ALSA: pcm_lib - fix wrong delta print for jiffies check
[safe/jmp/linux-2.6] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <sound/core.h>
27 #include <sound/control.h>
28 #include <sound/info.h>
29 #include <sound/pcm.h>
30 #include <sound/pcm_params.h>
31 #include <sound/timer.h>
32
33 /*
34  * fill ring buffer with silence
35  * runtime->silence_start: starting pointer to silence area
36  * runtime->silence_filled: size filled with silence
37  * runtime->silence_threshold: threshold from application
38  * runtime->silence_size: maximal size from application
39  *
40  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
41  */
42 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
43 {
44         struct snd_pcm_runtime *runtime = substream->runtime;
45         snd_pcm_uframes_t frames, ofs, transfer;
46
47         if (runtime->silence_size < runtime->boundary) {
48                 snd_pcm_sframes_t noise_dist, n;
49                 if (runtime->silence_start != runtime->control->appl_ptr) {
50                         n = runtime->control->appl_ptr - runtime->silence_start;
51                         if (n < 0)
52                                 n += runtime->boundary;
53                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
54                                 runtime->silence_filled -= n;
55                         else
56                                 runtime->silence_filled = 0;
57                         runtime->silence_start = runtime->control->appl_ptr;
58                 }
59                 if (runtime->silence_filled >= runtime->buffer_size)
60                         return;
61                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
62                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
63                         return;
64                 frames = runtime->silence_threshold - noise_dist;
65                 if (frames > runtime->silence_size)
66                         frames = runtime->silence_size;
67         } else {
68                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
69                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
70                         runtime->silence_filled = avail > 0 ? avail : 0;
71                         runtime->silence_start = (runtime->status->hw_ptr +
72                                                   runtime->silence_filled) %
73                                                  runtime->boundary;
74                 } else {
75                         ofs = runtime->status->hw_ptr;
76                         frames = new_hw_ptr - ofs;
77                         if ((snd_pcm_sframes_t)frames < 0)
78                                 frames += runtime->boundary;
79                         runtime->silence_filled -= frames;
80                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
81                                 runtime->silence_filled = 0;
82                                 runtime->silence_start = new_hw_ptr;
83                         } else {
84                                 runtime->silence_start = ofs;
85                         }
86                 }
87                 frames = runtime->buffer_size - runtime->silence_filled;
88         }
89         if (snd_BUG_ON(frames > runtime->buffer_size))
90                 return;
91         if (frames == 0)
92                 return;
93         ofs = runtime->silence_start % runtime->buffer_size;
94         while (frames > 0) {
95                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
96                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
97                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
98                         if (substream->ops->silence) {
99                                 int err;
100                                 err = substream->ops->silence(substream, -1, ofs, transfer);
101                                 snd_BUG_ON(err < 0);
102                         } else {
103                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
104                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
105                         }
106                 } else {
107                         unsigned int c;
108                         unsigned int channels = runtime->channels;
109                         if (substream->ops->silence) {
110                                 for (c = 0; c < channels; ++c) {
111                                         int err;
112                                         err = substream->ops->silence(substream, c, ofs, transfer);
113                                         snd_BUG_ON(err < 0);
114                                 }
115                         } else {
116                                 size_t dma_csize = runtime->dma_bytes / channels;
117                                 for (c = 0; c < channels; ++c) {
118                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
119                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
120                                 }
121                         }
122                 }
123                 runtime->silence_filled += transfer;
124                 frames -= transfer;
125                 ofs = 0;
126         }
127 }
128
129 static void pcm_debug_name(struct snd_pcm_substream *substream,
130                            char *name, size_t len)
131 {
132         snprintf(name, len, "pcmC%dD%d%c:%d",
133                  substream->pcm->card->number,
134                  substream->pcm->device,
135                  substream->stream ? 'c' : 'p',
136                  substream->number);
137 }
138
139 #define XRUN_DEBUG_BASIC        (1<<0)
140 #define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
141 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
142 #define XRUN_DEBUG_PERIODUPDATE (1<<3)  /* full period update info */
143 #define XRUN_DEBUG_HWPTRUPDATE  (1<<4)  /* full hwptr update info */
144 #define XRUN_DEBUG_LOG          (1<<5)  /* show last 10 positions on err */
145 #define XRUN_DEBUG_LOGONCE      (1<<6)  /* do above only once */
146
147 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
148
149 #define xrun_debug(substream, mask) \
150                         ((substream)->pstr->xrun_debug & (mask))
151
152 #define dump_stack_on_xrun(substream) do {                      \
153                 if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
154                         dump_stack();                           \
155         } while (0)
156
157 static void xrun(struct snd_pcm_substream *substream)
158 {
159         struct snd_pcm_runtime *runtime = substream->runtime;
160
161         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
162                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
163         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
164         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
165                 char name[16];
166                 pcm_debug_name(substream, name, sizeof(name));
167                 snd_printd(KERN_DEBUG "XRUN: %s\n", name);
168                 dump_stack_on_xrun(substream);
169         }
170 }
171
172 #define hw_ptr_error(substream, fmt, args...)                           \
173         do {                                                            \
174                 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
175                         xrun_log_show(substream);                       \
176                         if (printk_ratelimit()) {                       \
177                                 snd_printd("PCM: " fmt, ##args);        \
178                         }                                               \
179                         dump_stack_on_xrun(substream);                  \
180                 }                                                       \
181         } while (0)
182
183 #define XRUN_LOG_CNT    10
184
185 struct hwptr_log_entry {
186         unsigned long jiffies;
187         snd_pcm_uframes_t pos;
188         snd_pcm_uframes_t period_size;
189         snd_pcm_uframes_t buffer_size;
190         snd_pcm_uframes_t old_hw_ptr;
191         snd_pcm_uframes_t hw_ptr_base;
192 };
193
194 struct snd_pcm_hwptr_log {
195         unsigned int idx;
196         unsigned int hit: 1;
197         struct hwptr_log_entry entries[XRUN_LOG_CNT];
198 };
199
200 static void xrun_log(struct snd_pcm_substream *substream,
201                      snd_pcm_uframes_t pos)
202 {
203         struct snd_pcm_runtime *runtime = substream->runtime;
204         struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
205         struct hwptr_log_entry *entry;
206
207         if (log == NULL) {
208                 log = kzalloc(sizeof(*log), GFP_ATOMIC);
209                 if (log == NULL)
210                         return;
211                 runtime->hwptr_log = log;
212         } else {
213                 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
214                         return;
215         }
216         entry = &log->entries[log->idx];
217         entry->jiffies = jiffies;
218         entry->pos = pos;
219         entry->period_size = runtime->period_size;
220         entry->buffer_size = runtime->buffer_size;;
221         entry->old_hw_ptr = runtime->status->hw_ptr;
222         entry->hw_ptr_base = runtime->hw_ptr_base;
223         log->idx = (log->idx + 1) % XRUN_LOG_CNT;
224 }
225
226 static void xrun_log_show(struct snd_pcm_substream *substream)
227 {
228         struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
229         struct hwptr_log_entry *entry;
230         char name[16];
231         unsigned int idx;
232         int cnt;
233
234         if (log == NULL)
235                 return;
236         if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
237                 return;
238         pcm_debug_name(substream, name, sizeof(name));
239         for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
240                 entry = &log->entries[idx];
241                 if (entry->period_size == 0)
242                         break;
243                 snd_printd("hwptr log: %s: j=%lu, pos=%ld/%ld/%ld, "
244                            "hwptr=%ld/%ld\n",
245                            name, entry->jiffies, (unsigned long)entry->pos,
246                            (unsigned long)entry->period_size,
247                            (unsigned long)entry->buffer_size,
