(chip, GPIO_CTRL));
818         /* use GPIO lines and set write enable bit */
819         reg |= FM801_GPIO_GS(TEA_256PCPR_DATA) |
820                FM801_GPIO_GS(TEA_256PCPR_WRITE_ENABLE) |
821                FM801_GPIO_GS(TEA_256PCPR_BUS_CLOCK);
822         /* all of lines are in the write direction */
823         /* clear data and clock lines */
824         reg &= ~(FM801_GPIO_GD(TEA_256PCPR_DATA) |
825                  FM801_GPIO_GD(TEA_256PCPR_WRITE_ENABLE) |
826                  FM801_GPIO_GD(TEA_256PCPR_BUS_CLOCK) |
827                  FM801_GPIO_GP(TEA_256PCPR_DATA) |
828                  FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK) |
829                  FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE));
830         outw(reg, FM801_REG(chip, GPIO_CTRL));
831         udelay(1);
832
833         while (i--) {
834                 if (val & (1 << i))
835                         reg |= FM801_GPIO_GP(TEA_256PCPR_DATA);
836                 else
837                         reg &= ~FM801_GPIO_GP(TEA_256PCPR_DATA);
838                 outw(reg, FM801_REG(chip, GPIO_CTRL));
839                 udelay(1);
840                 reg |= FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
841                 outw(reg, FM801_REG(chip, GPIO_CTRL));
842                 reg &= ~FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
843                 outw(reg, FM801_REG(chip, GPIO_CTRL));
844                 udelay(1);
845         }
846
847         /* and reset the write enable bit */
848         reg |= FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE) |
849                FM801_GPIO_GP(TEA_256PCPR_DATA);
850         outw(reg, FM801_REG(chip, GPIO_CTRL));
851         spin_unlock_irq(&chip->reg_lock);
852 }
853
854 static unsigned int snd_fm801_tea575x_256pcpr_read(struct snd_tea575x *tea)
855 {
856         struct fm801 *chip = tea->private_data;
857         unsigned short reg;
858         unsigned int val = 0;
859         int i;
860         
861         spin_lock_irq(&chip->reg_lock);
862         reg = inw(FM801_REG(chip, GPIO_CTRL));
863         /* use GPIO lines, set data direction to input */
864         reg |= FM801_GPIO_GS(TEA_256PCPR_DATA) |
865                FM801_GPIO_GS(TEA_256PCPR_WRITE_ENABLE) |
866                FM801_GPIO_GS(TEA_256PCPR_BUS_CLOCK) |
867                FM801_GPIO_GD(TEA_256PCPR_DATA) |
868                FM801_GPIO_GP(TEA_256PCPR_DATA) |
869                FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE);
870         /* all of lines are in the write direction, except data */
871         /* clear data, write enable and clock lines */
872         reg &= ~(FM801_GPIO_GD(TEA_256PCPR_WRITE_ENABLE) |
873                  FM801_GPIO_GD(TEA_256PCPR_BUS_CLOCK) |
874                  FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK));
875
876         for (i = 0; i < 24; i++) {
877                 reg &= ~FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
878                 outw(reg, FM801_REG(chip, GPIO_CTRL));
879                 udelay(1);
880                 reg |= FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
881                 outw(reg, FM801_REG(chip, GPIO_CTRL));
882                 udelay(1);
883                 val <<= 1;
884                 if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_256PCPR_DATA))
885                         val |= 1;
886         }
887
888         spin_unlock_irq(&chip->reg_lock);
889
890         return val;
891 }
892
893 /* 64PCR GPIO numbers */
894 #define TEA_64PCR_BUS_CLOCK             0
895 #define TEA_64PCR_WRITE_ENABLE          1       /* inverted */
896 #define TEA_64PCR_DATA                  2
897
898 static void snd_fm801_tea575x_64pcr_write(struct snd_tea575x *tea, unsigned int val)
899 {
900         struct fm801 *chip = tea->private_data;
901         unsigned short reg;
902         int i = 25;
903
904         spin_lock_irq(&chip->reg_lock);
905         reg = inw(FM801_REG(chip, GPIO_CTRL));
