adb306fd552535dddec197700c4bb7ce00501823
[safe/jmp/linux-2.6] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <sound/core.h>
26 #include <sound/control.h>
27 #include <sound/info.h>
28 #include <sound/pcm.h>
29 #include <sound/pcm_params.h>
30 #include <sound/timer.h>
31
32 /*
33  * fill ring buffer with silence
34  * runtime->silence_start: starting pointer to silence area
35  * runtime->silence_filled: size filled with silence
36  * runtime->silence_threshold: threshold from application
37  * runtime->silence_size: maximal size from application
38  *
39  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
40  */
41 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
42 {
43         struct snd_pcm_runtime *runtime = substream->runtime;
44         snd_pcm_uframes_t frames, ofs, transfer;
45
46         if (runtime->silence_size < runtime->boundary) {
47                 snd_pcm_sframes_t noise_dist, n;
48                 if (runtime->silence_start != runtime->control->appl_ptr) {
49                         n = runtime->control->appl_ptr - runtime->silence_start;
50                         if (n < 0)
51                                 n += runtime->boundary;
52                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
53                                 runtime->silence_filled -= n;
54                         else
55                                 runtime->silence_filled = 0;
56                         runtime->silence_start = runtime->control->appl_ptr;
57                 }
58                 if (runtime->silence_filled >= runtime->buffer_size)
59                         return;
60                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
61                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
62                         return;
63                 frames = runtime->silence_threshold - noise_dist;
64                 if (frames > runtime->silence_size)
65                         frames = runtime->silence_size;
66         } else {
67                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
68                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
69                         runtime->silence_filled = avail > 0 ? avail : 0;
70                         runtime->silence_start = (runtime->status->hw_ptr +
71                                                   runtime->silence_filled) %
72                                                  runtime->boundary;
73                 } else {
74                         ofs = runtime->status->hw_ptr;
75                         frames = new_hw_ptr - ofs;
76                         if ((snd_pcm_sframes_t)frames < 0)
77                                 frames += runtime->boundary;
78                         runtime->silence_filled -= frames;
79                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
80                                 runtime->silence_filled = 0;
81                                 runtime->silence_start = new_hw_ptr;
82                         } else {
83                                 runtime->silence_start = ofs;
84                         }
85                 }
86                 frames = runtime->buffer_size - runtime->silence_filled;
87         }
88         if (snd_BUG_ON(frames > runtime->buffer_size))
89                 return;
90         if (frames == 0)
91                 return;
92         ofs = runtime->silence_start % runtime->buffer_size;
93         while (frames > 0) {
94                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
95                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
96                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
97                         if (substream->ops->silence) {
98                                 int err;
99                                 err = substream->ops->silence(substream, -1, ofs, transfer);
100                                 snd_BUG_ON(err < 0);
101                         } else {
102                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
103                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
104                         }
105                 } else {
106                         unsigned int c;
107                         unsigned int channels = runtime->channels;
108                         if (substream->ops->silence) {
109                                 for (c = 0; c < channels; ++c) {
110                                         int err;
111                                         err = substream->ops->silence(substream, c, ofs, transfer);
112                                         snd_BUG_ON(err < 0);
113                                 }
114                         } else {
115                                 size_t dma_csize = runtime->dma_bytes / channels;
116                                 for (c = 0; c < channels; ++c) {
117                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
118                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
119                                 }
120                         }
121                 }
122                 runtime->silence_filled += transfer;
123                 frames -= transfer;
124                 ofs = 0;
125         }
126 }
127
128 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
129 #define xrun_debug(substream, mask)     ((substream)->pstr->xrun_debug & (mask))
130 #else
131 #define xrun_debug(substream, mask)     0
132 #endif
133
134 #define dump_stack_on_xrun(substream) do {              \
135                 if (xrun_debug(substream, 2))           \
136                         dump_stack();                   \
137         } while (0)
138
139 static void xrun(struct snd_pcm_substream *substream)
140 {
141         struct snd_pcm_runtime *runtime = substream->runtime;
142
143         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
144                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
145         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
146         if (xrun_debug(substream, 1)) {
147                 snd_printd(KERN_DEBUG "XRUN: pcmC%dD%d%c\n",
148                            substream->pcm->card->number,
149                            substream->pcm->device,
150                            substream->stream ? 'c' : 'p');
151                 dump_stack_on_xrun(substream);
152         }
153 }
154
155 static snd_pcm_uframes_t
156 snd_pcm_update_hw_ptr_pos(struct snd_pcm_substream *substream,
157                           struct snd_pcm_runtime *runtime)
158 {
159         snd_pcm_uframes_t pos;
160
161         pos = substream->ops->pointer(substream);
162         if (pos == SNDRV_PCM_POS_XRUN)
163                 return pos; /* XRUN */
164         if (pos >= runtime->buffer_size) {
165                 if (printk_ratelimit()) {
166                         snd_printd(KERN_ERR  "BUG: stream = %i, pos = 0x%lx, "
167                                    "buffer size = 0x%lx, period size = 0x%lx\n",
168                                    substream->stream, pos, runtime->buffer_size,
169                                    runtime->period_size);
170                 }
171                 pos = 0;
172         }
173         pos -= pos % runtime->min_align;
174         return pos;
175 }
176
177 static int snd_pcm_update_hw_ptr_post(struct snd_pcm_substream *substream,
178                                       struct snd_pcm_runtime *runtime)
179 {
180         snd_pcm_uframes_t avail;
181
182         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
183                 avail = snd_pcm_playback_avail(runtime);
184         else
185                 avail = snd_pcm_capture_avail(runtime);
186         if (avail > runtime->avail_max)
187                 runtime->avail_max = avail;
188         if (avail >= runtime->stop_threshold) {
189                 if (substream->runtime->status->state == SNDRV_PCM_STATE_DRAINING)
190                         snd_pcm_drain_done(substream);
191                 else
192                         xrun(substream);
193                 return -EPIPE;
194         }
195         if (avail >= runtime->control->avail_min)
196                 wake_up(&runtime->sleep);
197         return 0;
198 }
199
200 #define hw_ptr_error(substream, fmt, args...)                           \
201         do {                                                            \
202                 if (xrun_debug(substream, 1)) {                         \
203                         if (printk_ratelimit()) {                       \
204                                 snd_printd("PCM: " fmt, ##args);        \
205                         }                                               \
206                         dump_stack_on_xrun(substream);                  \
207                 }                                                       \
208         } while (0)
209
210 static int snd_pcm_update_hw_ptr_interrupt(struct snd_pcm_substream *substream)
211 {
212         struct snd_pcm_runtime *runtime = substream->runtime;
213         snd_pcm_uframes_t pos;
214         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_ptr_interrupt, hw_base;
215         snd_pcm_sframes_t hdelta, delta;
216         unsigned long jdelta;
217
218         old_hw_ptr = runtime->status->hw_ptr;
219         pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
220         if (pos == SNDRV_PCM_POS_XRUN) {
221                 xrun(substream);
222                 return -EPIPE;
223         }
224         hw_base = runtime->hw_ptr_base;
225         new_hw_ptr = hw_base + pos;
226         hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size;
227         delta = new_hw_ptr - hw_ptr_interrupt;
228         if (hw_ptr_interrupt >= runtime->boundary) {
229                 hw_ptr_interrupt -= runtime->boundary;
230                 if (hw_base < runtime->boundary / 2)
231                         /* hw_base was already lapped; recalc delta */
232                         delta = new_hw_ptr - hw_ptr_interrupt;
233         }
234         if (delta < 0) {
235                 delta += runtime->buffer_size;
236                 if (delta < 0) {
237                         hw_ptr_error(substream, 
238                                      "Unexpected hw_pointer value "
239                                      "(stream=%i, pos=%ld, intr_ptr=%ld)\n",
240                                      substream->stream, (long)pos,
241                                      (long)hw_ptr_interrupt);
242                         /* rebase to interrupt position */
243                         hw_base = new_hw_ptr = hw_ptr_interrupt;
244                         /* align hw_base to buffer_size */
245                         hw_base -= hw_base % runtime->buffer_size;
246                         delta = 0;
247                 } else {
248                         hw_base += runtime->buffer_size;
249                         if (hw_base >= runtime->boundary)
250                                 hw_base = 0;
251                         new_hw_ptr = hw_base + pos;
252                 }
253         }
254
255         /* Do jiffies check only in xrun_debug mode */
256         if (!xrun_debug(substream, 4))
257                 goto no_jiffies_check;
258
259         /* Skip the jiffies check for hardwares with BATCH flag.