248                            (unsigned long)entry->old_hw_ptr,
249                            (unsigned long)entry->hw_ptr_base);
250                 idx++;
251                 idx %= XRUN_LOG_CNT;
252         }
253         log->hit = 1;
254 }
255
256 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
257
258 #define xrun_debug(substream, mask)     0
259 #define xrun(substream)                 do { } while (0)
260 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
261 #define xrun_log(substream, pos)        do { } while (0)
262 #define xrun_log_show(substream)        do { } while (0)
263
264 #endif
265
266 int snd_pcm_update_state(struct snd_pcm_substream *substream,
267                          struct snd_pcm_runtime *runtime)
268 {
269         snd_pcm_uframes_t avail;
270
271         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
272                 avail = snd_pcm_playback_avail(runtime);
273         else
274                 avail = snd_pcm_capture_avail(runtime);
275         if (avail > runtime->avail_max)
276                 runtime->avail_max = avail;
277         if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
278                 if (avail >= runtime->buffer_size) {
279                         snd_pcm_drain_done(substream);
280                         return -EPIPE;
281                 }
282         } else {
283                 if (avail >= runtime->stop_threshold) {
284                         xrun(substream);
285                         return -EPIPE;
286                 }
287         }
288         if (!runtime->nowake && avail >= runtime->control->avail_min)
289                 wake_up(&runtime->sleep);
290         return 0;
291 }
292
293 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
294                                   unsigned int in_interrupt)
295 {
296         struct snd_pcm_runtime *runtime = substream->runtime;
297         snd_pcm_uframes_t pos;
298         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
299         snd_pcm_sframes_t hdelta, delta;
300         unsigned long jdelta;
301
302         old_hw_ptr = runtime->status->hw_ptr;
303         pos = substream->ops->pointer(substream);
304         if (pos == SNDRV_PCM_POS_XRUN) {
305                 xrun(substream);
306                 return -EPIPE;
307         }
308         if (pos >= runtime->buffer_size) {
309                 if (printk_ratelimit()) {
310                         char name[16];
311                         pcm_debug_name(substream, name, sizeof(name));
312                         xrun_log_show(substream);
313                         snd_printd(KERN_ERR  "BUG: %s, pos = %ld, "
314                                    "buffer size = %ld, period size = %ld\n",
315                                    name, pos, runtime->buffer_size,
316                                    runtime->period_size);
317                 }
318                 pos = 0;
319         }
320         pos -= pos % runtime->min_align;
321         if (xrun_debug(substream, XRUN_DEBUG_LOG))
322                 xrun_log(substream, pos);
323         hw_base = runtime->hw_ptr_base;
324         new_hw_ptr = hw_base + pos;
325         if (in_interrupt) {
326                 /* we know that one period was processed */
327                 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
328                 delta = old_hw_ptr - (old_hw_ptr % runtime->period_size)
329                         + runtime->period_size;
330                 if (delta > new_hw_ptr) {
331                         hw_base += runtime->buffer_size;
332                         if (hw_base >= runtime->boundary)
333                                 hw_base = 0;
334                         new_hw_ptr = hw_base + pos;
335                         goto __delta;
336                 }
337         }
338         /* new_hw_ptr might be lower than old_hw_ptr in case when */
339         /* pointer crosses the end of the ring buffer */
340         if (new_hw_ptr < old_hw_ptr) {
341                 hw_base += runtime->buffer_size;
342                 if (hw_base >= runtime->boundary)
343                         hw_base = 0;
344                 new_hw_ptr = hw_base + pos;
345         }
346       __delta:
347         delta = (new_hw_ptr - old_hw_ptr) % runtime->boundary;
348         if (xrun_debug(substream, in_interrupt ?
349                         XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
350                 char name[16];
351                 pcm_debug_name(substream, name, sizeof(name));
352                 snd_printd("%s_update: %s: pos=%u/%u/%u, "
353                            "hwptr=%ld/%ld/%ld/%ld\n",
354                            in_interrupt ? "period" : "hwptr",
355                            name,
356                            (unsigned int)pos,
357                            (unsigned int)runtime->period_size,
358                            (unsigned int)runtime->buffer_size,
359                            (unsigned long)delta,
360                            (unsigned long)old_hw_ptr,
361                            (unsigned long)new_hw_ptr,
362                            (unsigned long)runtime->hw_ptr_base);
363         }
364         /* something must be really wrong */
365         if (delta >= runtime->buffer_size + runtime->period_size) {
366                 hw_ptr_error(substream,
367                                "Unexpected hw_pointer value %s"
368                                "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
369                                "old_hw_ptr=%ld)\n",
370                                      in_interrupt ? "[Q] " : "[P]",
371                                      substream->stream, (long)pos,
372                                      (long)new_hw_ptr, (long)old_hw_ptr);
373                 return 0;
374         }
375
376         /* Do jiffies check only in xrun_debug mode */
377         if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
378                 goto no_jiffies_check;
379
380         /* Skip the jiffies check for hardwares with BATCH flag.
381          * Such hardware usually just increases the position at each IRQ,
382          * thus it can't give any strange position.
383          */
384         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
385                 goto no_jiffies_check;
386         hdelta = delta;
387         if (hdelta < runtime->delay)
388                 goto no_jiffies_check;
389         hdelta -= runtime->delay;
390         jdelta = jiffies - runtime->hw_ptr_jiffies;
391         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
392                 delta = jdelta /
393                         (((runtime->period_size * HZ) / runtime->rate)
394                                                                 + HZ/100);
395                 /* move new_hw_ptr according jiffies not pos variable */
396                 new_hw_ptr = old_hw_ptr;
397                 hw_base = delta;
398                 /* use loop to avoid checks for delta overflows */
399                 /* the delta value is small or zero in most cases */
400                 while (delta > 0) {
401                         new_hw_ptr += runtime->period_size;
402                         if (new_hw_ptr >= runtime->boundary)
403                                 new_hw_ptr -= runtime->boundary;
404                         delta--;
405                 }
406                 /* align hw_base to buffer_size */
407                 hw_ptr_error(substream,
408                              "hw_ptr skipping! %s"
409                              "(pos=%ld, delta=%ld, period=%ld, "
410                              "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
411                              in_interrupt ? "[Q] " : "",
412                              (long)pos, (long)hdelta,
413                              (long)runtime->period_size, jdelta,
414                              ((hdelta * HZ) / runtime->rate), hw_base,
415                              (unsigned long)old_hw_ptr,
416                              (unsigned long)new_hw_ptr);
417                 /* reset values to proper state */
418                 delta = 0;
419                 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
420         }
421  no_jiffies_check:
422         if (delta > runtime->period_size + runtime->period_size / 2) {
423                 hw_ptr_error(substream,
424                              "Lost interrupts? %s"
425                              "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
426                              "old_hw_ptr=%ld)\n",
427                              in_interrupt ? "[Q] " : "",
428                              substream->stream, (long)delta,
429                              (long)new_hw_ptr,
430                              (long)old_hw_ptr);
431         }
432
433         if (runtime->status->hw_ptr == new_hw_ptr)
434                 return 0;
435
436         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
437             runtime->silence_size > 0)
438                 snd_pcm_playback_silence(substream, new_hw_ptr);
439
440         runtime->hw_ptr_base = hw_base;
441         runtime->status->hw_ptr = new_hw_ptr;
442         runtime->hw_ptr_jiffies = jiffies;
443         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
444                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
445
446         return snd_pcm_update_state(substream, runtime);
447 }
448
449 /* CAUTION: call it with irq disabled */
450 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
451 {
452         return snd_pcm_update_hw_ptr0(substream, 0);
453 }
454
455 /**
456  * snd_pcm_set_ops - set the PCM operators
457  * @pcm: the pcm instance
458  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
459  * @ops: the operator table
460  *
461  * Sets the given PCM operators to the pcm instance.
462  */
463 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
464 {
465         struct snd_pcm_str *stream = &pcm->streams[direction];
466         struct snd_pcm_substream *substream;
467         
468         for (substream = stream->substream; substream != NULL; substream = substream->next)
469                 substream->ops = ops;
470 }
471
472 EXPORT_SYMBOL(snd_pcm_set_ops);
473
474 /**
475  * snd_pcm_sync - set the PCM sync id
476  * @substream: the pcm substream
477  *
478  * Sets the PCM sync identifier for the card.
