ALSA: AOA: Convert onyx and tas codecs to new-style i2c drivers
[safe/jmp/linux-2.6] / sound / pci / au88x0 / au88x0_pcm.c
1 /*
2  *  This program is free software; you can redistribute it and/or modify
3  *  it under the terms of the GNU General Public License as published by
4  *  the Free Software Foundation; either version 2 of the License, or
5  *  (at your option) any later version.
6  *
7  *  This program is distributed in the hope that it will be useful,
8  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
9  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  *  GNU Library General Public License for more details.
11  *
12  *  You should have received a copy of the GNU General Public License
13  *  along with this program; if not, write to the Free Software
14  *  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
15  */
16  
17 /*
18  * Vortex PCM ALSA driver.
19  *
20  * Supports ADB and WT DMA. Unfortunately, WT channels do not run yet.
21  * It remains stuck,and DMA transfers do not happen. 
22  */
23 #include <sound/asoundef.h>
24 #include <linux/time.h>
25 #include <sound/core.h>
26 #include <sound/pcm.h>
27 #include <sound/pcm_params.h>
28 #include "au88x0.h"
29
30 #define VORTEX_PCM_TYPE(x) (x->name[40])
31
32 /* hardware definition */
33 static struct snd_pcm_hardware snd_vortex_playback_hw_adb = {
34         .info =
35             (SNDRV_PCM_INFO_MMAP | /* SNDRV_PCM_INFO_RESUME | */
36              SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_INTERLEAVED |
37              SNDRV_PCM_INFO_MMAP_VALID),
38         .formats =
39             SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U8 |
40             SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW,
41         .rates = SNDRV_PCM_RATE_CONTINUOUS,
42         .rate_min = 5000,
43         .rate_max = 48000,
44         .channels_min = 1,
45 #ifdef CHIP_AU8830
46         .channels_max = 4,
47 #else
48         .channels_max = 2,
49 #endif
50         .buffer_bytes_max = 0x10000,
51         .period_bytes_min = 0x1,
52         .period_bytes_max = 0x1000,
53         .periods_min = 2,
54         .periods_max = 32,
55 };
56
57 #ifndef CHIP_AU8820
58 static struct snd_pcm_hardware snd_vortex_playback_hw_a3d = {
59         .info =
60             (SNDRV_PCM_INFO_MMAP | /* SNDRV_PCM_INFO_RESUME | */
61              SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_INTERLEAVED |
62              SNDRV_PCM_INFO_MMAP_VALID),
63         .formats =
64             SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U8 |
65             SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW,
66         .rates = SNDRV_PCM_RATE_CONTINUOUS,
67         .rate_min = 5000,
68         .rate_max = 48000,
69         .channels_min = 1,
70         .channels_max = 1,
71         .buffer_bytes_max = 0x10000,
72         .period_bytes_min = 0x100,
73         .period_bytes_max = 0x1000,
74         .periods_min = 2,
75         .periods_max = 64,
76 };
77 #endif
78 static struct snd_pcm_hardware snd_vortex_playback_hw_spdif = {
79         .info =
80             (SNDRV_PCM_INFO_MMAP | /* SNDRV_PCM_INFO_RESUME | */
81              SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_INTERLEAVED |
82              SNDRV_PCM_INFO_MMAP_VALID),
83         .formats =
84             SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U8 |
85             SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE | SNDRV_PCM_FMTBIT_MU_LAW |
86             SNDRV_PCM_FMTBIT_A_LAW,
87         .rates =
88             SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
89         .rate_min = 32000,
90         .rate_max = 48000,
91         .channels_min = 1,
92         .channels_max = 2,
93         .buffer_bytes_max = 0x10000,
94         .period_bytes_min = 0x100,
95         .period_bytes_max = 0x1000,
96         .periods_min = 2,
97         .periods_max = 64,
98 };
99
100 #ifndef CHIP_AU8810
101 static struct snd_pcm_hardware snd_vortex_playback_hw_wt = {
102         .info = (SNDRV_PCM_INFO_MMAP |
103                  SNDRV_PCM_INFO_INTERLEAVED |
104                  SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID),
105         .formats = SNDRV_PCM_FMTBIT_S16_LE,
