KEYS: Add a keyctl to install a process's session keyring on its parent [try #6]
[safe/jmp/linux-2.6] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *      Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79
80 #include "avc.h"
81 #include "objsec.h"
82 #include "netif.h"
83 #include "netnode.h"
84 #include "netport.h"
85 #include "xfrm.h"
86 #include "netlabel.h"
87 #include "audit.h"
88
89 #define XATTR_SELINUX_SUFFIX "selinux"
90 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
91
92 #define NUM_SEL_MNT_OPTS 5
93
94 extern unsigned int policydb_loaded_version;
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern struct security_operations *security_ops;
97
98 /* SECMARK reference count */
99 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
100
101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
102 int selinux_enforcing;
103
104 static int __init enforcing_setup(char *str)
105 {
106         unsigned long enforcing;
107         if (!strict_strtoul(str, 0, &enforcing))
108                 selinux_enforcing = enforcing ? 1 : 0;
109         return 1;
110 }
111 __setup("enforcing=", enforcing_setup);
112 #endif
113
114 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
115 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
116
117 static int __init selinux_enabled_setup(char *str)
118 {
119         unsigned long enabled;
120         if (!strict_strtoul(str, 0, &enabled))
121                 selinux_enabled = enabled ? 1 : 0;
122         return 1;
123 }
124 __setup("selinux=", selinux_enabled_setup);
125 #else
126 int selinux_enabled = 1;
127 #endif
128
129
130 /*
131  * Minimal support for a secondary security module,
132  * just to allow the use of the capability module.
133  */
134 static struct security_operations *secondary_ops;
135
136 /* Lists of inode and superblock security structures initialized
137    before the policy was loaded. */
138 static LIST_HEAD(superblock_security_head);
139 static DEFINE_SPINLOCK(sb_security_lock);
140
141 static struct kmem_cache *sel_inode_cache;
142
143 /**
144  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
145  *
146  * Description:
147  * This function checks the SECMARK reference counter to see if any SECMARK
148  * targets are currently configured, if the reference counter is greater than
149  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
150  * enabled, false (0) if SECMARK is disabled.
151  *
152  */
153 static int selinux_secmark_enabled(void)
154 {
155         return (atomic_read(&selinux_secmark_refcount) > 0);
156 }
157
158 /*
159  * initialise the security for the init task
160  */
161 static void cred_init_security(void)
162 {
163         struct cred *cred = (struct cred *) current->real_cred;
164         struct task_security_struct *tsec;
165
166         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
167         if (!tsec)
168                 panic("SELinux:  Failed to initialize initial task.\n");
169
170         tsec->osid = tsec->sid = SECINITSID_KERNEL;
171         cred->security = tsec;
172 }
173
174 /*
175  * get the security ID of a set of credentials
176  */
177 static inline u32 cred_sid(const struct cred *cred)
178 {
179         const struct task_security_struct *tsec;
180
181         tsec = cred->security;
182         return tsec->sid;
183 }
184
185 /*
186  * get the objective security ID of a task
187  */
188 static inline u32 task_sid(const struct task_struct *task)
189 {
190         u32 sid;
191
192         rcu_read_lock();
193         sid = cred_sid(__task_cred(task));
194         rcu_read_unlock();
195         return sid;
196 }
197
198 /*
199  * get the subjective security ID of the current task
200  */
201 static inline u32 current_sid(void)
202 {
203         const struct task_security_struct *tsec = current_cred()->security;
204
205         return tsec->sid;
206 }
207
208 /* Allocate and free functions for each kind of security blob. */
209
210 static int inode_alloc_security(struct inode *inode)
211 {
212         struct inode_security_struct *isec;
213         u32 sid = current_sid();
214
215         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
216         if (!isec)
217                 return -ENOMEM;
218
219         mutex_init(&isec->lock);
220         INIT_LIST_HEAD(&isec->list);
221         isec->inode = inode;
222         isec->sid = SECINITSID_UNLABELED;
223         isec->sclass = SECCLASS_FILE;
224         isec->task_sid = sid;
225         inode->i_security = isec;
226
227         return 0;
228 }
229
230 static void inode_free_security(struct inode *inode)
231 {
232         struct inode_security_struct *isec = inode->i_security;
233         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
234
235         spin_lock(&sbsec->isec_lock);
236         if (!list_empty(&isec->list))
237                 list_del_init(&isec->list);
238         spin_unlock(&sbsec->isec_lock);
239
240         inode->i_security = NULL;
241         kmem_cache_free(sel_inode_cache, isec);
242 }
243
244 static int file_alloc_security(struct file *file)
245 {
246         struct file_security_struct *fsec;
247         u32 sid = current_sid();
248
249         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
250         if (!fsec)
251                 return -ENOMEM;
252
253         fsec->sid = sid;
254         fsec->fown_sid = sid;
255         file->f_security = fsec;
256
257         return 0;
258 }
259
260 static void file_free_security(struct file *file)
261 {
262         struct file_security_struct *fsec = file->f_security;
263         file->f_security = NULL;
264         kfree(fsec);
265 }
266
267 static int superblock_alloc_security(struct super_block *sb)
268 {
269         struct superblock_security_struct *sbsec;
270
271         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
272         if (!sbsec)
273                 return -ENOMEM;
274
275         mutex_init(&sbsec->lock);
276         INIT_LIST_HEAD(&sbsec->list);
277         INIT_LIST_HEAD(&sbsec->isec_head);
278         spin_lock_init(&sbsec->isec_lock);
279         sbsec->sb = sb;
280         sbsec->sid = SECINITSID_UNLABELED;
281         sbsec->def_sid = SECINITSID_FILE;
282         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
283         sb->s_security = sbsec;
284
285         return 0;
286 }
287
288 static void superblock_free_security(struct super_block *sb)
289 {
290         struct superblock_security_struct *sbsec = sb->s_security;
291
292         spin_lock(&sb_security_lock);
293         if (!list_empty(&sbsec->list))
294                 list_del_init(&sbsec->list);
295         spin_unlock(&sb_security_lock);
296
297         sb->s_security = NULL;
298         kfree(sbsec);
299 }
300
301 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
302 {
303         struct sk_security_struct *ssec;
304
305         ssec = kzalloc(sizeof(*ssec), priority);
306         if (!ssec)
307                 return -ENOMEM;
308
309         ssec->peer_sid = SECINITSID_UNLABELED;
310         ssec->sid = SECINITSID_UNLABELED;
311         sk->sk_security = ssec;
312
313         selinux_netlbl_sk_security_reset(ssec);
314
315         return 0;
316 }
317
318 static void sk_free_security(struct sock *sk)
319 {
320         struct sk_security_struct *ssec = sk->sk_security;
321
322         sk->sk_security = NULL;
323         selinux_netlbl_sk_security_free(ssec);
324         kfree(ssec);
325 }
326
327 /* The security server must be initialized before
328    any labeling or access decisions can be provided. */
329 extern int ss_initialized;
330
331 /* The file system's label must be initialized prior to use. */
332
333 static char *labeling_behaviors[6] = {
334         "uses xattr",
335         "uses transition SIDs",
336         "uses task SIDs",
337         "uses genfs_contexts",
338         "not configured for labeling",
339         "uses mountpoint labeling",
340 };
341
342 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
343
344 static inline int inode_doinit(struct inode *inode)
345 {
346         return inode_doinit_with_dentry(inode, NULL);
347 }
348
349 enum {
350         Opt_error = -1,
351         Opt_context = 1,
352         Opt_fscontext = 2,
353         Opt_defcontext = 3,
354         Opt_rootcontext = 4,
355         Opt_labelsupport = 5,
356 };
357
358 static const match_table_t tokens = {
359         {Opt_context, CONTEXT_STR "%s"},
360         {Opt_fscontext, FSCONTEXT_STR "%s"},
361         {Opt_defcontext, DEFCONTEXT_STR "%s"},
362         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
363         {Opt_labelsupport, LABELSUPP_STR},
364         {Opt_error, NULL},
365 };
366
367 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
368
369 static int may_context_mount_sb_relabel(u32 sid,
370                         struct superblock_security_struct *sbsec,
371                         const struct cred *cred)
372 {
373         const struct task_security_struct *tsec = cred->security;
374         int rc;
375
376         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
377                           FILESYSTEM__RELABELFROM, NULL);
378         if (rc)
379                 return rc;
380
381         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
382                           FILESYSTEM__RELABELTO, NULL);
383         return rc;
384 }
385
386 static int may_context_mount_inode_relabel(u32 sid,
387                         struct superblock_security_struct *sbsec,
388                         const struct cred *cred)
389 {
390         const struct task_security_struct *tsec = cred->security;
391         int rc;
392         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
393                           FILESYSTEM__RELABELFROM, NULL);
394         if (rc)
395                 return rc;
396
397         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
398                           FILESYSTEM__ASSOCIATE, NULL);
399         return rc;
400 }
401
402 static int sb_finish_set_opts(struct super_block *sb)
403 {
404         struct superblock_security_struct *sbsec = sb->s_security;
405         struct dentry *root = sb->s_root;
406         struct inode *root_inode = root->d_inode;
407         int rc = 0;
408
409         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
410                 /* Make sure that the xattr handler exists and that no
411                    error other than -ENODATA is returned by getxattr on
412                    the root directory.  -ENODATA is ok, as this may be
413                    the first boot of the SELinux kernel before we have
414                    assigned xattr values to the filesystem. */
415                 if (!root_inode->i_op->getxattr) {
416                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
417                                "xattr support\n", sb->s_id, sb->s_type->name);
418                         rc = -EOPNOTSUPP;
419                         goto out;
420                 }
421                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
422                 if (rc < 0 && rc != -ENODATA) {
423                         if (rc == -EOPNOTSUPP)
424                                 printk(KERN_WARNING "SELinux: (dev %s, type "
425                                        "%s) has no security xattr handler\n",
426                                        sb->s_id, sb->s_type->name);
427                         else
428                                 printk(KERN_WARNING "SELinux: (dev %s, type "
429                                        "%s) getxattr errno %d\n", sb->s_id,
430                                        sb->s_type->name, -rc);
431                         goto out;
432                 }
433         }
434
435         sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
436
437         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
438                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
439                        sb->s_id, sb->s_type->name);
440         else
441                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
442                        sb->s_id, sb->s_type->name,
443                        labeling_behaviors[sbsec->behavior-1]);
444
445         if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
446             sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
447             sbsec->behavior == SECURITY_FS_USE_NONE ||
448             sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
449                 sbsec->flags &= ~SE_SBLABELSUPP;
450
451         /* Initialize the root inode. */
452         rc = inode_doinit_with_dentry(root_inode, root);
453
454         /* Initialize any other inodes associated with the superblock, e.g.
455            inodes created prior to initial policy load or inodes created
456            during get_sb by a pseudo filesystem that directly
457            populates itself. */
458         spin_lock(&sbsec->isec_lock);
459 next_inode:
460         if (!list_empty(&sbsec->isec_head)) {
461                 struct inode_security_struct *isec =
462                                 list_entry(sbsec->isec_head.next,
463                                            struct inode_security_struct, list);
464                 struct inode *inode = isec->inode;
465                 spin_unlock(&sbsec->isec_lock);
466                 inode = igrab(inode);
467                 if (inode) {
468                         if (!IS_PRIVATE(inode))
469                                 inode_doinit(inode);
470                         iput(inode);
471                 }
472                 spin_lock(&sbsec->isec_lock);
473                 list_del_init(&isec->list);
474                 goto next_inode;
475         }
476         spin_unlock(&sbsec->isec_lock);
477 out:
478         return rc;
479 }
480
481 /*
482  * This function should allow an FS to ask what it's mount security
483  * options were so it can use those later for submounts, displaying
484  * mount options, or whatever.
485  */
486 static int selinux_get_mnt_opts(const struct super_block *sb,
487                                 struct security_mnt_opts *opts)
488 {
489         int rc = 0, i;
490         struct superblock_security_struct *sbsec = sb->s_security;
491         char *context = NULL;
492         u32 len;
493         char tmp;
494
495         security_init_mnt_opts(opts);
496
497         if (!(sbsec->flags & SE_SBINITIALIZED))
498                 return -EINVAL;
499
500         if (!ss_initialized)
501                 return -EINVAL;
502
503         tmp = sbsec->flags & SE_MNTMASK;
504         /* count the number of mount options for this sb */
505         for (i = 0; i < 8; i++) {
506                 if (tmp & 0x01)
507                         opts->num_mnt_opts++;
508                 tmp >>= 1;
509         }
510         /* Check if the Label support flag is set */
511         if (sbsec->flags & SE_SBLABELSUPP)
512                 opts->num_mnt_opts++;
513
514         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
515         if (!opts->mnt_opts) {
516                 rc = -ENOMEM;
517                 goto out_free;
518         }
519
520         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
521         if (!opts->mnt_opts_flags) {
522                 rc = -ENOMEM;
523                 goto out_free;
524         }
525
526         i = 0;
527         if (sbsec->flags & FSCONTEXT_MNT) {
528                 rc = security_sid_to_context(sbsec->sid, &context, &len);
529                 if (rc)
530                         goto out_free;
531                 opts->mnt_opts[i] = context;
532                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
533         }
534         if (sbsec->flags & CONTEXT_MNT) {
535                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
536                 if (rc)
537                         goto out_free;
538                 opts->mnt_opts[i] = context;
539                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
540         }
541         if (sbsec->flags & DEFCONTEXT_MNT) {
542                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
543                 if (rc)
544                         goto out_free;
545                 opts->mnt_opts[i] = context;
546                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
547         }
548         if (sbsec->flags & ROOTCONTEXT_MNT) {
549                 struct inode *root = sbsec->sb->s_root->d_inode;
550                 struct inode_security_struct *isec = root->i_security;
551
552                 rc = security_sid_to_context(isec->sid, &context, &len);
553                 if (rc)
554                         goto out_free;
555                 opts->mnt_opts[i] = context;
556                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
557         }
558         if (sbsec->flags & SE_SBLABELSUPP) {
559                 opts->mnt_opts[i] = NULL;
560                 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
561         }
562
563         BUG_ON(i != opts->num_mnt_opts);
564
565         return 0;
566
567 out_free:
568         security_free_mnt_opts(opts);
569         return rc;
570 }
571
572 static int bad_option(struct superblock_security_struct *sbsec, char flag,
573                       u32 old_sid, u32 new_sid)
574 {
575         char mnt_flags = sbsec->flags & SE_MNTMASK;
576
577         /* check if the old mount command had the same options */
578         if (sbsec->flags & SE_SBINITIALIZED)
579                 if (!(sbsec->flags & flag) ||
580                     (old_sid != new_sid))
581                         return 1;
582
583         /* check if we were passed the same options twice,
584          * aka someone passed context=a,context=b
585          */
586         if (!(sbsec->flags & SE_SBINITIALIZED))
587                 if (mnt_flags & flag)
588                         return 1;
589         return 0;
590 }
591
592 /*
593  * Allow filesystems with binary mount data to explicitly set mount point
594  * labeling information.
595  */
596 static int selinux_set_mnt_opts(struct super_block *sb,
597                                 struct security_mnt_opts *opts)
598 {
599         const struct cred *cred = current_cred();
600         int rc = 0, i;
601         struct superblock_security_struct *sbsec = sb->s_security;
602         const char *name = sb->s_type->name;
603         struct inode *inode = sbsec->sb->s_root->d_inode;
604         struct inode_security_struct *root_isec = inode->i_security;
605         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
606         u32 defcontext_sid = 0;
607         char **mount_options = opts->mnt_opts;
608         int *flags = opts->mnt_opts_flags;
609         int num_opts = opts->num_mnt_opts;
610
611         mutex_lock(&sbsec->lock);
612
613         if (!ss_initialized) {
614                 if (!num_opts) {
615                         /* Defer initialization until selinux_complete_init,
616                            after the initial policy is loaded and the security
617                            server is ready to handle calls. */
618                         spin_lock(&sb_security_lock);
619                         if (list_empty(&sbsec->list))
620                                 list_add(&sbsec->list, &superblock_security_head);
621                         spin_unlock(&sb_security_lock);
622                         goto out;
623                 }
624                 rc = -EINVAL;
625                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
626                         "before the security server is initialized\n");
627                 goto out;
628         }
629
630         /*
631          * Binary mount data FS will come through this function twice.  Once
632          * from an explicit call and once from the generic calls from the vfs.
633          * Since the generic VFS calls will not contain any security mount data
634          * we need to skip the double mount verification.
635          *
636          * This does open a hole in which we will not notice if the first
637          * mount using this sb set explict options and a second mount using
638          * this sb does not set any security options.  (The first options
639          * will be used for both mounts)
640          */
641         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
642             && (num_opts == 0))
643                 goto out;
644
645         /*
646          * parse the mount options, check if they are valid sids.
647          * also check if someone is trying to mount the same sb more
648          * than once with different security options.
649          */
650         for (i = 0; i < num_opts; i++) {
651                 u32 sid;
652
653                 if (flags[i] == SE_SBLABELSUPP)
654                         continue;
655                 rc = security_context_to_sid(mount_options[i],
656                                              strlen(mount_options[i]), &sid);
657                 if (rc) {
658                         printk(KERN_WARNING "SELinux: security_context_to_sid"
659                                "(%s) failed for (dev %s, type %s) errno=%d\n",
660                                mount_options[i], sb->s_id, name, rc);
661                         goto out;
662                 }
663                 switch (flags[i]) {
664                 case FSCONTEXT_MNT:
665                         fscontext_sid = sid;
666
667                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
668                                         fscontext_sid))
669                                 goto out_double_mount;
670
671                         sbsec->flags |= FSCONTEXT_MNT;
672                         break;
673                 case CONTEXT_MNT:
674                         context_sid = sid;
675
676                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
677                                         context_sid))
678                                 goto out_double_mount;
679
680                         sbsec->flags |= CONTEXT_MNT;
681                         break;
682                 case ROOTCONTEXT_MNT:
683                         rootcontext_sid = sid;
684
685                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
686                                         rootcontext_sid))
687                                 goto out_double_mount;
688
689                         sbsec->flags |= ROOTCONTEXT_MNT;
690
691                         break;
692                 case DEFCONTEXT_MNT:
693                         defcontext_sid = sid;
694
695                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
696                                         defcontext_sid))
697                                 goto out_double_mount;
698
699                         sbsec->flags |= DEFCONTEXT_MNT;
700
701                         break;
702                 default:
703                         rc = -EINVAL;
704                         goto out;
705                 }
706         }
707
708         if (sbsec->flags & SE_SBINITIALIZED) {
709                 /* previously mounted with options, but not on this attempt? */
710                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
711                         goto out_double_mount;
712                 rc = 0;
713                 goto out;
714         }
715
716         if (strcmp(sb->s_type->name, "proc") == 0)
717                 sbsec->flags |= SE_SBPROC;
718
719         /* Determine the labeling behavior to use for this filesystem type. */
720         rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
721         if (rc) {
722                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
723                        __func__, sb->s_type->name, rc);
724                 goto out;
725         }
726
727         /* sets the context of the superblock for the fs being mounted. */
728         if (fscontext_sid) {
729                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
730                 if (rc)
731                         goto out;
732
733                 sbsec->sid = fscontext_sid;
734         }
735
736         /*
737          * Switch to using mount point labeling behavior.
738          * sets the label used on all file below the mountpoint, and will set
739          * the superblock context if not already set.