479  */
480 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
481 {
482         struct snd_pcm_runtime *runtime = substream->runtime;
483         
484         runtime->sync.id32[0] = substream->pcm->card->number;
485         runtime->sync.id32[1] = -1;
486         runtime->sync.id32[2] = -1;
487         runtime->sync.id32[3] = -1;
488 }
489
490 EXPORT_SYMBOL(snd_pcm_set_sync);
491
492 /*
493  *  Standard ioctl routine
494  */
495
496 static inline unsigned int div32(unsigned int a, unsigned int b, 
497                                  unsigned int *r)
498 {
499         if (b == 0) {
500                 *r = 0;
501                 return UINT_MAX;
502         }
503         *r = a % b;
504         return a / b;
505 }
506
507 static inline unsigned int div_down(unsigned int a, unsigned int b)
508 {
509         if (b == 0)
510                 return UINT_MAX;
511         return a / b;
512 }
513
514 static inline unsigned int div_up(unsigned int a, unsigned int b)
515 {
516         unsigned int r;
517         unsigned int q;
518         if (b == 0)
519                 return UINT_MAX;
520         q = div32(a, b, &r);
521         if (r)
522                 ++q;
523         return q;
524 }
525
526 static inline unsigned int mul(unsigned int a, unsigned int b)
527 {
528         if (a == 0)
529                 return 0;
530         if (div_down(UINT_MAX, a) < b)
531                 return UINT_MAX;
532         return a * b;
533 }
534
535 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
536                                     unsigned int c, unsigned int *r)
537 {
538         u_int64_t n = (u_int64_t) a * b;
539         if (c == 0) {
540                 snd_BUG_ON(!n);
541                 *r = 0;
542                 return UINT_MAX;
543         }
544         n = div_u64_rem(n, c, r);
545         if (n >= UINT_MAX) {
546                 *r = 0;
547                 return UINT_MAX;
548         }
549         return n;
550 }
551
552 /**
553  * snd_interval_refine - refine the interval value of configurator
554  * @i: the interval value to refine
555  * @v: the interval value to refer to
556  *
557  * Refines the interval value with the reference value.
558  * The interval is changed to the range satisfying both intervals.
559  * The interval status (min, max, integer, etc.) are evaluated.
560  *
561  * Returns non-zero if the value is changed, zero if not changed.
562  */
563 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
564 {
565         int changed = 0;
566         if (snd_BUG_ON(snd_interval_empty(i)))
567                 return -EINVAL;
568         if (i->min < v->min) {
569                 i->min = v->min;
570                 i->openmin = v->openmin;
571                 changed = 1;
572         } else if (i->min == v->min && !i->openmin && v->openmin) {
573                 i->openmin = 1;
574                 changed = 1;
575         }
576         if (i->max > v->max) {
577                 i->max = v->max;
578                 i->openmax = v->openmax;
579                 changed = 1;
580         } else if (i->max == v->max && !i->openmax && v->openmax) {
581                 i->openmax = 1;
582                 changed = 1;
583         }
584         if (!i->integer && v->integer) {
585                 i->integer = 1;
586                 changed = 1;
587         }
588         if (i->integer) {
589                 if (i->openmin) {
590                         i->min++;
591                         i->openmin = 0;
592                 }
593                 if (i->openmax) {
594                         i->max--;
595                         i->openmax = 0;
596                 }
597         } else if (!i->openmin && !i->openmax && i->min == i->max)
598                 i->integer = 1;
599         if (snd_interval_checkempty(i)) {
600                 snd_interval_none(i);
601                 return -EINVAL;
602         }
603         return changed;
604 }
605
606 EXPORT_SYMBOL(snd_interval_refine);
607
608 static int snd_interval_refine_first(struct snd_interval *i)
609 {
610         if (snd_BUG_ON(snd_interval_empty(i)))
611                 return -EINVAL;
612         if (snd_interval_single(i))
613                 return 0;
614         i->max = i->min;
615         i->openmax = i->openmin;
616         if (i->openmax)
617                 i->max++;
618         return 1;
619 }
620
621 static int snd_interval_refine_last(struct snd_interval *i)
622 {
623         if (snd_BUG_ON(snd_interval_empty(i)))
624                 return -EINVAL;
625         if (snd_interval_single(i))
626                 return 0;
627         i->min = i->max;
628         i->openmin = i->openmax;
629         if (i->openmin)
630                 i->min--;
631         return 1;
632 }
633
634 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
635 {
636         if (a->empty || b->empty) {
637                 snd_interval_none(c);
638                 return;
639         }
640         c->empty = 0;
641         c->min = mul(a->min, b->min);
642         c->openmin = (a->openmin || b->openmin);
643         c->max = mul(a->max,  b->max);
644         c->openmax = (a->openmax || b->openmax);
645         c->integer = (a->integer && b->integer);
646 }
647
648 /**
649  * snd_interval_div - refine the interval value with division
650  * @a: dividend
651  * @b: divisor
652  * @c: quotient
653  *
654  * c = a / b
655  *
656  * Returns non-zero if the value is changed, zero if not changed.
657  */
658 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
659 {
660         unsigned int r;
661         if (a->empty || b->empty) {
662                 snd_interval_none(c);
663                 return;
664         }
665         c->empty = 0;
666         c->min = div32(a->min, b->max, &r);
667         c->openmin = (r || a->openmin || b->openmax);
668         if (b->min > 0) {
669                 c->max = div32(a->max, b->min, &r);
670                 if (r) {
671                         c->max++;
672                         c->openmax = 1;
673                 } else
674                         c->openmax = (a->openmax || b->openmin);
675         } else {
676                 c->max = UINT_MAX;
677                 c->openmax = 0;
678         }
679         c->integer = 0;
680 }
681
682 /**
683  * snd_interval_muldivk - refine the interval value
684  * @a: dividend 1
685  * @b: dividend 2
686  * @k: divisor (as integer)
687  * @c: result
688   *
689  * c = a * b / k
690  *
691  * Returns non-zero if the value is changed, zero if not changed.
692  */
693 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
694                       unsigned int k, struct snd_interval *c)
695 {
696         unsigned int r;
697         if (a->empty || b->empty) {
698                 snd_interval_none(c);
699                 return;
700         }
701         c->empty = 0;
702         c->min = muldiv32(a->min, b->min, k, &r);
703         c->openmin = (r || a->openmin || b->openmin);
704         c->max = muldiv32(a->max, b->max, k, &r);
705         if (r) {
706                 c->max++;
707                 c->openmax = 1;
708         } else
709                 c->openmax = (a->openmax || b->openmax);
710         c->integer = 0;
711 }
712
713 /**
714  * snd_interval_mulkdiv - refine the interval value
715  * @a: dividend 1
716  * @k: dividend 2 (as integer)
717  * @b: divisor
718  * @c: result
719  *
720  * c = a * k / b
721  *
722  * Returns non-zero if the value is changed, zero if not changed.
723  */
724 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
725                       const struct snd_interval *b, struct snd_interval *c)
726 {
727         unsigned int r;
728         if (a->empty || b->empty) {
729                 snd_interval_none(c);
730                 return;
731         }
732         c->empty = 0;
733         c->min = muldiv32(a->min, k, b->max, &r);
734         c->openmin = (r || a->openmin || b->openmax);
735         if (b->min > 0) {
736                 c->max = muldiv32(a->max, k, b->min, &r);
737                 if (r) {
738                         c->max++;
739                         c->openmax = 1;
740                 } else
741                         c->openmax = (a->openmax || b->openmin);
742         } else {
743                 c->max = UINT_MAX;
744                 c->openmax = 0;
745         }
746         c->integer = 0;
747 }
748
749 /* ---- */
750
751
752 /**
753  * snd_interval_ratnum - refine the interval value
754  * @i: interval to refine
755  * @rats_count: number of ratnum_t 
756  * @rats: ratnum_t array
757  * @nump: pointer to store the resultant numerator
758  * @denp: pointer to store the resultant denominator
759  *
760  * Returns non-zero if the value is changed, zero if not changed.