106         .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS, // SNDRV_PCM_RATE_48000,
107         .rate_min = 8000,
108         .rate_max = 48000,
109         .channels_min = 1,
110         .channels_max = 2,
111         .buffer_bytes_max = 0x10000,
112         .period_bytes_min = 0x0400,
113         .period_bytes_max = 0x1000,
114         .periods_min = 2,
115         .periods_max = 64,
116 };
117 #endif
118 /* open callback */
119 static int snd_vortex_pcm_open(struct snd_pcm_substream *substream)
120 {
121         vortex_t *vortex = snd_pcm_substream_chip(substream);
122         struct snd_pcm_runtime *runtime = substream->runtime;
123         int err;
124         
125         /* Force equal size periods */
126         if ((err =
127              snd_pcm_hw_constraint_integer(runtime,
128                                            SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
129                 return err;
130         /* Avoid PAGE_SIZE boundary to fall inside of a period. */
131         if ((err =
132              snd_pcm_hw_constraint_pow2(runtime, 0,
133                                         SNDRV_PCM_HW_PARAM_PERIOD_BYTES)) < 0)
134                 return err;
135
136         if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
137 #ifndef CHIP_AU8820
138                 if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_A3D) {
139                         runtime->hw = snd_vortex_playback_hw_a3d;
140                 }
141 #endif
142                 if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_SPDIF) {
143                         runtime->hw = snd_vortex_playback_hw_spdif;
144                         switch (vortex->spdif_sr) {
145                         case 32000:
146                                 runtime->hw.rates = SNDRV_PCM_RATE_32000;
147                                 break;
148                         case 44100:
149                                 runtime->hw.rates = SNDRV_PCM_RATE_44100;
150                                 break;
151                         case 48000:
152                                 runtime->hw.rates = SNDRV_PCM_RATE_48000;
153                                 break;
154                         }
155                 }
156                 if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_ADB
157                     || VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_I2S)
158                         runtime->hw = snd_vortex_playback_hw_adb;
159                 substream->runtime->private_data = NULL;
160         }
161 #ifndef CHIP_AU8810
162         else {
163                 runtime->hw = snd_vortex_playback_hw_wt;
164                 substream->runtime->private_data = NULL;
165         }
166 #endif
167         return 0;
168 }
169
170 /* close callback */
171 static int snd_vortex_pcm_close(struct snd_pcm_substream *substream)
172 {
173         //vortex_t *chip = snd_pcm_substream_chip(substream);
174         stream_t *stream = (stream_t *) substream->runtime->private_data;
175
176         // the hardware-specific codes will be here
177         if (stream != NULL) {
178                 stream->substream = NULL;
179                 stream->nr_ch = 0;
180         }
181         substream->runtime->private_data = NULL;
182         return 0;
183 }
184
185 /* hw_params callback */
186 static int
187 snd_vortex_pcm_hw_params(struct snd_pcm_substream *substream,
188                          struct snd_pcm_hw_params *hw_params)
189 {
190         vortex_t *chip = snd_pcm_substream_chip(substream);
191         stream_t *stream = (stream_t *) (substream->runtime->private_data);
192         int err;
193
194         // Alloc buffer memory.
195         err =
196             snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
197         if (err < 0) {
198                 printk(KERN_ERR "Vortex: pcm page alloc failed!\n");
199                 return err;
200         }
201         /*
202            printk(KERN_INFO "Vortex: periods %d, period_bytes %d, channels = %d\n", params_periods(hw_params),
203            params_period_bytes(hw_params), params_channels(hw_params));
204          */
205         spin_lock_irq(&chip->lock);
206         // Make audio routes and config buffer DMA.