906         /* use GPIO lines and set write enable bit */
907         reg |= FM801_GPIO_GS(TEA_64PCR_DATA) |
908                FM801_GPIO_GS(TEA_64PCR_WRITE_ENABLE) |
909                FM801_GPIO_GS(TEA_64PCR_BUS_CLOCK);
910         /* all of lines are in the write direction */
911         /* clear data and clock lines */
912         reg &= ~(FM801_GPIO_GD(TEA_64PCR_DATA) |
913                  FM801_GPIO_GD(TEA_64PCR_WRITE_ENABLE) |
914                  FM801_GPIO_GD(TEA_64PCR_BUS_CLOCK) |
915                  FM801_GPIO_GP(TEA_64PCR_DATA) |
916                  FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK) |
917                  FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE));
918         outw(reg, FM801_REG(chip, GPIO_CTRL));
919         udelay(1);
920
921         while (i--) {
922                 if (val & (1 << i))
923                         reg |= FM801_GPIO_GP(TEA_64PCR_DATA);
924                 else
925                         reg &= ~FM801_GPIO_GP(TEA_64PCR_DATA);
926                 outw(reg, FM801_REG(chip, GPIO_CTRL));
927                 udelay(1);
928                 reg |= FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
929                 outw(reg, FM801_REG(chip, GPIO_CTRL));
930                 reg &= ~FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
931                 outw(reg, FM801_REG(chip, GPIO_CTRL));
932                 udelay(1);
933         }
934
935         /* and reset the write enable bit */
936         reg |= FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE) |
937                FM801_GPIO_GP(TEA_64PCR_DATA);
938         outw(reg, FM801_REG(chip, GPIO_CTRL));
939         spin_unlock_irq(&chip->reg_lock);
940 }
941
942 static unsigned int snd_fm801_tea575x_64pcr_read(struct snd_tea575x *tea)
943 {
944         struct fm801 *chip = tea->private_data;
945         unsigned short reg;
946         unsigned int val = 0;
947         int i;
948         
949         spin_lock_irq(&chip->reg_lock);
950         reg = inw(FM801_REG(chip, GPIO_CTRL));
951         /* use GPIO lines, set data direction to input */
952         reg |= FM801_GPIO_GS(TEA_64PCR_DATA) |
953                FM801_GPIO_GS(TEA_64PCR_WRITE_ENABLE) |
954                FM801_GPIO_GS(TEA_64PCR_BUS_CLOCK) |
955                FM801_GPIO_GD(TEA_64PCR_DATA) |
956                FM801_GPIO_GP(TEA_64PCR_DATA) |
957                FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE);
958         /* all of lines are in the write direction, except data */
959         /* clear data, write enable and clock lines */
960         reg &= ~(FM801_GPIO_GD(TEA_64PCR_WRITE_ENABLE) |
961                  FM801_GPIO_GD(TEA_64PCR_BUS_CLOCK) |
962                  FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK));
963
964         for (i = 0; i < 24; i++) {
965                 reg &= ~FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
966                 outw(reg, FM801_REG(chip, GPIO_CTRL));
967                 udelay(1);
968                 reg |= FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
969                 outw(reg, FM801_REG(chip, GPIO_CTRL));
970                 udelay(1);
971                 val <<= 1;
972                 if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_64PCR_DATA))
973                         val |= 1;
974         }
975
976         spin_unlock_irq(&chip->reg_lock);
977
978         return val;
979 }
980
981 static struct snd_tea575x_ops snd_fm801_tea_ops[3] = {
982         {
983                 /* 1 = MediaForte 256-PCS */
984                 .write = snd_fm801_tea575x_256pcs_write,
985                 .read = snd_fm801_tea575x_256pcs_read,
986         },
987         {
988                 /* 2 = MediaForte 256-PCPR */
989                 .write = snd_fm801_tea575x_256pcpr_write,
990                 .read = snd_fm801_tea575x_256pcpr_read,
991         },
992         {
993                 /* 3 = MediaForte 64-PCR */
