Security/SELinux: seperate lsm specific mmap_min_addr
[safe/jmp/linux-2.6] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
17  *              Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79
80 #include "avc.h"
81 #include "objsec.h"
82 #include "netif.h"
83 #include "netnode.h"
84 #include "netport.h"
85 #include "xfrm.h"
86 #include "netlabel.h"
87 #include "audit.h"
88
89 #define XATTR_SELINUX_SUFFIX "selinux"
90 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
91
92 #define NUM_SEL_MNT_OPTS 5
93
94 extern unsigned int policydb_loaded_version;
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern struct security_operations *security_ops;
97
98 /* SECMARK reference count */
99 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
100
101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
102 int selinux_enforcing;
103
104 static int __init enforcing_setup(char *str)
105 {
106         unsigned long enforcing;
107         if (!strict_strtoul(str, 0, &enforcing))
108                 selinux_enforcing = enforcing ? 1 : 0;
109         return 1;
110 }
111 __setup("enforcing=", enforcing_setup);
112 #endif
113
114 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
115 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
116
117 static int __init selinux_enabled_setup(char *str)
118 {
119         unsigned long enabled;
120         if (!strict_strtoul(str, 0, &enabled))
121                 selinux_enabled = enabled ? 1 : 0;
122         return 1;
123 }
124 __setup("selinux=", selinux_enabled_setup);
125 #else
126 int selinux_enabled = 1;
127 #endif
128
129
130 /*
131  * Minimal support for a secondary security module,
132  * just to allow the use of the capability module.
133  */
134 static struct security_operations *secondary_ops;
135
136 /* Lists of inode and superblock security structures initialized
137    before the policy was loaded. */
138 static LIST_HEAD(superblock_security_head);
139 static DEFINE_SPINLOCK(sb_security_lock);
140
141 static struct kmem_cache *sel_inode_cache;
142
143 /**
144  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
145  *
146  * Description:
147  * This function checks the SECMARK reference counter to see if any SECMARK
148  * targets are currently configured, if the reference counter is greater than
149  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
150  * enabled, false (0) if SECMARK is disabled.
151  *
152  */
153 static int selinux_secmark_enabled(void)
154 {
155         return (atomic_read(&selinux_secmark_refcount) > 0);
156 }
157
158 /*
159  * initialise the security for the init task
160  */
161 static void cred_init_security(void)
162 {
163         struct cred *cred = (struct cred *) current->real_cred;
164         struct task_security_struct *tsec;
165
166         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
167         if (!tsec)
168                 panic("SELinux:  Failed to initialize initial task.\n");
169
170         tsec->osid = tsec->sid = SECINITSID_KERNEL;
171         cred->security = tsec;
172 }
173
174 /*
175  * get the security ID of a set of credentials
176  */
177 static inline u32 cred_sid(const struct cred *cred)
178 {
179         const struct task_security_struct *tsec;
180
181         tsec = cred->security;
182         return tsec->sid;
183 }
184
185 /*
186  * get the objective security ID of a task
187  */
188 static inline u32 task_sid(const struct task_struct *task)
189 {
190         u32 sid;
191
192         rcu_read_lock();
193         sid = cred_sid(__task_cred(task));
194         rcu_read_unlock();
195         return sid;
196 }
197
198 /*
199  * get the subjective security ID of the current task
200  */
201 static inline u32 current_sid(void)
202 {
203         const struct task_security_struct *tsec = current_cred()->security;
204
205         return tsec->sid;
206 }
207
208 /* Allocate and free functions for each kind of security blob. */
209
210 static int inode_alloc_security(struct inode *inode)
211 {
212         struct inode_security_struct *isec;
213         u32 sid = current_sid();
214
215         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
216         if (!isec)
217                 return -ENOMEM;
218
219         mutex_init(&isec->lock);
220         INIT_LIST_HEAD(&isec->list);
221         isec->inode = inode;
222         isec->sid = SECINITSID_UNLABELED;
223         isec->sclass = SECCLASS_FILE;
224         isec->task_sid = sid;
225         inode->i_security = isec;
226
227         return 0;
228 }
229
230 static void inode_free_security(struct inode *inode)
231 {
232         struct inode_security_struct *isec = inode->i_security;
233         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
234
235         spin_lock(&sbsec->isec_lock);
236         if (!list_empty(&isec->list))
237                 list_del_init(&isec->list);
238         spin_unlock(&sbsec->isec_lock);
239
240         inode->i_security = NULL;
241         kmem_cache_free(sel_inode_cache, isec);
242 }
243
244 static int file_alloc_security(struct file *file)
245 {
246         struct file_security_struct *fsec;
247         u32 sid = current_sid();
248
249         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
250         if (!fsec)
251                 return -ENOMEM;
252
253         fsec->sid = sid;
254         fsec->fown_sid = sid;
255         file->f_security = fsec;
256
257         return 0;
258 }
259
260 static void file_free_security(struct file *file)
261 {
262         struct file_security_struct *fsec = file->f_security;