260          * Such hardware usually just increases the position at each IRQ,
261          * thus it can't give any strange position.
262          */
263         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
264                 goto no_jiffies_check;
265         hdelta = new_hw_ptr - old_hw_ptr;
266         if (hdelta < runtime->delay)
267                 goto no_jiffies_check;
268         hdelta -= runtime->delay;
269         jdelta = jiffies - runtime->hw_ptr_jiffies;
270         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
271                 delta = jdelta /
272                         (((runtime->period_size * HZ) / runtime->rate)
273                                                                 + HZ/100);
274                 hw_ptr_error(substream,
275                              "hw_ptr skipping! [Q] "
276                              "(pos=%ld, delta=%ld, period=%ld, "
277                              "jdelta=%lu/%lu/%lu)\n",
278                              (long)pos, (long)hdelta,
279                              (long)runtime->period_size, jdelta,
280                              ((hdelta * HZ) / runtime->rate), delta);
281                 hw_ptr_interrupt = runtime->hw_ptr_interrupt +
282                                    runtime->period_size * delta;
283                 if (hw_ptr_interrupt >= runtime->boundary)
284                         hw_ptr_interrupt -= runtime->boundary;
285                 /* rebase to interrupt position */
286                 hw_base = new_hw_ptr = hw_ptr_interrupt;
287                 /* align hw_base to buffer_size */
288                 hw_base -= hw_base % runtime->buffer_size;
289                 delta = 0;
290         }
291  no_jiffies_check:
292         if (delta > runtime->period_size + runtime->period_size / 2) {
293                 hw_ptr_error(substream,
294                              "Lost interrupts? "
295                              "(stream=%i, delta=%ld, intr_ptr=%ld)\n",
296                              substream->stream, (long)delta,
297                              (long)hw_ptr_interrupt);
298                 /* rebase hw_ptr_interrupt */
299                 hw_ptr_interrupt =
300                         new_hw_ptr - new_hw_ptr % runtime->period_size;
301         }
302         runtime->hw_ptr_interrupt = hw_ptr_interrupt;
303
304         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
305             runtime->silence_size > 0)
306                 snd_pcm_playback_silence(substream, new_hw_ptr);
307
308         if (runtime->status->hw_ptr == new_hw_ptr)
309                 return 0;
310
311         runtime->hw_ptr_base = hw_base;
312         runtime->status->hw_ptr = new_hw_ptr;
313         runtime->hw_ptr_jiffies = jiffies;
314         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
315                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
316
317         return snd_pcm_update_hw_ptr_post(substream, runtime);
318 }
319
320 /* CAUTION: call it with irq disabled */
321 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
322 {
323         struct snd_pcm_runtime *runtime = substream->runtime;
324         snd_pcm_uframes_t pos;
325         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
326         snd_pcm_sframes_t delta;
327         unsigned long jdelta;
328
329         old_hw_ptr = runtime->status->hw_ptr;
330         pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
331         if (pos == SNDRV_PCM_POS_XRUN) {
332                 xrun(substream);
333                 return -EPIPE;
334         }
335         hw_base = runtime->hw_ptr_base;
336         new_hw_ptr = hw_base + pos;
337
338         delta = new_hw_ptr - old_hw_ptr;
339         jdelta = jiffies - runtime->hw_ptr_jiffies;
340         if (delta < 0) {
341                 delta += runtime->buffer_size;
342                 if (delta < 0) {
343                         hw_ptr_error(substream, 
344                                      "Unexpected hw_pointer value [2] "
345                                      "(stream=%i, pos=%ld, old_ptr=%ld, jdelta=%li)\n",
346                                      substream->stream, (long)pos,
347                                      (long)old_hw_ptr, jdelta);
348                         return 0;
349                 }
350                 hw_base += runtime->buffer_size;
351                 if (hw_base >= runtime->boundary)
352                         hw_base = 0;
353                 new_hw_ptr = hw_base + pos;
354         }
355         /* Do jiffies check only in xrun_debug mode */
356         if (!xrun_debug(substream, 4))
357                 goto no_jiffies_check;
358         if (delta < runtime->delay)
359                 goto no_jiffies_check;
360         delta -= runtime->delay;
361         if (((delta * HZ) / runtime->rate) > jdelta + HZ/100) {
362                 hw_ptr_error(substream,
363                              "hw_ptr skipping! "
364                              "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu)\n",
365                              (long)pos, (long)delta,
366                              (long)runtime->period_size, jdelta,
367                              ((delta * HZ) / runtime->rate));
368                 return 0;
369         }
370  no_jiffies_check:
371         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
372             runtime->silence_size > 0)
373                 snd_pcm_playback_silence(substream, new_hw_ptr);
374
375         if (runtime->status->hw_ptr == new_hw_ptr)
376                 return 0;
377
378         runtime->hw_ptr_base = hw_base;
379         runtime->status->hw_ptr = new_hw_ptr;
380         runtime->hw_ptr_jiffies = jiffies;
381         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
382                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
383
384         return snd_pcm_update_hw_ptr_post(substream, runtime);
385 }
386
387 /**
388  * snd_pcm_set_ops - set the PCM operators
389  * @pcm: the pcm instance
390  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
391  * @ops: the operator table
392  *
393  * Sets the given PCM operators to the pcm instance.
394  */
395 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
396 {
397         struct snd_pcm_str *stream = &pcm->streams[direction];
398         struct snd_pcm_substream *substream;
399         
400         for (substream = stream->substream; substream != NULL; substream = substream->next)
401                 substream->ops = ops;
402 }
403
404 EXPORT_SYMBOL(snd_pcm_set_ops);
405
406 /**
407  * snd_pcm_sync - set the PCM sync id
408  * @substream: the pcm substream
409  *
410  * Sets the PCM sync identifier for the card.
411  */
412 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
413 {
414         struct snd_pcm_runtime *runtime = substream->runtime;
415         
416         runtime->sync.id32[0] = substream->pcm->card->number;
417         runtime->sync.id32[1] = -1;
418         runtime->sync.id32[2] = -1;
419         runtime->sync.id32[3] = -1;
420 }
421
422 EXPORT_SYMBOL(snd_pcm_set_sync);
423
424 /*
425  *  Standard ioctl routine
426  */
427
428 static inline unsigned int div32(unsigned int a, unsigned int b, 
429                                  unsigned int *r)
430 {
431         if (b == 0) {
432                 *r = 0;
433                 return UINT_MAX;
434         }
435         *r = a % b;
436         return a / b;
437 }
438
439 static inline unsigned int div_down(unsigned int a, unsigned int b)
440 {
441         if (b == 0)
442                 return UINT_MAX;
443         return a / b;
444 }
445
446 static inline unsigned int div_up(unsigned int a, unsigned int b)
447 {
448         unsigned int r;
449         unsigned int q;
450         if (b == 0)
451                 return UINT_MAX;
452         q = div32(a, b, &r);
453         if (r)
454                 ++q;
455         return q;
456 }
457
458 static inline unsigned int mul(unsigned int a, unsigned int b)
459 {
460         if (a == 0)
461                 return 0;
462         if (div_down(UINT_MAX, a) < b)
463                 return UINT_MAX;
464         return a * b;
465 }
466
467 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
468                                     unsigned int c, unsigned int *r)
469 {
470         u_int64_t n = (u_int64_t) a * b;
471         if (c == 0) {
472                 snd_BUG_ON(!n);
473                 *r = 0;
474                 return UINT_MAX;
475         }
476         div64_32(&n, c, r);
477         if (n >= UINT_MAX) {
478                 *r = 0;
479                 return UINT_MAX;
480         }
481         return n;
482 }
483
484 /**
485  * snd_interval_refine - refine the interval value of configurator
486  * @i: the interval value to refine
487  * @v: the interval value to refer to
488  *
489  * Refines the interval value with the reference value.