207         if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
208                 int dma, type = VORTEX_PCM_TYPE(substream->pcm);
209                 /* Dealloc any routes. */
210                 if (stream != NULL)
211                         vortex_adb_allocroute(chip, stream->dma,
212                                               stream->nr_ch, stream->dir,
213                                               stream->type);
214                 /* Alloc routes. */
215                 dma =
216                     vortex_adb_allocroute(chip, -1,
217                                           params_channels(hw_params),
218                                           substream->stream, type);
219                 if (dma < 0) {
220                         spin_unlock_irq(&chip->lock);
221                         return dma;
222                 }
223                 stream = substream->runtime->private_data = &chip->dma_adb[dma];
224                 stream->substream = substream;
225                 /* Setup Buffers. */
226                 vortex_adbdma_setbuffers(chip, dma,
227                                          params_period_bytes(hw_params),
228                                          params_periods(hw_params));
229         }
230 #ifndef CHIP_AU8810
231         else {
232                 /* if (stream != NULL)
233                    vortex_wt_allocroute(chip, substream->number, 0); */
234                 vortex_wt_allocroute(chip, substream->number,
235                                      params_channels(hw_params));
236                 stream = substream->runtime->private_data =
237                     &chip->dma_wt[substream->number];
238                 stream->dma = substream->number;
239                 stream->substream = substream;
240                 vortex_wtdma_setbuffers(chip, substream->number,
241                                         params_period_bytes(hw_params),
242                                         params_periods(hw_params));
243         }
244 #endif
245         spin_unlock_irq(&chip->lock);
246         return 0;
247 }
248
249 /* hw_free callback */
250 static int snd_vortex_pcm_hw_free(struct snd_pcm_substream *substream)
251 {
252         vortex_t *chip = snd_pcm_substream_chip(substream);
253         stream_t *stream = (stream_t *) (substream->runtime->private_data);
254
255         spin_lock_irq(&chip->lock);
256         // Delete audio routes.
257         if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
258                 if (stream != NULL)
259                         vortex_adb_allocroute(chip, stream->dma,
260                                               stream->nr_ch, stream->dir,
261                                               stream->type);
262         }
263 #ifndef CHIP_AU8810
264         else {
265                 if (stream != NULL)
266                         vortex_wt_allocroute(chip, stream->dma, 0);
267         }
268 #endif
269         substream->runtime->private_data = NULL;
270         spin_unlock_irq(&chip->lock);
271
272         return snd_pcm_lib_free_pages(substream);
273 }
274
275 /* prepare callback */
276 static int snd_vortex_pcm_prepare(struct snd_pcm_substream *substream)
277 {
278         vortex_t *chip = snd_pcm_substream_chip(substream);
279         struct snd_pcm_runtime *runtime = substream->runtime;
280         stream_t *stream = (stream_t *) substream->runtime->private_data;
281         int dma = stream->dma, fmt, dir;
282
283         // set up the hardware with the current configuration.
284         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
285                 dir = 1;
286         else
287                 dir = 0;
288         fmt = vortex_alsafmt_aspfmt(runtime->format);
289         spin_lock_irq(&chip->lock);
290         if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
291                 vortex_adbdma_setmode(chip, dma, 1, dir, fmt, 0 /*? */ ,
292                                       0);
293                 vortex_adbdma_setstartbuffer(chip, dma, 0);
294                 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_SPDIF)
295                         vortex_adb_setsrc(chip, dma, runtime->rate, dir);
296         }
297 #ifndef CHIP_AU8810
298         else {
299                 vortex_wtdma_setmode(chip, dma, 1, fmt, 0, 0);
300                 // FIXME: Set rate (i guess using vortex_wt_writereg() somehow).