994                 .write = snd_fm801_tea575x_64pcr_write,
995                 .read = snd_fm801_tea575x_64pcr_read,
996         }
997 };
998 #endif
999
1000 /*
1001  *  Mixer routines
1002  */
1003
1004 #define FM801_SINGLE(xname, reg, shift, mask, invert) \
1005 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_single, \
1006   .get = snd_fm801_get_single, .put = snd_fm801_put_single, \
1007   .private_value = reg | (shift << 8) | (mask << 16) | (invert << 24) }
1008
1009 static int snd_fm801_info_single(struct snd_kcontrol *kcontrol,
1010                                  struct snd_ctl_elem_info *uinfo)
1011 {
1012         int mask = (kcontrol->private_value >> 16) & 0xff;
1013
1014         uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1015         uinfo->count = 1;
1016         uinfo->value.integer.min = 0;
1017         uinfo->value.integer.max = mask;
1018         return 0;
1019 }
1020
1021 static int snd_fm801_get_single(struct snd_kcontrol *kcontrol,
1022                                 struct snd_ctl_elem_value *ucontrol)
1023 {
1024         struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1025         int reg = kcontrol->private_value & 0xff;
1026         int shift = (kcontrol->private_value >> 8) & 0xff;
1027         int mask = (kcontrol->private_value >> 16) & 0xff;
1028         int invert = (kcontrol->private_value >> 24) & 0xff;
1029
1030         ucontrol->value.integer.value[0] = (inw(chip->port + reg) >> shift) & mask;
1031         if (invert)
1032                 ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
1033         return 0;
1034 }
1035
1036 static int snd_fm801_put_single(struct snd_kcontrol *kcontrol,
1037                                 struct snd_ctl_elem_value *ucontrol)
1038 {
1039         struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1040         int reg = kcontrol->private_value & 0xff;
1041         int shift = (kcontrol->private_value >> 8) & 0xff;
1042         int mask = (kcontrol->private_value >> 16) & 0xff;
1043         int invert = (kcontrol->private_value >> 24) & 0xff;
1044         unsigned short val;
1045
1046         val = (ucontrol->value.integer.value[0] & mask);
1047         if (invert)
1048                 val = mask - val;
1049         return snd_fm801_update_bits(chip, reg, mask << shift, val << shift);
1050 }
1051
1052 #define FM801_DOUBLE(xname, reg, shift_left, shift_right, mask, invert) \
1053 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_double, \
1054   .get = snd_fm801_get_double, .put = snd_fm801_put_double, \
1055   .private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24) }
1056 #define FM801_DOUBLE_TLV(xname, reg, shift_left, shift_right, mask, invert, xtlv) \
1057 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
1058   .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
1059   .name = xname, .info = snd_fm801_info_double, \
1060   .get = snd_fm801_get_double, .put = snd_fm801_put_double, \
1061   .private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24), \
1062   .tlv = { .p = (xtlv) } }
1063
1064 static int snd_fm801_info_double(struct snd_kcontrol *kcontrol,
1065                                  struct snd_ctl_elem_info *uinfo)
1066 {
1067         int mask = (kcontrol->private_value >> 16) & 0xff;
1068
1069         uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1070         uinfo->count = 2;
1071         uinfo->value.integer.min = 0;
1072         uinfo->value.integer.max = mask;
1073         return 0;
1074 }
1075
1076 static int snd_fm801_get_double(struct snd_kcontrol *kcontrol,
1077                                 struct snd_ctl_elem_value *ucontrol)
1078 {
1079         struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1080         int reg = kcontrol->private_value & 0xff;
1081         int shift_left = (kcontrol->private_value >> 8) & 0x0f;
1082         int shift_right = (kcontrol->private_value >> 12) & 0x0f;
1083         int mask = (kcontrol->private_value >> 16) & 0xff;