740          */
741         if (context_sid) {
742                 if (!fscontext_sid) {
743                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
744                                                           cred);
745                         if (rc)
746                                 goto out;
747                         sbsec->sid = context_sid;
748                 } else {
749                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
750                                                              cred);
751                         if (rc)
752                                 goto out;
753                 }
754                 if (!rootcontext_sid)
755                         rootcontext_sid = context_sid;
756
757                 sbsec->mntpoint_sid = context_sid;
758                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
759         }
760
761         if (rootcontext_sid) {
762                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
763                                                      cred);
764                 if (rc)
765                         goto out;
766
767                 root_isec->sid = rootcontext_sid;
768                 root_isec->initialized = 1;
769         }
770
771         if (defcontext_sid) {
772                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
773                         rc = -EINVAL;
774                         printk(KERN_WARNING "SELinux: defcontext option is "
775                                "invalid for this filesystem type\n");
776                         goto out;
777                 }
778
779                 if (defcontext_sid != sbsec->def_sid) {
780                         rc = may_context_mount_inode_relabel(defcontext_sid,
781                                                              sbsec, cred);
782                         if (rc)
783                                 goto out;
784                 }
785
786                 sbsec->def_sid = defcontext_sid;
787         }
788
789         rc = sb_finish_set_opts(sb);
790 out:
791         mutex_unlock(&sbsec->lock);
792         return rc;
793 out_double_mount:
794         rc = -EINVAL;
795         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
796                "security settings for (dev %s, type %s)\n", sb->s_id, name);
797         goto out;
798 }
799
800 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
801                                         struct super_block *newsb)
802 {
803         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
804         struct superblock_security_struct *newsbsec = newsb->s_security;
805
806         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
807         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
808         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
809
810         /*
811          * if the parent was able to be mounted it clearly had no special lsm
812          * mount options.  thus we can safely put this sb on the list and deal
813          * with it later
814          */
815         if (!ss_initialized) {
816                 spin_lock(&sb_security_lock);
817                 if (list_empty(&newsbsec->list))
818                         list_add(&newsbsec->list, &superblock_security_head);
819                 spin_unlock(&sb_security_lock);
820                 return;
821         }
822
823         /* how can we clone if the old one wasn't set up?? */
824         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
825
826         /* if fs is reusing a sb, just let its options stand... */
827         if (newsbsec->flags & SE_SBINITIALIZED)
828                 return;
829
830         mutex_lock(&newsbsec->lock);
831
832         newsbsec->flags = oldsbsec->flags;
833
834         newsbsec->sid = oldsbsec->sid;
835         newsbsec->def_sid = oldsbsec->def_sid;
836         newsbsec->behavior = oldsbsec->behavior;
837
838         if (set_context) {
839                 u32 sid = oldsbsec->mntpoint_sid;
840
841                 if (!set_fscontext)
842                         newsbsec->sid = sid;
843                 if (!set_rootcontext) {
844                         struct inode *newinode = newsb->s_root->d_inode;
845                         struct inode_security_struct *newisec = newinode->i_security;
846                         newisec->sid = sid;
847                 }
848                 newsbsec->mntpoint_sid = sid;
849         }
850         if (set_rootcontext) {
851                 const struct inode *oldinode = oldsb->s_root->d_inode;
852                 const struct inode_security_struct *oldisec = oldinode->i_security;
853                 struct inode *newinode = newsb->s_root->d_inode;
854                 struct inode_security_struct *newisec = newinode->i_security;
855
856                 newisec->sid = oldisec->sid;
857         }
858
859         sb_finish_set_opts(newsb);
860         mutex_unlock(&newsbsec->lock);
861 }
862
863 static int selinux_parse_opts_str(char *options,
864                                   struct security_mnt_opts *opts)
865 {
866         char *p;
867         char *context = NULL, *defcontext = NULL;
868         char *fscontext = NULL, *rootcontext = NULL;
869         int rc, num_mnt_opts = 0;
870
871         opts->num_mnt_opts = 0;
872
873         /* Standard string-based options. */
874         while ((p = strsep(&options, "|")) != NULL) {
875                 int token;
876                 substring_t args[MAX_OPT_ARGS];
877
878                 if (!*p)
879                         continue;
880
881                 token = match_token(p, tokens, args);
882
883                 switch (token) {
884                 case Opt_context:
885                         if (context || defcontext) {
886                                 rc = -EINVAL;
887                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
888                                 goto out_err;
889                         }
890                         context = match_strdup(&args[0]);
891                         if (!context) {
892                                 rc = -ENOMEM;
893                                 goto out_err;
894                         }
895                         break;
896
897                 case Opt_fscontext:
898                         if (fscontext) {
899                                 rc = -EINVAL;
900                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
901                                 goto out_err;
902                         }
903                         fscontext = match_strdup(&args[0]);
904                         if (!fscontext) {
905                                 rc = -ENOMEM;
906                                 goto out_err;
907                         }
908                         break;
909
910                 case Opt_rootcontext:
911                         if (rootcontext) {
912                                 rc = -EINVAL;
913                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
914                                 goto out_err;
915                         }
916                         rootcontext = match_strdup(&args[0]);
917                         if (!rootcontext) {
918                                 rc = -ENOMEM;
919                                 goto out_err;
920                         }
921                         break;
922
923                 case Opt_defcontext:
924                         if (context || defcontext) {
925                                 rc = -EINVAL;
926                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
927                                 goto out_err;
928                         }
929                         defcontext = match_strdup(&args[0]);
930                         if (!defcontext) {
931                                 rc = -ENOMEM;
932                                 goto out_err;
933                         }
934                         break;
935                 case Opt_labelsupport:
936                         break;
937                 default:
938                         rc = -EINVAL;
939                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
940                         goto out_err;
941
942                 }
943         }
944
945         rc = -ENOMEM;
946         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
947         if (!opts->mnt_opts)
948                 goto out_err;
949
950         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
951         if (!opts->mnt_opts_flags) {
952                 kfree(opts->mnt_opts);
953                 goto out_err;
954         }
955
956         if (fscontext) {
957                 opts->mnt_opts[num_mnt_opts] = fscontext;
958                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
959         }
960         if (context) {
961                 opts->mnt_opts[num_mnt_opts] = context;
962                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
963         }
964         if (rootcontext) {
965                 opts->mnt_opts[num_mnt_opts] = rootcontext;
966                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
967         }
968         if (defcontext) {
969                 opts->mnt_opts[num_mnt_opts] = defcontext;
970                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
971         }
972
973         opts->num_mnt_opts = num_mnt_opts;
974         return 0;
975
976 out_err:
977         kfree(context);
978         kfree(defcontext);
979         kfree(fscontext);
980         kfree(rootcontext);
981         return rc;
982 }
983 /*
984  * string mount options parsing and call set the sbsec
985  */
986 static int superblock_doinit(struct super_block *sb, void *data)
987 {
988         int rc = 0;
989         char *options = data;
990         struct security_mnt_opts opts;
991
992         security_init_mnt_opts(&opts);
993
994         if (!data)
995                 goto out;
996
997         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
998
999         rc = selinux_parse_opts_str(options, &opts);
1000         if (rc)
1001                 goto out_err;
1002
1003 out:
1004         rc = selinux_set_mnt_opts(sb, &opts);
1005
1006 out_err:
1007         security_free_mnt_opts(&opts);
1008         return rc;
1009 }
1010
1011 static void selinux_write_opts(struct seq_file *m,
1012                                struct security_mnt_opts *opts)
1013 {
1014         int i;
1015         char *prefix;
1016
1017         for (i = 0; i < opts->num_mnt_opts; i++) {
1018                 char *has_comma;
1019
1020                 if (opts->mnt_opts[i])
1021                         has_comma = strchr(opts->mnt_opts[i], ',');
1022                 else
1023                         has_comma = NULL;
1024
1025                 switch (opts->mnt_opts_flags[i]) {
1026                 case CONTEXT_MNT:
1027                         prefix = CONTEXT_STR;
1028                         break;
1029                 case FSCONTEXT_MNT:
1030                         prefix = FSCONTEXT_STR;
1031                         break;
1032                 case ROOTCONTEXT_MNT:
1033                         prefix = ROOTCONTEXT_STR;
1034                         break;
1035                 case DEFCONTEXT_MNT:
1036                         prefix = DEFCONTEXT_STR;
1037                         break;
1038                 case SE_SBLABELSUPP:
1039                         seq_putc(m, ',');
1040                         seq_puts(m, LABELSUPP_STR);
1041                         continue;
1042                 default:
1043                         BUG();
1044                 };
1045                 /* we need a comma before each option */
1046                 seq_putc(m, ',');
1047                 seq_puts(m, prefix);
1048                 if (has_comma)
1049                         seq_putc(m, '\"');
1050                 seq_puts(m, opts->mnt_opts[i]);
1051                 if (has_comma)
1052                         seq_putc(m, '\"');
1053         }
1054 }
1055
1056 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1057 {
1058         struct security_mnt_opts opts;
1059         int rc;
1060
1061         rc = selinux_get_mnt_opts(sb, &opts);
1062         if (rc) {
1063                 /* before policy load we may get EINVAL, don't show anything */
1064                 if (rc == -EINVAL)
1065                         rc = 0;
1066                 return rc;
1067         }
1068
1069         selinux_write_opts(m, &opts);
1070
1071         security_free_mnt_opts(&opts);
1072
1073         return rc;
1074 }
1075
1076 static inline u16 inode_mode_to_security_class(umode_t mode)
1077 {
1078         switch (mode & S_IFMT) {
1079         case S_IFSOCK:
1080                 return SECCLASS_SOCK_FILE;
1081         case S_IFLNK:
1082                 return SECCLASS_LNK_FILE;
1083         case S_IFREG:
1084                 return SECCLASS_FILE;
1085         case S_IFBLK:
1086                 return SECCLASS_BLK_FILE;
1087         case S_IFDIR:
1088                 return SECCLASS_DIR;
1089         case S_IFCHR:
1090                 return SECCLASS_CHR_FILE;
1091         case S_IFIFO:
1092                 return SECCLASS_FIFO_FILE;
1093
1094         }
1095
1096         return SECCLASS_FILE;
1097 }
1098
1099 static inline int default_protocol_stream(int protocol)
1100 {
1101         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1102 }
1103
1104 static inline int default_protocol_dgram(int protocol)
1105 {
1106         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1107 }
1108
1109 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1110 {
1111         switch (family) {
1112         case PF_UNIX:
1113                 switch (type) {
1114                 case SOCK_STREAM:
1115                 case SOCK_SEQPACKET:
1116                         return SECCLASS_UNIX_STREAM_SOCKET;
1117                 case SOCK_DGRAM:
1118                         return SECCLASS_UNIX_DGRAM_SOCKET;
1119                 }
1120                 break;
1121         case PF_INET:
1122         case PF_INET6:
1123                 switch (type) {
1124                 case SOCK_STREAM:
1125                         if (default_protocol_stream(protocol))
1126                                 return SECCLASS_TCP_SOCKET;
1127                         else
1128                                 return SECCLASS_RAWIP_SOCKET;
1129                 case SOCK_DGRAM:
1130                         if (default_protocol_dgram(protocol))
1131                                 return SECCLASS_UDP_SOCKET;
1132                         else
1133                                 return SECCLASS_RAWIP_SOCKET;
1134                 case SOCK_DCCP:
1135                         return SECCLASS_DCCP_SOCKET;
1136                 default:
1137                         return SECCLASS_RAWIP_SOCKET;
1138                 }
1139                 break;
1140         case PF_NETLINK:
1141                 switch (protocol) {
1142                 case NETLINK_ROUTE:
1143                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1144                 case NETLINK_FIREWALL:
1145                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1146                 case NETLINK_INET_DIAG:
1147                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1148                 case NETLINK_NFLOG:
1149                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1150                 case NETLINK_XFRM:
1151                         return SECCLASS_NETLINK_XFRM_SOCKET;
1152                 case NETLINK_SELINUX:
1153                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1154                 case NETLINK_AUDIT:
1155                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1156                 case NETLINK_IP6_FW:
1157                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1158                 case NETLINK_DNRTMSG:
1159                         return SECCLASS_NETLINK_DNRT_SOCKET;
1160                 case NETLINK_KOBJECT_UEVENT:
1161                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1162                 default:
1163                         return SECCLASS_NETLINK_SOCKET;
1164                 }
1165         case PF_PACKET:
1166                 return SECCLASS_PACKET_SOCKET;
1167         case PF_KEY:
1168                 return SECCLASS_KEY_SOCKET;
1169         case PF_APPLETALK:
1170                 return SECCLASS_APPLETALK_SOCKET;
1171         }
1172
1173         return SECCLASS_SOCKET;
1174 }
1175
1176 #ifdef CONFIG_PROC_FS
1177 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1178                                 u16 tclass,
1179                                 u32 *sid)
1180 {
1181         int buflen, rc;
1182         char *buffer, *path, *end;
1183
1184         buffer = (char *)__get_free_page(GFP_KERNEL);
1185         if (!buffer)
1186                 return -ENOMEM;
1187
1188         buflen = PAGE_SIZE;
1189         end = buffer+buflen;
1190         *--end = '\0';
1191         buflen--;
1192         path = end-1;
1193         *path = '/';
1194         while (de && de != de->parent) {
1195                 buflen -= de->namelen + 1;
1196                 if (buflen < 0)
1197                         break;
1198                 end -= de->namelen;
1199                 memcpy(end, de->name, de->namelen);
1200                 *--end = '/';
1201                 path = end;
1202                 de = de->parent;
1203         }
1204         rc = security_genfs_sid("proc", path, tclass, sid);
1205         free_page((unsigned long)buffer);
1206         return rc;
1207 }
1208 #else
1209 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1210                                 u16 tclass,
1211                                 u32 *sid)
1212 {
1213         return -EINVAL;
1214 }
1215 #endif
1216
1217 /* The inode's security attributes must be initialized before first use. */
1218 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1219 {
1220         struct superblock_security_struct *sbsec = NULL;
1221         struct inode_security_struct *isec = inode->i_security;
1222         u32 sid;
1223         struct dentry *dentry;
1224 #define INITCONTEXTLEN 255
1225         char *context = NULL;
1226         unsigned len = 0;
1227         int rc = 0;
1228
1229         if (isec->initialized)
1230                 goto out;
1231
1232         mutex_lock(&isec->lock);
1233         if (isec->initialized)
1234                 goto out_unlock;
1235
1236         sbsec = inode->i_sb->s_security;
1237         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1238                 /* Defer initialization until selinux_complete_init,
1239                    after the initial policy is loaded and the security
1240                    server is ready to handle calls. */
1241                 spin_lock(&sbsec->isec_lock);
1242                 if (list_empty(&isec->list))
1243                         list_add(&isec->list, &sbsec->isec_head);
1244                 spin_unlock(&sbsec->isec_lock);
1245                 goto out_unlock;
1246         }
1247
1248         switch (sbsec->behavior) {
1249         case SECURITY_FS_USE_XATTR:
1250                 if (!inode->i_op->getxattr) {
1251                         isec->sid = sbsec->def_sid;
1252                         break;
1253                 }
1254
1255                 /* Need a dentry, since the xattr API requires one.
1256                    Life would be simpler if we could just pass the inode. */
1257                 if (opt_dentry) {
1258                         /* Called from d_instantiate or d_splice_alias. */
1259                         dentry = dget(opt_dentry);
1260                 } else {
1261                         /* Called from selinux_complete_init, try to find a dentry. */
1262                         dentry = d_find_alias(inode);
1263                 }
1264                 if (!dentry) {
1265                         /*
1266                          * this is can be hit on boot when a file is accessed
1267                          * before the policy is loaded.  When we load policy we
1268                          * may find inodes that have no dentry on the
1269                          * sbsec->isec_head list.  No reason to complain as these
1270                          * will get fixed up the next time we go through
1271                          * inode_doinit with a dentry, before these inodes could
1272                          * be used again by userspace.
1273                          */
1274                         goto out_unlock;
1275                 }
1276
1277                 len = INITCONTEXTLEN;
1278                 context = kmalloc(len+1, GFP_NOFS);
1279                 if (!context) {
1280                         rc = -ENOMEM;
1281                         dput(dentry);
1282                         goto out_unlock;
1283                 }
1284                 context[len] = '\0';
1285                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1286                                            context, len);
1287                 if (rc == -ERANGE) {
1288                         kfree(context);
1289
1290                         /* Need a larger buffer.  Query for the right size. */
1291                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1292                                                    NULL, 0);
1293                         if (rc < 0) {
1294                                 dput(dentry);
1295                                 goto out_unlock;
1296                         }
1297                         len = rc;
1298                         context = kmalloc(len+1, GFP_NOFS);
1299                         if (!context) {
1300                                 rc = -ENOMEM;
1301                                 dput(dentry);
1302                                 goto out_unlock;
1303                         }
1304                         context[len] = '\0';
1305                         rc = inode->i_op->getxattr(dentry,
1306                                                    XATTR_NAME_SELINUX,
1307                                                    context, len);
1308                 }
1309                 dput(dentry);
1310                 if (rc < 0) {
1311                         if (rc != -ENODATA) {
1312                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1313                                        "%d for dev=%s ino=%ld\n", __func__,
1314                                        -rc, inode->i_sb->s_id, inode->i_ino);
1315                                 kfree(context);
1316                                 goto out_unlock;
1317                         }
1318                         /* Map ENODATA to the default file SID */
1319                         sid = sbsec->def_sid;
1320                         rc = 0;
1321                 } else {
1322                         rc = security_context_to_sid_default(context, rc, &sid,
1323                                                              sbsec->def_sid,
1324                                                              GFP_NOFS);
1325                         if (rc) {
1326                                 char *dev = inode->i_sb->s_id;
1327                                 unsigned long ino = inode->i_ino;
1328
1329                                 if (rc == -EINVAL) {
1330                                         if (printk_ratelimit())
1331                                                 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1332                                                         "context=%s.  This indicates you may need to relabel the inode or the "
1333                                                         "filesystem in question.\n", ino, dev, context);
1334                                 } else {
1335                                         printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1336                                                "returned %d for dev=%s ino=%ld\n",
1337                                                __func__, context, -rc, dev, ino);
1338                                 }
1339                                 kfree(context);
1340                                 /* Leave with the unlabeled SID */
1341                                 rc = 0;
1342                                 break;
1343                         }
1344                 }
1345                 kfree(context);
1346                 isec->sid = sid;
1347                 break;
1348         case SECURITY_FS_USE_TASK:
1349                 isec->sid = isec->task_sid;
1350                 break;
1351         case SECURITY_FS_USE_TRANS:
1352                 /* Default to the fs SID. */
1353                 isec->sid = sbsec->sid;
1354
1355                 /* Try to obtain a transition SID. */
1356                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1357                 rc = security_transition_sid(isec->task_sid,
1358                                              sbsec->sid,
1359                                              isec->sclass,
1360                                              &sid);
1361                 if (rc)
1362                         goto out_unlock;
1363                 isec->sid = sid;
1364                 break;
1365         case SECURITY_FS_USE_MNTPOINT:
1366                 isec->sid = sbsec->mntpoint_sid;
1367                 break;
1368         default:
1369                 /* Default to the fs superblock SID. */
1370                 isec->sid = sbsec->sid;
1371
1372                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1373                         struct proc_inode *proci = PROC_I(inode);
1374                         if (proci->pde) {
1375                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1376                                 rc = selinux_proc_get_sid(proci->pde,
1377                                                           isec->sclass,
1378                                                           &sid);
1379                                 if (rc)
1380                                         goto out_unlock;
1381                                 isec->sid = sid;
1382                         }
1383                 }
1384                 break;
1385         }
1386
1387         isec->initialized = 1;
1388
1389 out_unlock:
1390         mutex_unlock(&isec->lock);
1391 out:
1392         if (isec->sclass == SECCLASS_FILE)
1393                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1394         return rc;
1395 }
1396
1397 /* Convert a Linux signal to an access vector. */
1398 static inline u32 signal_to_av(int sig)
1399 {
1400         u32 perm = 0;
1401
1402         switch (sig) {
1403         case SIGCHLD:
1404                 /* Commonly granted from child to parent. */
1405                 perm = PROCESS__SIGCHLD;
1406                 break;
1407         case SIGKILL:
1408                 /* Cannot be caught or ignored */
1409                 perm = PROCESS__SIGKILL;
1410                 break;
1411         case SIGSTOP:
1412                 /* Cannot be caught or ignored */
1413                 perm = PROCESS__SIGSTOP;
1414                 break;
1415         default:
1416                 /* All other signals. */
1417                 perm = PROCESS__SIGNAL;
1418                 break;
1419         }
1420
1421         return perm;
1422 }
1423
1424 /*
1425  * Check permission between a pair of credentials
1426  * fork check, ptrace check, etc.
1427  */
1428 static int cred_has_perm(const struct cred *actor,
1429                          const struct cred *target,
1430                          u32 perms)
1431 {
1432         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1433
1434         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1435 }
1436
1437 /*
1438  * Check permission between a pair of tasks, e.g. signal checks,
1439  * fork check, ptrace check, etc.
1440  * tsk1 is the actor and tsk2 is the target
1441  * - this uses the default subjective creds of tsk1
1442  */
1443 static int task_has_perm(const struct task_struct *tsk1,
1444                          const struct task_struct *tsk2,
1445                          u32 perms)
1446 {
1447         const struct task_security_struct *__tsec1, *__tsec2;
1448         u32 sid1, sid2;
1449
1450         rcu_read_lock();
1451         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1452         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1453         rcu_read_unlock();
1454         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1455 }
1456
1457 /*
1458  * Check permission between current and another task, e.g. signal checks,
1459  * fork check, ptrace check, etc.
1460  * current is the actor and tsk2 is the target
1461  * - this uses current's subjective creds
1462  */
1463 static int current_has_perm(const struct task_struct *tsk,
1464                             u32 perms)
1465 {
1466         u32 sid, tsid;
1467
1468         sid = current_sid();
1469         tsid = task_sid(tsk);
1470         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1471 }
1472
1473 #if CAP_LAST_CAP > 63
1474 #error Fix SELinux to handle capabilities > 63.