301                 vortex_wtdma_setstartbuffer(chip, dma, 0);
302         }
303 #endif
304         spin_unlock_irq(&chip->lock);
305         return 0;
306 }
307
308 /* trigger callback */
309 static int snd_vortex_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
310 {
311         vortex_t *chip = snd_pcm_substream_chip(substream);
312         stream_t *stream = (stream_t *) substream->runtime->private_data;
313         int dma = stream->dma;
314
315         spin_lock(&chip->lock);
316         switch (cmd) {
317         case SNDRV_PCM_TRIGGER_START:
318                 // do something to start the PCM engine
319                 //printk(KERN_INFO "vortex: start %d\n", dma);
320                 stream->fifo_enabled = 1;
321                 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
322                         vortex_adbdma_resetup(chip, dma);
323                         vortex_adbdma_startfifo(chip, dma);
324                 }
325 #ifndef CHIP_AU8810
326                 else {
327                         printk(KERN_INFO "vortex: wt start %d\n", dma);
328                         vortex_wtdma_startfifo(chip, dma);
329                 }
330 #endif
331                 break;
332         case SNDRV_PCM_TRIGGER_STOP:
333                 // do something to stop the PCM engine
334                 //printk(KERN_INFO "vortex: stop %d\n", dma);
335                 stream->fifo_enabled = 0;
336                 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
337                         vortex_adbdma_pausefifo(chip, dma);
338                 //vortex_adbdma_stopfifo(chip, dma);
339 #ifndef CHIP_AU8810
340                 else {
341                         printk(KERN_INFO "vortex: wt stop %d\n", dma);
342                         vortex_wtdma_stopfifo(chip, dma);
343                 }
344 #endif
345                 break;
346         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
347                 //printk(KERN_INFO "vortex: pause %d\n", dma);
348                 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
349                         vortex_adbdma_pausefifo(chip, dma);
350 #ifndef CHIP_AU8810
351                 else
352                         vortex_wtdma_pausefifo(chip, dma);
353 #endif
354                 break;
355         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
356                 //printk(KERN_INFO "vortex: resume %d\n", dma);
357                 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
358                         vortex_adbdma_resumefifo(chip, dma);
359 #ifndef CHIP_AU8810
360                 else
361                         vortex_wtdma_resumefifo(chip, dma);
362 #endif
363                 break;
364         default:
365                 spin_unlock(&chip->lock);
366                 return -EINVAL;
367         }
368         spin_unlock(&chip->lock);
369         return 0;
370 }
371
372 /* pointer callback */
373 static snd_pcm_uframes_t snd_vortex_pcm_pointer(struct snd_pcm_substream *substream)
374 {
375         vortex_t *chip = snd_pcm_substream_chip(substream);
376         stream_t *stream = (stream_t *) substream->runtime->private_data;
377         int dma = stream->dma;
378         snd_pcm_uframes_t current_ptr = 0;
379
380         spin_lock(&chip->lock);
381         if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
382                 current_ptr = vortex_adbdma_getlinearpos(chip, dma);
383 #ifndef CHIP_AU8810
384         else
385                 current_ptr = vortex_wtdma_getlinearpos(chip, dma);
386 #endif
387         //printk(KERN_INFO "vortex: pointer = 0x%x\n", current_ptr);
388         spin_unlock(&chip->lock);
389         return (bytes_to_frames(substream->runtime, current_ptr));
390 }
391
392 /* operators */
393 static struct snd_pcm_ops snd_vortex_playback_ops = {
394         .open = snd_vortex_pcm_open,
395         .close = snd_vortex_pcm_close,
396         .ioctl = snd_pcm_lib_ioctl,
397         .hw_params = snd_vortex_pcm_hw_params,
398         .hw_free = snd_vortex_pcm_hw_free,
399         .prepare = snd_vortex_pcm_prepare,
400         .trigger = snd_vortex_pcm_trigger,
401         .pointer = snd_vortex_pcm_pointer,
402         .page = snd_pcm_sgbuf_ops_page,
403 };
404
405 /*
406 *  definitions of capture are omitted here...