761  */
762 int snd_interval_ratnum(struct snd_interval *i,
763                         unsigned int rats_count, struct snd_ratnum *rats,
764                         unsigned int *nump, unsigned int *denp)
765 {
766         unsigned int best_num, best_diff, best_den;
767         unsigned int k;
768         struct snd_interval t;
769         int err;
770
771         best_num = best_den = best_diff = 0;
772         for (k = 0; k < rats_count; ++k) {
773                 unsigned int num = rats[k].num;
774                 unsigned int den;
775                 unsigned int q = i->min;
776                 int diff;
777                 if (q == 0)
778                         q = 1;
779                 den = div_up(num, q);
780                 if (den < rats[k].den_min)
781                         continue;
782                 if (den > rats[k].den_max)
783                         den = rats[k].den_max;
784                 else {
785                         unsigned int r;
786                         r = (den - rats[k].den_min) % rats[k].den_step;
787                         if (r != 0)
788                                 den -= r;
789                 }
790                 diff = num - q * den;
791                 if (best_num == 0 ||
792                     diff * best_den < best_diff * den) {
793                         best_diff = diff;
794                         best_den = den;
795                         best_num = num;
796                 }
797         }
798         if (best_den == 0) {
799                 i->empty = 1;
800                 return -EINVAL;
801         }
802         t.min = div_down(best_num, best_den);
803         t.openmin = !!(best_num % best_den);
804         
805         best_num = best_den = best_diff = 0;
806         for (k = 0; k < rats_count; ++k) {
807                 unsigned int num = rats[k].num;
808                 unsigned int den;
809                 unsigned int q = i->max;
810                 int diff;
811                 if (q == 0) {
812                         i->empty = 1;
813                         return -EINVAL;
814                 }
815                 den = div_down(num, q);
816                 if (den > rats[k].den_max)
817                         continue;
818                 if (den < rats[k].den_min)
819                         den = rats[k].den_min;
820                 else {
821                         unsigned int r;
822                         r = (den - rats[k].den_min) % rats[k].den_step;
823                         if (r != 0)
824                                 den += rats[k].den_step - r;
825                 }
826                 diff = q * den - num;
827                 if (best_num == 0 ||
828                     diff * best_den < best_diff * den) {
829                         best_diff = diff;
830                         best_den = den;
831                         best_num = num;
832                 }
833         }
834         if (best_den == 0) {
835                 i->empty = 1;
836                 return -EINVAL;
837         }
838         t.max = div_up(best_num, best_den);
839         t.openmax = !!(best_num % best_den);
840         t.integer = 0;
841         err = snd_interval_refine(i, &t);
842         if (err < 0)
843                 return err;
844
845         if (snd_interval_single(i)) {
846                 if (nump)
847                         *nump = best_num;
848                 if (denp)
849                         *denp = best_den;
850         }
851         return err;
852 }
853
854 EXPORT_SYMBOL(snd_interval_ratnum);
855
856 /**
857  * snd_interval_ratden - refine the interval value
858  * @i: interval to refine
859  * @rats_count: number of struct ratden
860  * @rats: struct ratden array
861  * @nump: pointer to store the resultant numerator
862  * @denp: pointer to store the resultant denominator
863  *
864  * Returns non-zero if the value is changed, zero if not changed.
865  */
866 static int snd_interval_ratden(struct snd_interval *i,
867                                unsigned int rats_count, struct snd_ratden *rats,
868                                unsigned int *nump, unsigned int *denp)
869 {
870         unsigned int best_num, best_diff, best_den;
871         unsigned int k;
872         struct snd_interval t;
873         int err;
874
875         best_num = best_den = best_diff = 0;
876         for (k = 0; k < rats_count; ++k) {
877                 unsigned int num;
878                 unsigned int den = rats[k].den;
879                 unsigned int q = i->min;
880                 int diff;
881                 num = mul(q, den);
882                 if (num > rats[k].num_max)
883                         continue;
884                 if (num < rats[k].num_min)
885                         num = rats[k].num_max;
886                 else {
887                         unsigned int r;
888                         r = (num - rats[k].num_min) % rats[k].num_step;
889                         if (r != 0)
890                                 num += rats[k].num_step - r;
891                 }
892                 diff = num - q * den;
893                 if (best_num == 0 ||
894                     diff * best_den < best_diff * den) {
895                         best_diff = diff;
896                         best_den = den;
897                         best_num = num;
898                 }
899         }
900         if (best_den == 0) {
901                 i->empty = 1;
902                 return -EINVAL;
903         }
904         t.min = div_down(best_num, best_den);
905         t.openmin = !!(best_num % best_den);
906         
907         best_num = best_den = best_diff = 0;
908         for (k = 0; k < rats_count; ++k) {
909                 unsigned int num;
910                 unsigned int den = rats[k].den;
911                 unsigned int q = i->max;
912                 int diff;
913                 num = mul(q, den);
914                 if (num < rats[k].num_min)
915                         continue;
916                 if (num > rats[k].num_max)
917                         num = rats[k].num_max;
918                 else {
919                         unsigned int r;
920                         r = (num - rats[k].num_min) % rats[k].num_step;
921                         if (r != 0)
922                                 num -= r;
923                 }
924                 diff = q * den - num;
925                 if (best_num == 0 ||
926                     diff * best_den < best_diff * den) {
927                         best_diff = diff;
928                         best_den = den;
929                         best_num = num;
930                 }
931         }
932         if (best_den == 0) {
933                 i->empty = 1;
934                 return -EINVAL;
935         }
936         t.max = div_up(best_num, best_den);
937         t.openmax = !!(best_num % best_den);
938         t.integer = 0;
939         err = snd_interval_refine(i, &t);
940         if (err < 0)
941                 return err;
942
943         if (snd_interval_single(i)) {
944                 if (nump)
945                         *nump = best_num;
946                 if (denp)
947                         *denp = best_den;
948         }
949         return err;
950 }
951
952 /**
953  * snd_interval_list - refine the interval value from the list
954  * @i: the interval value to refine
955  * @count: the number of elements in the list
956  * @list: the value list
957  * @mask: the bit-mask to evaluate
958  *
959  * Refines the interval value from the list.
960  * When mask is non-zero, only the elements corresponding to bit 1 are
961  * evaluated.
962  *
963  * Returns non-zero if the value is changed, zero if not changed.
964  */
965 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
966 {
967         unsigned int k;
968         struct snd_interval list_range;
969
970         if (!count) {
971                 i->empty = 1;
972                 return -EINVAL;
973         }
974         snd_interval_any(&list_range);
975         list_range.min = UINT_MAX;
976         list_range.max = 0;
977         for (k = 0; k < count; k++) {
978                 if (mask && !(mask & (1 << k)))
979                         continue;
980                 if (!snd_interval_test(i, list[k]))
981                         continue;
982                 list_range.min = min(list_range.min, list[k]);
983                 list_range.max = max(list_range.max, list[k]);
984         }
985         return snd_interval_refine(i, &list_range);
986 }
987
988 EXPORT_SYMBOL(snd_interval_list);
989
990 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
991 {
992         unsigned int n;
993         int changed = 0;
994         n = (i->min - min) % step;
995         if (n != 0 || i->openmin) {
996                 i->min += step - n;
997                 changed = 1;
998         }
999         n = (i->max - min) % step;
1000         if (n != 0 || i->openmax) {
1001                 i->max -= n;
1002                 changed = 1;
1003         }
1004         if (snd_interval_checkempty(i)) {
1005                 i->empty = 1;
1006                 return -EINVAL;
1007         }
1008         return changed;
1009 }
1010
1011 /* Info constraints helpers */
1012
1013 /**
1014  * snd_pcm_hw_rule_add - add the hw-constraint rule
1015  * @runtime: the pcm runtime instance
1016  * @cond: condition bits
1017  * @var: the variable to evaluate
1018  * @func: the evaluation function
1019  * @private: the private data pointer passed to function
1020  * @dep: the dependent variables
1021  *
1022  * Returns zero if successful, or a negative error code on failure.
1023  */
1024 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1025                         int var,
1026                         snd_pcm_hw_rule_func_t func, void *private,
1027                         int dep, ...)
1028 {
1029         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1030         struct snd_pcm_hw_rule *c;
1031         unsigned int k;
1032         va_list args;
1033         va_start(args, dep);
1034         if (constrs->rules_num >= constrs->rules_all) {
1035                 struct snd_pcm_hw_rule *new;
1036                 unsigned int new_rules = constrs->rules_all + 16;
1037                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1038                 if (!new)
1039                         return -ENOMEM;
1040                 if (constrs->rules) {
1041                         memcpy(new, constrs->rules,
1042                                constrs->rules_num * sizeof(*c));
1043                         kfree(constrs->rules);
1044                 }
1045                 constrs->rules = new;
1046                 constrs->rules_all = new_rules;
1047         }
1048         c = &constrs->rules[constrs->rules_num];
1049         c->cond = cond;
1050         c->func = func;
1051         c->var = var;
1052         c->private = private;
1053         k = 0;
1054         while (1) {
1055                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps)))
1056                         return -EINVAL;
1057                 c->deps[k++] = dep;
1058                 if (dep < 0)
1059                         break;
1060                 dep = va_arg(args, int);
1061         }
1062         constrs->rules_num++;
1063         va_end(args);
1064         return 0;
1065 }                                   
1066
1067 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1068
1069 /**
1070  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1071  * @runtime: PCM runtime instance
1072  * @var: hw_params variable to apply the mask
1073  * @mask: the bitmap mask
1074  *
1075  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1076  */
1077 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1078                                u_int32_t mask)
1079 {
1080         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1081         struct snd_mask *maskp = constrs_mask(constrs, var);
1082         *maskp->bits &= mask;
1083         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1084         if (*maskp->bits == 0)
1085                 return -EINVAL;
1086         return 0;
1087 }
1088
1089 /**
1090  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1091  * @runtime: PCM runtime instance
1092  * @var: hw_params variable to apply the mask
1093  * @mask: the 64bit bitmap mask
1094  *
1095  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1096  */
1097 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1098                                  u_int64_t mask)
1099 {
1100         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1101         struct snd_mask *maskp = constrs_mask(constrs, var);
1102         maskp->bits[0] &= (u_int32_t)mask;
1103         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1104         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1105         if (! maskp->bits[0] && ! maskp->bits[1])
1106                 return -EINVAL;
1107         return 0;
1108 }
1109
1110 /**
1111  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1112  * @runtime: PCM runtime instance
1113  * @var: hw_params variable to apply the integer constraint
1114  *
1115  * Apply the constraint of integer to an interval parameter.