1475 #endif
1476
1477 /* Check whether a task is allowed to use a capability. */
1478 static int task_has_capability(struct task_struct *tsk,
1479                                const struct cred *cred,
1480                                int cap, int audit)
1481 {
1482         struct common_audit_data ad;
1483         struct av_decision avd;
1484         u16 sclass;
1485         u32 sid = cred_sid(cred);
1486         u32 av = CAP_TO_MASK(cap);
1487         int rc;
1488
1489         COMMON_AUDIT_DATA_INIT(&ad, CAP);
1490         ad.tsk = tsk;
1491         ad.u.cap = cap;
1492
1493         switch (CAP_TO_INDEX(cap)) {
1494         case 0:
1495                 sclass = SECCLASS_CAPABILITY;
1496                 break;
1497         case 1:
1498                 sclass = SECCLASS_CAPABILITY2;
1499                 break;
1500         default:
1501                 printk(KERN_ERR
1502                        "SELinux:  out of range capability %d\n", cap);
1503                 BUG();
1504         }
1505
1506         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1507         if (audit == SECURITY_CAP_AUDIT)
1508                 avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1509         return rc;
1510 }
1511
1512 /* Check whether a task is allowed to use a system operation. */
1513 static int task_has_system(struct task_struct *tsk,
1514                            u32 perms)
1515 {
1516         u32 sid = task_sid(tsk);
1517
1518         return avc_has_perm(sid, SECINITSID_KERNEL,
1519                             SECCLASS_SYSTEM, perms, NULL);
1520 }
1521
1522 /* Check whether a task has a particular permission to an inode.
1523    The 'adp' parameter is optional and allows other audit
1524    data to be passed (e.g. the dentry). */
1525 static int inode_has_perm(const struct cred *cred,
1526                           struct inode *inode,
1527                           u32 perms,
1528                           struct common_audit_data *adp)
1529 {
1530         struct inode_security_struct *isec;
1531         struct common_audit_data ad;
1532         u32 sid;
1533
1534         validate_creds(cred);
1535
1536         if (unlikely(IS_PRIVATE(inode)))
1537                 return 0;
1538
1539         sid = cred_sid(cred);
1540         isec = inode->i_security;
1541
1542         if (!adp) {
1543                 adp = &ad;
1544                 COMMON_AUDIT_DATA_INIT(&ad, FS);
1545                 ad.u.fs.inode = inode;
1546         }
1547
1548         return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1549 }
1550
1551 /* Same as inode_has_perm, but pass explicit audit data containing
1552    the dentry to help the auditing code to more easily generate the
1553    pathname if needed. */
1554 static inline int dentry_has_perm(const struct cred *cred,
1555                                   struct vfsmount *mnt,
1556                                   struct dentry *dentry,
1557                                   u32 av)
1558 {
1559         struct inode *inode = dentry->d_inode;
1560         struct common_audit_data ad;
1561
1562         COMMON_AUDIT_DATA_INIT(&ad, FS);
1563         ad.u.fs.path.mnt = mnt;
1564         ad.u.fs.path.dentry = dentry;
1565         return inode_has_perm(cred, inode, av, &ad);
1566 }
1567
1568 /* Check whether a task can use an open file descriptor to
1569    access an inode in a given way.  Check access to the
1570    descriptor itself, and then use dentry_has_perm to
1571    check a particular permission to the file.
1572    Access to the descriptor is implicitly granted if it
1573    has the same SID as the process.  If av is zero, then
1574    access to the file is not checked, e.g. for cases
1575    where only the descriptor is affected like seek. */
1576 static int file_has_perm(const struct cred *cred,
1577                          struct file *file,
1578                          u32 av)
1579 {
1580         struct file_security_struct *fsec = file->f_security;
1581         struct inode *inode = file->f_path.dentry->d_inode;
1582         struct common_audit_data ad;
1583         u32 sid = cred_sid(cred);
1584         int rc;
1585
1586         COMMON_AUDIT_DATA_INIT(&ad, FS);
1587         ad.u.fs.path = file->f_path;
1588
1589         if (sid != fsec->sid) {
1590                 rc = avc_has_perm(sid, fsec->sid,
1591                                   SECCLASS_FD,
1592                                   FD__USE,
1593                                   &ad);
1594                 if (rc)
1595                         goto out;
1596         }
1597
1598         /* av is zero if only checking access to the descriptor. */
1599         rc = 0;
1600         if (av)
1601                 rc = inode_has_perm(cred, inode, av, &ad);
1602
1603 out:
1604         return rc;
1605 }
1606
1607 /* Check whether a task can create a file. */
1608 static int may_create(struct inode *dir,
1609                       struct dentry *dentry,
1610                       u16 tclass)
1611 {
1612         const struct cred *cred = current_cred();
1613         const struct task_security_struct *tsec = cred->security;
1614         struct inode_security_struct *dsec;
1615         struct superblock_security_struct *sbsec;
1616         u32 sid, newsid;
1617         struct common_audit_data ad;
1618         int rc;
1619
1620         dsec = dir->i_security;
1621         sbsec = dir->i_sb->s_security;
1622
1623         sid = tsec->sid;
1624         newsid = tsec->create_sid;
1625
1626         COMMON_AUDIT_DATA_INIT(&ad, FS);
1627         ad.u.fs.path.dentry = dentry;
1628
1629         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1630                           DIR__ADD_NAME | DIR__SEARCH,
1631                           &ad);
1632         if (rc)
1633                 return rc;
1634
1635         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1636                 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid);
1637                 if (rc)
1638                         return rc;
1639         }
1640
1641         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1642         if (rc)
1643                 return rc;
1644
1645         return avc_has_perm(newsid, sbsec->sid,
1646                             SECCLASS_FILESYSTEM,
1647                             FILESYSTEM__ASSOCIATE, &ad);
1648 }
1649
1650 /* Check whether a task can create a key. */
1651 static int may_create_key(u32 ksid,
1652                           struct task_struct *ctx)
1653 {
1654         u32 sid = task_sid(ctx);
1655
1656         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1657 }
1658
1659 #define MAY_LINK        0
1660 #define MAY_UNLINK      1
1661 #define MAY_RMDIR       2
1662
1663 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1664 static int may_link(struct inode *dir,
1665                     struct dentry *dentry,
1666                     int kind)
1667
1668 {
1669         struct inode_security_struct *dsec, *isec;
1670         struct common_audit_data ad;
1671         u32 sid = current_sid();
1672         u32 av;
1673         int rc;
1674
1675         dsec = dir->i_security;
1676         isec = dentry->d_inode->i_security;
1677
1678         COMMON_AUDIT_DATA_INIT(&ad, FS);
1679         ad.u.fs.path.dentry = dentry;
1680
1681         av = DIR__SEARCH;
1682         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1683         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1684         if (rc)
1685                 return rc;
1686
1687         switch (kind) {
1688         case MAY_LINK:
1689                 av = FILE__LINK;
1690                 break;
1691         case MAY_UNLINK:
1692                 av = FILE__UNLINK;
1693                 break;
1694         case MAY_RMDIR:
1695                 av = DIR__RMDIR;
1696                 break;
1697         default:
1698                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1699                         __func__, kind);
1700                 return 0;
1701         }
1702
1703         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1704         return rc;
1705 }
1706
1707 static inline int may_rename(struct inode *old_dir,
1708                              struct dentry *old_dentry,
1709                              struct inode *new_dir,
1710                              struct dentry *new_dentry)
1711 {
1712         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1713         struct common_audit_data ad;
1714         u32 sid = current_sid();
1715         u32 av;
1716         int old_is_dir, new_is_dir;
1717         int rc;
1718
1719         old_dsec = old_dir->i_security;
1720         old_isec = old_dentry->d_inode->i_security;
1721         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1722         new_dsec = new_dir->i_security;
1723
1724         COMMON_AUDIT_DATA_INIT(&ad, FS);
1725
1726         ad.u.fs.path.dentry = old_dentry;
1727         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1728                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1729         if (rc)
1730                 return rc;
1731         rc = avc_has_perm(sid, old_isec->sid,
1732                           old_isec->sclass, FILE__RENAME, &ad);
1733         if (rc)
1734                 return rc;
1735         if (old_is_dir && new_dir != old_dir) {
1736                 rc = avc_has_perm(sid, old_isec->sid,
1737                                   old_isec->sclass, DIR__REPARENT, &ad);
1738                 if (rc)
1739                         return rc;
1740         }
1741
1742         ad.u.fs.path.dentry = new_dentry;
1743         av = DIR__ADD_NAME | DIR__SEARCH;
1744         if (new_dentry->d_inode)
1745                 av |= DIR__REMOVE_NAME;
1746         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1747         if (rc)
1748                 return rc;
1749         if (new_dentry->d_inode) {
1750                 new_isec = new_dentry->d_inode->i_security;
1751                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1752                 rc = avc_has_perm(sid, new_isec->sid,
1753                                   new_isec->sclass,
1754                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1755                 if (rc)
1756                         return rc;
1757         }
1758
1759         return 0;
1760 }
1761
1762 /* Check whether a task can perform a filesystem operation. */
1763 static int superblock_has_perm(const struct cred *cred,
1764                                struct super_block *sb,
1765                                u32 perms,
1766                                struct common_audit_data *ad)
1767 {
1768         struct superblock_security_struct *sbsec;
1769         u32 sid = cred_sid(cred);
1770
1771         sbsec = sb->s_security;
1772         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1773 }
1774
1775 /* Convert a Linux mode and permission mask to an access vector. */
1776 static inline u32 file_mask_to_av(int mode, int mask)
1777 {
1778         u32 av = 0;
1779
1780         if ((mode & S_IFMT) != S_IFDIR) {
1781                 if (mask & MAY_EXEC)
1782                         av |= FILE__EXECUTE;
1783                 if (mask & MAY_READ)
1784                         av |= FILE__READ;
1785
1786                 if (mask & MAY_APPEND)
1787                         av |= FILE__APPEND;
1788                 else if (mask & MAY_WRITE)
1789                         av |= FILE__WRITE;
1790
1791         } else {
1792                 if (mask & MAY_EXEC)
1793                         av |= DIR__SEARCH;
1794                 if (mask & MAY_WRITE)
1795                         av |= DIR__WRITE;
1796                 if (mask & MAY_READ)
1797                         av |= DIR__READ;
1798         }
1799
1800         return av;
1801 }
1802
1803 /* Convert a Linux file to an access vector. */
1804 static inline u32 file_to_av(struct file *file)
1805 {
1806         u32 av = 0;
1807
1808         if (file->f_mode & FMODE_READ)
1809                 av |= FILE__READ;
1810         if (file->f_mode & FMODE_WRITE) {
1811                 if (file->f_flags & O_APPEND)
1812                         av |= FILE__APPEND;
1813                 else
1814                         av |= FILE__WRITE;
1815         }
1816         if (!av) {
1817                 /*
1818                  * Special file opened with flags 3 for ioctl-only use.
1819                  */
1820                 av = FILE__IOCTL;
1821         }
1822
1823         return av;
1824 }
1825
1826 /*
1827  * Convert a file to an access vector and include the correct open
1828  * open permission.
1829  */
1830 static inline u32 open_file_to_av(struct file *file)
1831 {
1832         u32 av = file_to_av(file);
1833
1834         if (selinux_policycap_openperm) {
1835                 mode_t mode = file->f_path.dentry->d_inode->i_mode;
1836                 /*
1837                  * lnk files and socks do not really have an 'open'
1838                  */
1839                 if (S_ISREG(mode))
1840                         av |= FILE__OPEN;
1841                 else if (S_ISCHR(mode))
1842                         av |= CHR_FILE__OPEN;
1843                 else if (S_ISBLK(mode))
1844                         av |= BLK_FILE__OPEN;
1845                 else if (S_ISFIFO(mode))
1846                         av |= FIFO_FILE__OPEN;
1847                 else if (S_ISDIR(mode))
1848                         av |= DIR__OPEN;
1849                 else if (S_ISSOCK(mode))
1850                         av |= SOCK_FILE__OPEN;
1851                 else
1852                         printk(KERN_ERR "SELinux: WARNING: inside %s with "
1853                                 "unknown mode:%o\n", __func__, mode);
1854         }
1855         return av;
1856 }
1857
1858 /* Hook functions begin here. */
1859
1860 static int selinux_ptrace_access_check(struct task_struct *child,
1861                                      unsigned int mode)
1862 {
1863         int rc;
1864
1865         rc = cap_ptrace_access_check(child, mode);
1866         if (rc)
1867                 return rc;
1868
1869         if (mode == PTRACE_MODE_READ) {
1870                 u32 sid = current_sid();
1871                 u32 csid = task_sid(child);
1872                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1873         }
1874
1875         return current_has_perm(child, PROCESS__PTRACE);
1876 }
1877
1878 static int selinux_ptrace_traceme(struct task_struct *parent)
1879 {
1880         int rc;
1881
1882         rc = cap_ptrace_traceme(parent);
1883         if (rc)
1884                 return rc;
1885
1886         return task_has_perm(parent, current, PROCESS__PTRACE);
1887 }
1888
1889 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1890                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1891 {
1892         int error;
1893
1894         error = current_has_perm(target, PROCESS__GETCAP);
1895         if (error)
1896                 return error;
1897
1898         return cap_capget(target, effective, inheritable, permitted);
1899 }
1900
1901 static int selinux_capset(struct cred *new, const struct cred *old,
1902                           const kernel_cap_t *effective,
1903                           const kernel_cap_t *inheritable,
1904                           const kernel_cap_t *permitted)
1905 {
1906         int error;
1907
1908         error = cap_capset(new, old,
1909                                       effective, inheritable, permitted);
1910         if (error)
1911                 return error;
1912
1913         return cred_has_perm(old, new, PROCESS__SETCAP);
1914 }
1915
1916 /*
1917  * (This comment used to live with the selinux_task_setuid hook,
1918  * which was removed).
1919  *
1920  * Since setuid only affects the current process, and since the SELinux
1921  * controls are not based on the Linux identity attributes, SELinux does not
1922  * need to control this operation.  However, SELinux does control the use of
1923  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1924  */
1925
1926 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1927                            int cap, int audit)
1928 {
1929         int rc;
1930
1931         rc = cap_capable(tsk, cred, cap, audit);
1932         if (rc)
1933                 return rc;
1934
1935         return task_has_capability(tsk, cred, cap, audit);
1936 }
1937
1938 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1939 {
1940         int buflen, rc;
1941         char *buffer, *path, *end;
1942
1943         rc = -ENOMEM;
1944         buffer = (char *)__get_free_page(GFP_KERNEL);
1945         if (!buffer)
1946                 goto out;
1947
1948         buflen = PAGE_SIZE;
1949         end = buffer+buflen;
1950         *--end = '\0';
1951         buflen--;
1952         path = end-1;
1953         *path = '/';
1954         while (table) {
1955                 const char *name = table->procname;
1956                 size_t namelen = strlen(name);
1957                 buflen -= namelen + 1;
1958                 if (buflen < 0)
1959                         goto out_free;
1960                 end -= namelen;
1961                 memcpy(end, name, namelen);
1962                 *--end = '/';
1963                 path = end;
1964                 table = table->parent;
1965         }
1966         buflen -= 4;
1967         if (buflen < 0)
1968                 goto out_free;
1969         end -= 4;
1970         memcpy(end, "/sys", 4);
1971         path = end;
1972         rc = security_genfs_sid("proc", path, tclass, sid);
1973 out_free:
1974         free_page((unsigned long)buffer);
1975 out:
1976         return rc;
1977 }
1978
1979 static int selinux_sysctl(ctl_table *table, int op)
1980 {
1981         int error = 0;
1982         u32 av;
1983         u32 tsid, sid;
1984         int rc;
1985
1986         sid = current_sid();
1987
1988         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1989                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1990         if (rc) {
1991                 /* Default to the well-defined sysctl SID. */
1992                 tsid = SECINITSID_SYSCTL;
1993         }
1994
1995         /* The op values are "defined" in sysctl.c, thereby creating
1996          * a bad coupling between this module and sysctl.c */
1997         if (op == 001) {
1998                 error = avc_has_perm(sid, tsid,
1999                                      SECCLASS_DIR, DIR__SEARCH, NULL);
2000         } else {
2001                 av = 0;
2002                 if (op & 004)
2003                         av |= FILE__READ;
2004                 if (op & 002)
2005                         av |= FILE__WRITE;
2006                 if (av)
2007                         error = avc_has_perm(sid, tsid,
2008                                              SECCLASS_FILE, av, NULL);
2009         }
2010
2011         return error;
2012 }
2013
2014 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2015 {
2016         const struct cred *cred = current_cred();
2017         int rc = 0;
2018
2019         if (!sb)
2020                 return 0;
2021
2022         switch (cmds) {
2023         case Q_SYNC:
2024         case Q_QUOTAON:
2025         case Q_QUOTAOFF:
2026         case Q_SETINFO:
2027         case Q_SETQUOTA:
2028                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2029                 break;
2030         case Q_GETFMT:
2031         case Q_GETINFO:
2032         case Q_GETQUOTA:
2033                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2034                 break;
2035         default:
2036                 rc = 0;  /* let the kernel handle invalid cmds */
2037                 break;
2038         }
2039         return rc;
2040 }
2041
2042 static int selinux_quota_on(struct dentry *dentry)
2043 {
2044         const struct cred *cred = current_cred();
2045
2046         return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
2047 }
2048
2049 static int selinux_syslog(int type)
2050 {
2051         int rc;
2052
2053         rc = cap_syslog(type);
2054         if (rc)
2055                 return rc;
2056
2057         switch (type) {
2058         case 3:         /* Read last kernel messages */
2059         case 10:        /* Return size of the log buffer */
2060                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2061                 break;
2062         case 6:         /* Disable logging to console */
2063         case 7:         /* Enable logging to console */
2064         case 8:         /* Set level of messages printed to console */
2065                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2066                 break;
2067         case 0:         /* Close log */
2068         case 1:         /* Open log */
2069         case 2:         /* Read from log */
2070         case 4:         /* Read/clear last kernel messages */
2071         case 5:         /* Clear ring buffer */
2072         default:
2073                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2074                 break;
2075         }
2076         return rc;
2077 }
2078
2079 /*
2080  * Check that a process has enough memory to allocate a new virtual
2081  * mapping. 0 means there is enough memory for the allocation to
2082  * succeed and -ENOMEM implies there is not.
2083  *
2084  * Do not audit the selinux permission check, as this is applied to all
2085  * processes that allocate mappings.
2086  */
2087 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2088 {
2089         int rc, cap_sys_admin = 0;
2090
2091         rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
2092                              SECURITY_CAP_NOAUDIT);
2093         if (rc == 0)
2094                 cap_sys_admin = 1;
2095
2096         return __vm_enough_memory(mm, pages, cap_sys_admin);
2097 }
2098
2099 /* binprm security operations */
2100
2101 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2102 {
2103         const struct task_security_struct *old_tsec;
2104         struct task_security_struct *new_tsec;
2105         struct inode_security_struct *isec;
2106         struct common_audit_data ad;
2107         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2108         int rc;
2109
2110         rc = cap_bprm_set_creds(bprm);
2111         if (rc)
2112                 return rc;
2113
2114         /* SELinux context only depends on initial program or script and not
2115          * the script interpreter */
2116         if (bprm->cred_prepared)
2117                 return 0;
2118
2119         old_tsec = current_security();
2120         new_tsec = bprm->cred->security;
2121         isec = inode->i_security;
2122
2123         /* Default to the current task SID. */
2124         new_tsec->sid = old_tsec->sid;
2125         new_tsec->osid = old_tsec->sid;
2126
2127         /* Reset fs, key, and sock SIDs on execve. */
2128         new_tsec->create_sid = 0;
2129         new_tsec->keycreate_sid = 0;
2130         new_tsec->sockcreate_sid = 0;
2131
2132         if (old_tsec->exec_sid) {
2133                 new_tsec->sid = old_tsec->exec_sid;
2134                 /* Reset exec SID on execve. */
2135                 new_tsec->exec_sid = 0;
2136         } else {
2137                 /* Check for a default transition on this program. */
2138                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2139                                              SECCLASS_PROCESS, &new_tsec->sid);
2140                 if (rc)
2141                         return rc;
2142         }
2143
2144         COMMON_AUDIT_DATA_INIT(&ad, FS);
2145         ad.u.fs.path = bprm->file->f_path;
2146
2147         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2148                 new_tsec->sid = old_tsec->sid;
2149
2150         if (new_tsec->sid == old_tsec->sid) {
2151                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2152                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2153                 if (rc)
2154                         return rc;
2155         } else {
2156                 /* Check permissions for the transition. */
2157                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2158                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2159                 if (rc)
2160                         return rc;
2161
2162                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2163                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2164                 if (rc)
2165                         return rc;
2166
2167                 /* Check for shared state */
2168                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2169                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2170                                           SECCLASS_PROCESS, PROCESS__SHARE,
2171                                           NULL);
2172                         if (rc)
2173                                 return -EPERM;
2174                 }
2175
2176                 /* Make sure that anyone attempting to ptrace over a task that
2177                  * changes its SID has the appropriate permit */
2178                 if (bprm->unsafe &
2179                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2180                         struct task_struct *tracer;
2181                         struct task_security_struct *sec;
2182                         u32 ptsid = 0;
2183
2184                         rcu_read_lock();
2185                         tracer = tracehook_tracer_task(current);
2186                         if (likely(tracer != NULL)) {
2187                                 sec = __task_cred(tracer)->security;
2188                                 ptsid = sec->sid;
2189                         }
2190                         rcu_read_unlock();
2191
2192                         if (ptsid != 0) {
2193                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2194                                                   SECCLASS_PROCESS,
2195                                                   PROCESS__PTRACE, NULL);
2196                                 if (rc)
2197                                         return -EPERM;
2198                         }
2199                 }
2200
2201                 /* Clear any possibly unsafe personality bits on exec: */
2202                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2203         }
2204
2205         return 0;
2206 }
2207
2208 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2209 {
2210         const struct cred *cred = current_cred();
2211         const struct task_security_struct *tsec = cred->security;
2212         u32 sid, osid;
2213         int atsecure = 0;
2214
2215         sid = tsec->sid;
2216         osid = tsec->osid;
2217
2218         if (osid != sid) {
2219                 /* Enable secure mode for SIDs transitions unless
2220                    the noatsecure permission is granted between
2221                    the two SIDs, i.e. ahp returns 0. */
2222                 atsecure = avc_has_perm(osid, sid,
2223                                         SECCLASS_PROCESS,
2224                                         PROCESS__NOATSECURE, NULL);
2225         }
2226
2227         return (atsecure || cap_bprm_secureexec(bprm));
2228 }
2229
2230 extern struct vfsmount *selinuxfs_mount;
2231 extern struct dentry *selinux_null;
2232
2233 /* Derived from fs/exec.c:flush_old_files. */
2234 static inline void flush_unauthorized_files(const struct cred *cred,
2235                                             struct files_struct *files)
2236 {
2237         struct common_audit_data ad;
2238         struct file *file, *devnull = NULL;
2239         struct tty_struct *tty;
2240         struct fdtable *fdt;
2241         long j = -1;
2242         int drop_tty = 0;
2243
2244         tty = get_current_tty();
2245         if (tty) {
2246                 file_list_lock();
2247                 if (!list_empty(&tty->tty_files)) {
2248                         struct inode *inode;
2249
2250                         /* Revalidate access to controlling tty.