263         file->f_security = NULL;
264         kfree(fsec);
265 }
266
267 static int superblock_alloc_security(struct super_block *sb)
268 {
269         struct superblock_security_struct *sbsec;
270
271         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
272         if (!sbsec)
273                 return -ENOMEM;
274
275         mutex_init(&sbsec->lock);
276         INIT_LIST_HEAD(&sbsec->list);
277         INIT_LIST_HEAD(&sbsec->isec_head);
278         spin_lock_init(&sbsec->isec_lock);
279         sbsec->sb = sb;
280         sbsec->sid = SECINITSID_UNLABELED;
281         sbsec->def_sid = SECINITSID_FILE;
282         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
283         sb->s_security = sbsec;
284
285         return 0;
286 }
287
288 static void superblock_free_security(struct super_block *sb)
289 {
290         struct superblock_security_struct *sbsec = sb->s_security;
291
292         spin_lock(&sb_security_lock);
293         if (!list_empty(&sbsec->list))
294                 list_del_init(&sbsec->list);
295         spin_unlock(&sb_security_lock);
296
297         sb->s_security = NULL;
298         kfree(sbsec);
299 }
300
301 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
302 {
303         struct sk_security_struct *ssec;
304
305         ssec = kzalloc(sizeof(*ssec), priority);
306         if (!ssec)
307                 return -ENOMEM;
308
309         ssec->peer_sid = SECINITSID_UNLABELED;
310         ssec->sid = SECINITSID_UNLABELED;
311         sk->sk_security = ssec;
312
313         selinux_netlbl_sk_security_reset(ssec);
314
315         return 0;
316 }
317
318 static void sk_free_security(struct sock *sk)
319 {
320         struct sk_security_struct *ssec = sk->sk_security;
321
322         sk->sk_security = NULL;
323         selinux_netlbl_sk_security_free(ssec);
324         kfree(ssec);
325 }
326
327 /* The security server must be initialized before
328    any labeling or access decisions can be provided. */
329 extern int ss_initialized;
330
331 /* The file system's label must be initialized prior to use. */
332
333 static char *labeling_behaviors[6] = {
334         "uses xattr",
335         "uses transition SIDs",
336         "uses task SIDs",
337         "uses genfs_contexts",
338         "not configured for labeling",
339         "uses mountpoint labeling",
340 };
341
342 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
343
344 static inline int inode_doinit(struct inode *inode)
345 {
346         return inode_doinit_with_dentry(inode, NULL);
347 }
348
349 enum {
350         Opt_error = -1,
351         Opt_context = 1,
352         Opt_fscontext = 2,
353         Opt_defcontext = 3,
354         Opt_rootcontext = 4,
355         Opt_labelsupport = 5,
356 };
357
358 static const match_table_t tokens = {
359         {Opt_context, CONTEXT_STR "%s"},
360         {Opt_fscontext, FSCONTEXT_STR "%s"},
361         {Opt_defcontext, DEFCONTEXT_STR "%s"},
362         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
363         {Opt_labelsupport, LABELSUPP_STR},
364         {Opt_error, NULL},
365 };
366
367 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
368
369 static int may_context_mount_sb_relabel(u32 sid,
370                         struct superblock_security_struct *sbsec,
371                         const struct cred *cred)
372 {
373         const struct task_security_struct *tsec = cred->security;
374         int rc;
375
376         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
377                           FILESYSTEM__RELABELFROM, NULL);
378         if (rc)
379                 return rc;
380
381         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
382                           FILESYSTEM__RELABELTO, NULL);
383         return rc;
384 }
385
386 static int may_context_mount_inode_relabel(u32 sid,
387                         struct superblock_security_struct *sbsec,
388                         const struct cred *cred)
389 {
390         const struct task_security_struct *tsec = cred->security;
391         int rc;
392         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
393                           FILESYSTEM__RELABELFROM, NULL);
394         if (rc)
395                 return rc;
396
397         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
398                           FILESYSTEM__ASSOCIATE, NULL);
399         return rc;
400 }
401
402 static int sb_finish_set_opts(struct super_block *sb)
403 {
404         struct superblock_security_struct *sbsec = sb->s_security;
405         struct dentry *root = sb->s_root;
406         struct inode *root_inode = root->d_inode;
407         int rc = 0;
408
409         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
410                 /* Make sure that the xattr handler exists and that no
411                    error other than -ENODATA is returned by getxattr on
412                    the root directory.  -ENODATA is ok, as this may be
413                    the first boot of the SELinux kernel before we have
414                    assigned xattr values to the filesystem. */
415                 if (!root_inode->i_op->getxattr) {
416                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
417                                "xattr support\n", sb->s_id, sb->s_type->name);
418                         rc = -EOPNOTSUPP;
419                         goto out;
420                 }
421                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
422                 if (rc < 0 && rc != -ENODATA) {
423                         if (rc == -EOPNOTSUPP)