1084         int invert = (kcontrol->private_value >> 24) & 0xff;
1085
1086         spin_lock_irq(&chip->reg_lock);
1087         ucontrol->value.integer.value[0] = (inw(chip->port + reg) >> shift_left) & mask;
1088         ucontrol->value.integer.value[1] = (inw(chip->port + reg) >> shift_right) & mask;
1089         spin_unlock_irq(&chip->reg_lock);
1090         if (invert) {
1091                 ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
1092                 ucontrol->value.integer.value[1] = mask - ucontrol->value.integer.value[1];
1093         }
1094         return 0;
1095 }
1096
1097 static int snd_fm801_put_double(struct snd_kcontrol *kcontrol,
1098                                 struct snd_ctl_elem_value *ucontrol)
1099 {
1100         struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1101         int reg = kcontrol->private_value & 0xff;
1102         int shift_left = (kcontrol->private_value >> 8) & 0x0f;
1103         int shift_right = (kcontrol->private_value >> 12) & 0x0f;
1104         int mask = (kcontrol->private_value >> 16) & 0xff;
1105         int invert = (kcontrol->private_value >> 24) & 0xff;
1106         unsigned short val1, val2;
1107  
1108         val1 = ucontrol->value.integer.value[0] & mask;
1109         val2 = ucontrol->value.integer.value[1] & mask;
1110         if (invert) {
1111                 val1 = mask - val1;
1112                 val2 = mask - val2;
1113         }
1114         return snd_fm801_update_bits(chip, reg,
1115                                      (mask << shift_left) | (mask << shift_right),
1116                                      (val1 << shift_left ) | (val2 << shift_right));
1117 }
1118
1119 static int snd_fm801_info_mux(struct snd_kcontrol *kcontrol,
1120                               struct snd_ctl_elem_info *uinfo)
1121 {
1122         static char *texts[5] = {
1123                 "AC97 Primary", "FM", "I2S", "PCM", "AC97 Secondary"
1124         };
1125  
1126         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1127         uinfo->count = 1;
1128         uinfo->value.enumerated.items = 5;
1129         if (uinfo->value.enumerated.item > 4)
1130                 uinfo->value.enumerated.item = 4;
1131         strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
1132         return 0;
1133 }
1134
1135 static int snd_fm801_get_mux(struct snd_kcontrol *kcontrol,
1136                              struct snd_ctl_elem_value *ucontrol)
1137 {
1138         struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1139         unsigned short val;
1140  
1141         val = inw(FM801_REG(chip, REC_SRC)) & 7;
1142         if (val > 4)
1143                 val = 4;
1144         ucontrol->value.enumerated.item[0] = val;
1145         return 0;
1146 }
1147
1148 static int snd_fm801_put_mux(struct snd_kcontrol *kcontrol,
1149                              struct snd_ctl_elem_value *ucontrol)
1150 {
1151         struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1152         unsigned short val;
1153  
1154         if ((val = ucontrol->value.enumerated.item[0]) > 4)
1155                 return -EINVAL;
1156         return snd_fm801_update_bits(chip, FM801_REC_SRC, 7, val);
1157 }
1158
1159 static const DECLARE_TLV_DB_SCALE(db_scale_dsp, -3450, 150, 0);
1160
1161 #define FM801_CONTROLS ARRAY_SIZE(snd_fm801_controls)
1162
1163 static struct snd_kcontrol_new snd_fm801_controls[] __devinitdata = {
1164 FM801_DOUBLE_TLV("Wave Playback Volume", FM801_PCM_VOL, 0, 8, 31, 1,
1165                  db_scale_dsp),
1166 FM801_SINGLE("Wave Playback Switch", FM801_PCM_VOL, 15, 1, 1),
1167 FM801_DOUBLE_TLV("I2S Playback Volume", FM801_I2S_VOL, 0, 8, 31, 1,
1168                  db_scale_dsp),
1169 FM801_SINGLE("I2S Playback Switch", FM801_I2S_VOL, 15, 1, 1),
1170 FM801_DOUBLE_TLV("FM Playback Volume", FM801_FM_VOL, 0, 8, 31, 1,
1171                  db_scale_dsp),
1172 FM801_SINGLE("FM Playback Switch", FM801_FM_VOL, 15, 1, 1),