1116  */
1117 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1118 {
1119         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1120         return snd_interval_setinteger(constrs_interval(constrs, var));
1121 }
1122
1123 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1124
1125 /**
1126  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1127  * @runtime: PCM runtime instance
1128  * @var: hw_params variable to apply the range
1129  * @min: the minimal value
1130  * @max: the maximal value
1131  * 
1132  * Apply the min/max range constraint to an interval parameter.
1133  */
1134 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1135                                  unsigned int min, unsigned int max)
1136 {
1137         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1138         struct snd_interval t;
1139         t.min = min;
1140         t.max = max;
1141         t.openmin = t.openmax = 0;
1142         t.integer = 0;
1143         return snd_interval_refine(constrs_interval(constrs, var), &t);
1144 }
1145
1146 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1147
1148 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1149                                 struct snd_pcm_hw_rule *rule)
1150 {
1151         struct snd_pcm_hw_constraint_list *list = rule->private;
1152         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1153 }               
1154
1155
1156 /**
1157  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1158  * @runtime: PCM runtime instance
1159  * @cond: condition bits
1160  * @var: hw_params variable to apply the list constraint
1161  * @l: list
1162  * 
1163  * Apply the list of constraints to an interval parameter.
1164  */
1165 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1166                                unsigned int cond,
1167                                snd_pcm_hw_param_t var,
1168                                struct snd_pcm_hw_constraint_list *l)
1169 {
1170         return snd_pcm_hw_rule_add(runtime, cond, var,
1171                                    snd_pcm_hw_rule_list, l,
1172                                    var, -1);
1173 }
1174
1175 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1176
1177 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1178                                    struct snd_pcm_hw_rule *rule)
1179 {
1180         struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1181         unsigned int num = 0, den = 0;
1182         int err;
1183         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1184                                   r->nrats, r->rats, &num, &den);
1185         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1186                 params->rate_num = num;
1187                 params->rate_den = den;
1188         }
1189         return err;
1190 }
1191
1192 /**
1193  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1194  * @runtime: PCM runtime instance
1195  * @cond: condition bits
1196  * @var: hw_params variable to apply the ratnums constraint
1197  * @r: struct snd_ratnums constriants
1198  */
1199 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1200                                   unsigned int cond,
1201                                   snd_pcm_hw_param_t var,
1202                                   struct snd_pcm_hw_constraint_ratnums *r)
1203 {
1204         return snd_pcm_hw_rule_add(runtime, cond, var,
1205                                    snd_pcm_hw_rule_ratnums, r,
1206                                    var, -1);
1207 }
1208
1209 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1210
1211 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1212                                    struct snd_pcm_hw_rule *rule)
1213 {
1214         struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1215         unsigned int num = 0, den = 0;
1216         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1217                                   r->nrats, r->rats, &num, &den);
1218         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1219                 params->rate_num = num;
1220                 params->rate_den = den;
1221         }
1222         return err;
1223 }
1224
1225 /**
1226  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1227  * @runtime: PCM runtime instance
1228  * @cond: condition bits
1229  * @var: hw_params variable to apply the ratdens constraint
1230  * @r: struct snd_ratdens constriants
1231  */
1232 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1233                                   unsigned int cond,
1234                                   snd_pcm_hw_param_t var,
1235                                   struct snd_pcm_hw_constraint_ratdens *r)
1236 {
1237         return snd_pcm_hw_rule_add(runtime, cond, var,
1238                                    snd_pcm_hw_rule_ratdens, r,
1239                                    var, -1);
1240 }
1241
1242 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1243
1244 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1245                                   struct snd_pcm_hw_rule *rule)
1246 {
1247         unsigned int l = (unsigned long) rule->private;
1248         int width = l & 0xffff;
1249         unsigned int msbits = l >> 16;
1250         struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1251         if (snd_interval_single(i) && snd_interval_value(i) == width)
1252                 params->msbits = msbits;
1253         return 0;
1254 }
1255
1256 /**
1257  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1258  * @runtime: PCM runtime instance
1259  * @cond: condition bits
1260  * @width: sample bits width
1261  * @msbits: msbits width
1262  */
1263 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1264                                  unsigned int cond,
1265                                  unsigned int width,
1266                                  unsigned int msbits)
1267 {
1268         unsigned long l = (msbits << 16) | width;
1269         return snd_pcm_hw_rule_add(runtime, cond, -1,
1270                                     snd_pcm_hw_rule_msbits,
1271                                     (void*) l,
1272                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1273 }
1274
1275 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1276
1277 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1278                                 struct snd_pcm_hw_rule *rule)
1279 {
1280         unsigned long step = (unsigned long) rule->private;
1281         return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1282 }
1283
1284 /**
1285  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1286  * @runtime: PCM runtime instance
1287  * @cond: condition bits
1288  * @var: hw_params variable to apply the step constraint
1289  * @step: step size
1290  */
1291 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1292                                unsigned int cond,
1293                                snd_pcm_hw_param_t var,
1294                                unsigned long step)
1295 {
1296         return snd_pcm_hw_rule_add(runtime, cond, var, 
1297                                    snd_pcm_hw_rule_step, (void *) step,
1298                                    var, -1);
1299 }
1300
1301 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1302
1303 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1304 {
1305         static unsigned int pow2_sizes[] = {
1306                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1307                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1308                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1309                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1310         };
1311         return snd_interval_list(hw_param_interval(params, rule->var),
1312                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1313 }               
1314
1315 /**
1316  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1317  * @runtime: PCM runtime instance
1318  * @cond: condition bits
1319  * @var: hw_params variable to apply the power-of-2 constraint
1320  */
1321 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1322                                unsigned int cond,
1323                                snd_pcm_hw_param_t var)
1324 {
1325         return snd_pcm_hw_rule_add(runtime, cond, var, 
1326                                    snd_pcm_hw_rule_pow2, NULL,
1327                                    var, -1);
1328 }
1329
1330 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1331
1332 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1333                                   snd_pcm_hw_param_t var)
1334 {
1335         if (hw_is_mask(var)) {
1336                 snd_mask_any(hw_param_mask(params, var));
1337                 params->cmask |= 1 << var;
1338                 params->rmask |= 1 << var;
1339                 return;
1340         }
1341         if (hw_is_interval(var)) {
1342                 snd_interval_any(hw_param_interval(params, var));
1343                 params->cmask |= 1 << var;
1344                 params->rmask |= 1 << var;
1345                 return;
1346         }
1347         snd_BUG();
1348 }
1349
1350 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1351 {
1352         unsigned int k;
1353         memset(params, 0, sizeof(*params));
1354         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1355                 _snd_pcm_hw_param_any(params, k);
1356         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1357                 _snd_pcm_hw_param_any(params, k);
1358         params->info = ~0U;
1359 }
1360
1361 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1362
1363 /**
1364  * snd_pcm_hw_param_value - return @params field @var value
1365  * @params: the hw_params instance
1366  * @var: parameter to retrieve
1367  * @dir: pointer to the direction (-1,0,1) or %NULL
1368  *
1369  * Return the value for field @var if it's fixed in configuration space
1370  * defined by @params. Return -%EINVAL otherwise.