424                                 printk(KERN_WARNING "SELinux: (dev %s, type "
425                                        "%s) has no security xattr handler\n",
426                                        sb->s_id, sb->s_type->name);
427                         else
428                                 printk(KERN_WARNING "SELinux: (dev %s, type "
429                                        "%s) getxattr errno %d\n", sb->s_id,
430                                        sb->s_type->name, -rc);
431                         goto out;
432                 }
433         }
434
435         sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
436
437         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
438                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
439                        sb->s_id, sb->s_type->name);
440         else
441                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
442                        sb->s_id, sb->s_type->name,
443                        labeling_behaviors[sbsec->behavior-1]);
444
445         if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
446             sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
447             sbsec->behavior == SECURITY_FS_USE_NONE ||
448             sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
449                 sbsec->flags &= ~SE_SBLABELSUPP;
450
451         /* Initialize the root inode. */
452         rc = inode_doinit_with_dentry(root_inode, root);
453
454         /* Initialize any other inodes associated with the superblock, e.g.
455            inodes created prior to initial policy load or inodes created
456            during get_sb by a pseudo filesystem that directly
457            populates itself. */
458         spin_lock(&sbsec->isec_lock);
459 next_inode:
460         if (!list_empty(&sbsec->isec_head)) {
461                 struct inode_security_struct *isec =
462                                 list_entry(sbsec->isec_head.next,
463                                            struct inode_security_struct, list);
464                 struct inode *inode = isec->inode;
465                 spin_unlock(&sbsec->isec_lock);
466                 inode = igrab(inode);
467                 if (inode) {
468                         if (!IS_PRIVATE(inode))
469                                 inode_doinit(inode);
470                         iput(inode);
471                 }
472                 spin_lock(&sbsec->isec_lock);
473                 list_del_init(&isec->list);
474                 goto next_inode;
475         }
476         spin_unlock(&sbsec->isec_lock);
477 out:
478         return rc;
479 }
480
481 /*
482  * This function should allow an FS to ask what it's mount security
483  * options were so it can use those later for submounts, displaying
484  * mount options, or whatever.
485  */
486 static int selinux_get_mnt_opts(const struct super_block *sb,
487                                 struct security_mnt_opts *opts)
488 {
489         int rc = 0, i;
490         struct superblock_security_struct *sbsec = sb->s_security;
491         char *context = NULL;
492         u32 len;
493         char tmp;
494
495         security_init_mnt_opts(opts);
496
497         if (!(sbsec->flags & SE_SBINITIALIZED))
498                 return -EINVAL;
499
500         if (!ss_initialized)
501                 return -EINVAL;
502
503         tmp = sbsec->flags & SE_MNTMASK;
504         /* count the number of mount options for this sb */
505         for (i = 0; i < 8; i++) {
506                 if (tmp & 0x01)
507                         opts->num_mnt_opts++;
508                 tmp >>= 1;
509         }
510         /* Check if the Label support flag is set */
511         if (sbsec->flags & SE_SBLABELSUPP)
512                 opts->num_mnt_opts++;
513
514         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
515         if (!opts->mnt_opts) {
516                 rc = -ENOMEM;
517                 goto out_free;
518         }
519
520         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
521         if (!opts->mnt_opts_flags) {
522                 rc = -ENOMEM;
523                 goto out_free;
524         }
525
526         i = 0;
527         if (sbsec->flags & FSCONTEXT_MNT) {
528                 rc = security_sid_to_context(sbsec->sid, &context, &len);
529                 if (rc)
530                         goto out_free;
531                 opts->mnt_opts[i] = context;
532                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
533         }
534         if (sbsec->flags & CONTEXT_MNT) {
535                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
536                 if (rc)
537                         goto out_free;
538                 opts->mnt_opts[i] = context;
539                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
540         }
541         if (sbsec->flags & DEFCONTEXT_MNT) {
542                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
543                 if (rc)
544                         goto out_free;
545                 opts->mnt_opts[i] = context;
546                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
547         }
548         if (sbsec->flags & ROOTCONTEXT_MNT) {
549                 struct inode *root = sbsec->sb->s_root->d_inode;
550                 struct inode_security_struct *isec = root->i_security;
551
552                 rc = security_sid_to_context(isec->sid, &context, &len);
553                 if (rc)
554                         goto out_free;