1173 {
1174         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1175         .name = "Digital Capture Source",
1176         .info = snd_fm801_info_mux,
1177         .get = snd_fm801_get_mux,
1178         .put = snd_fm801_put_mux,
1179 }
1180 };
1181
1182 #define FM801_CONTROLS_MULTI ARRAY_SIZE(snd_fm801_controls_multi)
1183
1184 static struct snd_kcontrol_new snd_fm801_controls_multi[] __devinitdata = {
1185 FM801_SINGLE("AC97 2ch->4ch Copy Switch", FM801_CODEC_CTRL, 7, 1, 0),
1186 FM801_SINGLE("AC97 18-bit Switch", FM801_CODEC_CTRL, 10, 1, 0),
1187 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), FM801_I2S_MODE, 8, 1, 0),
1188 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",PLAYBACK,SWITCH), FM801_I2S_MODE, 9, 1, 0),
1189 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",CAPTURE,SWITCH), FM801_I2S_MODE, 10, 1, 0),
1190 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), FM801_GEN_CTRL, 2, 1, 0),
1191 };
1192
1193 static void snd_fm801_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
1194 {
1195         struct fm801 *chip = bus->private_data;
1196         chip->ac97_bus = NULL;
1197 }
1198
1199 static void snd_fm801_mixer_free_ac97(struct snd_ac97 *ac97)
1200 {
1201         struct fm801 *chip = ac97->private_data;
1202         if (ac97->num == 0) {
1203                 chip->ac97 = NULL;
1204         } else {
1205                 chip->ac97_sec = NULL;
1206         }
1207 }
1208
1209 static int __devinit snd_fm801_mixer(struct fm801 *chip)
1210 {
1211         struct snd_ac97_template ac97;
1212         unsigned int i;
1213         int err;
1214         static struct snd_ac97_bus_ops ops = {
1215                 .write = snd_fm801_codec_write,
1216                 .read = snd_fm801_codec_read,
1217         };
1218
1219         if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
1220                 return err;
1221         chip->ac97_bus->private_free = snd_fm801_mixer_free_ac97_bus;
1222
1223         memset(&ac97, 0, sizeof(ac97));
1224         ac97.private_data = chip;
1225         ac97.private_free = snd_fm801_mixer_free_ac97;
1226         if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
1227                 return err;
1228         if (chip->secondary) {
1229                 ac97.num = 1;
1230                 ac97.addr = chip->secondary_addr;
1231                 if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97_sec)) < 0)
1232                         return err;
1233         }
1234         for (i = 0; i < FM801_CONTROLS; i++)
1235                 snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls[i], chip));
1236         if (chip->multichannel) {
1237                 for (i = 0; i < FM801_CONTROLS_MULTI; i++)
1238                         snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls_multi[i], chip));
1239         }
1240         return 0;
1241 }
1242
1243 /*
1244  *  initialization routines
1245  */
1246
1247 static int wait_for_codec(struct fm801 *chip, unsigned int codec_id,
1248                           unsigned short reg, unsigned long waits)
1249 {
1250         unsigned long timeout = jiffies + waits;
1251
1252         outw(FM801_AC97_READ | (codec_id << FM801_AC97_ADDR_SHIFT) | reg,
1253              FM801_REG(chip, AC97_CMD));
1254         udelay(5);
1255         do {
1256                 if ((inw(FM801_REG(chip, AC97_CMD)) & (FM801_AC97_VALID|FM801_AC97_BUSY))
1257                     == FM801_AC97_VALID)
1258                         return 0;
1259                 schedule_timeout_uninterruptible(1);
1260         } while (time_after(timeout, jiffies));
1261         return -EIO;
1262 }
1263
1264 static int snd_fm801_chip_init(struct fm801 *chip, int resume)
1265 {
1266         int id;
1267         unsigned short cmdw;
1268
1269         if (chip->tea575x_tuner & 0x0010)
1270                 goto __ac97_ok;
1271
1272         /* codec cold reset + AC'97 warm reset */
1273         outw((1<<5) | (1<<6), FM801_REG(chip, CODEC_CTRL));