1371  */
1372 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1373                            snd_pcm_hw_param_t var, int *dir)
1374 {
1375         if (hw_is_mask(var)) {
1376                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1377                 if (!snd_mask_single(mask))
1378                         return -EINVAL;
1379                 if (dir)
1380                         *dir = 0;
1381                 return snd_mask_value(mask);
1382         }
1383         if (hw_is_interval(var)) {
1384                 const struct snd_interval *i = hw_param_interval_c(params, var);
1385                 if (!snd_interval_single(i))
1386                         return -EINVAL;
1387                 if (dir)
1388                         *dir = i->openmin;
1389                 return snd_interval_value(i);
1390         }
1391         return -EINVAL;
1392 }
1393
1394 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1395
1396 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1397                                 snd_pcm_hw_param_t var)
1398 {
1399         if (hw_is_mask(var)) {
1400                 snd_mask_none(hw_param_mask(params, var));
1401                 params->cmask |= 1 << var;
1402                 params->rmask |= 1 << var;
1403         } else if (hw_is_interval(var)) {
1404                 snd_interval_none(hw_param_interval(params, var));
1405                 params->cmask |= 1 << var;
1406                 params->rmask |= 1 << var;
1407         } else {
1408                 snd_BUG();
1409         }
1410 }
1411
1412 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1413
1414 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1415                                    snd_pcm_hw_param_t var)
1416 {
1417         int changed;
1418         if (hw_is_mask(var))
1419                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1420         else if (hw_is_interval(var))
1421                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1422         else
1423                 return -EINVAL;
1424         if (changed) {
1425                 params->cmask |= 1 << var;
1426                 params->rmask |= 1 << var;
1427         }
1428         return changed;
1429 }
1430
1431
1432 /**
1433  * snd_pcm_hw_param_first - refine config space and return minimum value
1434  * @pcm: PCM instance
1435  * @params: the hw_params instance
1436  * @var: parameter to retrieve
1437  * @dir: pointer to the direction (-1,0,1) or %NULL
1438  *
1439  * Inside configuration space defined by @params remove from @var all
1440  * values > minimum. Reduce configuration space accordingly.
1441  * Return the minimum.
1442  */
1443 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1444                            struct snd_pcm_hw_params *params, 
1445                            snd_pcm_hw_param_t var, int *dir)
1446 {
1447         int changed = _snd_pcm_hw_param_first(params, var);
1448         if (changed < 0)
1449                 return changed;
1450         if (params->rmask) {
1451                 int err = snd_pcm_hw_refine(pcm, params);
1452                 if (snd_BUG_ON(err < 0))
1453                         return err;
1454         }
1455         return snd_pcm_hw_param_value(params, var, dir);
1456 }
1457
1458 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1459
1460 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1461                                   snd_pcm_hw_param_t var)
1462 {
1463         int changed;
1464         if (hw_is_mask(var))
1465                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1466         else if (hw_is_interval(var))
1467                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1468         else
1469                 return -EINVAL;
1470         if (changed) {
1471                 params->cmask |= 1 << var;
1472                 params->rmask |= 1 << var;
1473         }
1474         return changed;
1475 }
1476
1477
1478 /**
1479  * snd_pcm_hw_param_last - refine config space and return maximum value
1480  * @pcm: PCM instance
1481  * @params: the hw_params instance
1482  * @var: parameter to retrieve
1483  * @dir: pointer to the direction (-1,0,1) or %NULL
1484  *
1485  * Inside configuration space defined by @params remove from @var all
1486  * values < maximum. Reduce configuration space accordingly.
1487  * Return the maximum.
1488  */
1489 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1490                           struct snd_pcm_hw_params *params,
1491                           snd_pcm_hw_param_t var, int *dir)
1492 {
1493         int changed = _snd_pcm_hw_param_last(params, var);
1494         if (changed < 0)
1495                 return changed;
1496         if (params->rmask) {
1497                 int err = snd_pcm_hw_refine(pcm, params);
1498                 if (snd_BUG_ON(err < 0))
1499                         return err;
1500         }
1501         return snd_pcm_hw_param_value(params, var, dir);
1502 }
1503
1504 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1505
1506 /**
1507  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1508  * @pcm: PCM instance
1509  * @params: the hw_params instance
1510  *
1511  * Choose one configuration from configuration space defined by @params.
1512  * The configuration chosen is that obtained fixing in this order:
1513  * first access, first format, first subformat, min channels,
1514  * min rate, min period time, max buffer size, min tick time
1515  */
1516 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1517                              struct snd_pcm_hw_params *params)
1518 {
1519         static int vars[] = {
1520                 SNDRV_PCM_HW_PARAM_ACCESS,
1521                 SNDRV_PCM_HW_PARAM_FORMAT,
1522                 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1523                 SNDRV_PCM_HW_PARAM_CHANNELS,
1524                 SNDRV_PCM_HW_PARAM_RATE,
1525                 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1526                 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1527                 SNDRV_PCM_HW_PARAM_TICK_TIME,
1528                 -1
1529         };
1530         int err, *v;
1531
1532         for (v = vars; *v != -1; v++) {
1533                 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1534                         err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1535                 else
1536                         err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1537                 if (snd_BUG_ON(err < 0))
1538                         return err;
1539         }
1540         return 0;
1541 }
1542
1543 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1544                                    void *arg)
1545 {
1546         struct snd_pcm_runtime *runtime = substream->runtime;
1547         unsigned long flags;
1548         snd_pcm_stream_lock_irqsave(substream, flags);
1549         if (snd_pcm_running(substream) &&
1550             snd_pcm_update_hw_ptr(substream) >= 0)
1551                 runtime->status->hw_ptr %= runtime->buffer_size;
1552         else
1553                 runtime->status->hw_ptr = 0;
1554         snd_pcm_stream_unlock_irqrestore(substream, flags);
1555         return 0;
1556 }
1557
1558 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1559                                           void *arg)
1560 {
1561         struct snd_pcm_channel_info *info = arg;
1562         struct snd_pcm_runtime *runtime = substream->runtime;
1563         int width;
1564         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1565                 info->offset = -1;
1566                 return 0;
1567         }
1568         width = snd_pcm_format_physical_width(runtime->format);
1569         if (width < 0)
1570                 return width;
1571         info->offset = 0;
1572         switch (runtime->access) {
1573         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1574         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1575                 info->first = info->channel * width;
1576                 info->step = runtime->channels * width;
1577                 break;
1578         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1579         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1580         {
1581                 size_t size = runtime->dma_bytes / runtime->channels;
1582                 info->first = info->channel * size * 8;
1583                 info->step = width;
1584                 break;
1585         }
1586         default:
1587                 snd_BUG();
1588                 break;
1589         }
1590         return 0;
1591 }
1592
1593 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1594                                        void *arg)
1595 {
1596         struct snd_pcm_hw_params *params = arg;
1597         snd_pcm_format_t format;
1598         int channels, width;
1599
1600         params->fifo_size = substream->runtime->hw.fifo_size;
1601         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1602                 format = params_format(params);
1603                 channels = params_channels(params);
1604                 width = snd_pcm_format_physical_width(format);
1605                 params->fifo_size /= width * channels;
1606         }
1607         return 0;
1608 }
1609
1610 /**
1611  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1612  * @substream: the pcm substream instance
1613  * @cmd: ioctl command
1614  * @arg: ioctl argument
1615  *
1616  * Processes the generic ioctl commands for PCM.
1617  * Can be passed as the ioctl callback for PCM ops.
1618  *
1619  * Returns zero if successful, or a negative error code on failure.
1620  */
1621 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1622                       unsigned int cmd, void *arg)
1623 {
1624         switch (cmd) {
1625         case SNDRV_PCM_IOCTL1_INFO:
1626                 return 0;
1627         case SNDRV_PCM_IOCTL1_RESET:
1628                 return snd_pcm_lib_ioctl_reset(substream, arg);
1629         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1630                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1631         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1632                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1633         }
1634         return -ENXIO;
1635 }
1636
1637 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1638
1639 /**
1640  * snd_pcm_period_elapsed - update the pcm status for the next period
1641  * @substream: the pcm substream instance
1642  *
1643  * This function is called from the interrupt handler when the
1644  * PCM has processed the period size.  It will update the current
1645  * pointer, wake up sleepers, etc.
1646  *
1647  * Even if more than one periods have elapsed since the last call, you
1648  * have to call this only once.