490  * The interval is changed to the range satisfying both intervals.
491  * The interval status (min, max, integer, etc.) are evaluated.
492  *
493  * Returns non-zero if the value is changed, zero if not changed.
494  */
495 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
496 {
497         int changed = 0;
498         if (snd_BUG_ON(snd_interval_empty(i)))
499                 return -EINVAL;
500         if (i->min < v->min) {
501                 i->min = v->min;
502                 i->openmin = v->openmin;
503                 changed = 1;
504         } else if (i->min == v->min && !i->openmin && v->openmin) {
505                 i->openmin = 1;
506                 changed = 1;
507         }
508         if (i->max > v->max) {
509                 i->max = v->max;
510                 i->openmax = v->openmax;
511                 changed = 1;
512         } else if (i->max == v->max && !i->openmax && v->openmax) {
513                 i->openmax = 1;
514                 changed = 1;
515         }
516         if (!i->integer && v->integer) {
517                 i->integer = 1;
518                 changed = 1;
519         }
520         if (i->integer) {
521                 if (i->openmin) {
522                         i->min++;
523                         i->openmin = 0;
524                 }
525                 if (i->openmax) {
526                         i->max--;
527                         i->openmax = 0;
528                 }
529         } else if (!i->openmin && !i->openmax && i->min == i->max)
530                 i->integer = 1;
531         if (snd_interval_checkempty(i)) {
532                 snd_interval_none(i);
533                 return -EINVAL;
534         }
535         return changed;
536 }
537
538 EXPORT_SYMBOL(snd_interval_refine);
539
540 static int snd_interval_refine_first(struct snd_interval *i)
541 {
542         if (snd_BUG_ON(snd_interval_empty(i)))
543                 return -EINVAL;
544         if (snd_interval_single(i))
545                 return 0;
546         i->max = i->min;
547         i->openmax = i->openmin;
548         if (i->openmax)
549                 i->max++;
550         return 1;
551 }
552
553 static int snd_interval_refine_last(struct snd_interval *i)
554 {
555         if (snd_BUG_ON(snd_interval_empty(i)))
556                 return -EINVAL;
557         if (snd_interval_single(i))
558                 return 0;
559         i->min = i->max;
560         i->openmin = i->openmax;
561         if (i->openmin)
562                 i->min--;
563         return 1;
564 }
565
566 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
567 {
568         if (a->empty || b->empty) {
569                 snd_interval_none(c);
570                 return;
571         }
572         c->empty = 0;
573         c->min = mul(a->min, b->min);
574         c->openmin = (a->openmin || b->openmin);
575         c->max = mul(a->max,  b->max);
576         c->openmax = (a->openmax || b->openmax);
577         c->integer = (a->integer && b->integer);
578 }
579
580 /**
581  * snd_interval_div - refine the interval value with division
582  * @a: dividend
583  * @b: divisor
584  * @c: quotient
585  *
586  * c = a / b
587  *
588  * Returns non-zero if the value is changed, zero if not changed.
589  */
590 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
591 {
592         unsigned int r;
593         if (a->empty || b->empty) {
594                 snd_interval_none(c);
595                 return;
596         }
597         c->empty = 0;
598         c->min = div32(a->min, b->max, &r);
599         c->openmin = (r || a->openmin || b->openmax);
600         if (b->min > 0) {
601                 c->max = div32(a->max, b->min, &r);
602                 if (r) {
603                         c->max++;
604                         c->openmax = 1;
605                 } else
606                         c->openmax = (a->openmax || b->openmin);
607         } else {
608                 c->max = UINT_MAX;
609                 c->openmax = 0;
610         }
611         c->integer = 0;
612 }
613
614 /**
615  * snd_interval_muldivk - refine the interval value
616  * @a: dividend 1
617  * @b: dividend 2
618  * @k: divisor (as integer)
619  * @c: result
620   *
621  * c = a * b / k
622  *
623  * Returns non-zero if the value is changed, zero if not changed.
624  */
625 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
626                       unsigned int k, struct snd_interval *c)
627 {
628         unsigned int r;
629         if (a->empty || b->empty) {
630                 snd_interval_none(c);
631                 return;
632         }
633         c->empty = 0;
634         c->min = muldiv32(a->min, b->min, k, &r);
635         c->openmin = (r || a->openmin || b->openmin);
636         c->max = muldiv32(a->max, b->max, k, &r);
637         if (r) {
638                 c->max++;
639                 c->openmax = 1;
640         } else
641                 c->openmax = (a->openmax || b->openmax);
642         c->integer = 0;
643 }
644
645 /**
646  * snd_interval_mulkdiv - refine the interval value
647  * @a: dividend 1
648  * @k: dividend 2 (as integer)
649  * @b: divisor
650  * @c: result
651  *
652  * c = a * k / b
653  *
654  * Returns non-zero if the value is changed, zero if not changed.
655  */
656 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
657                       const struct snd_interval *b, struct snd_interval *c)
658 {
659         unsigned int r;
660         if (a->empty || b->empty) {
661                 snd_interval_none(c);
662                 return;
663         }
664         c->empty = 0;
665         c->min = muldiv32(a->min, k, b->max, &r);
666         c->openmin = (r || a->openmin || b->openmax);
667         if (b->min > 0) {
668                 c->max = muldiv32(a->max, k, b->min, &r);
669                 if (r) {
670                         c->max++;
671                         c->openmax = 1;
672                 } else
673                         c->openmax = (a->openmax || b->openmin);
674         } else {
675                 c->max = UINT_MAX;
676                 c->openmax = 0;
677         }
678         c->integer = 0;
679 }
680
681 /* ---- */
682
683
684 /**
685  * snd_interval_ratnum - refine the interval value
686  * @i: interval to refine
687  * @rats_count: number of ratnum_t 
688  * @rats: ratnum_t array
689  * @nump: pointer to store the resultant numerator
690  * @denp: pointer to store the resultant denominator
691  *
692  * Returns non-zero if the value is changed, zero if not changed.
693  */
694 int snd_interval_ratnum(struct snd_interval *i,
695                         unsigned int rats_count, struct snd_ratnum *rats,
696                         unsigned int *nump, unsigned int *denp)
697 {
698         unsigned int best_num, best_diff, best_den;
699         unsigned int k;
700         struct snd_interval t;
701         int err;
702
703         best_num = best_den = best_diff = 0;
704         for (k = 0; k < rats_count; ++k) {
705                 unsigned int num = rats[k].num;
706                 unsigned int den;
707                 unsigned int q = i->min;
708                 int diff;
709                 if (q == 0)
710                         q = 1;
711                 den = div_down(num, q);
712                 if (den < rats[k].den_min)
713                         continue;
714                 if (den > rats[k].den_max)
715                         den = rats[k].den_max;
716                 else {
717                         unsigned int r;
718                         r = (den - rats[k].den_min) % rats[k].den_step;
719                         if (r != 0)
720                                 den -= r;
721                 }
722                 diff = num - q * den;
723                 if (best_num == 0 ||
724                     diff * best_den < best_diff * den) {
725                         best_diff = diff;
726                         best_den = den;
727                         best_num = num;
728                 }
729         }
730         if (best_den == 0) {
731                 i->empty = 1;
732                 return -EINVAL;
733         }
734         t.min = div_down(best_num, best_den);
735         t.openmin = !!(best_num % best_den);
736         
737         best_num = best_den = best_diff = 0;
738         for (k = 0; k < rats_count; ++k) {
739                 unsigned int num = rats[k].num;
740                 unsigned int den;
741                 unsigned int q = i->max;
742                 int diff;
743                 if (q == 0) {
744                         i->empty = 1;
745                         return -EINVAL;
746                 }
747                 den = div_up(num, q);
748                 if (den > rats[k].den_max)
749                         continue;
750                 if (den < rats[k].den_min)
751                         den = rats[k].den_min;
752                 else {
753                         unsigned int r;
754                         r = (den - rats[k].den_min) % rats[k].den_step;
755                         if (r != 0)
756                                 den += rats[k].den_step - r;
757                 }
758                 diff = q * den - num;
759                 if (best_num == 0 ||
760                     diff * best_den < best_diff * den) {
761                         best_diff = diff;
762                         best_den = den;
763                         best_num = num;
764                 }
765         }
766         if (best_den == 0) {
767                 i->empty = 1;
768                 return -EINVAL;
769         }
770         t.max = div_up(best_num, best_den);
771         t.openmax = !!(best_num % best_den);
772         t.integer = 0;
773         err = snd_interval_refine(i, &t);
774         if (err < 0)
775                 return err;
776
777         if (snd_interval_single(i)) {
778                 if (nump)
779                         *nump = best_num;
780                 if (denp)
781                         *denp = best_den;
782         }
783         return err;
784 }
785
786 EXPORT_SYMBOL(snd_interval_ratnum);
787
788 /**
789  * snd_interval_ratden - refine the interval value
790  * @i: interval to refine
791  * @rats_count: number of struct ratden
792  * @rats: struct ratden array
793  * @nump: pointer to store the resultant numerator
794  * @denp: pointer to store the resultant denominator
795  *
796  * Returns non-zero if the value is changed, zero if not changed.