1274         inw(FM801_REG(chip, CODEC_CTRL)); /* flush posting data */
1275         udelay(100);
1276         outw(0, FM801_REG(chip, CODEC_CTRL));
1277
1278         if (wait_for_codec(chip, 0, AC97_RESET, msecs_to_jiffies(750)) < 0) {
1279                 snd_printk(KERN_ERR "Primary AC'97 codec not found\n");
1280                 if (! resume)
1281                         return -EIO;
1282         }
1283
1284         if (chip->multichannel) {
1285                 if (chip->secondary_addr) {
1286                         wait_for_codec(chip, chip->secondary_addr,
1287                                        AC97_VENDOR_ID1, msecs_to_jiffies(50));
1288                 } else {
1289                         /* my card has the secondary codec */
1290                         /* at address #3, so the loop is inverted */
1291                         for (id = 3; id > 0; id--) {
1292                                 if (! wait_for_codec(chip, id, AC97_VENDOR_ID1,
1293                                                      msecs_to_jiffies(50))) {
1294                                         cmdw = inw(FM801_REG(chip, AC97_DATA));
1295                                         if (cmdw != 0xffff && cmdw != 0) {
1296                                                 chip->secondary = 1;
1297                                                 chip->secondary_addr = id;
1298                                                 break;
1299                                         }
1300                                 }
1301                         }
1302                 }
1303
1304                 /* the recovery phase, it seems that probing for non-existing codec might */
1305                 /* cause timeout problems */
1306                 wait_for_codec(chip, 0, AC97_VENDOR_ID1, msecs_to_jiffies(750));
1307         }
1308
1309       __ac97_ok:
1310
1311         /* init volume */
1312         outw(0x0808, FM801_REG(chip, PCM_VOL));
1313         outw(0x9f1f, FM801_REG(chip, FM_VOL));
1314         outw(0x8808, FM801_REG(chip, I2S_VOL));
1315
1316         /* I2S control - I2S mode */
1317         outw(0x0003, FM801_REG(chip, I2S_MODE));
1318
1319         /* interrupt setup */
1320         cmdw = inw(FM801_REG(chip, IRQ_MASK));
1321         if (chip->irq < 0)
1322                 cmdw |= 0x00c3;         /* mask everything, no PCM nor MPU */
1323         else
1324                 cmdw &= ~0x0083;        /* unmask MPU, PLAYBACK & CAPTURE */
1325         outw(cmdw, FM801_REG(chip, IRQ_MASK));
1326
1327         /* interrupt clear */
1328         outw(FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU, FM801_REG(chip, IRQ_STATUS));
1329
1330         return 0;
1331 }
1332
1333
1334 static int snd_fm801_free(struct fm801 *chip)
1335 {
1336         unsigned short cmdw;
1337
1338         if (chip->irq < 0)
1339                 goto __end_hw;
1340
1341         /* interrupt setup - mask everything */
1342         cmdw = inw(FM801_REG(chip, IRQ_MASK));
1343         cmdw |= 0x00c3;
1344         outw(cmdw, FM801_REG(chip, IRQ_MASK));
1345
1346       __end_hw:
1347 #ifdef TEA575X_RADIO
1348         snd_tea575x_exit(&chip->tea);
1349 #endif
1350         if (chip->irq >= 0)
1351                 free_irq(chip->irq, chip);
1352         pci_release_regions(chip->pci);
1353         pci_disable_device(chip->pci);
1354
1355         kfree(chip);
1356         return 0;
1357 }
1358
1359 static int snd_fm801_dev_free(struct snd_device *device)
1360 {
1361         struct fm801 *chip = device->device_data;
1362         return snd_fm801_free(chip);
1363 }
1364
1365 static int __devinit snd_fm801_create(struct snd_card *card,
1366                                       struct pci_dev * pci,
1367                                       int tea575x_tuner,
1368                                       struct fm801 ** rchip)
1369 {
1370         struct fm801 *chip;
1371         int err;
1372         static struct snd_device_ops ops = {