2251                            Use inode_has_perm on the tty inode directly rather
2252                            than using file_has_perm, as this particular open
2253                            file may belong to another process and we are only
2254                            interested in the inode-based check here. */
2255                         file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2256                         inode = file->f_path.dentry->d_inode;
2257                         if (inode_has_perm(cred, inode,
2258                                            FILE__READ | FILE__WRITE, NULL)) {
2259                                 drop_tty = 1;
2260                         }
2261                 }
2262                 file_list_unlock();
2263                 tty_kref_put(tty);
2264         }
2265         /* Reset controlling tty. */
2266         if (drop_tty)
2267                 no_tty();
2268
2269         /* Revalidate access to inherited open files. */
2270
2271         COMMON_AUDIT_DATA_INIT(&ad, FS);
2272
2273         spin_lock(&files->file_lock);
2274         for (;;) {
2275                 unsigned long set, i;
2276                 int fd;
2277
2278                 j++;
2279                 i = j * __NFDBITS;
2280                 fdt = files_fdtable(files);
2281                 if (i >= fdt->max_fds)
2282                         break;
2283                 set = fdt->open_fds->fds_bits[j];
2284                 if (!set)
2285                         continue;
2286                 spin_unlock(&files->file_lock);
2287                 for ( ; set ; i++, set >>= 1) {
2288                         if (set & 1) {
2289                                 file = fget(i);
2290                                 if (!file)
2291                                         continue;
2292                                 if (file_has_perm(cred,
2293                                                   file,
2294                                                   file_to_av(file))) {
2295                                         sys_close(i);
2296                                         fd = get_unused_fd();
2297                                         if (fd != i) {
2298                                                 if (fd >= 0)
2299                                                         put_unused_fd(fd);
2300                                                 fput(file);
2301                                                 continue;
2302                                         }
2303                                         if (devnull) {
2304                                                 get_file(devnull);
2305                                         } else {
2306                                                 devnull = dentry_open(
2307                                                         dget(selinux_null),
2308                                                         mntget(selinuxfs_mount),
2309                                                         O_RDWR, cred);
2310                                                 if (IS_ERR(devnull)) {
2311                                                         devnull = NULL;
2312                                                         put_unused_fd(fd);
2313                                                         fput(file);
2314                                                         continue;
2315                                                 }
2316                                         }
2317                                         fd_install(fd, devnull);
2318                                 }
2319                                 fput(file);
2320                         }
2321                 }
2322                 spin_lock(&files->file_lock);
2323
2324         }
2325         spin_unlock(&files->file_lock);
2326 }
2327
2328 /*
2329  * Prepare a process for imminent new credential changes due to exec
2330  */
2331 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2332 {
2333         struct task_security_struct *new_tsec;
2334         struct rlimit *rlim, *initrlim;
2335         int rc, i;
2336
2337         new_tsec = bprm->cred->security;
2338         if (new_tsec->sid == new_tsec->osid)
2339                 return;
2340
2341         /* Close files for which the new task SID is not authorized. */
2342         flush_unauthorized_files(bprm->cred, current->files);
2343
2344         /* Always clear parent death signal on SID transitions. */
2345         current->pdeath_signal = 0;
2346
2347         /* Check whether the new SID can inherit resource limits from the old
2348          * SID.  If not, reset all soft limits to the lower of the current
2349          * task's hard limit and the init task's soft limit.
2350          *
2351          * Note that the setting of hard limits (even to lower them) can be
2352          * controlled by the setrlimit check.  The inclusion of the init task's
2353          * soft limit into the computation is to avoid resetting soft limits
2354          * higher than the default soft limit for cases where the default is
2355          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2356          */
2357         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2358                           PROCESS__RLIMITINH, NULL);
2359         if (rc) {
2360                 for (i = 0; i < RLIM_NLIMITS; i++) {
2361                         rlim = current->signal->rlim + i;
2362                         initrlim = init_task.signal->rlim + i;
2363                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2364                 }
2365                 update_rlimit_cpu(rlim->rlim_cur);
2366         }
2367 }
2368
2369 /*
2370  * Clean up the process immediately after the installation of new credentials
2371  * due to exec
2372  */
2373 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2374 {
2375         const struct task_security_struct *tsec = current_security();
2376         struct itimerval itimer;
2377         u32 osid, sid;
2378         int rc, i;
2379
2380         osid = tsec->osid;
2381         sid = tsec->sid;
2382
2383         if (sid == osid)
2384                 return;
2385
2386         /* Check whether the new SID can inherit signal state from the old SID.
2387          * If not, clear itimers to avoid subsequent signal generation and
2388          * flush and unblock signals.
2389          *
2390          * This must occur _after_ the task SID has been updated so that any
2391          * kill done after the flush will be checked against the new SID.
2392          */
2393         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2394         if (rc) {
2395                 memset(&itimer, 0, sizeof itimer);
2396                 for (i = 0; i < 3; i++)
2397                         do_setitimer(i, &itimer, NULL);
2398                 spin_lock_irq(&current->sighand->siglock);
2399                 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2400                         __flush_signals(current);
2401                         flush_signal_handlers(current, 1);
2402                         sigemptyset(&current->blocked);
2403                 }
2404                 spin_unlock_irq(&current->sighand->siglock);
2405         }
2406
2407         /* Wake up the parent if it is waiting so that it can recheck
2408          * wait permission to the new task SID. */
2409         read_lock(&tasklist_lock);
2410         wake_up_interruptible(&current->real_parent->signal->wait_chldexit);
2411         read_unlock(&tasklist_lock);
2412 }
2413
2414 /* superblock security operations */
2415
2416 static int selinux_sb_alloc_security(struct super_block *sb)
2417 {
2418         return superblock_alloc_security(sb);
2419 }
2420
2421 static void selinux_sb_free_security(struct super_block *sb)
2422 {
2423         superblock_free_security(sb);
2424 }
2425
2426 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2427 {
2428         if (plen > olen)
2429                 return 0;
2430
2431         return !memcmp(prefix, option, plen);
2432 }
2433
2434 static inline int selinux_option(char *option, int len)
2435 {
2436         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2437                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2438                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2439                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2440                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2441 }
2442
2443 static inline void take_option(char **to, char *from, int *first, int len)
2444 {
2445         if (!*first) {
2446                 **to = ',';
2447                 *to += 1;
2448         } else
2449                 *first = 0;
2450         memcpy(*to, from, len);
2451         *to += len;
2452 }
2453
2454 static inline void take_selinux_option(char **to, char *from, int *first,
2455                                        int len)
2456 {
2457         int current_size = 0;
2458
2459         if (!*first) {
2460                 **to = '|';
2461                 *to += 1;
2462         } else
2463                 *first = 0;
2464
2465         while (current_size < len) {
2466                 if (*from != '"') {
2467                         **to = *from;
2468                         *to += 1;
2469                 }
2470                 from += 1;
2471                 current_size += 1;
2472         }
2473 }
2474
2475 static int selinux_sb_copy_data(char *orig, char *copy)
2476 {
2477         int fnosec, fsec, rc = 0;
2478         char *in_save, *in_curr, *in_end;
2479         char *sec_curr, *nosec_save, *nosec;
2480         int open_quote = 0;
2481
2482         in_curr = orig;
2483         sec_curr = copy;
2484
2485         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2486         if (!nosec) {
2487                 rc = -ENOMEM;
2488                 goto out;
2489         }
2490
2491         nosec_save = nosec;
2492         fnosec = fsec = 1;
2493         in_save = in_end = orig;
2494
2495         do {
2496                 if (*in_end == '"')
2497                         open_quote = !open_quote;
2498                 if ((*in_end == ',' && open_quote == 0) ||
2499                                 *in_end == '\0') {
2500                         int len = in_end - in_curr;
2501
2502                         if (selinux_option(in_curr, len))
2503                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2504                         else
2505                                 take_option(&nosec, in_curr, &fnosec, len);
2506
2507                         in_curr = in_end + 1;
2508                 }
2509         } while (*in_end++);
2510
2511         strcpy(in_save, nosec_save);
2512         free_page((unsigned long)nosec_save);
2513 out:
2514         return rc;
2515 }
2516
2517 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2518 {
2519         const struct cred *cred = current_cred();
2520         struct common_audit_data ad;
2521         int rc;
2522
2523         rc = superblock_doinit(sb, data);
2524         if (rc)
2525                 return rc;
2526
2527         /* Allow all mounts performed by the kernel */
2528         if (flags & MS_KERNMOUNT)
2529                 return 0;
2530
2531         COMMON_AUDIT_DATA_INIT(&ad, FS);
2532         ad.u.fs.path.dentry = sb->s_root;
2533         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2534 }
2535
2536 static int selinux_sb_statfs(struct dentry *dentry)
2537 {
2538         const struct cred *cred = current_cred();
2539         struct common_audit_data ad;
2540
2541         COMMON_AUDIT_DATA_INIT(&ad, FS);
2542         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2543         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2544 }
2545
2546 static int selinux_mount(char *dev_name,
2547                          struct path *path,
2548                          char *type,
2549                          unsigned long flags,
2550                          void *data)
2551 {
2552         const struct cred *cred = current_cred();
2553
2554         if (flags & MS_REMOUNT)
2555                 return superblock_has_perm(cred, path->mnt->mnt_sb,
2556                                            FILESYSTEM__REMOUNT, NULL);
2557         else
2558                 return dentry_has_perm(cred, path->mnt, path->dentry,
2559                                        FILE__MOUNTON);
2560 }
2561
2562 static int selinux_umount(struct vfsmount *mnt, int flags)
2563 {
2564         const struct cred *cred = current_cred();
2565
2566         return superblock_has_perm(cred, mnt->mnt_sb,
2567                                    FILESYSTEM__UNMOUNT, NULL);
2568 }
2569
2570 /* inode security operations */
2571
2572 static int selinux_inode_alloc_security(struct inode *inode)
2573 {
2574         return inode_alloc_security(inode);
2575 }
2576
2577 static void selinux_inode_free_security(struct inode *inode)
2578 {
2579         inode_free_security(inode);
2580 }
2581
2582 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2583                                        char **name, void **value,
2584                                        size_t *len)
2585 {
2586         const struct cred *cred = current_cred();
2587         const struct task_security_struct *tsec = cred->security;
2588         struct inode_security_struct *dsec;
2589         struct superblock_security_struct *sbsec;
2590         u32 sid, newsid, clen;
2591         int rc;
2592         char *namep = NULL, *context;
2593
2594         dsec = dir->i_security;
2595         sbsec = dir->i_sb->s_security;
2596
2597         sid = tsec->sid;
2598         newsid = tsec->create_sid;
2599
2600         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2601                 rc = security_transition_sid(sid, dsec->sid,
2602                                              inode_mode_to_security_class(inode->i_mode),
2603                                              &newsid);
2604                 if (rc) {
2605                         printk(KERN_WARNING "%s:  "
2606                                "security_transition_sid failed, rc=%d (dev=%s "
2607                                "ino=%ld)\n",
2608                                __func__,
2609                                -rc, inode->i_sb->s_id, inode->i_ino);
2610                         return rc;
2611                 }
2612         }
2613
2614         /* Possibly defer initialization to selinux_complete_init. */
2615         if (sbsec->flags & SE_SBINITIALIZED) {
2616                 struct inode_security_struct *isec = inode->i_security;
2617                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2618                 isec->sid = newsid;
2619                 isec->initialized = 1;
2620         }
2621
2622         if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2623                 return -EOPNOTSUPP;
2624
2625         if (name) {
2626                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2627                 if (!namep)
2628                         return -ENOMEM;
2629                 *name = namep;
2630         }
2631
2632         if (value && len) {
2633                 rc = security_sid_to_context_force(newsid, &context, &clen);
2634                 if (rc) {
2635                         kfree(namep);
2636                         return rc;
2637                 }
2638                 *value = context;
2639                 *len = clen;
2640         }
2641
2642         return 0;
2643 }
2644
2645 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2646 {
2647         return may_create(dir, dentry, SECCLASS_FILE);
2648 }
2649
2650 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2651 {
2652         return may_link(dir, old_dentry, MAY_LINK);
2653 }
2654
2655 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2656 {
2657         return may_link(dir, dentry, MAY_UNLINK);
2658 }
2659
2660 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2661 {
2662         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2663 }
2664
2665 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2666 {
2667         return may_create(dir, dentry, SECCLASS_DIR);
2668 }
2669
2670 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2671 {
2672         return may_link(dir, dentry, MAY_RMDIR);
2673 }
2674
2675 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2676 {
2677         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2678 }
2679
2680 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2681                                 struct inode *new_inode, struct dentry *new_dentry)
2682 {
2683         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2684 }
2685
2686 static int selinux_inode_readlink(struct dentry *dentry)
2687 {
2688         const struct cred *cred = current_cred();
2689
2690         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2691 }
2692
2693 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2694 {
2695         const struct cred *cred = current_cred();
2696
2697         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2698 }
2699
2700 static int selinux_inode_permission(struct inode *inode, int mask)
2701 {
2702         const struct cred *cred = current_cred();
2703
2704         if (!mask) {
2705                 /* No permission to check.  Existence test. */
2706                 return 0;
2707         }
2708
2709         return inode_has_perm(cred, inode,
2710                               file_mask_to_av(inode->i_mode, mask), NULL);
2711 }
2712
2713 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2714 {
2715         const struct cred *cred = current_cred();
2716         unsigned int ia_valid = iattr->ia_valid;
2717
2718         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2719         if (ia_valid & ATTR_FORCE) {
2720                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2721                               ATTR_FORCE);
2722                 if (!ia_valid)
2723                         return 0;
2724         }
2725
2726         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2727                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2728                 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2729
2730         return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2731 }
2732
2733 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2734 {
2735         const struct cred *cred = current_cred();
2736
2737         return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2738 }
2739
2740 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2741 {
2742         const struct cred *cred = current_cred();
2743
2744         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2745                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2746                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2747                         if (!capable(CAP_SETFCAP))
2748                                 return -EPERM;
2749                 } else if (!capable(CAP_SYS_ADMIN)) {
2750                         /* A different attribute in the security namespace.
2751                            Restrict to administrator. */
2752                         return -EPERM;
2753                 }
2754         }
2755
2756         /* Not an attribute we recognize, so just check the
2757            ordinary setattr permission. */
2758         return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2759 }
2760
2761 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2762                                   const void *value, size_t size, int flags)
2763 {
2764         struct inode *inode = dentry->d_inode;
2765         struct inode_security_struct *isec = inode->i_security;
2766         struct superblock_security_struct *sbsec;
2767         struct common_audit_data ad;
2768         u32 newsid, sid = current_sid();
2769         int rc = 0;
2770
2771         if (strcmp(name, XATTR_NAME_SELINUX))
2772                 return selinux_inode_setotherxattr(dentry, name);
2773
2774         sbsec = inode->i_sb->s_security;
2775         if (!(sbsec->flags & SE_SBLABELSUPP))
2776                 return -EOPNOTSUPP;
2777
2778         if (!is_owner_or_cap(inode))
2779                 return -EPERM;
2780
2781         COMMON_AUDIT_DATA_INIT(&ad, FS);
2782         ad.u.fs.path.dentry = dentry;
2783
2784         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2785                           FILE__RELABELFROM, &ad);
2786         if (rc)
2787                 return rc;
2788
2789         rc = security_context_to_sid(value, size, &newsid);
2790         if (rc == -EINVAL) {
2791                 if (!capable(CAP_MAC_ADMIN))
2792                         return rc;
2793                 rc = security_context_to_sid_force(value, size, &newsid);
2794         }
2795         if (rc)
2796                 return rc;
2797
2798         rc = avc_has_perm(sid, newsid, isec->sclass,
2799                           FILE__RELABELTO, &ad);
2800         if (rc)
2801                 return rc;
2802
2803         rc = security_validate_transition(isec->sid, newsid, sid,
2804                                           isec->sclass);
2805         if (rc)
2806                 return rc;
2807
2808         return avc_has_perm(newsid,
2809                             sbsec->sid,
2810                             SECCLASS_FILESYSTEM,
2811                             FILESYSTEM__ASSOCIATE,
2812                             &ad);
2813 }
2814
2815 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2816                                         const void *value, size_t size,
2817                                         int flags)
2818 {
2819         struct inode *inode = dentry->d_inode;
2820         struct inode_security_struct *isec = inode->i_security;
2821         u32 newsid;
2822         int rc;
2823
2824         if (strcmp(name, XATTR_NAME_SELINUX)) {
2825                 /* Not an attribute we recognize, so nothing to do. */
2826                 return;
2827         }
2828
2829         rc = security_context_to_sid_force(value, size, &newsid);
2830         if (rc) {
2831                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2832                        "for (%s, %lu), rc=%d\n",
2833                        inode->i_sb->s_id, inode->i_ino, -rc);
2834                 return;
2835         }
2836
2837         isec->sid = newsid;
2838         return;
2839 }
2840
2841 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2842 {
2843         const struct cred *cred = current_cred();
2844
2845         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2846 }
2847
2848 static int selinux_inode_listxattr(struct dentry *dentry)
2849 {
2850         const struct cred *cred = current_cred();
2851
2852         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2853 }
2854
2855 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2856 {
2857         if (strcmp(name, XATTR_NAME_SELINUX))
2858                 return selinux_inode_setotherxattr(dentry, name);
2859
2860         /* No one is allowed to remove a SELinux security label.
2861            You can change the label, but all data must be labeled. */
2862         return -EACCES;
2863 }
2864
2865 /*
2866  * Copy the inode security context value to the user.
2867  *
2868  * Permission check is handled by selinux_inode_getxattr hook.
2869  */
2870 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2871 {
2872         u32 size;
2873         int error;
2874         char *context = NULL;
2875         struct inode_security_struct *isec = inode->i_security;
2876
2877         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2878                 return -EOPNOTSUPP;
2879
2880         /*
2881          * If the caller has CAP_MAC_ADMIN, then get the raw context
2882          * value even if it is not defined by current policy; otherwise,
2883          * use the in-core value under current policy.
2884          * Use the non-auditing forms of the permission checks since
2885          * getxattr may be called by unprivileged processes commonly
2886          * and lack of permission just means that we fall back to the
2887          * in-core context value, not a denial.