797  */
798 static int snd_interval_ratden(struct snd_interval *i,
799                                unsigned int rats_count, struct snd_ratden *rats,
800                                unsigned int *nump, unsigned int *denp)
801 {
802         unsigned int best_num, best_diff, best_den;
803         unsigned int k;
804         struct snd_interval t;
805         int err;
806
807         best_num = best_den = best_diff = 0;
808         for (k = 0; k < rats_count; ++k) {
809                 unsigned int num;
810                 unsigned int den = rats[k].den;
811                 unsigned int q = i->min;
812                 int diff;
813                 num = mul(q, den);
814                 if (num > rats[k].num_max)
815                         continue;
816                 if (num < rats[k].num_min)
817                         num = rats[k].num_max;
818                 else {
819                         unsigned int r;
820                         r = (num - rats[k].num_min) % rats[k].num_step;
821                         if (r != 0)
822                                 num += rats[k].num_step - r;
823                 }
824                 diff = num - q * den;
825                 if (best_num == 0 ||
826                     diff * best_den < best_diff * den) {
827                         best_diff = diff;
828                         best_den = den;
829                         best_num = num;
830                 }
831         }
832         if (best_den == 0) {
833                 i->empty = 1;
834                 return -EINVAL;
835         }
836         t.min = div_down(best_num, best_den);
837         t.openmin = !!(best_num % best_den);
838         
839         best_num = best_den = best_diff = 0;
840         for (k = 0; k < rats_count; ++k) {
841                 unsigned int num;
842                 unsigned int den = rats[k].den;
843                 unsigned int q = i->max;
844                 int diff;
845                 num = mul(q, den);
846                 if (num < rats[k].num_min)
847                         continue;
848                 if (num > rats[k].num_max)
849                         num = rats[k].num_max;
850                 else {
851                         unsigned int r;
852                         r = (num - rats[k].num_min) % rats[k].num_step;
853                         if (r != 0)
854                                 num -= r;
855                 }
856                 diff = q * den - num;
857                 if (best_num == 0 ||
858                     diff * best_den < best_diff * den) {
859                         best_diff = diff;
860                         best_den = den;
861                         best_num = num;
862                 }
863         }
864         if (best_den == 0) {
865                 i->empty = 1;
866                 return -EINVAL;
867         }
868         t.max = div_up(best_num, best_den);
869         t.openmax = !!(best_num % best_den);
870         t.integer = 0;
871         err = snd_interval_refine(i, &t);
872         if (err < 0)
873                 return err;
874
875         if (snd_interval_single(i)) {
876                 if (nump)
877                         *nump = best_num;
878                 if (denp)
879                         *denp = best_den;
880         }
881         return err;
882 }
883
884 /**
885  * snd_interval_list - refine the interval value from the list
886  * @i: the interval value to refine
887  * @count: the number of elements in the list
888  * @list: the value list
889  * @mask: the bit-mask to evaluate
890  *
891  * Refines the interval value from the list.
892  * When mask is non-zero, only the elements corresponding to bit 1 are
893  * evaluated.
894  *
895  * Returns non-zero if the value is changed, zero if not changed.
896  */
897 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
898 {
899         unsigned int k;
900         int changed = 0;
901
902         if (!count) {
903                 i->empty = 1;
904                 return -EINVAL;
905         }
906         for (k = 0; k < count; k++) {
907                 if (mask && !(mask & (1 << k)))
908                         continue;
909                 if (i->min == list[k] && !i->openmin)
910                         goto _l1;
911                 if (i->min < list[k]) {
912                         i->min = list[k];
913                         i->openmin = 0;
914                         changed = 1;
915                         goto _l1;
916                 }
917         }
918         i->empty = 1;
919         return -EINVAL;
920  _l1:
921         for (k = count; k-- > 0;) {
922                 if (mask && !(mask & (1 << k)))
923                         continue;
924                 if (i->max == list[k] && !i->openmax)
925                         goto _l2;
926                 if (i->max > list[k]) {
927                         i->max = list[k];
928                         i->openmax = 0;
929                         changed = 1;
930                         goto _l2;
931                 }
932         }
933         i->empty = 1;
934         return -EINVAL;
935  _l2:
936         if (snd_interval_checkempty(i)) {
937                 i->empty = 1;
938                 return -EINVAL;
939         }
940         return changed;
941 }
942
943 EXPORT_SYMBOL(snd_interval_list);
944
945 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
946 {
947         unsigned int n;
948         int changed = 0;
949         n = (i->min - min) % step;
950         if (n != 0 || i->openmin) {
951                 i->min += step - n;
952                 changed = 1;
953         }
954         n = (i->max - min) % step;
955         if (n != 0 || i->openmax) {
956                 i->max -= n;
957                 changed = 1;
958         }
959         if (snd_interval_checkempty(i)) {
960                 i->empty = 1;
961                 return -EINVAL;
962         }
963         return changed;
964 }
965
966 /* Info constraints helpers */
967
968 /**
969  * snd_pcm_hw_rule_add - add the hw-constraint rule
970  * @runtime: the pcm runtime instance
971  * @cond: condition bits
972  * @var: the variable to evaluate
973  * @func: the evaluation function
974  * @private: the private data pointer passed to function
975  * @dep: the dependent variables
976  *
977  * Returns zero if successful, or a negative error code on failure.
978  */
979 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
980                         int var,
981                         snd_pcm_hw_rule_func_t func, void *private,
982                         int dep, ...)
983 {
984         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
985         struct snd_pcm_hw_rule *c;
986         unsigned int k;
987         va_list args;
988         va_start(args, dep);
989         if (constrs->rules_num >= constrs->rules_all) {
990                 struct snd_pcm_hw_rule *new;
991                 unsigned int new_rules = constrs->rules_all + 16;
992                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
993                 if (!new)
994                         return -ENOMEM;
995                 if (constrs->rules) {
996                         memcpy(new, constrs->rules,
997                                constrs->rules_num * sizeof(*c));
998                         kfree(constrs->rules);
999                 }
1000                 constrs->rules = new;
1001                 constrs->rules_all = new_rules;
1002         }
1003         c = &constrs->rules[constrs->rules_num];
1004         c->cond = cond;
1005         c->func = func;
1006         c->var = var;
1007         c->private = private;
1008         k = 0;
1009         while (1) {
1010                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps)))
1011                         return -EINVAL;
1012                 c->deps[k++] = dep;
1013                 if (dep < 0)
1014                         break;
1015                 dep = va_arg(args, int);
1016         }
1017         constrs->rules_num++;
1018         va_end(args);
1019         return 0;
1020 }                                   
1021
1022 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1023
1024 /**
1025  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1026  * @runtime: PCM runtime instance
1027  * @var: hw_params variable to apply the mask
1028  * @mask: the bitmap mask
1029  *
1030  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1031  */
1032 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1033                                u_int32_t mask)
1034 {
1035         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1036         struct snd_mask *maskp = constrs_mask(constrs, var);
1037         *maskp->bits &= mask;
1038         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1039         if (*maskp->bits == 0)
1040                 return -EINVAL;
1041         return 0;
1042 }
1043
1044 /**
1045  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1046  * @runtime: PCM runtime instance
1047  * @var: hw_params variable to apply the mask
1048  * @mask: the 64bit bitmap mask
1049  *
1050  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1051  */
1052 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1053                                  u_int64_t mask)
1054 {
1055         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1056         struct snd_mask *maskp = constrs_mask(constrs, var);
1057         maskp->bits[0] &= (u_int32_t)mask;
1058         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1059         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1060         if (! maskp->bits[0] && ! maskp->bits[1])
1061                 return -EINVAL;
1062         return 0;
1063 }
1064
1065 /**
1066  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1067  * @runtime: PCM runtime instance
1068  * @var: hw_params variable to apply the integer constraint
1069  *
1070  * Apply the constraint of integer to an interval parameter.