1649  */
1650 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1651 {
1652         struct snd_pcm_runtime *runtime;
1653         unsigned long flags;
1654
1655         if (PCM_RUNTIME_CHECK(substream))
1656                 return;
1657         runtime = substream->runtime;
1658
1659         if (runtime->transfer_ack_begin)
1660                 runtime->transfer_ack_begin(substream);
1661
1662         snd_pcm_stream_lock_irqsave(substream, flags);
1663         if (!snd_pcm_running(substream) ||
1664             snd_pcm_update_hw_ptr0(substream, 1) < 0)
1665                 goto _end;
1666
1667         if (substream->timer_running)
1668                 snd_timer_interrupt(substream->timer, 1);
1669  _end:
1670         snd_pcm_stream_unlock_irqrestore(substream, flags);
1671         if (runtime->transfer_ack_end)
1672                 runtime->transfer_ack_end(substream);
1673         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1674 }
1675
1676 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1677
1678 /*
1679  * Wait until avail_min data becomes available
1680  * Returns a negative error code if any error occurs during operation.
1681  * The available space is stored on availp.  When err = 0 and avail = 0
1682  * on the capture stream, it indicates the stream is in DRAINING state.
1683  */
1684 static int wait_for_avail_min(struct snd_pcm_substream *substream,
1685                               snd_pcm_uframes_t *availp)
1686 {
1687         struct snd_pcm_runtime *runtime = substream->runtime;
1688         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1689         wait_queue_t wait;
1690         int err = 0;
1691         snd_pcm_uframes_t avail = 0;
1692         long tout;
1693
1694         init_waitqueue_entry(&wait, current);
1695         add_wait_queue(&runtime->sleep, &wait);
1696         for (;;) {
1697                 if (signal_pending(current)) {
1698                         err = -ERESTARTSYS;
1699                         break;
1700                 }
1701                 set_current_state(TASK_INTERRUPTIBLE);
1702                 snd_pcm_stream_unlock_irq(substream);
1703                 tout = schedule_timeout(msecs_to_jiffies(10000));
1704                 snd_pcm_stream_lock_irq(substream);
1705                 switch (runtime->status->state) {
1706                 case SNDRV_PCM_STATE_SUSPENDED:
1707                         err = -ESTRPIPE;
1708                         goto _endloop;
1709                 case SNDRV_PCM_STATE_XRUN:
1710                         err = -EPIPE;
1711                         goto _endloop;
1712                 case SNDRV_PCM_STATE_DRAINING:
1713                         if (is_playback)
1714                                 err = -EPIPE;
1715                         else 
1716                                 avail = 0; /* indicate draining */
1717                         goto _endloop;
1718                 case SNDRV_PCM_STATE_OPEN:
1719                 case SNDRV_PCM_STATE_SETUP:
1720                 case SNDRV_PCM_STATE_DISCONNECTED:
1721                         err = -EBADFD;
1722                         goto _endloop;
1723                 }
1724                 if (!tout) {
1725                         snd_printd("%s write error (DMA or IRQ trouble?)\n",
1726                                    is_playback ? "playback" : "capture");
1727                         err = -EIO;
1728                         break;
1729                 }
1730                 if (is_playback)
1731                         avail = snd_pcm_playback_avail(runtime);
1732                 else
1733                         avail = snd_pcm_capture_avail(runtime);
1734                 if (avail >= runtime->control->avail_min)
1735                         break;
1736         }
1737  _endloop:
1738         remove_wait_queue(&runtime->sleep, &wait);
1739         *availp = avail;
1740         return err;
1741 }
1742         
1743 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1744                                       unsigned int hwoff,
1745                                       unsigned long data, unsigned int off,
1746                                       snd_pcm_uframes_t frames)
1747 {
1748         struct snd_pcm_runtime *runtime = substream->runtime;
1749         int err;
1750         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1751         if (substream->ops->copy) {
1752                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1753                         return err;
1754         } else {
1755                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1756                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1757                         return -EFAULT;
1758         }
1759         return 0;
1760 }
1761  
1762 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1763                           unsigned long data, unsigned int off,
1764                           snd_pcm_uframes_t size);
1765
1766 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1767                                             unsigned long data,
1768                                             snd_pcm_uframes_t size,
1769                                             int nonblock,
1770                                             transfer_f transfer)
1771 {
1772         struct snd_pcm_runtime *runtime = substream->runtime;
1773         snd_pcm_uframes_t xfer = 0;
1774         snd_pcm_uframes_t offset = 0;
1775         int err = 0;
1776
1777         if (size == 0)
1778                 return 0;
1779
1780         snd_pcm_stream_lock_irq(substream);
1781         switch (runtime->status->state) {
1782         case SNDRV_PCM_STATE_PREPARED:
1783         case SNDRV_PCM_STATE_RUNNING:
1784         case SNDRV_PCM_STATE_PAUSED:
1785                 break;
1786         case SNDRV_PCM_STATE_XRUN:
1787                 err = -EPIPE;
1788                 goto _end_unlock;
1789         case SNDRV_PCM_STATE_SUSPENDED:
1790                 err = -ESTRPIPE;
1791                 goto _end_unlock;
1792         default:
1793                 err = -EBADFD;
1794                 goto _end_unlock;
1795         }
1796
1797         runtime->nowake = 1;
1798         while (size > 0) {
1799                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1800                 snd_pcm_uframes_t avail;
1801                 snd_pcm_uframes_t cont;
1802                 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1803                         snd_pcm_update_hw_ptr(substream);
1804                 avail = snd_pcm_playback_avail(runtime);
1805                 if (!avail) {
1806                         if (nonblock) {
1807                                 err = -EAGAIN;
1808                                 goto _end_unlock;
1809                         }
1810                         err = wait_for_avail_min(substream, &avail);
1811                         if (err < 0)
1812                                 goto _end_unlock;
1813                 }
1814                 frames = size > avail ? avail : size;
1815                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1816                 if (frames > cont)
1817                         frames = cont;
1818                 if (snd_BUG_ON(!frames)) {
1819                         runtime->nowake = 0;
1820                         snd_pcm_stream_unlock_irq(substream);
1821                         return -EINVAL;
1822                 }
1823                 appl_ptr = runtime->control->appl_ptr;
1824                 appl_ofs = appl_ptr % runtime->buffer_size;
1825                 snd_pcm_stream_unlock_irq(substream);
1826                 err = transfer(substream, appl_ofs, data, offset, frames);
1827                 snd_pcm_stream_lock_irq(substream);
1828                 if (err < 0)
1829                         goto _end_unlock;
1830                 switch (runtime->status->state) {
1831                 case SNDRV_PCM_STATE_XRUN:
1832                         err = -EPIPE;
1833                         goto _end_unlock;
1834                 case SNDRV_PCM_STATE_SUSPENDED:
1835                         err = -ESTRPIPE;
1836                         goto _end_unlock;
1837                 default:
1838                         break;
1839                 }
1840                 appl_ptr += frames;
1841                 if (appl_ptr >= runtime->boundary)
1842                         appl_ptr -= runtime->boundary;
1843                 runtime->control->appl_ptr = appl_ptr;
1844                 if (substream->ops->ack)
1845                         substream->ops->ack(substream);
1846
1847                 offset += frames;
1848                 size -= frames;
1849                 xfer += frames;
1850                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1851                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1852                         err = snd_pcm_start(substream);
1853                         if (err < 0)
1854                                 goto _end_unlock;
1855                 }
1856         }
1857  _end_unlock:
1858         runtime->nowake = 0;
1859         if (xfer > 0 && err >= 0)
1860                 snd_pcm_update_state(substream, runtime);
1861         snd_pcm_stream_unlock_irq(substream);
1862         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1863 }
1864
1865 /* sanity-check for read/write methods */
1866 static int pcm_sanity_check(struct snd_pcm_substream *substream)
1867 {
1868         struct snd_pcm_runtime *runtime;
1869         if (PCM_RUNTIME_CHECK(substream))
1870                 return -ENXIO;
1871         runtime = substream->runtime;
1872         if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1873                 return -EINVAL;
1874         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1875                 return -EBADFD;
1876         return 0;
1877 }
1878
1879 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
1880 {
1881         struct snd_pcm_runtime *runtime;
1882         int nonblock;
1883         int err;
1884
1885         err = pcm_sanity_check(substream);
1886         if (err < 0)
1887                 return err;
1888         runtime = substream->runtime;
1889         nonblock = !!(substream->f_flags & O_NONBLOCK);
1890
1891         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
1892             runtime->channels > 1)
1893                 return -EINVAL;
1894         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
1895                                   snd_pcm_lib_write_transfer);
1896 }
1897
1898 EXPORT_SYMBOL(snd_pcm_lib_write);
1899
1900 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
1901                                        unsigned int hwoff,
1902                                        unsigned long data, unsigned int off,
1903                                        snd_pcm_uframes_t frames)
1904 {
1905         struct snd_pcm_runtime *runtime = substream->runtime;
1906         int err;
1907         void __user **bufs = (void __user **)data;