2888          */
2889         error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2890                                 SECURITY_CAP_NOAUDIT);
2891         if (!error)
2892                 error = security_sid_to_context_force(isec->sid, &context,
2893                                                       &size);
2894         else
2895                 error = security_sid_to_context(isec->sid, &context, &size);
2896         if (error)
2897                 return error;
2898         error = size;
2899         if (alloc) {
2900                 *buffer = context;
2901                 goto out_nofree;
2902         }
2903         kfree(context);
2904 out_nofree:
2905         return error;
2906 }
2907
2908 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2909                                      const void *value, size_t size, int flags)
2910 {
2911         struct inode_security_struct *isec = inode->i_security;
2912         u32 newsid;
2913         int rc;
2914
2915         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2916                 return -EOPNOTSUPP;
2917
2918         if (!value || !size)
2919                 return -EACCES;
2920
2921         rc = security_context_to_sid((void *)value, size, &newsid);
2922         if (rc)
2923                 return rc;
2924
2925         isec->sid = newsid;
2926         return 0;
2927 }
2928
2929 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2930 {
2931         const int len = sizeof(XATTR_NAME_SELINUX);
2932         if (buffer && len <= buffer_size)
2933                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2934         return len;
2935 }
2936
2937 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2938 {
2939         struct inode_security_struct *isec = inode->i_security;
2940         *secid = isec->sid;
2941 }
2942
2943 /* file security operations */
2944
2945 static int selinux_revalidate_file_permission(struct file *file, int mask)
2946 {
2947         const struct cred *cred = current_cred();
2948         struct inode *inode = file->f_path.dentry->d_inode;
2949
2950         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2951         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2952                 mask |= MAY_APPEND;
2953
2954         return file_has_perm(cred, file,
2955                              file_mask_to_av(inode->i_mode, mask));
2956 }
2957
2958 static int selinux_file_permission(struct file *file, int mask)
2959 {
2960         struct inode *inode = file->f_path.dentry->d_inode;
2961         struct file_security_struct *fsec = file->f_security;
2962         struct inode_security_struct *isec = inode->i_security;
2963         u32 sid = current_sid();
2964
2965         if (!mask)
2966                 /* No permission to check.  Existence test. */
2967                 return 0;
2968
2969         if (sid == fsec->sid && fsec->isid == isec->sid &&
2970             fsec->pseqno == avc_policy_seqno())
2971                 /* No change since dentry_open check. */
2972                 return 0;
2973
2974         return selinux_revalidate_file_permission(file, mask);
2975 }
2976
2977 static int selinux_file_alloc_security(struct file *file)
2978 {
2979         return file_alloc_security(file);
2980 }
2981
2982 static void selinux_file_free_security(struct file *file)
2983 {
2984         file_free_security(file);
2985 }
2986
2987 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2988                               unsigned long arg)
2989 {
2990         const struct cred *cred = current_cred();
2991         u32 av = 0;
2992
2993         if (_IOC_DIR(cmd) & _IOC_WRITE)
2994                 av |= FILE__WRITE;
2995         if (_IOC_DIR(cmd) & _IOC_READ)
2996                 av |= FILE__READ;
2997         if (!av)
2998                 av = FILE__IOCTL;
2999
3000         return file_has_perm(cred, file, av);
3001 }
3002
3003 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3004 {
3005         const struct cred *cred = current_cred();
3006         int rc = 0;
3007
3008 #ifndef CONFIG_PPC32
3009         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3010                 /*
3011                  * We are making executable an anonymous mapping or a
3012                  * private file mapping that will also be writable.
3013                  * This has an additional check.
3014                  */
3015                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3016                 if (rc)
3017                         goto error;
3018         }
3019 #endif
3020
3021         if (file) {
3022                 /* read access is always possible with a mapping */
3023                 u32 av = FILE__READ;
3024
3025                 /* write access only matters if the mapping is shared */
3026                 if (shared && (prot & PROT_WRITE))
3027                         av |= FILE__WRITE;
3028
3029                 if (prot & PROT_EXEC)
3030                         av |= FILE__EXECUTE;
3031
3032                 return file_has_perm(cred, file, av);
3033         }
3034
3035 error:
3036         return rc;
3037 }
3038
3039 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3040                              unsigned long prot, unsigned long flags,
3041                              unsigned long addr, unsigned long addr_only)
3042 {
3043         int rc = 0;
3044         u32 sid = current_sid();
3045
3046         /*
3047          * notice that we are intentionally putting the SELinux check before
3048          * the secondary cap_file_mmap check.  This is such a likely attempt
3049          * at bad behaviour/exploit that we always want to get the AVC, even
3050          * if DAC would have also denied the operation.
3051          */
3052         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3053                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3054                                   MEMPROTECT__MMAP_ZERO, NULL);
3055                 if (rc)
3056                         return rc;
3057         }
3058
3059         /* do DAC check on address space usage */
3060         rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
3061         if (rc || addr_only)
3062                 return rc;
3063
3064         if (selinux_checkreqprot)
3065                 prot = reqprot;
3066
3067         return file_map_prot_check(file, prot,
3068                                    (flags & MAP_TYPE) == MAP_SHARED);
3069 }
3070
3071 static int selinux_file_mprotect(struct vm_area_struct *vma,
3072                                  unsigned long reqprot,
3073                                  unsigned long prot)
3074 {
3075         const struct cred *cred = current_cred();
3076
3077         if (selinux_checkreqprot)
3078                 prot = reqprot;
3079
3080 #ifndef CONFIG_PPC32
3081         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3082                 int rc = 0;
3083                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3084                     vma->vm_end <= vma->vm_mm->brk) {
3085                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3086                 } else if (!vma->vm_file &&
3087                            vma->vm_start <= vma->vm_mm->start_stack &&
3088                            vma->vm_end >= vma->vm_mm->start_stack) {
3089                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3090                 } else if (vma->vm_file && vma->anon_vma) {
3091                         /*
3092                          * We are making executable a file mapping that has
3093                          * had some COW done. Since pages might have been
3094                          * written, check ability to execute the possibly
3095                          * modified content.  This typically should only
3096                          * occur for text relocations.
3097                          */
3098                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3099                 }
3100                 if (rc)
3101                         return rc;
3102         }
3103 #endif
3104
3105         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3106 }
3107
3108 static int selinux_file_lock(struct file *file, unsigned int cmd)
3109 {
3110         const struct cred *cred = current_cred();
3111
3112         return file_has_perm(cred, file, FILE__LOCK);
3113 }
3114
3115 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3116                               unsigned long arg)
3117 {
3118         const struct cred *cred = current_cred();
3119         int err = 0;
3120
3121         switch (cmd) {
3122         case F_SETFL:
3123                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3124                         err = -EINVAL;
3125                         break;
3126                 }
3127
3128                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3129                         err = file_has_perm(cred, file, FILE__WRITE);
3130                         break;
3131                 }
3132                 /* fall through */
3133         case F_SETOWN:
3134         case F_SETSIG:
3135         case F_GETFL:
3136         case F_GETOWN:
3137         case F_GETSIG:
3138                 /* Just check FD__USE permission */
3139                 err = file_has_perm(cred, file, 0);
3140                 break;
3141         case F_GETLK:
3142         case F_SETLK:
3143         case F_SETLKW:
3144 #if BITS_PER_LONG == 32
3145         case F_GETLK64:
3146         case F_SETLK64:
3147         case F_SETLKW64:
3148 #endif
3149                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3150                         err = -EINVAL;
3151                         break;
3152                 }
3153                 err = file_has_perm(cred, file, FILE__LOCK);
3154                 break;
3155         }
3156
3157         return err;
3158 }
3159
3160 static int selinux_file_set_fowner(struct file *file)
3161 {
3162         struct file_security_struct *fsec;
3163
3164         fsec = file->f_security;
3165         fsec->fown_sid = current_sid();
3166
3167         return 0;
3168 }
3169
3170 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3171                                        struct fown_struct *fown, int signum)
3172 {
3173         struct file *file;
3174         u32 sid = task_sid(tsk);
3175         u32 perm;
3176         struct file_security_struct *fsec;
3177
3178         /* struct fown_struct is never outside the context of a struct file */
3179         file = container_of(fown, struct file, f_owner);
3180
3181         fsec = file->f_security;
3182
3183         if (!signum)
3184                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3185         else
3186                 perm = signal_to_av(signum);
3187
3188         return avc_has_perm(fsec->fown_sid, sid,
3189                             SECCLASS_PROCESS, perm, NULL);
3190 }
3191
3192 static int selinux_file_receive(struct file *file)
3193 {
3194         const struct cred *cred = current_cred();
3195
3196         return file_has_perm(cred, file, file_to_av(file));
3197 }
3198
3199 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3200 {
3201         struct file_security_struct *fsec;
3202         struct inode *inode;
3203         struct inode_security_struct *isec;
3204
3205         inode = file->f_path.dentry->d_inode;
3206         fsec = file->f_security;
3207         isec = inode->i_security;
3208         /*
3209          * Save inode label and policy sequence number
3210          * at open-time so that selinux_file_permission
3211          * can determine whether revalidation is necessary.
3212          * Task label is already saved in the file security
3213          * struct as its SID.
3214          */
3215         fsec->isid = isec->sid;
3216         fsec->pseqno = avc_policy_seqno();
3217         /*
3218          * Since the inode label or policy seqno may have changed
3219          * between the selinux_inode_permission check and the saving
3220          * of state above, recheck that access is still permitted.
3221          * Otherwise, access might never be revalidated against the
3222          * new inode label or new policy.
3223          * This check is not redundant - do not remove.
3224          */
3225         return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3226 }
3227
3228 /* task security operations */
3229
3230 static int selinux_task_create(unsigned long clone_flags)
3231 {
3232         return current_has_perm(current, PROCESS__FORK);
3233 }
3234
3235 /*
3236  * allocate the SELinux part of blank credentials
3237  */
3238 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3239 {
3240         struct task_security_struct *tsec;
3241
3242         tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3243         if (!tsec)
3244                 return -ENOMEM;
3245
3246         cred->security = tsec;
3247         return 0;
3248 }
3249
3250 /*
3251  * detach and free the LSM part of a set of credentials
3252  */
3253 static void selinux_cred_free(struct cred *cred)
3254 {
3255         struct task_security_struct *tsec = cred->security;
3256
3257         BUG_ON((unsigned long) cred->security < PAGE_SIZE);
3258         cred->security = (void *) 0x7UL;
3259         kfree(tsec);
3260 }
3261
3262 /*
3263  * prepare a new set of credentials for modification
3264  */
3265 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3266                                 gfp_t gfp)
3267 {
3268         const struct task_security_struct *old_tsec;
3269         struct task_security_struct *tsec;
3270
3271         old_tsec = old->security;
3272
3273         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3274         if (!tsec)
3275                 return -ENOMEM;
3276
3277         new->security = tsec;
3278         return 0;
3279 }
3280
3281 /*
3282  * transfer the SELinux data to a blank set of creds
3283  */
3284 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3285 {
3286         const struct task_security_struct *old_tsec = old->security;
3287         struct task_security_struct *tsec = new->security;
3288
3289         *tsec = *old_tsec;
3290 }
3291
3292 /*
3293  * set the security data for a kernel service
3294  * - all the creation contexts are set to unlabelled
3295  */
3296 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3297 {
3298         struct task_security_struct *tsec = new->security;
3299         u32 sid = current_sid();
3300         int ret;
3301
3302         ret = avc_has_perm(sid, secid,
3303                            SECCLASS_KERNEL_SERVICE,
3304                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3305                            NULL);
3306         if (ret == 0) {
3307                 tsec->sid = secid;
3308                 tsec->create_sid = 0;
3309                 tsec->keycreate_sid = 0;
3310                 tsec->sockcreate_sid = 0;
3311         }
3312         return ret;
3313 }
3314
3315 /*
3316  * set the file creation context in a security record to the same as the
3317  * objective context of the specified inode
3318  */
3319 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3320 {
3321         struct inode_security_struct *isec = inode->i_security;
3322         struct task_security_struct *tsec = new->security;
3323         u32 sid = current_sid();
3324         int ret;
3325
3326         ret = avc_has_perm(sid, isec->sid,
3327                            SECCLASS_KERNEL_SERVICE,
3328                            KERNEL_SERVICE__CREATE_FILES_AS,
3329                            NULL);
3330
3331         if (ret == 0)
3332                 tsec->create_sid = isec->sid;
3333         return 0;
3334 }
3335
3336 static int selinux_kernel_module_request(void)
3337 {
3338         return task_has_system(current, SYSTEM__MODULE_REQUEST);
3339 }
3340
3341 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3342 {
3343         return current_has_perm(p, PROCESS__SETPGID);
3344 }
3345
3346 static int selinux_task_getpgid(struct task_struct *p)
3347 {
3348         return current_has_perm(p, PROCESS__GETPGID);
3349 }
3350
3351 static int selinux_task_getsid(struct task_struct *p)
3352 {
3353         return current_has_perm(p, PROCESS__GETSESSION);
3354 }
3355
3356 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3357 {
3358         *secid = task_sid(p);
3359 }
3360
3361 static int selinux_task_setnice(struct task_struct *p, int nice)
3362 {
3363         int rc;
3364
3365         rc = cap_task_setnice(p, nice);
3366         if (rc)
3367                 return rc;
3368
3369         return current_has_perm(p, PROCESS__SETSCHED);
3370 }
3371
3372 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3373 {
3374         int rc;
3375
3376         rc = cap_task_setioprio(p, ioprio);
3377         if (rc)
3378                 return rc;
3379
3380         return current_has_perm(p, PROCESS__SETSCHED);
3381 }
3382
3383 static int selinux_task_getioprio(struct task_struct *p)
3384 {
3385         return current_has_perm(p, PROCESS__GETSCHED);
3386 }
3387
3388 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3389 {
3390         struct rlimit *old_rlim = current->signal->rlim + resource;
3391
3392         /* Control the ability to change the hard limit (whether
3393            lowering or raising it), so that the hard limit can
3394            later be used as a safe reset point for the soft limit
3395            upon context transitions.  See selinux_bprm_committing_creds. */
3396         if (old_rlim->rlim_max != new_rlim->rlim_max)
3397                 return current_has_perm(current, PROCESS__SETRLIMIT);
3398
3399         return 0;
3400 }
3401
3402 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3403 {
3404         int rc;
3405
3406         rc = cap_task_setscheduler(p, policy, lp);
3407         if (rc)
3408                 return rc;
3409
3410         return current_has_perm(p, PROCESS__SETSCHED);
3411 }
3412
3413 static int selinux_task_getscheduler(struct task_struct *p)
3414 {
3415         return current_has_perm(p, PROCESS__GETSCHED);
3416 }
3417
3418 static int selinux_task_movememory(struct task_struct *p)
3419 {
3420         return current_has_perm(p, PROCESS__SETSCHED);
3421 }
3422
3423 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3424                                 int sig, u32 secid)
3425 {
3426         u32 perm;
3427         int rc;
3428
3429         if (!sig)
3430                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3431         else
3432                 perm = signal_to_av(sig);
3433         if (secid)
3434                 rc = avc_has_perm(secid, task_sid(p),
3435                                   SECCLASS_PROCESS, perm, NULL);
3436         else
3437                 rc = current_has_perm(p, perm);
3438         return rc;
3439 }
3440
3441 static int selinux_task_wait(struct task_struct *p)
3442 {
3443         return task_has_perm(p, current, PROCESS__SIGCHLD);
3444 }
3445
3446 static void selinux_task_to_inode(struct task_struct *p,
3447                                   struct inode *inode)
3448 {
3449         struct inode_security_struct *isec = inode->i_security;
3450         u32 sid = task_sid(p);
3451
3452         isec->sid = sid;
3453         isec->initialized = 1;
3454 }
3455
3456 /* Returns error only if unable to parse addresses */
3457 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3458                         struct common_audit_data *ad, u8 *proto)
3459 {
3460         int offset, ihlen, ret = -EINVAL;
3461         struct iphdr _iph, *ih;
3462
3463         offset = skb_network_offset(skb);
3464         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3465         if (ih == NULL)
3466                 goto out;
3467
3468         ihlen = ih->ihl * 4;
3469         if (ihlen < sizeof(_iph))
3470                 goto out;
3471
3472         ad->u.net.v4info.saddr = ih->saddr;
3473         ad->u.net.v4info.daddr = ih->daddr;
3474         ret = 0;
3475
3476         if (proto)
3477                 *proto = ih->protocol;
3478
3479         switch (ih->protocol) {
3480         case IPPROTO_TCP: {
3481                 struct tcphdr _tcph, *th;
3482
3483                 if (ntohs(ih->frag_off) & IP_OFFSET)
3484                         break;
3485
3486                 offset += ihlen;
3487                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3488                 if (th == NULL)
3489                         break;
3490
3491                 ad->u.net.sport = th->source;
3492                 ad->u.net.dport = th->dest;
3493                 break;
3494         }
3495
3496         case IPPROTO_UDP: {
3497                 struct udphdr _udph, *uh;
3498
3499                 if (ntohs(ih->frag_off) & IP_OFFSET)
3500                         break;
3501
3502                 offset += ihlen;
3503                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3504                 if (uh == NULL)
3505                         break;
3506
3507                 ad->u.net.sport = uh->source;
3508                 ad->u.net.dport = uh->dest;
3509                 break;
3510         }
3511
3512         case IPPROTO_DCCP: {
3513                 struct dccp_hdr _dccph, *dh;
3514
3515                 if (ntohs(ih->frag_off) & IP_OFFSET)
3516                         break;
3517
3518                 offset += ihlen;
3519                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3520                 if (dh == NULL)
3521                         break;
3522
3523                 ad->u.net.sport = dh->dccph_sport;
3524                 ad->u.net.dport = dh->dccph_dport;
3525                 break;
3526         }
3527
3528         default:
3529                 break;
3530         }
3531 out:
3532         return ret;
3533 }
3534
3535 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3536
3537 /* Returns error only if unable to parse addresses */
3538 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3539                         struct common_audit_data *ad, u8 *proto)
3540 {
3541         u8 nexthdr;
3542         int ret = -EINVAL, offset;
3543         struct ipv6hdr _ipv6h, *ip6;
3544
3545         offset = skb_network_offset(skb);
3546         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3547         if (ip6 == NULL)
3548                 goto out;
3549
3550         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3551         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3552         ret = 0;
3553
3554         nexthdr = ip6->nexthdr;
3555         offset += sizeof(_ipv6h);
3556         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3557         if (offset < 0)
3558                 goto out;
3559
3560         if (proto)
3561                 *proto = nexthdr;
3562
3563         switch (nexthdr) {
3564         case IPPROTO_TCP: {
3565                 struct tcphdr _tcph, *th;
3566
3567                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3568                 if (th == NULL)
3569                         break;
3570
3571                 ad->u.net.sport = th->source;
3572                 ad->u.net.dport = th->dest;
3573                 break;
3574         }
3575
3576         case IPPROTO_UDP: {
3577                 struct udphdr _udph, *uh;
3578
3579                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3580                 if (uh == NULL)
3581                         break;
3582
3583                 ad->u.net.sport = uh->source;
3584                 ad->u.net.dport = uh->dest;
3585                 break;
3586         }
3587
3588         case IPPROTO_DCCP: {
3589                 struct dccp_hdr _dccph, *dh;
3590
3591                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3592                 if (dh == NULL)
3593                         break;
3594
3595                 ad->u.net.sport = dh->dccph_sport;
3596                 ad->u.net.dport = dh->dccph_dport;
3597                 break;
3598         }
3599
3600         /* includes fragments */
3601         default:
3602                 break;
3603         }
3604 out:
3605         return ret;
3606 }
3607
3608 #endif /* IPV6 */
3609
3610 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3611                              char **_addrp, int src, u8 *proto)
3612 {
3613         char *addrp;
3614         int ret;
3615
3616         switch (ad->u.net.family) {
3617         case PF_INET:
3618                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3619                 if (ret)
3620                         goto parse_error;
3621                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3622                                        &ad->u.net.v4info.daddr);
3623                 goto okay;
3624
3625 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3626         case PF_INET6:
3627                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3628                 if (ret)
3629                         goto parse_error;
3630                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3631                                        &ad->u.net.v6info.daddr);
3632                 goto okay;
3633 #endif  /* IPV6 */
3634         default:
3635                 addrp = NULL;
3636                 goto okay;
3637         }
3638
3639 parse_error:
3640         printk(KERN_WARNING
3641                "SELinux: failure in selinux_parse_skb(),"
3642                " unable to parse packet\n");
3643         return ret;
3644
3645 okay:
3646         if (_addrp)
3647                 *_addrp = addrp;
3648         return 0;
3649 }
3650
3651 /**
3652  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3653  * @skb: the packet
3654  * @family: protocol family
3655  * @sid: the packet's peer label SID
3656  *
3657  * Description:
3658  * Check the various different forms of network peer labeling and determine
3659  * the peer label/SID for the packet; most of the magic actually occurs in
3660  * the security server function security_net_peersid_cmp().  The function
3661  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3662  * or -EACCES if @sid is invalid due to inconsistencies with the different
3663  * peer labels.