1071  */
1072 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1073 {
1074         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1075         return snd_interval_setinteger(constrs_interval(constrs, var));
1076 }
1077
1078 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1079
1080 /**
1081  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1082  * @runtime: PCM runtime instance
1083  * @var: hw_params variable to apply the range
1084  * @min: the minimal value
1085  * @max: the maximal value
1086  * 
1087  * Apply the min/max range constraint to an interval parameter.
1088  */
1089 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1090                                  unsigned int min, unsigned int max)
1091 {
1092         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1093         struct snd_interval t;
1094         t.min = min;
1095         t.max = max;
1096         t.openmin = t.openmax = 0;
1097         t.integer = 0;
1098         return snd_interval_refine(constrs_interval(constrs, var), &t);
1099 }
1100
1101 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1102
1103 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1104                                 struct snd_pcm_hw_rule *rule)
1105 {
1106         struct snd_pcm_hw_constraint_list *list = rule->private;
1107         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1108 }               
1109
1110
1111 /**
1112  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1113  * @runtime: PCM runtime instance
1114  * @cond: condition bits
1115  * @var: hw_params variable to apply the list constraint
1116  * @l: list
1117  * 
1118  * Apply the list of constraints to an interval parameter.
1119  */
1120 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1121                                unsigned int cond,
1122                                snd_pcm_hw_param_t var,
1123                                struct snd_pcm_hw_constraint_list *l)
1124 {
1125         return snd_pcm_hw_rule_add(runtime, cond, var,
1126                                    snd_pcm_hw_rule_list, l,
1127                                    var, -1);
1128 }
1129
1130 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1131
1132 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1133                                    struct snd_pcm_hw_rule *rule)
1134 {
1135         struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1136         unsigned int num = 0, den = 0;
1137         int err;
1138         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1139                                   r->nrats, r->rats, &num, &den);
1140         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1141                 params->rate_num = num;
1142                 params->rate_den = den;
1143         }
1144         return err;
1145 }
1146
1147 /**
1148  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1149  * @runtime: PCM runtime instance
1150  * @cond: condition bits
1151  * @var: hw_params variable to apply the ratnums constraint
1152  * @r: struct snd_ratnums constriants
1153  */
1154 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1155                                   unsigned int cond,
1156                                   snd_pcm_hw_param_t var,
1157                                   struct snd_pcm_hw_constraint_ratnums *r)
1158 {
1159         return snd_pcm_hw_rule_add(runtime, cond, var,
1160                                    snd_pcm_hw_rule_ratnums, r,
1161                                    var, -1);
1162 }
1163
1164 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1165
1166 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1167                                    struct snd_pcm_hw_rule *rule)
1168 {
1169         struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1170         unsigned int num = 0, den = 0;
1171         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1172                                   r->nrats, r->rats, &num, &den);
1173         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1174                 params->rate_num = num;
1175                 params->rate_den = den;
1176         }
1177         return err;
1178 }
1179
1180 /**
1181  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1182  * @runtime: PCM runtime instance
1183  * @cond: condition bits
1184  * @var: hw_params variable to apply the ratdens constraint
1185  * @r: struct snd_ratdens constriants
1186  */
1187 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1188                                   unsigned int cond,
1189                                   snd_pcm_hw_param_t var,
1190                                   struct snd_pcm_hw_constraint_ratdens *r)
1191 {
1192         return snd_pcm_hw_rule_add(runtime, cond, var,
1193                                    snd_pcm_hw_rule_ratdens, r,
1194                                    var, -1);
1195 }
1196
1197 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1198
1199 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1200                                   struct snd_pcm_hw_rule *rule)
1201 {
1202         unsigned int l = (unsigned long) rule->private;
1203         int width = l & 0xffff;
1204         unsigned int msbits = l >> 16;
1205         struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1206         if (snd_interval_single(i) && snd_interval_value(i) == width)
1207                 params->msbits = msbits;
1208         return 0;
1209 }
1210
1211 /**
1212  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1213  * @runtime: PCM runtime instance
1214  * @cond: condition bits
1215  * @width: sample bits width
1216  * @msbits: msbits width
1217  */
1218 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1219                                  unsigned int cond,
1220                                  unsigned int width,
1221                                  unsigned int msbits)
1222 {
1223         unsigned long l = (msbits << 16) | width;
1224         return snd_pcm_hw_rule_add(runtime, cond, -1,
1225                                     snd_pcm_hw_rule_msbits,
1226                                     (void*) l,
1227                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1228 }
1229
1230 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1231
1232 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1233                                 struct snd_pcm_hw_rule *rule)
1234 {
1235         unsigned long step = (unsigned long) rule->private;
1236         return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1237 }
1238
1239 /**
1240  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1241  * @runtime: PCM runtime instance
1242  * @cond: condition bits
1243  * @var: hw_params variable to apply the step constraint
1244  * @step: step size
1245  */
1246 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1247                                unsigned int cond,
1248                                snd_pcm_hw_param_t var,
1249                                unsigned long step)
1250 {
1251         return snd_pcm_hw_rule_add(runtime, cond, var, 
1252                                    snd_pcm_hw_rule_step, (void *) step,
1253                                    var, -1);
1254 }
1255
1256 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1257
1258 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1259 {
1260         static unsigned int pow2_sizes[] = {
1261                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1262                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1263                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1264                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1265         };
1266         return snd_interval_list(hw_param_interval(params, rule->var),
1267                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1268 }               
1269
1270 /**
1271  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1272  * @runtime: PCM runtime instance
1273  * @cond: condition bits
1274  * @var: hw_params variable to apply the power-of-2 constraint
1275  */
1276 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1277                                unsigned int cond,
1278                                snd_pcm_hw_param_t var)
1279 {
1280         return snd_pcm_hw_rule_add(runtime, cond, var, 
1281                                    snd_pcm_hw_rule_pow2, NULL,
1282                                    var, -1);
1283 }
1284
1285 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1286
1287 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1288                                   snd_pcm_hw_param_t var)
1289 {
1290         if (hw_is_mask(var)) {
1291                 snd_mask_any(hw_param_mask(params, var));
1292                 params->cmask |= 1 << var;
1293                 params->rmask |= 1 << var;
1294                 return;
1295         }
1296         if (hw_is_interval(var)) {
1297                 snd_interval_any(hw_param_interval(params, var));
1298                 params->cmask |= 1 << var;
1299                 params->rmask |= 1 << var;
1300                 return;
1301         }
1302         snd_BUG();
1303 }
1304
1305 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1306 {
1307         unsigned int k;
1308         memset(params, 0, sizeof(*params));
1309         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1310                 _snd_pcm_hw_param_any(params, k);
1311         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1312                 _snd_pcm_hw_param_any(params, k);
1313         params->info = ~0U;
1314 }
1315
1316 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1317
1318 /**
1319  * snd_pcm_hw_param_value - return @params field @var value
1320  * @params: the hw_params instance
1321  * @var: parameter to retrieve
1322  * @dir: pointer to the direction (-1,0,1) or %NULL
1323  *
1324  * Return the value for field @var if it's fixed in configuration space
1325  * defined by @params. Return -%EINVAL otherwise.