1373                 .dev_free =     snd_fm801_dev_free,
1374         };
1375
1376         *rchip = NULL;
1377         if ((err = pci_enable_device(pci)) < 0)
1378                 return err;
1379         chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1380         if (chip == NULL) {
1381                 pci_disable_device(pci);
1382                 return -ENOMEM;
1383         }
1384         spin_lock_init(&chip->reg_lock);
1385         chip->card = card;
1386         chip->pci = pci;
1387         chip->irq = -1;
1388         chip->tea575x_tuner = tea575x_tuner;
1389         if ((err = pci_request_regions(pci, "FM801")) < 0) {
1390                 kfree(chip);
1391                 pci_disable_device(pci);
1392                 return err;
1393         }
1394         chip->port = pci_resource_start(pci, 0);
1395         if ((tea575x_tuner & 0x0010) == 0) {
1396                 if (request_irq(pci->irq, snd_fm801_interrupt, IRQF_SHARED,
1397                                 "FM801", chip)) {
1398                         snd_printk(KERN_ERR "unable to grab IRQ %d\n", chip->irq);
1399                         snd_fm801_free(chip);
1400                         return -EBUSY;
1401                 }
1402                 chip->irq = pci->irq;
1403                 pci_set_master(pci);
1404         }
1405
1406         if (pci->revision >= 0xb1)      /* FM801-AU */
1407                 chip->multichannel = 1;
1408
1409         snd_fm801_chip_init(chip, 0);
1410
1411         if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
1412                 snd_fm801_free(chip);
1413                 return err;
1414         }
1415
1416         snd_card_set_dev(card, &pci->dev);
1417
1418 #ifdef TEA575X_RADIO
1419         if (tea575x_tuner > 0 && (tea575x_tuner & 0x000f) < 4) {
1420                 chip->tea.dev_nr = tea575x_tuner >> 16;
1421                 chip->tea.card = card;
1422                 chip->tea.freq_fixup = 10700;
1423                 chip->tea.private_data = chip;
1424                 chip->tea.ops = &snd_fm801_tea_ops[(tea575x_tuner & 0x000f) - 1];
1425                 snd_tea575x_init(&chip->tea);
1426         }
1427 #endif
1428
1429         *rchip = chip;
1430         return 0;
1431 }
1432
1433 static int __devinit snd_card_fm801_probe(struct pci_dev *pci,
1434                                           const struct pci_device_id *pci_id)
1435 {
1436         static int dev;
1437         struct snd_card *card;
1438         struct fm801 *chip;
1439         struct snd_opl3 *opl3;
1440         int err;
1441
1442         if (dev >= SNDRV_CARDS)
1443                 return -ENODEV;
1444         if (!enable[dev]) {
1445                 dev++;
1446                 return -ENOENT;
1447         }
1448
1449         card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
1450         if (card == NULL)
1451                 return -ENOMEM;
1452         if ((err = snd_fm801_create(card, pci, tea575x_tuner[dev], &chip)) < 0) {
1453                 snd_card_free(card);
1454                 return err;
1455         }
1456         card->private_data = chip;
1457
1458         strcpy(card->driver, "FM801");
1459         strcpy(card->shortname, "ForteMedia FM801-");
1460         strcat(card->shortname, chip->multichannel ? "AU" : "AS");
1461         sprintf(card->longname, "%s at 0x%lx, irq %i",
1462                 card->shortname, chip->port, chip->irq);
1463
1464         if (tea575x_tuner[dev] & 0x0010)
1465                 goto __fm801_tuner_only;
1466
1467         if ((err = snd_fm801_pcm(chip, 0, NULL)) < 0) {
1468                 snd_card_free(card);
1469                 return err;
1470         }
1471         if ((err = snd_fm801_mixer(chip)) < 0) {
1472                 snd_card_free(card);
1473                 return err;
1474         }
1475         if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_FM801,
1476                                        FM801_REG(chip, MPU401_DATA),