407 */
408
409 static char *vortex_pcm_prettyname[VORTEX_PCM_LAST] = {
410         "AU88x0 ADB",
411         "AU88x0 SPDIF",
412         "AU88x0 A3D",
413         "AU88x0 WT",
414         "AU88x0 I2S",
415 };
416 static char *vortex_pcm_name[VORTEX_PCM_LAST] = {
417         "adb",
418         "spdif",
419         "a3d",
420         "wt",
421         "i2s",
422 };
423
424 /* SPDIF kcontrol */
425
426 static int snd_vortex_spdif_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
427 {
428         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
429         uinfo->count = 1;
430         return 0;
431 }
432
433 static int snd_vortex_spdif_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
434 {
435         ucontrol->value.iec958.status[0] = 0xff;
436         ucontrol->value.iec958.status[1] = 0xff;
437         ucontrol->value.iec958.status[2] = 0xff;
438         ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS;
439         return 0;
440 }
441
442 static int snd_vortex_spdif_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
443 {
444         vortex_t *vortex = snd_kcontrol_chip(kcontrol);
445         ucontrol->value.iec958.status[0] = 0x00;
446         ucontrol->value.iec958.status[1] = IEC958_AES1_CON_ORIGINAL|IEC958_AES1_CON_DIGDIGCONV_ID;
447         ucontrol->value.iec958.status[2] = 0x00;
448         switch (vortex->spdif_sr) {
449         case 32000: ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_32000; break;
450         case 44100: ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_44100; break;
451         case 48000: ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000; break;
452         }
453         return 0;
454 }
455
456 static int snd_vortex_spdif_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
457 {
458         vortex_t *vortex = snd_kcontrol_chip(kcontrol);
459         int spdif_sr = 48000;
460         switch (ucontrol->value.iec958.status[3] & IEC958_AES3_CON_FS) {
461         case IEC958_AES3_CON_FS_32000: spdif_sr = 32000; break;
462         case IEC958_AES3_CON_FS_44100: spdif_sr = 44100; break;
463         case IEC958_AES3_CON_FS_48000: spdif_sr = 48000; break;
464         }
465         if (spdif_sr == vortex->spdif_sr)
466                 return 0;
467         vortex->spdif_sr = spdif_sr;
468         vortex_spdif_init(vortex, vortex->spdif_sr, 1);
469         return 1;
470 }
471
472 /* spdif controls */
473 static struct snd_kcontrol_new snd_vortex_mixer_spdif[] __devinitdata = {
474         {
475                 .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
476                 .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
477                 .info =         snd_vortex_spdif_info,
478                 .get =          snd_vortex_spdif_get,
479                 .put =          snd_vortex_spdif_put,
480         },
481         {
482                 .access =       SNDRV_CTL_ELEM_ACCESS_READ,
483                 .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
484                 .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
485                 .info =         snd_vortex_spdif_info,
486                 .get =          snd_vortex_spdif_mask_get
487         },
488 };
489
490 /* create a pcm device */
491 static int __devinit snd_vortex_new_pcm(vortex_t *chip, int idx, int nr)
492 {
493         struct snd_pcm *pcm;
494         struct snd_kcontrol *kctl;
495         int i;
496         int err, nr_capt;
497
498         if (!chip || idx < 0 || idx >= VORTEX_PCM_LAST)
499                 return -ENODEV;
500
501         /* idx indicates which kind of PCM device. ADB, SPDIF, I2S and A3D share the 
502          * same dma engine. WT uses it own separate dma engine whcih cant capture. */
503         if (idx == VORTEX_PCM_ADB)
504                 nr_capt = nr;
505         else
506                 nr_capt = 0;
507         err = snd_pcm_new(chip->card, vortex_pcm_prettyname[idx], idx, nr,
508                           nr_capt, &pcm);
509         if (err < 0)
510                 return err;
511         strcpy(pcm->name, vortex_pcm_name[idx]);
512         chip->pcm[idx] = pcm;
513         // This is an evil hack, but it saves a lot of duplicated code.
514         VORTEX_PCM_TYPE(pcm) = idx;
515         pcm->private_data = chip;
516         /* set operators */
517         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
518                         &snd_vortex_playback_ops);
519         if (idx == VORTEX_PCM_ADB)
520                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
521                                 &snd_vortex_playback_ops);
522         
523         /* pre-allocation of Scatter-Gather buffers */
524         
525         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV_SG,
526                                               snd_dma_pci_data(chip->pci_dev),
527                                               0x10000, 0x10000);
528
529         if (VORTEX_PCM_TYPE(pcm) == VORTEX_PCM_SPDIF) {
530                 for (i = 0; i < ARRAY_SIZE(snd_vortex_mixer_spdif); i++) {
531                         kctl = snd_ctl_new1(&snd_vortex_mixer_spdif[i], chip);
532                         if (!kctl)
533                                 return -ENOMEM;
534                         if ((err = snd_ctl_add(chip->card, kctl)) < 0)
535                                 return err;
536                 }
537         }
538         return 0;
539 }