1326  */
1327 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1328                            snd_pcm_hw_param_t var, int *dir)
1329 {
1330         if (hw_is_mask(var)) {
1331                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1332                 if (!snd_mask_single(mask))
1333                         return -EINVAL;
1334                 if (dir)
1335                         *dir = 0;
1336                 return snd_mask_value(mask);
1337         }
1338         if (hw_is_interval(var)) {
1339                 const struct snd_interval *i = hw_param_interval_c(params, var);
1340                 if (!snd_interval_single(i))
1341                         return -EINVAL;
1342                 if (dir)
1343                         *dir = i->openmin;
1344                 return snd_interval_value(i);
1345         }
1346         return -EINVAL;
1347 }
1348
1349 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1350
1351 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1352                                 snd_pcm_hw_param_t var)
1353 {
1354         if (hw_is_mask(var)) {
1355                 snd_mask_none(hw_param_mask(params, var));
1356                 params->cmask |= 1 << var;
1357                 params->rmask |= 1 << var;
1358         } else if (hw_is_interval(var)) {
1359                 snd_interval_none(hw_param_interval(params, var));
1360                 params->cmask |= 1 << var;
1361                 params->rmask |= 1 << var;
1362         } else {
1363                 snd_BUG();
1364         }
1365 }
1366
1367 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1368
1369 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1370                                    snd_pcm_hw_param_t var)
1371 {
1372         int changed;
1373         if (hw_is_mask(var))
1374                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1375         else if (hw_is_interval(var))
1376                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1377         else
1378                 return -EINVAL;
1379         if (changed) {
1380                 params->cmask |= 1 << var;
1381                 params->rmask |= 1 << var;
1382         }
1383         return changed;
1384 }
1385
1386
1387 /**
1388  * snd_pcm_hw_param_first - refine config space and return minimum value
1389  * @pcm: PCM instance
1390  * @params: the hw_params instance
1391  * @var: parameter to retrieve
1392  * @dir: pointer to the direction (-1,0,1) or %NULL
1393  *
1394  * Inside configuration space defined by @params remove from @var all
1395  * values > minimum. Reduce configuration space accordingly.
1396  * Return the minimum.
1397  */
1398 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1399                            struct snd_pcm_hw_params *params, 
1400                            snd_pcm_hw_param_t var, int *dir)
1401 {
1402         int changed = _snd_pcm_hw_param_first(params, var);
1403         if (changed < 0)
1404                 return changed;
1405         if (params->rmask) {
1406                 int err = snd_pcm_hw_refine(pcm, params);
1407                 if (snd_BUG_ON(err < 0))
1408                         return err;
1409         }
1410         return snd_pcm_hw_param_value(params, var, dir);
1411 }
1412
1413 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1414
1415 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1416                                   snd_pcm_hw_param_t var)
1417 {
1418         int changed;
1419         if (hw_is_mask(var))
1420                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1421         else if (hw_is_interval(var))
1422                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1423         else
1424                 return -EINVAL;
1425         if (changed) {
1426                 params->cmask |= 1 << var;
1427                 params->rmask |= 1 << var;
1428         }
1429         return changed;
1430 }
1431
1432
1433 /**
1434  * snd_pcm_hw_param_last - refine config space and return maximum value
1435  * @pcm: PCM instance
1436  * @params: the hw_params instance
1437  * @var: parameter to retrieve
1438  * @dir: pointer to the direction (-1,0,1) or %NULL
1439  *
1440  * Inside configuration space defined by @params remove from @var all
1441  * values < maximum. Reduce configuration space accordingly.
1442  * Return the maximum.
1443  */
1444 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1445                           struct snd_pcm_hw_params *params,
1446                           snd_pcm_hw_param_t var, int *dir)
1447 {
1448         int changed = _snd_pcm_hw_param_last(params, var);
1449         if (changed < 0)
1450                 return changed;
1451         if (params->rmask) {
1452                 int err = snd_pcm_hw_refine(pcm, params);
1453                 if (snd_BUG_ON(err < 0))
1454                         return err;
1455         }
1456         return snd_pcm_hw_param_value(params, var, dir);
1457 }
1458
1459 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1460
1461 /**
1462  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1463  * @pcm: PCM instance
1464  * @params: the hw_params instance
1465  *
1466  * Choose one configuration from configuration space defined by @params.
1467  * The configuration chosen is that obtained fixing in this order:
1468  * first access, first format, first subformat, min channels,
1469  * min rate, min period time, max buffer size, min tick time
1470  */
1471 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1472                              struct snd_pcm_hw_params *params)
1473 {
1474         static int vars[] = {
1475                 SNDRV_PCM_HW_PARAM_ACCESS,
1476                 SNDRV_PCM_HW_PARAM_FORMAT,
1477                 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1478                 SNDRV_PCM_HW_PARAM_CHANNELS,
1479                 SNDRV_PCM_HW_PARAM_RATE,
1480                 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1481                 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1482                 SNDRV_PCM_HW_PARAM_TICK_TIME,
1483                 -1
1484         };
1485         int err, *v;
1486
1487         for (v = vars; *v != -1; v++) {
1488                 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1489                         err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1490                 else
1491                         err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1492                 if (snd_BUG_ON(err < 0))
1493                         return err;
1494         }
1495         return 0;
1496 }
1497
1498 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1499                                    void *arg)
1500 {
1501         struct snd_pcm_runtime *runtime = substream->runtime;
1502         unsigned long flags;
1503         snd_pcm_stream_lock_irqsave(substream, flags);
1504         if (snd_pcm_running(substream) &&
1505             snd_pcm_update_hw_ptr(substream) >= 0)
1506                 runtime->status->hw_ptr %= runtime->buffer_size;
1507         else
1508                 runtime->status->hw_ptr = 0;
1509         snd_pcm_stream_unlock_irqrestore(substream, flags);
1510         return 0;
1511 }
1512
1513 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1514                                           void *arg)
1515 {
1516         struct snd_pcm_channel_info *info = arg;
1517         struct snd_pcm_runtime *runtime = substream->runtime;
1518         int width;
1519         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1520                 info->offset = -1;
1521                 return 0;
1522         }
1523         width = snd_pcm_format_physical_width(runtime->format);
1524         if (width < 0)
1525                 return width;
1526         info->offset = 0;
1527         switch (runtime->access) {
1528         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1529         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1530                 info->first = info->channel * width;
1531                 info->step = runtime->channels * width;
1532                 break;
1533         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1534         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1535         {
1536                 size_t size = runtime->dma_bytes / runtime->channels;
1537                 info->first = info->channel * size * 8;
1538                 info->step = width;
1539                 break;
1540         }
1541         default:
1542                 snd_BUG();
1543                 break;
1544         }
1545         return 0;
1546 }
1547
1548 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1549                                        void *arg)
1550 {
1551         struct snd_pcm_hw_params *params = arg;
1552         snd_pcm_format_t format;
1553         int channels, width;
1554
1555         params->fifo_size = substream->runtime->hw.fifo_size;
1556         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1557                 format = params_format(params);
1558                 channels = params_channels(params);
1559                 width = snd_pcm_format_physical_width(format);
1560                 params->fifo_size /= width * channels;
1561         }
1562         return 0;
1563 }
1564
1565 /**
1566  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1567  * @substream: the pcm substream instance
1568  * @cmd: ioctl command
1569  * @arg: ioctl argument
1570  *
1571  * Processes the generic ioctl commands for PCM.
1572  * Can be passed as the ioctl callback for PCM ops.
1573  *
1574  * Returns zero if successful, or a negative error code on failure.
1575  */
1576 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1577                       unsigned int cmd, void *arg)
1578 {
1579         switch (cmd) {
1580         case SNDRV_PCM_IOCTL1_INFO:
1581                 return 0;
1582         case SNDRV_PCM_IOCTL1_RESET:
1583                 return snd_pcm_lib_ioctl_reset(substream, arg);
1584         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1585                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1586         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1587                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1588         }
1589         return -ENXIO;
1590 }
1591
1592 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1593
1594 /**
1595  * snd_pcm_period_elapsed - update the pcm status for the next period
1596  * @substream: the pcm substream instance
1597  *
1598  * This function is called from the interrupt handler when the
1599  * PCM has processed the period size.  It will update the current
1600  * pointer, wake up sleepers, etc.
1601  *
1602  * Even if more than one periods have elapsed since the last call, you
1603  * have to call this only once.