3664  *
3665  */
3666 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3667 {
3668         int err;
3669         u32 xfrm_sid;
3670         u32 nlbl_sid;
3671         u32 nlbl_type;
3672
3673         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3674         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3675
3676         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3677         if (unlikely(err)) {
3678                 printk(KERN_WARNING
3679                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3680                        " unable to determine packet's peer label\n");
3681                 return -EACCES;
3682         }
3683
3684         return 0;
3685 }
3686
3687 /* socket security operations */
3688 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3689                            u32 perms)
3690 {
3691         struct inode_security_struct *isec;
3692         struct common_audit_data ad;
3693         u32 sid;
3694         int err = 0;
3695
3696         isec = SOCK_INODE(sock)->i_security;
3697
3698         if (isec->sid == SECINITSID_KERNEL)
3699                 goto out;
3700         sid = task_sid(task);
3701
3702         COMMON_AUDIT_DATA_INIT(&ad, NET);
3703         ad.u.net.sk = sock->sk;
3704         err = avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
3705
3706 out:
3707         return err;
3708 }
3709
3710 static int selinux_socket_create(int family, int type,
3711                                  int protocol, int kern)
3712 {
3713         const struct cred *cred = current_cred();
3714         const struct task_security_struct *tsec = cred->security;
3715         u32 sid, newsid;
3716         u16 secclass;
3717         int err = 0;
3718
3719         if (kern)
3720                 goto out;
3721
3722         sid = tsec->sid;
3723         newsid = tsec->sockcreate_sid ?: sid;
3724
3725         secclass = socket_type_to_security_class(family, type, protocol);
3726         err = avc_has_perm(sid, newsid, secclass, SOCKET__CREATE, NULL);
3727
3728 out:
3729         return err;
3730 }
3731
3732 static int selinux_socket_post_create(struct socket *sock, int family,
3733                                       int type, int protocol, int kern)
3734 {
3735         const struct cred *cred = current_cred();
3736         const struct task_security_struct *tsec = cred->security;
3737         struct inode_security_struct *isec;
3738         struct sk_security_struct *sksec;
3739         u32 sid, newsid;
3740         int err = 0;
3741
3742         sid = tsec->sid;
3743         newsid = tsec->sockcreate_sid;
3744
3745         isec = SOCK_INODE(sock)->i_security;
3746
3747         if (kern)
3748                 isec->sid = SECINITSID_KERNEL;
3749         else if (newsid)
3750                 isec->sid = newsid;
3751         else
3752                 isec->sid = sid;
3753
3754         isec->sclass = socket_type_to_security_class(family, type, protocol);
3755         isec->initialized = 1;
3756
3757         if (sock->sk) {
3758                 sksec = sock->sk->sk_security;
3759                 sksec->sid = isec->sid;
3760                 sksec->sclass = isec->sclass;
3761                 err = selinux_netlbl_socket_post_create(sock->sk, family);
3762         }
3763
3764         return err;
3765 }
3766
3767 /* Range of port numbers used to automatically bind.
3768    Need to determine whether we should perform a name_bind
3769    permission check between the socket and the port number. */
3770
3771 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3772 {
3773         u16 family;
3774         int err;
3775
3776         err = socket_has_perm(current, sock, SOCKET__BIND);
3777         if (err)
3778                 goto out;
3779
3780         /*
3781          * If PF_INET or PF_INET6, check name_bind permission for the port.
3782          * Multiple address binding for SCTP is not supported yet: we just
3783          * check the first address now.
3784          */
3785         family = sock->sk->sk_family;
3786         if (family == PF_INET || family == PF_INET6) {
3787                 char *addrp;
3788                 struct inode_security_struct *isec;
3789                 struct common_audit_data ad;
3790                 struct sockaddr_in *addr4 = NULL;
3791                 struct sockaddr_in6 *addr6 = NULL;
3792                 unsigned short snum;
3793                 struct sock *sk = sock->sk;
3794                 u32 sid, node_perm;
3795
3796                 isec = SOCK_INODE(sock)->i_security;
3797
3798                 if (family == PF_INET) {
3799                         addr4 = (struct sockaddr_in *)address;
3800                         snum = ntohs(addr4->sin_port);
3801                         addrp = (char *)&addr4->sin_addr.s_addr;
3802                 } else {
3803                         addr6 = (struct sockaddr_in6 *)address;
3804                         snum = ntohs(addr6->sin6_port);
3805                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3806                 }
3807
3808                 if (snum) {
3809                         int low, high;
3810
3811                         inet_get_local_port_range(&low, &high);
3812
3813                         if (snum < max(PROT_SOCK, low) || snum > high) {
3814                                 err = sel_netport_sid(sk->sk_protocol,
3815                                                       snum, &sid);
3816                                 if (err)
3817                                         goto out;
3818                                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3819                                 ad.u.net.sport = htons(snum);
3820                                 ad.u.net.family = family;
3821                                 err = avc_has_perm(isec->sid, sid,
3822                                                    isec->sclass,
3823                                                    SOCKET__NAME_BIND, &ad);
3824                                 if (err)
3825                                         goto out;
3826                         }
3827                 }
3828
3829                 switch (isec->sclass) {
3830                 case SECCLASS_TCP_SOCKET:
3831                         node_perm = TCP_SOCKET__NODE_BIND;
3832                         break;
3833
3834                 case SECCLASS_UDP_SOCKET:
3835                         node_perm = UDP_SOCKET__NODE_BIND;
3836                         break;
3837
3838                 case SECCLASS_DCCP_SOCKET:
3839                         node_perm = DCCP_SOCKET__NODE_BIND;
3840                         break;
3841
3842                 default:
3843                         node_perm = RAWIP_SOCKET__NODE_BIND;
3844                         break;
3845                 }
3846
3847                 err = sel_netnode_sid(addrp, family, &sid);
3848                 if (err)
3849                         goto out;
3850
3851                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3852                 ad.u.net.sport = htons(snum);
3853                 ad.u.net.family = family;
3854
3855                 if (family == PF_INET)
3856                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3857                 else
3858                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3859
3860                 err = avc_has_perm(isec->sid, sid,
3861                                    isec->sclass, node_perm, &ad);
3862                 if (err)
3863                         goto out;
3864         }
3865 out:
3866         return err;
3867 }
3868
3869 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3870 {
3871         struct sock *sk = sock->sk;
3872         struct inode_security_struct *isec;
3873         int err;
3874
3875         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3876         if (err)
3877                 return err;
3878
3879         /*
3880          * If a TCP or DCCP socket, check name_connect permission for the port.
3881          */
3882         isec = SOCK_INODE(sock)->i_security;
3883         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3884             isec->sclass == SECCLASS_DCCP_SOCKET) {
3885                 struct common_audit_data ad;
3886                 struct sockaddr_in *addr4 = NULL;
3887                 struct sockaddr_in6 *addr6 = NULL;
3888                 unsigned short snum;
3889                 u32 sid, perm;
3890
3891                 if (sk->sk_family == PF_INET) {
3892                         addr4 = (struct sockaddr_in *)address;
3893                         if (addrlen < sizeof(struct sockaddr_in))
3894                                 return -EINVAL;
3895                         snum = ntohs(addr4->sin_port);
3896                 } else {
3897                         addr6 = (struct sockaddr_in6 *)address;
3898                         if (addrlen < SIN6_LEN_RFC2133)
3899                                 return -EINVAL;
3900                         snum = ntohs(addr6->sin6_port);
3901                 }
3902
3903                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3904                 if (err)
3905                         goto out;
3906
3907                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3908                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3909
3910                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3911                 ad.u.net.dport = htons(snum);
3912                 ad.u.net.family = sk->sk_family;
3913                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3914                 if (err)
3915                         goto out;
3916         }
3917
3918         err = selinux_netlbl_socket_connect(sk, address);
3919
3920 out:
3921         return err;
3922 }
3923
3924 static int selinux_socket_listen(struct socket *sock, int backlog)
3925 {
3926         return socket_has_perm(current, sock, SOCKET__LISTEN);
3927 }
3928
3929 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3930 {
3931         int err;
3932         struct inode_security_struct *isec;
3933         struct inode_security_struct *newisec;
3934
3935         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3936         if (err)
3937                 return err;
3938
3939         newisec = SOCK_INODE(newsock)->i_security;
3940
3941         isec = SOCK_INODE(sock)->i_security;
3942         newisec->sclass = isec->sclass;
3943         newisec->sid = isec->sid;
3944         newisec->initialized = 1;
3945
3946         return 0;
3947 }
3948
3949 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3950                                   int size)
3951 {
3952         return socket_has_perm(current, sock, SOCKET__WRITE);
3953 }
3954
3955 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3956                                   int size, int flags)
3957 {
3958         return socket_has_perm(current, sock, SOCKET__READ);
3959 }
3960
3961 static int selinux_socket_getsockname(struct socket *sock)
3962 {
3963         return socket_has_perm(current, sock, SOCKET__GETATTR);
3964 }
3965
3966 static int selinux_socket_getpeername(struct socket *sock)
3967 {
3968         return socket_has_perm(current, sock, SOCKET__GETATTR);
3969 }
3970
3971 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3972 {
3973         int err;
3974
3975         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3976         if (err)
3977                 return err;
3978
3979         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3980 }
3981
3982 static int selinux_socket_getsockopt(struct socket *sock, int level,
3983                                      int optname)
3984 {
3985         return socket_has_perm(current, sock, SOCKET__GETOPT);
3986 }
3987
3988 static int selinux_socket_shutdown(struct socket *sock, int how)
3989 {
3990         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3991 }
3992
3993 static int selinux_socket_unix_stream_connect(struct socket *sock,
3994                                               struct socket *other,
3995                                               struct sock *newsk)
3996 {
3997         struct sk_security_struct *ssec;
3998         struct inode_security_struct *isec;
3999         struct inode_security_struct *other_isec;
4000         struct common_audit_data ad;
4001         int err;
4002
4003         isec = SOCK_INODE(sock)->i_security;
4004         other_isec = SOCK_INODE(other)->i_security;
4005
4006         COMMON_AUDIT_DATA_INIT(&ad, NET);
4007         ad.u.net.sk = other->sk;
4008
4009         err = avc_has_perm(isec->sid, other_isec->sid,
4010                            isec->sclass,
4011                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4012         if (err)
4013                 return err;
4014
4015         /* connecting socket */
4016         ssec = sock->sk->sk_security;
4017         ssec->peer_sid = other_isec->sid;
4018
4019         /* server child socket */
4020         ssec = newsk->sk_security;
4021         ssec->peer_sid = isec->sid;
4022         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
4023
4024         return err;
4025 }
4026
4027 static int selinux_socket_unix_may_send(struct socket *sock,
4028                                         struct socket *other)
4029 {
4030         struct inode_security_struct *isec;
4031         struct inode_security_struct *other_isec;
4032         struct common_audit_data ad;
4033         int err;
4034
4035         isec = SOCK_INODE(sock)->i_security;
4036         other_isec = SOCK_INODE(other)->i_security;
4037
4038         COMMON_AUDIT_DATA_INIT(&ad, NET);
4039         ad.u.net.sk = other->sk;
4040
4041         err = avc_has_perm(isec->sid, other_isec->sid,
4042                            isec->sclass, SOCKET__SENDTO, &ad);
4043         if (err)
4044                 return err;
4045
4046         return 0;
4047 }
4048
4049 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4050                                     u32 peer_sid,
4051                                     struct common_audit_data *ad)
4052 {
4053         int err;
4054         u32 if_sid;
4055         u32 node_sid;
4056
4057         err = sel_netif_sid(ifindex, &if_sid);
4058         if (err)
4059                 return err;
4060         err = avc_has_perm(peer_sid, if_sid,
4061                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4062         if (err)
4063                 return err;
4064
4065         err = sel_netnode_sid(addrp, family, &node_sid);
4066         if (err)
4067                 return err;
4068         return avc_has_perm(peer_sid, node_sid,
4069                             SECCLASS_NODE, NODE__RECVFROM, ad);
4070 }
4071
4072 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4073                                        u16 family)
4074 {
4075         int err = 0;
4076         struct sk_security_struct *sksec = sk->sk_security;
4077         u32 peer_sid;
4078         u32 sk_sid = sksec->sid;
4079         struct common_audit_data ad;
4080         char *addrp;
4081
4082         COMMON_AUDIT_DATA_INIT(&ad, NET);
4083         ad.u.net.netif = skb->iif;
4084         ad.u.net.family = family;
4085         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4086         if (err)
4087                 return err;
4088
4089         if (selinux_secmark_enabled()) {
4090                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4091                                    PACKET__RECV, &ad);
4092                 if (err)
4093                         return err;
4094         }
4095
4096         if (selinux_policycap_netpeer) {
4097                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4098                 if (err)
4099                         return err;
4100                 err = avc_has_perm(sk_sid, peer_sid,
4101                                    SECCLASS_PEER, PEER__RECV, &ad);
4102                 if (err)
4103                         selinux_netlbl_err(skb, err, 0);
4104         } else {
4105                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4106                 if (err)
4107                         return err;
4108                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4109         }
4110
4111         return err;
4112 }
4113
4114 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4115 {
4116         int err;
4117         struct sk_security_struct *sksec = sk->sk_security;
4118         u16 family = sk->sk_family;
4119         u32 sk_sid = sksec->sid;
4120         struct common_audit_data ad;
4121         char *addrp;
4122         u8 secmark_active;
4123         u8 peerlbl_active;
4124
4125         if (family != PF_INET && family != PF_INET6)
4126                 return 0;
4127
4128         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4129         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4130                 family = PF_INET;
4131
4132         /* If any sort of compatibility mode is enabled then handoff processing
4133          * to the selinux_sock_rcv_skb_compat() function to deal with the
4134          * special handling.  We do this in an attempt to keep this function
4135          * as fast and as clean as possible. */
4136         if (!selinux_policycap_netpeer)
4137                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4138
4139         secmark_active = selinux_secmark_enabled();
4140         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4141         if (!secmark_active && !peerlbl_active)
4142                 return 0;
4143
4144         COMMON_AUDIT_DATA_INIT(&ad, NET);
4145         ad.u.net.netif = skb->iif;
4146         ad.u.net.family = family;
4147         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4148         if (err)
4149                 return err;
4150
4151         if (peerlbl_active) {
4152                 u32 peer_sid;
4153
4154                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4155                 if (err)
4156                         return err;
4157                 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4158                                                peer_sid, &ad);
4159                 if (err) {
4160                         selinux_netlbl_err(skb, err, 0);
4161                         return err;
4162                 }
4163                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4164                                    PEER__RECV, &ad);
4165                 if (err)
4166                         selinux_netlbl_err(skb, err, 0);
4167         }
4168
4169         if (secmark_active) {
4170                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4171                                    PACKET__RECV, &ad);
4172                 if (err)
4173                         return err;
4174         }
4175
4176         return err;
4177 }
4178
4179 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4180                                             int __user *optlen, unsigned len)
4181 {
4182         int err = 0;
4183         char *scontext;
4184         u32 scontext_len;
4185         struct sk_security_struct *ssec;
4186         struct inode_security_struct *isec;
4187         u32 peer_sid = SECSID_NULL;
4188
4189         isec = SOCK_INODE(sock)->i_security;
4190
4191         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4192             isec->sclass == SECCLASS_TCP_SOCKET) {
4193                 ssec = sock->sk->sk_security;
4194                 peer_sid = ssec->peer_sid;
4195         }
4196         if (peer_sid == SECSID_NULL) {
4197                 err = -ENOPROTOOPT;
4198                 goto out;
4199         }
4200
4201         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4202
4203         if (err)
4204                 goto out;
4205
4206         if (scontext_len > len) {
4207                 err = -ERANGE;
4208                 goto out_len;
4209         }
4210
4211         if (copy_to_user(optval, scontext, scontext_len))
4212                 err = -EFAULT;
4213
4214 out_len:
4215         if (put_user(scontext_len, optlen))
4216                 err = -EFAULT;
4217
4218         kfree(scontext);
4219 out:
4220         return err;
4221 }
4222
4223 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4224 {
4225         u32 peer_secid = SECSID_NULL;
4226         u16 family;
4227
4228         if (skb && skb->protocol == htons(ETH_P_IP))
4229                 family = PF_INET;
4230         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4231                 family = PF_INET6;
4232         else if (sock)
4233                 family = sock->sk->sk_family;
4234         else
4235                 goto out;
4236
4237         if (sock && family == PF_UNIX)
4238                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4239         else if (skb)
4240                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4241
4242 out:
4243         *secid = peer_secid;
4244         if (peer_secid == SECSID_NULL)
4245                 return -EINVAL;
4246         return 0;
4247 }
4248
4249 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4250 {
4251         return sk_alloc_security(sk, family, priority);
4252 }
4253
4254 static void selinux_sk_free_security(struct sock *sk)
4255 {
4256         sk_free_security(sk);
4257 }
4258
4259 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4260 {
4261         struct sk_security_struct *ssec = sk->sk_security;
4262         struct sk_security_struct *newssec = newsk->sk_security;
4263
4264         newssec->sid = ssec->sid;
4265         newssec->peer_sid = ssec->peer_sid;
4266         newssec->sclass = ssec->sclass;
4267
4268         selinux_netlbl_sk_security_reset(newssec);
4269 }
4270
4271 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4272 {
4273         if (!sk)
4274                 *secid = SECINITSID_ANY_SOCKET;
4275         else {
4276                 struct sk_security_struct *sksec = sk->sk_security;
4277
4278                 *secid = sksec->sid;
4279         }
4280 }
4281
4282 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4283 {
4284         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4285         struct sk_security_struct *sksec = sk->sk_security;
4286
4287         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4288             sk->sk_family == PF_UNIX)
4289                 isec->sid = sksec->sid;
4290         sksec->sclass = isec->sclass;
4291 }
4292
4293 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4294                                      struct request_sock *req)
4295 {
4296         struct sk_security_struct *sksec = sk->sk_security;
4297         int err;
4298         u16 family = sk->sk_family;
4299         u32 newsid;
4300         u32 peersid;
4301
4302         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4303         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4304                 family = PF_INET;
4305
4306         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4307         if (err)
4308                 return err;
4309         if (peersid == SECSID_NULL) {
4310                 req->secid = sksec->sid;
4311                 req->peer_secid = SECSID_NULL;
4312         } else {
4313                 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4314                 if (err)
4315                         return err;
4316                 req->secid = newsid;
4317                 req->peer_secid = peersid;
4318         }
4319
4320         return selinux_netlbl_inet_conn_request(req, family);
4321 }
4322
4323 static void selinux_inet_csk_clone(struct sock *newsk,
4324                                    const struct request_sock *req)
4325 {
4326         struct sk_security_struct *newsksec = newsk->sk_security;
4327
4328         newsksec->sid = req->secid;
4329         newsksec->peer_sid = req->peer_secid;
4330         /* NOTE: Ideally, we should also get the isec->sid for the
4331            new socket in sync, but we don't have the isec available yet.