1908         int channels = runtime->channels;
1909         int c;
1910         if (substream->ops->copy) {
1911                 if (snd_BUG_ON(!substream->ops->silence))
1912                         return -EINVAL;
1913                 for (c = 0; c < channels; ++c, ++bufs) {
1914                         if (*bufs == NULL) {
1915                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
1916                                         return err;
1917                         } else {
1918                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1919                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
1920                                         return err;
1921                         }
1922                 }
1923         } else {
1924                 /* default transfer behaviour */
1925                 size_t dma_csize = runtime->dma_bytes / channels;
1926                 for (c = 0; c < channels; ++c, ++bufs) {
1927                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
1928                         if (*bufs == NULL) {
1929                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
1930                         } else {
1931                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1932                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
1933                                         return -EFAULT;
1934                         }
1935                 }
1936         }
1937         return 0;
1938 }
1939  
1940 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
1941                                      void __user **bufs,
1942                                      snd_pcm_uframes_t frames)
1943 {
1944         struct snd_pcm_runtime *runtime;
1945         int nonblock;
1946         int err;
1947
1948         err = pcm_sanity_check(substream);
1949         if (err < 0)
1950                 return err;
1951         runtime = substream->runtime;
1952         nonblock = !!(substream->f_flags & O_NONBLOCK);
1953
1954         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
1955                 return -EINVAL;
1956         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
1957                                   nonblock, snd_pcm_lib_writev_transfer);
1958 }
1959
1960 EXPORT_SYMBOL(snd_pcm_lib_writev);
1961
1962 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
1963                                      unsigned int hwoff,
1964                                      unsigned long data, unsigned int off,
1965                                      snd_pcm_uframes_t frames)
1966 {
1967         struct snd_pcm_runtime *runtime = substream->runtime;
1968         int err;
1969         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1970         if (substream->ops->copy) {
1971                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1972                         return err;
1973         } else {
1974                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1975                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
1976                         return -EFAULT;
1977         }
1978         return 0;
1979 }
1980
1981 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
1982                                            unsigned long data,
1983                                            snd_pcm_uframes_t size,
1984                                            int nonblock,
1985                                            transfer_f transfer)
1986 {
1987         struct snd_pcm_runtime *runtime = substream->runtime;
1988         snd_pcm_uframes_t xfer = 0;
1989         snd_pcm_uframes_t offset = 0;
1990         int err = 0;
1991
1992         if (size == 0)
1993                 return 0;
1994
1995         snd_pcm_stream_lock_irq(substream);
1996         switch (runtime->status->state) {
1997         case SNDRV_PCM_STATE_PREPARED:
1998                 if (size >= runtime->start_threshold) {
1999                         err = snd_pcm_start(substream);
2000                         if (err < 0)
2001                                 goto _end_unlock;
2002                 }
2003                 break;
2004         case SNDRV_PCM_STATE_DRAINING:
2005         case SNDRV_PCM_STATE_RUNNING:
2006         case SNDRV_PCM_STATE_PAUSED:
2007                 break;
2008         case SNDRV_PCM_STATE_XRUN:
2009                 err = -EPIPE;
2010                 goto _end_unlock;
2011         case SNDRV_PCM_STATE_SUSPENDED:
2012                 err = -ESTRPIPE;
2013                 goto _end_unlock;
2014         default:
2015                 err = -EBADFD;
2016                 goto _end_unlock;
2017         }
2018
2019         runtime->nowake = 1;
2020         while (size > 0) {
2021                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2022                 snd_pcm_uframes_t avail;
2023                 snd_pcm_uframes_t cont;
2024                 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2025                         snd_pcm_update_hw_ptr(substream);
2026                 avail = snd_pcm_capture_avail(runtime);
2027                 if (!avail) {
2028                         if (runtime->status->state ==
2029                             SNDRV_PCM_STATE_DRAINING) {
2030                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2031                                 goto _end_unlock;
2032                         }
2033                         if (nonblock) {
2034                                 err = -EAGAIN;
2035                                 goto _end_unlock;
2036                         }
2037                         err = wait_for_avail_min(substream, &avail);
2038                         if (err < 0)
2039                                 goto _end_unlock;
2040                         if (!avail)
2041                                 continue; /* draining */
2042                 }
2043                 frames = size > avail ? avail : size;
2044                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2045                 if (frames > cont)
2046                         frames = cont;
2047                 if (snd_BUG_ON(!frames)) {
2048                         runtime->nowake = 0;
2049                         snd_pcm_stream_unlock_irq(substream);
2050                         return -EINVAL;
2051                 }
2052                 appl_ptr = runtime->control->appl_ptr;
2053                 appl_ofs = appl_ptr % runtime->buffer_size;
2054                 snd_pcm_stream_unlock_irq(substream);
2055                 err = transfer(substream, appl_ofs, data, offset, frames);
2056                 snd_pcm_stream_lock_irq(substream);
2057                 if (err < 0)
2058                         goto _end_unlock;
2059                 switch (runtime->status->state) {
2060                 case SNDRV_PCM_STATE_XRUN:
2061                         err = -EPIPE;
2062                         goto _end_unlock;
2063                 case SNDRV_PCM_STATE_SUSPENDED:
2064                         err = -ESTRPIPE;
2065                         goto _end_unlock;
2066                 default:
2067                         break;
2068                 }
2069                 appl_ptr += frames;
2070                 if (appl_ptr >= runtime->boundary)
2071                         appl_ptr -= runtime->boundary;
2072                 runtime->control->appl_ptr = appl_ptr;
2073                 if (substream->ops->ack)
2074                         substream->ops->ack(substream);
2075
2076                 offset += frames;
2077                 size -= frames;
2078                 xfer += frames;
2079         }
2080  _end_unlock:
2081         runtime->nowake = 0;
2082         if (xfer > 0 && err >= 0)
2083                 snd_pcm_update_state(substream, runtime);
2084         snd_pcm_stream_unlock_irq(substream);
2085         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2086 }
2087
2088 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2089 {
2090         struct snd_pcm_runtime *runtime;
2091         int nonblock;
2092         int err;
2093         
2094         err = pcm_sanity_check(substream);
2095         if (err < 0)
2096                 return err;
2097         runtime = substream->runtime;
2098         nonblock = !!(substream->f_flags & O_NONBLOCK);
2099         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2100                 return -EINVAL;
2101         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2102 }
2103
2104 EXPORT_SYMBOL(snd_pcm_lib_read);
2105
2106 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2107                                       unsigned int hwoff,
2108                                       unsigned long data, unsigned int off,
2109                                       snd_pcm_uframes_t frames)
2110 {
2111         struct snd_pcm_runtime *runtime = substream->runtime;
2112         int err;
2113         void __user **bufs = (void __user **)data;
2114         int channels = runtime->channels;
2115         int c;
2116         if (substream->ops->copy) {
2117                 for (c = 0; c < channels; ++c, ++bufs) {
2118                         char __user *buf;
2119                         if (*bufs == NULL)
2120                                 continue;
2121                         buf = *bufs + samples_to_bytes(runtime, off);
2122                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2123                                 return err;
2124                 }
2125         } else {
2126                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2127                 for (c = 0; c < channels; ++c, ++bufs) {
2128                         char *hwbuf;
2129                         char __user *buf;
2130                         if (*bufs == NULL)
2131                                 continue;
2132
2133                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2134                         buf = *bufs + samples_to_bytes(runtime, off);
2135                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2136                                 return -EFAULT;
2137                 }
2138         }
2139         return 0;
2140 }
2141  
2142 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2143                                     void __user **bufs,
2144                                     snd_pcm_uframes_t frames)
2145 {
2146         struct snd_pcm_runtime *runtime;
2147         int nonblock;
2148         int err;
2149
2150         err = pcm_sanity_check(substream);
2151         if (err < 0)
2152                 return err;
2153         runtime = substream->runtime;
2154         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2155                 return -EBADFD;
2156
2157         nonblock = !!(substream->f_flags & O_NONBLOCK);
2158         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2159                 return -EINVAL;
2160         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2161 }
2162
2163 EXPORT_SYMBOL(snd_pcm_lib_readv);