1604  */
1605 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1606 {
1607         struct snd_pcm_runtime *runtime;
1608         unsigned long flags;
1609
1610         if (PCM_RUNTIME_CHECK(substream))
1611                 return;
1612         runtime = substream->runtime;
1613
1614         if (runtime->transfer_ack_begin)
1615                 runtime->transfer_ack_begin(substream);
1616
1617         snd_pcm_stream_lock_irqsave(substream, flags);
1618         if (!snd_pcm_running(substream) ||
1619             snd_pcm_update_hw_ptr_interrupt(substream) < 0)
1620                 goto _end;
1621
1622         if (substream->timer_running)
1623                 snd_timer_interrupt(substream->timer, 1);
1624  _end:
1625         snd_pcm_stream_unlock_irqrestore(substream, flags);
1626         if (runtime->transfer_ack_end)
1627                 runtime->transfer_ack_end(substream);
1628         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1629 }
1630
1631 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1632
1633 /*
1634  * Wait until avail_min data becomes available
1635  * Returns a negative error code if any error occurs during operation.
1636  * The available space is stored on availp.  When err = 0 and avail = 0
1637  * on the capture stream, it indicates the stream is in DRAINING state.
1638  */
1639 static int wait_for_avail_min(struct snd_pcm_substream *substream,
1640                               snd_pcm_uframes_t *availp)
1641 {
1642         struct snd_pcm_runtime *runtime = substream->runtime;
1643         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1644         wait_queue_t wait;
1645         int err = 0;
1646         snd_pcm_uframes_t avail = 0;
1647         long tout;
1648
1649         init_waitqueue_entry(&wait, current);
1650         add_wait_queue(&runtime->sleep, &wait);
1651         for (;;) {
1652                 if (signal_pending(current)) {
1653                         err = -ERESTARTSYS;
1654                         break;
1655                 }
1656                 set_current_state(TASK_INTERRUPTIBLE);
1657                 snd_pcm_stream_unlock_irq(substream);
1658                 tout = schedule_timeout(msecs_to_jiffies(10000));
1659                 snd_pcm_stream_lock_irq(substream);
1660                 switch (runtime->status->state) {
1661                 case SNDRV_PCM_STATE_SUSPENDED:
1662                         err = -ESTRPIPE;
1663                         goto _endloop;
1664                 case SNDRV_PCM_STATE_XRUN:
1665                         err = -EPIPE;
1666                         goto _endloop;
1667                 case SNDRV_PCM_STATE_DRAINING:
1668                         if (is_playback)
1669                                 err = -EPIPE;
1670                         else 
1671                                 avail = 0; /* indicate draining */
1672                         goto _endloop;
1673                 case SNDRV_PCM_STATE_OPEN:
1674                 case SNDRV_PCM_STATE_SETUP:
1675                 case SNDRV_PCM_STATE_DISCONNECTED:
1676                         err = -EBADFD;
1677                         goto _endloop;
1678                 }
1679                 if (!tout) {
1680                         snd_printd("%s write error (DMA or IRQ trouble?)\n",
1681                                    is_playback ? "playback" : "capture");
1682                         err = -EIO;
1683                         break;
1684                 }
1685                 if (is_playback)
1686                         avail = snd_pcm_playback_avail(runtime);
1687                 else
1688                         avail = snd_pcm_capture_avail(runtime);
1689                 if (avail >= runtime->control->avail_min)
1690                         break;
1691         }
1692  _endloop:
1693         remove_wait_queue(&runtime->sleep, &wait);
1694         *availp = avail;
1695         return err;
1696 }
1697         
1698 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1699                                       unsigned int hwoff,
1700                                       unsigned long data, unsigned int off,
1701                                       snd_pcm_uframes_t frames)
1702 {
1703         struct snd_pcm_runtime *runtime = substream->runtime;
1704         int err;
1705         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1706         if (substream->ops->copy) {
1707                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1708                         return err;
1709         } else {
1710                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1711                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1712                         return -EFAULT;
1713         }
1714         return 0;
1715 }
1716  
1717 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1718                           unsigned long data, unsigned int off,
1719                           snd_pcm_uframes_t size);
1720
1721 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1722                                             unsigned long data,
1723                                             snd_pcm_uframes_t size,
1724                                             int nonblock,
1725                                             transfer_f transfer)
1726 {
1727         struct snd_pcm_runtime *runtime = substream->runtime;
1728         snd_pcm_uframes_t xfer = 0;
1729         snd_pcm_uframes_t offset = 0;
1730         int err = 0;
1731
1732         if (size == 0)
1733                 return 0;
1734
1735         snd_pcm_stream_lock_irq(substream);
1736         switch (runtime->status->state) {
1737         case SNDRV_PCM_STATE_PREPARED:
1738         case SNDRV_PCM_STATE_RUNNING:
1739         case SNDRV_PCM_STATE_PAUSED:
1740                 break;
1741         case SNDRV_PCM_STATE_XRUN:
1742                 err = -EPIPE;
1743                 goto _end_unlock;
1744         case SNDRV_PCM_STATE_SUSPENDED:
1745                 err = -ESTRPIPE;
1746                 goto _end_unlock;
1747         default:
1748                 err = -EBADFD;
1749                 goto _end_unlock;
1750         }
1751
1752         while (size > 0) {
1753                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1754                 snd_pcm_uframes_t avail;
1755                 snd_pcm_uframes_t cont;
1756                 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1757                         snd_pcm_update_hw_ptr(substream);
1758                 avail = snd_pcm_playback_avail(runtime);
1759                 if (!avail) {
1760                         if (nonblock) {
1761                                 err = -EAGAIN;
1762                                 goto _end_unlock;
1763                         }
1764                         err = wait_for_avail_min(substream, &avail);
1765                         if (err < 0)
1766                                 goto _end_unlock;
1767                 }
1768                 frames = size > avail ? avail : size;
1769                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1770                 if (frames > cont)
1771                         frames = cont;
1772                 if (snd_BUG_ON(!frames)) {
1773                         snd_pcm_stream_unlock_irq(substream);
1774                         return -EINVAL;
1775                 }
1776                 appl_ptr = runtime->control->appl_ptr;
1777                 appl_ofs = appl_ptr % runtime->buffer_size;
1778                 snd_pcm_stream_unlock_irq(substream);
1779                 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
1780                         goto _end;
1781                 snd_pcm_stream_lock_irq(substream);
1782                 switch (runtime->status->state) {
1783                 case SNDRV_PCM_STATE_XRUN:
1784                         err = -EPIPE;
1785                         goto _end_unlock;
1786                 case SNDRV_PCM_STATE_SUSPENDED:
1787                         err = -ESTRPIPE;
1788                         goto _end_unlock;
1789                 default:
1790                         break;
1791                 }
1792                 appl_ptr += frames;
1793                 if (appl_ptr >= runtime->boundary)
1794                         appl_ptr -= runtime->boundary;
1795                 runtime->control->appl_ptr = appl_ptr;
1796                 if (substream->ops->ack)
1797                         substream->ops->ack(substream);
1798
1799                 offset += frames;
1800                 size -= frames;
1801                 xfer += frames;
1802                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1803                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1804                         err = snd_pcm_start(substream);
1805                         if (err < 0)
1806                                 goto _end_unlock;
1807                 }
1808         }
1809  _end_unlock:
1810         snd_pcm_stream_unlock_irq(substream);
1811  _end:
1812         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1813 }
1814
1815 /* sanity-check for read/write methods */
1816 static int pcm_sanity_check(struct snd_pcm_substream *substream)
1817 {
1818         struct snd_pcm_runtime *runtime;
1819         if (PCM_RUNTIME_CHECK(substream))
1820                 return -ENXIO;
1821         runtime = substream->runtime;
1822         if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1823                 return -EINVAL;
1824         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1825                 return -EBADFD;
1826         return 0;
1827 }
1828
1829 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
1830 {
1831         struct snd_pcm_runtime *runtime;
1832         int nonblock;
1833         int err;
1834
1835         err = pcm_sanity_check(substream);
1836         if (err < 0)
1837                 return err;
1838         runtime = substream->runtime;
1839         nonblock = !!(substream->f_flags & O_NONBLOCK);
1840
1841         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
1842             runtime->channels > 1)
1843                 return -EINVAL;
1844         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
1845                                   snd_pcm_lib_write_transfer);
1846 }
1847
1848 EXPORT_SYMBOL(snd_pcm_lib_write);
1849
1850 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
1851                                        unsigned int hwoff,
1852                                        unsigned long data, unsigned int off,
1853                                        snd_pcm_uframes_t frames)
1854 {
1855         struct snd_pcm_runtime *runtime = substream->runtime;
1856         int err;
1857         void __user **bufs = (void __user **)data;