4332            So we will wait until sock_graft to do it, by which
4333            time it will have been created and available. */
4334
4335         /* We don't need to take any sort of lock here as we are the only
4336          * thread with access to newsksec */
4337         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4338 }
4339
4340 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4341 {
4342         u16 family = sk->sk_family;
4343         struct sk_security_struct *sksec = sk->sk_security;
4344
4345         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4346         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4347                 family = PF_INET;
4348
4349         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4350 }
4351
4352 static void selinux_req_classify_flow(const struct request_sock *req,
4353                                       struct flowi *fl)
4354 {
4355         fl->secid = req->secid;
4356 }
4357
4358 static int selinux_tun_dev_create(void)
4359 {
4360         u32 sid = current_sid();
4361
4362         /* we aren't taking into account the "sockcreate" SID since the socket
4363          * that is being created here is not a socket in the traditional sense,
4364          * instead it is a private sock, accessible only to the kernel, and
4365          * representing a wide range of network traffic spanning multiple
4366          * connections unlike traditional sockets - check the TUN driver to
4367          * get a better understanding of why this socket is special */
4368
4369         return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4370                             NULL);
4371 }
4372
4373 static void selinux_tun_dev_post_create(struct sock *sk)
4374 {
4375         struct sk_security_struct *sksec = sk->sk_security;
4376
4377         /* we don't currently perform any NetLabel based labeling here and it
4378          * isn't clear that we would want to do so anyway; while we could apply
4379          * labeling without the support of the TUN user the resulting labeled
4380          * traffic from the other end of the connection would almost certainly
4381          * cause confusion to the TUN user that had no idea network labeling
4382          * protocols were being used */
4383
4384         /* see the comments in selinux_tun_dev_create() about why we don't use
4385          * the sockcreate SID here */
4386
4387         sksec->sid = current_sid();
4388         sksec->sclass = SECCLASS_TUN_SOCKET;
4389 }
4390
4391 static int selinux_tun_dev_attach(struct sock *sk)
4392 {
4393         struct sk_security_struct *sksec = sk->sk_security;
4394         u32 sid = current_sid();
4395         int err;
4396
4397         err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4398                            TUN_SOCKET__RELABELFROM, NULL);
4399         if (err)
4400                 return err;
4401         err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4402                            TUN_SOCKET__RELABELTO, NULL);
4403         if (err)
4404                 return err;
4405
4406         sksec->sid = sid;
4407
4408         return 0;
4409 }
4410
4411 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4412 {
4413         int err = 0;
4414         u32 perm;
4415         struct nlmsghdr *nlh;
4416         struct socket *sock = sk->sk_socket;
4417         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4418
4419         if (skb->len < NLMSG_SPACE(0)) {
4420                 err = -EINVAL;
4421                 goto out;
4422         }
4423         nlh = nlmsg_hdr(skb);
4424
4425         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4426         if (err) {
4427                 if (err == -EINVAL) {
4428                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4429                                   "SELinux:  unrecognized netlink message"
4430                                   " type=%hu for sclass=%hu\n",
4431                                   nlh->nlmsg_type, isec->sclass);
4432                         if (!selinux_enforcing || security_get_allow_unknown())
4433                                 err = 0;
4434                 }
4435
4436                 /* Ignore */
4437                 if (err == -ENOENT)
4438                         err = 0;
4439                 goto out;
4440         }
4441
4442         err = socket_has_perm(current, sock, perm);
4443 out:
4444         return err;
4445 }
4446
4447 #ifdef CONFIG_NETFILTER
4448
4449 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4450                                        u16 family)
4451 {
4452         int err;
4453         char *addrp;
4454         u32 peer_sid;
4455         struct common_audit_data ad;
4456         u8 secmark_active;
4457         u8 netlbl_active;
4458         u8 peerlbl_active;
4459
4460         if (!selinux_policycap_netpeer)
4461                 return NF_ACCEPT;
4462
4463         secmark_active = selinux_secmark_enabled();
4464         netlbl_active = netlbl_enabled();
4465         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4466         if (!secmark_active && !peerlbl_active)
4467                 return NF_ACCEPT;
4468
4469         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4470                 return NF_DROP;
4471
4472         COMMON_AUDIT_DATA_INIT(&ad, NET);
4473         ad.u.net.netif = ifindex;
4474         ad.u.net.family = family;
4475         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4476                 return NF_DROP;
4477
4478         if (peerlbl_active) {
4479                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4480                                                peer_sid, &ad);
4481                 if (err) {
4482                         selinux_netlbl_err(skb, err, 1);
4483                         return NF_DROP;
4484                 }
4485         }
4486
4487         if (secmark_active)
4488                 if (avc_has_perm(peer_sid, skb->secmark,
4489                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4490                         return NF_DROP;
4491
4492         if (netlbl_active)
4493                 /* we do this in the FORWARD path and not the POST_ROUTING
4494                  * path because we want to make sure we apply the necessary
4495                  * labeling before IPsec is applied so we can leverage AH
4496                  * protection */
4497                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4498                         return NF_DROP;
4499
4500         return NF_ACCEPT;
4501 }
4502
4503 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4504                                          struct sk_buff *skb,
4505                                          const struct net_device *in,
4506                                          const struct net_device *out,
4507                                          int (*okfn)(struct sk_buff *))
4508 {
4509         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4510 }
4511
4512 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4513 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4514                                          struct sk_buff *skb,
4515                                          const struct net_device *in,
4516                                          const struct net_device *out,
4517                                          int (*okfn)(struct sk_buff *))
4518 {
4519         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4520 }
4521 #endif  /* IPV6 */
4522
4523 static unsigned int selinux_ip_output(struct sk_buff *skb,
4524                                       u16 family)
4525 {
4526         u32 sid;
4527
4528         if (!netlbl_enabled())
4529                 return NF_ACCEPT;
4530
4531         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4532          * because we want to make sure we apply the necessary labeling
4533          * before IPsec is applied so we can leverage AH protection */
4534         if (skb->sk) {
4535                 struct sk_security_struct *sksec = skb->sk->sk_security;
4536                 sid = sksec->sid;
4537         } else
4538                 sid = SECINITSID_KERNEL;
4539         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4540                 return NF_DROP;
4541
4542         return NF_ACCEPT;
4543 }
4544
4545 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4546                                         struct sk_buff *skb,
4547                                         const struct net_device *in,
4548                                         const struct net_device *out,
4549                                         int (*okfn)(struct sk_buff *))
4550 {
4551         return selinux_ip_output(skb, PF_INET);
4552 }
4553
4554 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4555                                                 int ifindex,
4556                                                 u16 family)
4557 {
4558         struct sock *sk = skb->sk;
4559         struct sk_security_struct *sksec;
4560         struct common_audit_data ad;
4561         char *addrp;
4562         u8 proto;
4563
4564         if (sk == NULL)
4565                 return NF_ACCEPT;
4566         sksec = sk->sk_security;
4567
4568         COMMON_AUDIT_DATA_INIT(&ad, NET);
4569         ad.u.net.netif = ifindex;
4570         ad.u.net.family = family;
4571         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4572                 return NF_DROP;
4573
4574         if (selinux_secmark_enabled())
4575                 if (avc_has_perm(sksec->sid, skb->secmark,
4576                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4577                         return NF_DROP;
4578
4579         if (selinux_policycap_netpeer)
4580                 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4581                         return NF_DROP;
4582
4583         return NF_ACCEPT;
4584 }
4585
4586 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4587                                          u16 family)
4588 {
4589         u32 secmark_perm;
4590         u32 peer_sid;
4591         struct sock *sk;
4592         struct common_audit_data ad;
4593         char *addrp;
4594         u8 secmark_active;
4595         u8 peerlbl_active;
4596
4597         /* If any sort of compatibility mode is enabled then handoff processing
4598          * to the selinux_ip_postroute_compat() function to deal with the
4599          * special handling.  We do this in an attempt to keep this function
4600          * as fast and as clean as possible. */
4601         if (!selinux_policycap_netpeer)
4602                 return selinux_ip_postroute_compat(skb, ifindex, family);
4603 #ifdef CONFIG_XFRM
4604         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4605          * packet transformation so allow the packet to pass without any checks
4606          * since we'll have another chance to perform access control checks
4607          * when the packet is on it's final way out.
4608          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4609          *       is NULL, in this case go ahead and apply access control. */
4610         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4611                 return NF_ACCEPT;
4612 #endif
4613         secmark_active = selinux_secmark_enabled();
4614         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4615         if (!secmark_active && !peerlbl_active)
4616                 return NF_ACCEPT;
4617
4618         /* if the packet is being forwarded then get the peer label from the
4619          * packet itself; otherwise check to see if it is from a local
4620          * application or the kernel, if from an application get the peer label
4621          * from the sending socket, otherwise use the kernel's sid */
4622         sk = skb->sk;
4623         if (sk == NULL) {
4624                 switch (family) {
4625                 case PF_INET:
4626                         if (IPCB(skb)->flags & IPSKB_FORWARDED)
4627                                 secmark_perm = PACKET__FORWARD_OUT;
4628                         else
4629                                 secmark_perm = PACKET__SEND;
4630                         break;
4631                 case PF_INET6:
4632                         if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4633                                 secmark_perm = PACKET__FORWARD_OUT;
4634                         else
4635                                 secmark_perm = PACKET__SEND;
4636                         break;
4637                 default:
4638                         return NF_DROP;
4639                 }
4640                 if (secmark_perm == PACKET__FORWARD_OUT) {
4641                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4642                                 return NF_DROP;
4643                 } else
4644                         peer_sid = SECINITSID_KERNEL;
4645         } else {
4646                 struct sk_security_struct *sksec = sk->sk_security;
4647                 peer_sid = sksec->sid;
4648                 secmark_perm = PACKET__SEND;
4649         }
4650
4651         COMMON_AUDIT_DATA_INIT(&ad, NET);
4652         ad.u.net.netif = ifindex;
4653         ad.u.net.family = family;
4654         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4655                 return NF_DROP;
4656
4657         if (secmark_active)
4658                 if (avc_has_perm(peer_sid, skb->secmark,
4659                                  SECCLASS_PACKET, secmark_perm, &ad))
4660                         return NF_DROP;
4661
4662         if (peerlbl_active) {
4663                 u32 if_sid;
4664                 u32 node_sid;
4665
4666                 if (sel_netif_sid(ifindex, &if_sid))
4667                         return NF_DROP;
4668                 if (avc_has_perm(peer_sid, if_sid,
4669                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4670                         return NF_DROP;
4671
4672                 if (sel_netnode_sid(addrp, family, &node_sid))
4673                         return NF_DROP;
4674                 if (avc_has_perm(peer_sid, node_sid,
4675                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4676                         return NF_DROP;
4677         }
4678
4679         return NF_ACCEPT;
4680 }
4681
4682 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4683                                            struct sk_buff *skb,
4684                                            const struct net_device *in,
4685                                            const struct net_device *out,
4686                                            int (*okfn)(struct sk_buff *))
4687 {
4688         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4689 }
4690
4691 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4692 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4693                                            struct sk_buff *skb,
4694                                            const struct net_device *in,
4695                                            const struct net_device *out,
4696                                            int (*okfn)(struct sk_buff *))
4697 {
4698         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4699 }
4700 #endif  /* IPV6 */
4701
4702 #endif  /* CONFIG_NETFILTER */
4703
4704 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4705 {
4706         int err;
4707
4708         err = cap_netlink_send(sk, skb);
4709         if (err)
4710                 return err;
4711
4712         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4713                 err = selinux_nlmsg_perm(sk, skb);
4714
4715         return err;
4716 }
4717
4718 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4719 {
4720         int err;
4721         struct common_audit_data ad;
4722
4723         err = cap_netlink_recv(skb, capability);
4724         if (err)
4725                 return err;
4726
4727         COMMON_AUDIT_DATA_INIT(&ad, CAP);
4728         ad.u.cap = capability;
4729
4730         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4731                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4732 }
4733
4734 static int ipc_alloc_security(struct task_struct *task,
4735                               struct kern_ipc_perm *perm,
4736                               u16 sclass)
4737 {
4738         struct ipc_security_struct *isec;
4739         u32 sid;
4740
4741         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4742         if (!isec)
4743                 return -ENOMEM;
4744
4745         sid = task_sid(task);
4746         isec->sclass = sclass;
4747         isec->sid = sid;
4748         perm->security = isec;
4749
4750         return 0;
4751 }
4752
4753 static void ipc_free_security(struct kern_ipc_perm *perm)
4754 {
4755         struct ipc_security_struct *isec = perm->security;
4756         perm->security = NULL;
4757         kfree(isec);
4758 }
4759
4760 static int msg_msg_alloc_security(struct msg_msg *msg)
4761 {
4762         struct msg_security_struct *msec;
4763
4764         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4765         if (!msec)
4766                 return -ENOMEM;
4767
4768         msec->sid = SECINITSID_UNLABELED;
4769         msg->security = msec;
4770
4771         return 0;
4772 }
4773
4774 static void msg_msg_free_security(struct msg_msg *msg)
4775 {
4776         struct msg_security_struct *msec = msg->security;
4777
4778         msg->security = NULL;
4779         kfree(msec);
4780 }
4781
4782 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4783                         u32 perms)
4784 {
4785         struct ipc_security_struct *isec;
4786         struct common_audit_data ad;
4787         u32 sid = current_sid();
4788
4789         isec = ipc_perms->security;
4790
4791         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4792         ad.u.ipc_id = ipc_perms->key;
4793
4794         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4795 }
4796
4797 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4798 {
4799         return msg_msg_alloc_security(msg);
4800 }
4801
4802 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4803 {
4804         msg_msg_free_security(msg);
4805 }
4806
4807 /* message queue security operations */
4808 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4809 {
4810         struct ipc_security_struct *isec;
4811         struct common_audit_data ad;
4812         u32 sid = current_sid();
4813         int rc;
4814
4815         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4816         if (rc)
4817                 return rc;
4818
4819         isec = msq->q_perm.security;
4820
4821         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4822         ad.u.ipc_id = msq->q_perm.key;
4823
4824         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4825                           MSGQ__CREATE, &ad);
4826         if (rc) {
4827                 ipc_free_security(&msq->q_perm);
4828                 return rc;
4829         }
4830         return 0;
4831 }
4832
4833 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4834 {
4835         ipc_free_security(&msq->q_perm);
4836 }
4837
4838 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4839 {
4840         struct ipc_security_struct *isec;
4841         struct common_audit_data ad;
4842         u32 sid = current_sid();
4843
4844         isec = msq->q_perm.security;
4845
4846         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4847         ad.u.ipc_id = msq->q_perm.key;
4848
4849         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4850                             MSGQ__ASSOCIATE, &ad);
4851 }
4852
4853 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4854 {
4855         int err;
4856         int perms;
4857
4858         switch (cmd) {
4859         case IPC_INFO:
4860         case MSG_INFO:
4861                 /* No specific object, just general system-wide information. */
4862                 return task_has_system(current, SYSTEM__IPC_INFO);
4863         case IPC_STAT:
4864         case MSG_STAT:
4865                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4866                 break;
4867         case IPC_SET:
4868                 perms = MSGQ__SETATTR;
4869                 break;
4870         case IPC_RMID:
4871                 perms = MSGQ__DESTROY;
4872                 break;
4873         default:
4874                 return 0;
4875         }
4876
4877         err = ipc_has_perm(&msq->q_perm, perms);
4878         return err;
4879 }
4880
4881 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4882 {
4883         struct ipc_security_struct *isec;
4884         struct msg_security_struct *msec;
4885         struct common_audit_data ad;
4886         u32 sid = current_sid();
4887         int rc;
4888
4889         isec = msq->q_perm.security;
4890         msec = msg->security;
4891
4892         /*
4893          * First time through, need to assign label to the message
4894          */
4895         if (msec->sid == SECINITSID_UNLABELED) {
4896                 /*
4897                  * Compute new sid based on current process and
4898                  * message queue this message will be stored in
4899                  */
4900                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4901                                              &msec->sid);
4902                 if (rc)
4903                         return rc;
4904         }
4905
4906         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4907         ad.u.ipc_id = msq->q_perm.key;
4908
4909         /* Can this process write to the queue? */
4910         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4911                           MSGQ__WRITE, &ad);
4912         if (!rc)
4913                 /* Can this process send the message */
4914                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4915                                   MSG__SEND, &ad);
4916         if (!rc)
4917                 /* Can the message be put in the queue? */
4918                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4919                                   MSGQ__ENQUEUE, &ad);
4920
4921         return rc;
4922 }
4923
4924 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4925                                     struct task_struct *target,
4926                                     long type, int mode)
4927 {
4928         struct ipc_security_struct *isec;
4929         struct msg_security_struct *msec;
4930         struct common_audit_data ad;
4931         u32 sid = task_sid(target);
4932         int rc;
4933
4934         isec = msq->q_perm.security;
4935         msec = msg->security;
4936
4937         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4938         ad.u.ipc_id = msq->q_perm.key;
4939
4940         rc = avc_has_perm(sid, isec->sid,
4941                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4942         if (!rc)
4943                 rc = avc_has_perm(sid, msec->sid,
4944                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4945         return rc;
4946 }
4947
4948 /* Shared Memory security operations */
4949 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4950 {
4951         struct ipc_security_struct *isec;
4952         struct common_audit_data ad;
4953         u32 sid = current_sid();
4954         int rc;
4955
4956         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4957         if (rc)
4958                 return rc;
4959
4960         isec = shp->shm_perm.security;
4961
4962         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4963         ad.u.ipc_id = shp->shm_perm.key;
4964
4965         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4966                           SHM__CREATE, &ad);
4967         if (rc) {
4968                 ipc_free_security(&shp->shm_perm);
4969                 return rc;
4970         }
4971         return 0;
4972 }
4973
4974 static void selinux_shm_free_security(struct shmid_kernel *shp)
4975 {
4976         ipc_free_security(&shp->shm_perm);
4977 }
4978
4979 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4980 {
4981         struct ipc_security_struct *isec;
4982         struct common_audit_data ad;
4983         u32 sid = current_sid();
4984
4985         isec = shp->shm_perm.security;
4986
4987         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4988         ad.u.ipc_id = shp->shm_perm.key;
4989
4990         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4991                             SHM__ASSOCIATE, &ad);
4992 }
4993
4994 /* Note, at this point, shp is locked down */
4995 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4996 {
4997         int perms;
4998         int err;
4999
5000         switch (cmd) {
5001         case IPC_INFO:
5002         case SHM_INFO:
5003                 /* No specific object, just general system-wide information. */
5004                 return task_has_system(current, SYSTEM__IPC_INFO);
5005         case IPC_STAT:
5006         case SHM_STAT:
5007                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5008                 break;
5009         case IPC_SET:
5010                 perms = SHM__SETATTR;
5011                 break;
5012         case SHM_LOCK:
5013         case SHM_UNLOCK:
5014                 perms = SHM__LOCK;
5015                 break;
5016         case IPC_RMID:
5017                 perms = SHM__DESTROY;
5018                 break;
5019         default:
5020                 return 0;
5021         }
5022
5023         err = ipc_has_perm(&shp->shm_perm, perms);
5024         return err;
5025 }
5026
5027 static int selinux_shm_shmat(struct shmid_kernel *shp,
5028                              char __user *shmaddr, int shmflg)
5029 {
5030         u32 perms;
5031
5032         if (shmflg & SHM_RDONLY)
5033                 perms = SHM__READ;
5034         else
5035                 perms = SHM__READ | SHM__WRITE;
5036
5037         return ipc_has_perm(&shp->shm_perm, perms);
5038 }
5039
5040 /* Semaphore security operations */
5041 static int selinux_sem_alloc_security(struct sem_array *sma)
5042 {
5043         struct ipc_security_struct *isec;
5044         struct common_audit_data ad;
5045         u32 sid = current_sid();
5046         int rc;
5047
5048         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5049         if (rc)
5050                 return rc;
5051
5052         isec = sma->sem_perm.security;
5053
5054         COMMON_AUDIT_DATA_INIT(&ad, IPC);
5055         ad.u.ipc_id = sma->sem_perm.key;
5056
5057         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5058                           SEM__CREATE, &ad);
5059         if (rc) {
5060                 ipc_free_security(&sma->sem_perm);
5061                 return rc;
5062         }
5063         return 0;
5064 }
5065
5066 static void selinux_sem_free_security(struct sem_array *sma)
5067 {
5068         ipc_free_security(&sma->sem_perm);
5069 }
5070
5071 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5072 {
5073         struct ipc_security_struct *isec;
5074         struct common_audit_data ad;
5075         u32 sid = current_sid();
5076
5077         isec = sma->sem_perm.security;
5078
5079         COMMON_AUDIT_DATA_INIT(&ad, IPC);
5080         ad.u.ipc_id = sma->sem_perm.key;
5081
5082         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5083                             SEM__ASSOCIATE, &ad);
5084 }
5085
5086 /* Note, at this point, sma is locked down */
5087 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5088 {
5089         int err;
5090         u32 perms;
5091
5092         switch (cmd) {
5093         case IPC_INFO:
5094         case SEM_INFO:
5095                 /* No specific object, just general system-wide information. */
5096                 return task_has_system(current, SYSTEM__IPC_INFO);
5097         case GETPID:
5098         case GETNCNT:
5099         case GETZCNT:
5100                 perms = SEM__GETATTR;
5101                 break;
5102         case GETVAL:
5103         case GETALL:
5104                 perms = SEM__READ;
5105                 break;
5106         case SETVAL:
5107         case SETALL:
5108                 perms = SEM__WRITE;
5109                 break;
5110         case IPC_RMID:
5111                 perms = SEM__DESTROY;
5112                 break;
5113         case IPC_SET:
5114                 perms = SEM__SETATTR;
5115                 break;
5116         case IPC_STAT:
5117         case SEM_STAT:
5118                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5119                 break;
5120         default:
5121                 return 0;
5122         }
5123
5124         err = ipc_has_perm(&sma->sem_perm, perms);
5125         return err;
5126 }
5127
5128 static int selinux_sem_semop(struct sem_array *sma,
5129                              struct sembuf *sops, unsigned nsops, int alter)
5130 {
5131         u32 perms;
5132
5133         if (alter)
5134                 perms = SEM__READ | SEM__WRITE;
5135         else
5136                 perms = SEM__READ;
5137
5138         return ipc_has_perm(&sma->sem_perm, perms);
5139 }
5140
5141 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5142 {
5143         u32 av = 0;
5144
5145         av = 0;
5146         if (flag & S_IRUGO)
5147                 av |= IPC__UNIX_READ;
5148         if (flag & S_IWUGO)
5149                 av |= IPC__UNIX_WRITE;
5150
5151         if (av == 0)
5152                 return 0;
5153
5154         return ipc_has_perm(ipcp, av);
5155 }
5156
5157 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5158 {
5159         struct ipc_security_struct *isec = ipcp->security;
5160         *secid = isec->sid;
5161 }
5162
5163 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5164 {
5165         if (inode)
5166                 inode_doinit_with_dentry(inode, dentry);
5167 }
5168
5169 static int selinux_getprocattr(struct task_struct *p,
5170                                char *name, char **value)
5171 {
5172         const struct task_security_struct *__tsec;
5173         u32 sid;
5174         int error;
5175         unsigned len;
5176
5177         if (current != p) {
5178                 error = current_has_perm(p, PROCESS__GETATTR);
5179                 if (error)
5180                         return error;
5181         }
5182
5183         rcu_read_lock();
5184         __tsec = __task_cred(p)->security;
5185
5186         if (!strcmp(name, "current"))
5187                 sid = __tsec->sid;
5188         else if (!strcmp(name, "prev"))
5189                 sid = __tsec->osid;
5190         else if (!strcmp(name, "exec"))
5191                 sid = __tsec->exec_sid;
5192         else if (!strcmp(name, "fscreate"))
5193                 sid = __tsec->create_sid;
5194         else if (!strcmp(name, "keycreate"))
5195                 sid = __tsec->keycreate_sid;
5196         else if (!strcmp(name, "sockcreate"))
5197                 sid = __tsec->sockcreate_sid;
5198         else
5199                 goto invalid;
5200         rcu_read_unlock();
5201
5202         if (!sid)
5203                 return 0;
5204
5205         error = security_sid_to_context(sid, value, &len);
5206         if (error)
5207                 return error;
5208         return len;
5209
5210 invalid:
5211         rcu_read_unlock();
5212         return -EINVAL;
5213 }
5214
5215 static int selinux_setprocattr(struct task_struct *p,
5216                                char *name, void *value, size_t size)
5217 {
5218         struct task_security_struct *tsec;
5219         struct task_struct *tracer;
5220         struct cred *new;
5221         u32 sid = 0, ptsid;
5222         int error;
5223         char *str = value;
5224
5225         if (current != p) {
5226                 /* SELinux only allows a process to change its own
5227                    security attributes. */
5228                 return -EACCES;
5229         }
5230
5231         /*
5232          * Basic control over ability to set these attributes at all.