1477                                        MPU401_INFO_INTEGRATED,
1478                                        chip->irq, 0, &chip->rmidi)) < 0) {
1479                 snd_card_free(card);
1480                 return err;
1481         }
1482         if ((err = snd_opl3_create(card, FM801_REG(chip, OPL3_BANK0),
1483                                    FM801_REG(chip, OPL3_BANK1),
1484                                    OPL3_HW_OPL3_FM801, 1, &opl3)) < 0) {
1485                 snd_card_free(card);
1486                 return err;
1487         }
1488         if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
1489                 snd_card_free(card);
1490                 return err;
1491         }
1492
1493       __fm801_tuner_only:
1494         if ((err = snd_card_register(card)) < 0) {
1495                 snd_card_free(card);
1496                 return err;
1497         }
1498         pci_set_drvdata(pci, card);
1499         dev++;
1500         return 0;
1501 }
1502
1503 static void __devexit snd_card_fm801_remove(struct pci_dev *pci)
1504 {
1505         snd_card_free(pci_get_drvdata(pci));
1506         pci_set_drvdata(pci, NULL);
1507 }
1508
1509 #ifdef CONFIG_PM
1510 static unsigned char saved_regs[] = {
1511         FM801_PCM_VOL, FM801_I2S_VOL, FM801_FM_VOL, FM801_REC_SRC,
1512         FM801_PLY_CTRL, FM801_PLY_COUNT, FM801_PLY_BUF1, FM801_PLY_BUF2,
1513         FM801_CAP_CTRL, FM801_CAP_COUNT, FM801_CAP_BUF1, FM801_CAP_BUF2,
1514         FM801_CODEC_CTRL, FM801_I2S_MODE, FM801_VOLUME, FM801_GEN_CTRL,
1515 };
1516
1517 static int snd_fm801_suspend(struct pci_dev *pci, pm_message_t state)
1518 {
1519         struct snd_card *card = pci_get_drvdata(pci);
1520         struct fm801 *chip = card->private_data;
1521         int i;
1522
1523         snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1524         snd_pcm_suspend_all(chip->pcm);
1525         snd_ac97_suspend(chip->ac97);
1526         snd_ac97_suspend(chip->ac97_sec);
1527         for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
1528                 chip->saved_regs[i] = inw(chip->port + saved_regs[i]);
1529         /* FIXME: tea575x suspend */
1530
1531         pci_disable_device(pci);
1532         pci_save_state(pci);
1533         pci_set_power_state(pci, pci_choose_state(pci, state));
1534         return 0;
1535 }
1536
1537 static int snd_fm801_resume(struct pci_dev *pci)
1538 {
1539         struct snd_card *card = pci_get_drvdata(pci);
1540         struct fm801 *chip = card->private_data;
1541         int i;
1542
1543         pci_set_power_state(pci, PCI_D0);
1544         pci_restore_state(pci);
1545         if (pci_enable_device(pci) < 0) {
1546                 printk(KERN_ERR "fm801: pci_enable_device failed, "
1547                        "disabling device\n");
1548                 snd_card_disconnect(card);
1549                 return -EIO;
1550         }
1551         pci_set_master(pci);
1552
1553         snd_fm801_chip_init(chip, 1);
1554         snd_ac97_resume(chip->ac97);
1555         snd_ac97_resume(chip->ac97_sec);
1556         for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
1557                 outw(chip->saved_regs[i], chip->port + saved_regs[i]);
1558
1559         snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1560         return 0;
1561 }
1562 #endif
1563
1564 static struct pci_driver driver = {
1565         .name = "FM801",
1566         .id_table = snd_fm801_ids,
1567         .probe = snd_card_fm801_probe,
1568         .remove = __devexit_p(snd_card_fm801_remove),
1569 #ifdef CONFIG_PM
1570         .suspend = snd_fm801_suspend,
1571         .resume = snd_fm801_resume,
1572 #endif
1573 };
1574
1575 static int __init alsa_card_fm801_init(void)
1576 {
1577         return pci_register_driver(&driver);
1578 }
1579
1580 static void __exit alsa_card_fm801_exit(void)
1581 {
1582         pci_unregister_driver(&driver);
1583 }
1584
1585 module_init(alsa_card_fm801_init)
1586 module_exit(alsa_card_fm801_exit)