1858         int channels = runtime->channels;
1859         int c;
1860         if (substream->ops->copy) {
1861                 if (snd_BUG_ON(!substream->ops->silence))
1862                         return -EINVAL;
1863                 for (c = 0; c < channels; ++c, ++bufs) {
1864                         if (*bufs == NULL) {
1865                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
1866                                         return err;
1867                         } else {
1868                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1869                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
1870                                         return err;
1871                         }
1872                 }
1873         } else {
1874                 /* default transfer behaviour */
1875                 size_t dma_csize = runtime->dma_bytes / channels;
1876                 for (c = 0; c < channels; ++c, ++bufs) {
1877                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
1878                         if (*bufs == NULL) {
1879                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
1880                         } else {
1881                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1882                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
1883                                         return -EFAULT;
1884                         }
1885                 }
1886         }
1887         return 0;
1888 }
1889  
1890 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
1891                                      void __user **bufs,
1892                                      snd_pcm_uframes_t frames)
1893 {
1894         struct snd_pcm_runtime *runtime;
1895         int nonblock;
1896         int err;
1897
1898         err = pcm_sanity_check(substream);
1899         if (err < 0)
1900                 return err;
1901         runtime = substream->runtime;
1902         nonblock = !!(substream->f_flags & O_NONBLOCK);
1903
1904         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
1905                 return -EINVAL;
1906         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
1907                                   nonblock, snd_pcm_lib_writev_transfer);
1908 }
1909
1910 EXPORT_SYMBOL(snd_pcm_lib_writev);
1911
1912 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
1913                                      unsigned int hwoff,
1914                                      unsigned long data, unsigned int off,
1915                                      snd_pcm_uframes_t frames)
1916 {
1917         struct snd_pcm_runtime *runtime = substream->runtime;
1918         int err;
1919         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1920         if (substream->ops->copy) {
1921                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1922                         return err;
1923         } else {
1924                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1925                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
1926                         return -EFAULT;
1927         }
1928         return 0;
1929 }
1930
1931 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
1932                                            unsigned long data,
1933                                            snd_pcm_uframes_t size,
1934                                            int nonblock,
1935                                            transfer_f transfer)
1936 {
1937         struct snd_pcm_runtime *runtime = substream->runtime;
1938         snd_pcm_uframes_t xfer = 0;
1939         snd_pcm_uframes_t offset = 0;
1940         int err = 0;
1941
1942         if (size == 0)
1943                 return 0;
1944
1945         snd_pcm_stream_lock_irq(substream);
1946         switch (runtime->status->state) {
1947         case SNDRV_PCM_STATE_PREPARED:
1948                 if (size >= runtime->start_threshold) {
1949                         err = snd_pcm_start(substream);
1950                         if (err < 0)
1951                                 goto _end_unlock;
1952                 }
1953                 break;
1954         case SNDRV_PCM_STATE_DRAINING:
1955         case SNDRV_PCM_STATE_RUNNING:
1956         case SNDRV_PCM_STATE_PAUSED:
1957                 break;
1958         case SNDRV_PCM_STATE_XRUN:
1959                 err = -EPIPE;
1960                 goto _end_unlock;
1961         case SNDRV_PCM_STATE_SUSPENDED:
1962                 err = -ESTRPIPE;
1963                 goto _end_unlock;
1964         default:
1965                 err = -EBADFD;
1966                 goto _end_unlock;
1967         }
1968
1969         while (size > 0) {
1970                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1971                 snd_pcm_uframes_t avail;
1972                 snd_pcm_uframes_t cont;
1973                 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1974                         snd_pcm_update_hw_ptr(substream);
1975                 avail = snd_pcm_capture_avail(runtime);
1976                 if (!avail) {
1977                         if (runtime->status->state ==
1978                             SNDRV_PCM_STATE_DRAINING) {
1979                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
1980                                 goto _end_unlock;
1981                         }
1982                         if (nonblock) {
1983                                 err = -EAGAIN;
1984                                 goto _end_unlock;
1985                         }
1986                         err = wait_for_avail_min(substream, &avail);
1987                         if (err < 0)
1988                                 goto _end_unlock;
1989                         if (!avail)
1990                                 continue; /* draining */
1991                 }
1992                 frames = size > avail ? avail : size;
1993                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1994                 if (frames > cont)
1995                         frames = cont;
1996                 if (snd_BUG_ON(!frames)) {
1997                         snd_pcm_stream_unlock_irq(substream);
1998                         return -EINVAL;
1999                 }
2000                 appl_ptr = runtime->control->appl_ptr;
2001                 appl_ofs = appl_ptr % runtime->buffer_size;
2002                 snd_pcm_stream_unlock_irq(substream);
2003                 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
2004                         goto _end;
2005                 snd_pcm_stream_lock_irq(substream);
2006                 switch (runtime->status->state) {
2007                 case SNDRV_PCM_STATE_XRUN:
2008                         err = -EPIPE;
2009                         goto _end_unlock;
2010                 case SNDRV_PCM_STATE_SUSPENDED:
2011                         err = -ESTRPIPE;
2012                         goto _end_unlock;
2013                 default:
2014                         break;
2015                 }
2016                 appl_ptr += frames;
2017                 if (appl_ptr >= runtime->boundary)
2018                         appl_ptr -= runtime->boundary;
2019                 runtime->control->appl_ptr = appl_ptr;
2020                 if (substream->ops->ack)
2021                         substream->ops->ack(substream);
2022
2023                 offset += frames;
2024                 size -= frames;
2025                 xfer += frames;
2026         }
2027  _end_unlock:
2028         snd_pcm_stream_unlock_irq(substream);
2029  _end:
2030         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2031 }
2032
2033 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2034 {
2035         struct snd_pcm_runtime *runtime;
2036         int nonblock;
2037         int err;
2038         
2039         err = pcm_sanity_check(substream);
2040         if (err < 0)
2041                 return err;
2042         runtime = substream->runtime;
2043         nonblock = !!(substream->f_flags & O_NONBLOCK);
2044         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2045                 return -EINVAL;
2046         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2047 }
2048
2049 EXPORT_SYMBOL(snd_pcm_lib_read);
2050
2051 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2052                                       unsigned int hwoff,
2053                                       unsigned long data, unsigned int off,
2054                                       snd_pcm_uframes_t frames)
2055 {
2056         struct snd_pcm_runtime *runtime = substream->runtime;
2057         int err;
2058         void __user **bufs = (void __user **)data;
2059         int channels = runtime->channels;
2060         int c;
2061         if (substream->ops->copy) {
2062                 for (c = 0; c < channels; ++c, ++bufs) {
2063                         char __user *buf;
2064                         if (*bufs == NULL)
2065                                 continue;
2066                         buf = *bufs + samples_to_bytes(runtime, off);
2067                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2068                                 return err;
2069                 }
2070         } else {
2071                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2072                 for (c = 0; c < channels; ++c, ++bufs) {
2073                         char *hwbuf;
2074                         char __user *buf;
2075                         if (*bufs == NULL)
2076                                 continue;
2077
2078                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2079                         buf = *bufs + samples_to_bytes(runtime, off);
2080                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2081                                 return -EFAULT;
2082                 }
2083         }
2084         return 0;
2085 }
2086  
2087 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2088                                     void __user **bufs,
2089                                     snd_pcm_uframes_t frames)
2090 {
2091         struct snd_pcm_runtime *runtime;
2092         int nonblock;
2093         int err;
2094
2095         err = pcm_sanity_check(substream);
2096         if (err < 0)
2097                 return err;
2098         runtime = substream->runtime;
2099         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2100                 return -EBADFD;
2101
2102         nonblock = !!(substream->f_flags & O_NONBLOCK);
2103         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2104                 return -EINVAL;
2105         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2106 }
2107
2108 EXPORT_SYMBOL(snd_pcm_lib_readv);