5233          * current == p, but we'll pass them separately in case the
5234          * above restriction is ever removed.
5235          */
5236         if (!strcmp(name, "exec"))
5237                 error = current_has_perm(p, PROCESS__SETEXEC);
5238         else if (!strcmp(name, "fscreate"))
5239                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5240         else if (!strcmp(name, "keycreate"))
5241                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5242         else if (!strcmp(name, "sockcreate"))
5243                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5244         else if (!strcmp(name, "current"))
5245                 error = current_has_perm(p, PROCESS__SETCURRENT);
5246         else
5247                 error = -EINVAL;
5248         if (error)
5249                 return error;
5250
5251         /* Obtain a SID for the context, if one was specified. */
5252         if (size && str[1] && str[1] != '\n') {
5253                 if (str[size-1] == '\n') {
5254                         str[size-1] = 0;
5255                         size--;
5256                 }
5257                 error = security_context_to_sid(value, size, &sid);
5258                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5259                         if (!capable(CAP_MAC_ADMIN))
5260                                 return error;
5261                         error = security_context_to_sid_force(value, size,
5262                                                               &sid);
5263                 }
5264                 if (error)
5265                         return error;
5266         }
5267
5268         new = prepare_creds();
5269         if (!new)
5270                 return -ENOMEM;
5271
5272         /* Permission checking based on the specified context is
5273            performed during the actual operation (execve,
5274            open/mkdir/...), when we know the full context of the
5275            operation.  See selinux_bprm_set_creds for the execve
5276            checks and may_create for the file creation checks. The
5277            operation will then fail if the context is not permitted. */
5278         tsec = new->security;
5279         if (!strcmp(name, "exec")) {
5280                 tsec->exec_sid = sid;
5281         } else if (!strcmp(name, "fscreate")) {
5282                 tsec->create_sid = sid;
5283         } else if (!strcmp(name, "keycreate")) {
5284                 error = may_create_key(sid, p);
5285                 if (error)
5286                         goto abort_change;
5287                 tsec->keycreate_sid = sid;
5288         } else if (!strcmp(name, "sockcreate")) {
5289                 tsec->sockcreate_sid = sid;
5290         } else if (!strcmp(name, "current")) {
5291                 error = -EINVAL;
5292                 if (sid == 0)
5293                         goto abort_change;
5294
5295                 /* Only allow single threaded processes to change context */
5296                 error = -EPERM;
5297                 if (!current_is_single_threaded()) {
5298                         error = security_bounded_transition(tsec->sid, sid);
5299                         if (error)
5300                                 goto abort_change;
5301                 }
5302
5303                 /* Check permissions for the transition. */
5304                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5305                                      PROCESS__DYNTRANSITION, NULL);
5306                 if (error)
5307                         goto abort_change;
5308
5309                 /* Check for ptracing, and update the task SID if ok.
5310                    Otherwise, leave SID unchanged and fail. */
5311                 ptsid = 0;
5312                 task_lock(p);
5313                 tracer = tracehook_tracer_task(p);
5314                 if (tracer)
5315                         ptsid = task_sid(tracer);
5316                 task_unlock(p);
5317
5318                 if (tracer) {
5319                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5320                                              PROCESS__PTRACE, NULL);
5321                         if (error)
5322                                 goto abort_change;
5323                 }
5324
5325                 tsec->sid = sid;
5326         } else {
5327                 error = -EINVAL;
5328                 goto abort_change;
5329         }
5330
5331         commit_creds(new);
5332         return size;
5333
5334 abort_change:
5335         abort_creds(new);
5336         return error;
5337 }
5338
5339 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5340 {
5341         return security_sid_to_context(secid, secdata, seclen);
5342 }
5343
5344 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5345 {
5346         return security_context_to_sid(secdata, seclen, secid);
5347 }
5348
5349 static void selinux_release_secctx(char *secdata, u32 seclen)
5350 {
5351         kfree(secdata);
5352 }
5353
5354 #ifdef CONFIG_KEYS
5355
5356 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5357                              unsigned long flags)
5358 {
5359         const struct task_security_struct *tsec;
5360         struct key_security_struct *ksec;
5361
5362         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5363         if (!ksec)
5364                 return -ENOMEM;
5365
5366         tsec = cred->security;
5367         if (tsec->keycreate_sid)
5368                 ksec->sid = tsec->keycreate_sid;
5369         else
5370                 ksec->sid = tsec->sid;
5371
5372         k->security = ksec;
5373         return 0;
5374 }
5375
5376 static void selinux_key_free(struct key *k)
5377 {
5378         struct key_security_struct *ksec = k->security;
5379
5380         k->security = NULL;
5381         kfree(ksec);
5382 }
5383
5384 static int selinux_key_permission(key_ref_t key_ref,
5385                                   const struct cred *cred,
5386                                   key_perm_t perm)
5387 {
5388         struct key *key;
5389         struct key_security_struct *ksec;
5390         u32 sid;
5391
5392         /* if no specific permissions are requested, we skip the
5393            permission check. No serious, additional covert channels
5394            appear to be created. */
5395         if (perm == 0)
5396                 return 0;
5397
5398         sid = cred_sid(cred);
5399
5400         key = key_ref_to_ptr(key_ref);
5401         ksec = key->security;
5402
5403         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5404 }
5405
5406 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5407 {
5408         struct key_security_struct *ksec = key->security;
5409         char *context = NULL;
5410         unsigned len;
5411         int rc;
5412
5413         rc = security_sid_to_context(ksec->sid, &context, &len);
5414         if (!rc)
5415                 rc = len;
5416         *_buffer = context;
5417         return rc;
5418 }
5419
5420 #endif
5421
5422 static struct security_operations selinux_ops = {
5423         .name =                         "selinux",
5424
5425         .ptrace_access_check =          selinux_ptrace_access_check,
5426         .ptrace_traceme =               selinux_ptrace_traceme,
5427         .capget =                       selinux_capget,
5428         .capset =                       selinux_capset,
5429         .sysctl =                       selinux_sysctl,
5430         .capable =                      selinux_capable,
5431         .quotactl =                     selinux_quotactl,
5432         .quota_on =                     selinux_quota_on,
5433         .syslog =                       selinux_syslog,
5434         .vm_enough_memory =             selinux_vm_enough_memory,
5435
5436         .netlink_send =                 selinux_netlink_send,
5437         .netlink_recv =                 selinux_netlink_recv,
5438
5439         .bprm_set_creds =               selinux_bprm_set_creds,
5440         .bprm_committing_creds =        selinux_bprm_committing_creds,
5441         .bprm_committed_creds =         selinux_bprm_committed_creds,
5442         .bprm_secureexec =              selinux_bprm_secureexec,
5443
5444         .sb_alloc_security =            selinux_sb_alloc_security,
5445         .sb_free_security =             selinux_sb_free_security,
5446         .sb_copy_data =                 selinux_sb_copy_data,
5447         .sb_kern_mount =                selinux_sb_kern_mount,
5448         .sb_show_options =              selinux_sb_show_options,
5449         .sb_statfs =                    selinux_sb_statfs,
5450         .sb_mount =                     selinux_mount,
5451         .sb_umount =                    selinux_umount,
5452         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5453         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5454         .sb_parse_opts_str =            selinux_parse_opts_str,
5455
5456
5457         .inode_alloc_security =         selinux_inode_alloc_security,
5458         .inode_free_security =          selinux_inode_free_security,
5459         .inode_init_security =          selinux_inode_init_security,
5460         .inode_create =                 selinux_inode_create,
5461         .inode_link =                   selinux_inode_link,
5462         .inode_unlink =                 selinux_inode_unlink,
5463         .inode_symlink =                selinux_inode_symlink,
5464         .inode_mkdir =                  selinux_inode_mkdir,
5465         .inode_rmdir =                  selinux_inode_rmdir,
5466         .inode_mknod =                  selinux_inode_mknod,
5467         .inode_rename =                 selinux_inode_rename,
5468         .inode_readlink =               selinux_inode_readlink,
5469         .inode_follow_link =            selinux_inode_follow_link,
5470         .inode_permission =             selinux_inode_permission,
5471         .inode_setattr =                selinux_inode_setattr,
5472         .inode_getattr =                selinux_inode_getattr,
5473         .inode_setxattr =               selinux_inode_setxattr,
5474         .inode_post_setxattr =          selinux_inode_post_setxattr,
5475         .inode_getxattr =               selinux_inode_getxattr,
5476         .inode_listxattr =              selinux_inode_listxattr,
5477         .inode_removexattr =            selinux_inode_removexattr,
5478         .inode_getsecurity =            selinux_inode_getsecurity,
5479         .inode_setsecurity =            selinux_inode_setsecurity,
5480         .inode_listsecurity =           selinux_inode_listsecurity,
5481         .inode_getsecid =               selinux_inode_getsecid,
5482
5483         .file_permission =              selinux_file_permission,
5484         .file_alloc_security =          selinux_file_alloc_security,
5485         .file_free_security =           selinux_file_free_security,
5486         .file_ioctl =                   selinux_file_ioctl,
5487         .file_mmap =                    selinux_file_mmap,
5488         .file_mprotect =                selinux_file_mprotect,
5489         .file_lock =                    selinux_file_lock,
5490         .file_fcntl =                   selinux_file_fcntl,
5491         .file_set_fowner =              selinux_file_set_fowner,
5492         .file_send_sigiotask =          selinux_file_send_sigiotask,
5493         .file_receive =                 selinux_file_receive,
5494
5495         .dentry_open =                  selinux_dentry_open,
5496
5497         .task_create =                  selinux_task_create,
5498         .cred_alloc_blank =             selinux_cred_alloc_blank,
5499         .cred_free =                    selinux_cred_free,
5500         .cred_prepare =                 selinux_cred_prepare,
5501         .cred_transfer =                selinux_cred_transfer,
5502         .kernel_act_as =                selinux_kernel_act_as,
5503         .kernel_create_files_as =       selinux_kernel_create_files_as,
5504         .kernel_module_request =        selinux_kernel_module_request,
5505         .task_setpgid =                 selinux_task_setpgid,
5506         .task_getpgid =                 selinux_task_getpgid,
5507         .task_getsid =                  selinux_task_getsid,
5508         .task_getsecid =                selinux_task_getsecid,
5509         .task_setnice =                 selinux_task_setnice,
5510         .task_setioprio =               selinux_task_setioprio,
5511         .task_getioprio =               selinux_task_getioprio,
5512         .task_setrlimit =               selinux_task_setrlimit,
5513         .task_setscheduler =            selinux_task_setscheduler,
5514         .task_getscheduler =            selinux_task_getscheduler,
5515         .task_movememory =              selinux_task_movememory,
5516         .task_kill =                    selinux_task_kill,
5517         .task_wait =                    selinux_task_wait,
5518         .task_to_inode =                selinux_task_to_inode,
5519
5520         .ipc_permission =               selinux_ipc_permission,
5521         .ipc_getsecid =                 selinux_ipc_getsecid,
5522
5523         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5524         .msg_msg_free_security =        selinux_msg_msg_free_security,
5525
5526         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5527         .msg_queue_free_security =      selinux_msg_queue_free_security,
5528         .msg_queue_associate =          selinux_msg_queue_associate,
5529         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5530         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5531         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5532
5533         .shm_alloc_security =           selinux_shm_alloc_security,
5534         .shm_free_security =            selinux_shm_free_security,
5535         .shm_associate =                selinux_shm_associate,
5536         .shm_shmctl =                   selinux_shm_shmctl,
5537         .shm_shmat =                    selinux_shm_shmat,
5538
5539         .sem_alloc_security =           selinux_sem_alloc_security,
5540         .sem_free_security =            selinux_sem_free_security,
5541         .sem_associate =                selinux_sem_associate,
5542         .sem_semctl =                   selinux_sem_semctl,
5543         .sem_semop =                    selinux_sem_semop,
5544
5545         .d_instantiate =                selinux_d_instantiate,
5546
5547         .getprocattr =                  selinux_getprocattr,
5548         .setprocattr =                  selinux_setprocattr,
5549
5550         .secid_to_secctx =              selinux_secid_to_secctx,
5551         .secctx_to_secid =              selinux_secctx_to_secid,
5552         .release_secctx =               selinux_release_secctx,
5553
5554         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5555         .unix_may_send =                selinux_socket_unix_may_send,
5556
5557         .socket_create =                selinux_socket_create,
5558         .socket_post_create =           selinux_socket_post_create,
5559         .socket_bind =                  selinux_socket_bind,
5560         .socket_connect =               selinux_socket_connect,
5561         .socket_listen =                selinux_socket_listen,
5562         .socket_accept =                selinux_socket_accept,
5563         .socket_sendmsg =               selinux_socket_sendmsg,
5564         .socket_recvmsg =               selinux_socket_recvmsg,
5565         .socket_getsockname =           selinux_socket_getsockname,
5566         .socket_getpeername =           selinux_socket_getpeername,
5567         .socket_getsockopt =            selinux_socket_getsockopt,
5568         .socket_setsockopt =            selinux_socket_setsockopt,
5569         .socket_shutdown =              selinux_socket_shutdown,
5570         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5571         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5572         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5573         .sk_alloc_security =            selinux_sk_alloc_security,
5574         .sk_free_security =             selinux_sk_free_security,
5575         .sk_clone_security =            selinux_sk_clone_security,
5576         .sk_getsecid =                  selinux_sk_getsecid,
5577         .sock_graft =                   selinux_sock_graft,
5578         .inet_conn_request =            selinux_inet_conn_request,
5579         .inet_csk_clone =               selinux_inet_csk_clone,
5580         .inet_conn_established =        selinux_inet_conn_established,
5581         .req_classify_flow =            selinux_req_classify_flow,
5582         .tun_dev_create =               selinux_tun_dev_create,
5583         .tun_dev_post_create =          selinux_tun_dev_post_create,
5584         .tun_dev_attach =               selinux_tun_dev_attach,
5585
5586 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5587         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5588         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5589         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5590         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5591         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5592         .xfrm_state_free_security =     selinux_xfrm_state_free,
5593         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5594         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5595         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5596         .xfrm_decode_session =          selinux_xfrm_decode_session,
5597 #endif
5598
5599 #ifdef CONFIG_KEYS
5600         .key_alloc =                    selinux_key_alloc,
5601         .key_free =                     selinux_key_free,
5602         .key_permission =               selinux_key_permission,
5603         .key_getsecurity =              selinux_key_getsecurity,
5604 #endif
5605
5606 #ifdef CONFIG_AUDIT
5607         .audit_rule_init =              selinux_audit_rule_init,
5608         .audit_rule_known =             selinux_audit_rule_known,
5609         .audit_rule_match =             selinux_audit_rule_match,
5610         .audit_rule_free =              selinux_audit_rule_free,
5611 #endif
5612 };
5613
5614 static __init int selinux_init(void)
5615 {
5616         if (!security_module_enable(&selinux_ops)) {
5617                 selinux_enabled = 0;
5618                 return 0;
5619         }
5620
5621         if (!selinux_enabled) {
5622                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5623                 return 0;
5624         }
5625
5626         printk(KERN_INFO "SELinux:  Initializing.\n");
5627
5628         /* Set the security state for the initial task. */
5629         cred_init_security();
5630
5631         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5632                                             sizeof(struct inode_security_struct),
5633                                             0, SLAB_PANIC, NULL);
5634         avc_init();
5635
5636         secondary_ops = security_ops;
5637         if (!secondary_ops)
5638                 panic("SELinux: No initial security operations\n");
5639         if (register_security(&selinux_ops))
5640                 panic("SELinux: Unable to register with kernel.\n");
5641
5642         if (selinux_enforcing)
5643                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5644         else
5645                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5646
5647         return 0;
5648 }
5649
5650 void selinux_complete_init(void)
5651 {
5652         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5653
5654         /* Set up any superblocks initialized prior to the policy load. */
5655         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5656         spin_lock(&sb_lock);
5657         spin_lock(&sb_security_lock);
5658 next_sb:
5659         if (!list_empty(&superblock_security_head)) {
5660                 struct superblock_security_struct *sbsec =
5661                                 list_entry(superblock_security_head.next,
5662                                            struct superblock_security_struct,
5663                                            list);
5664                 struct super_block *sb = sbsec->sb;
5665                 sb->s_count++;
5666                 spin_unlock(&sb_security_lock);
5667                 spin_unlock(&sb_lock);
5668                 down_read(&sb->s_umount);
5669                 if (sb->s_root)
5670                         superblock_doinit(sb, NULL);
5671                 drop_super(sb);
5672                 spin_lock(&sb_lock);
5673                 spin_lock(&sb_security_lock);
5674                 list_del_init(&sbsec->list);
5675                 goto next_sb;
5676         }
5677         spin_unlock(&sb_security_lock);
5678         spin_unlock(&sb_lock);
5679 }
5680
5681 /* SELinux requires early initialization in order to label
5682    all processes and objects when they are created. */
5683 security_initcall(selinux_init);
5684
5685 #if defined(CONFIG_NETFILTER)
5686
5687 static struct nf_hook_ops selinux_ipv4_ops[] = {
5688         {
5689                 .hook =         selinux_ipv4_postroute,
5690                 .owner =        THIS_MODULE,
5691                 .pf =           PF_INET,
5692                 .hooknum =      NF_INET_POST_ROUTING,
5693                 .priority =     NF_IP_PRI_SELINUX_LAST,
5694         },
5695         {
5696                 .hook =         selinux_ipv4_forward,
5697                 .owner =        THIS_MODULE,
5698                 .pf =           PF_INET,
5699                 .hooknum =      NF_INET_FORWARD,
5700                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5701         },
5702         {
5703                 .hook =         selinux_ipv4_output,
5704                 .owner =        THIS_MODULE,
5705                 .pf =           PF_INET,
5706                 .hooknum =      NF_INET_LOCAL_OUT,
5707                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5708         }
5709 };
5710
5711 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5712
5713 static struct nf_hook_ops selinux_ipv6_ops[] = {
5714         {
5715                 .hook =         selinux_ipv6_postroute,
5716                 .owner =        THIS_MODULE,
5717                 .pf =           PF_INET6,
5718                 .hooknum =      NF_INET_POST_ROUTING,
5719                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5720         },
5721         {
5722                 .hook =         selinux_ipv6_forward,
5723                 .owner =        THIS_MODULE,
5724                 .pf =           PF_INET6,
5725                 .hooknum =      NF_INET_FORWARD,
5726                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5727         }
5728 };
5729
5730 #endif  /* IPV6 */
5731
5732 static int __init selinux_nf_ip_init(void)
5733 {
5734         int err = 0;
5735
5736         if (!selinux_enabled)
5737                 goto out;
5738
5739         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5740
5741         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5742         if (err)
5743                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5744
5745 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5746         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5747         if (err)
5748                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5749 #endif  /* IPV6 */
5750
5751 out:
5752         return err;
5753 }
5754
5755 __initcall(selinux_nf_ip_init);
5756
5757 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5758 static void selinux_nf_ip_exit(void)
5759 {
5760         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5761
5762         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5763 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5764         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5765 #endif  /* IPV6 */
5766 }
5767 #endif
5768
5769 #else /* CONFIG_NETFILTER */
5770
5771 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5772 #define selinux_nf_ip_exit()
5773 #endif
5774
5775 #endif /* CONFIG_NETFILTER */
5776
5777 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5778 static int selinux_disabled;
5779
5780 int selinux_disable(void)
5781 {
5782         extern void exit_sel_fs(void);
5783
5784         if (ss_initialized) {
5785                 /* Not permitted after initial policy load. */
5786                 return -EINVAL;
5787         }
5788
5789         if (selinux_disabled) {
5790                 /* Only do this once. */
5791                 return -EINVAL;
5792         }
5793
5794         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5795
5796         selinux_disabled = 1;
5797         selinux_enabled = 0;
5798
5799         /* Try to destroy the avc node cache */
5800         avc_disable();
5801
5802         /* Reset security_ops to the secondary module, dummy or capability. */
5803         security_ops = secondary_ops;
5804
5805         /* Unregister netfilter hooks. */
5806         selinux_nf_ip_exit();
5807
5808         /* Unregister selinuxfs. */
5809         exit_sel_fs();
5810
5811         return 0;
5812 }
5813 #endif