555                 opts->mnt_opts[i] = context;
556                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
557         }
558         if (sbsec->flags & SE_SBLABELSUPP) {
559                 opts->mnt_opts[i] = NULL;
560                 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
561         }
562
563         BUG_ON(i != opts->num_mnt_opts);
564
565         return 0;
566
567 out_free:
568         security_free_mnt_opts(opts);
569         return rc;
570 }
571
572 static int bad_option(struct superblock_security_struct *sbsec, char flag,
573                       u32 old_sid, u32 new_sid)
574 {
575         char mnt_flags = sbsec->flags & SE_MNTMASK;
576
577         /* check if the old mount command had the same options */
578         if (sbsec->flags & SE_SBINITIALIZED)
579                 if (!(sbsec->flags & flag) ||
580                     (old_sid != new_sid))
581                         return 1;
582
583         /* check if we were passed the same options twice,
584          * aka someone passed context=a,context=b
585          */
586         if (!(sbsec->flags & SE_SBINITIALIZED))
587                 if (mnt_flags & flag)
588                         return 1;
589         return 0;
590 }
591
592 /*
593  * Allow filesystems with binary mount data to explicitly set mount point
594  * labeling information.
595  */
596 static int selinux_set_mnt_opts(struct super_block *sb,
597                                 struct security_mnt_opts *opts)
598 {
599         const struct cred *cred = current_cred();
600         int rc = 0, i;
601         struct superblock_security_struct *sbsec = sb->s_security;
602         const char *name = sb->s_type->name;
603         struct inode *inode = sbsec->sb->s_root->d_inode;
604         struct inode_security_struct *root_isec = inode->i_security;
605         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
606         u32 defcontext_sid = 0;
607         char **mount_options = opts->mnt_opts;
608         int *flags = opts->mnt_opts_flags;
609         int num_opts = opts->num_mnt_opts;
610
611         mutex_lock(&sbsec->lock);
612
613         if (!ss_initialized) {
614                 if (!num_opts) {
615                         /* Defer initialization until selinux_complete_init,
616                            after the initial policy is loaded and the security
617                            server is ready to handle calls. */
618                         spin_lock(&sb_security_lock);
619                         if (list_empty(&sbsec->list))
620                                 list_add(&sbsec->list, &superblock_security_head);
621                         spin_unlock(&sb_security_lock);
622                         goto out;
623                 }
624                 rc = -EINVAL;
625                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
626                         "before the security server is initialized\n");
627                 goto out;
628         }
629
630         /*
631          * Binary mount data FS will come through this function twice.  Once
632          * from an explicit call and once from the generic calls from the vfs.
633          * Since the generic VFS calls will not contain any security mount data
634          * we need to skip the double mount verification.
635          *
636          * This does open a hole in which we will not notice if the first
637          * mount using this sb set explict options and a second mount using
638          * this sb does not set any security options.  (The first options
639          * will be used for both mounts)
640          */
641         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
642             && (num_opts == 0))
643                 goto out;
644
645         /*
646          * parse the mount options, check if they are valid sids.
647          * also check if someone is trying to mount the same sb more
648          * than once with different security options.
649          */
650         for (i = 0; i < num_opts; i++) {
651                 u32 sid;
652
653                 if (flags[i] == SE_SBLABELSUPP)
654                         continue;
655                 rc = security_context_to_sid(mount_options[i],
656                                              strlen(mount_options[i]), &sid);
657                 if (rc) {
658                         printk(KERN_WARNING "SELinux: security_context_to_sid"
659                                "(%s) failed for (dev %s, type %s) errno=%d\n",
660                                mount_options[i], sb->s_id, name, rc);
661                         goto out;
662                 }
663                 switch (flags[i]) {
664                 case FSCONTEXT_MNT:
665                         fscontext_sid = sid;
666
667                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
668                                         fscontext_sid))
669                                 goto out_double_mount;
670
671                         sbsec->flags |= FSCONTEXT_MNT;
672                         break;
673                 case CONTEXT_MNT:
674                         context_sid = sid;
675
676                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
677                                         context_sid))
678                                 goto out_double_mount;
679
680                         sbsec->flags |= CONTEXT_MNT;
681                         break;
682                 case ROOTCONTEXT_MNT:
683                         rootcontext_sid = sid;
684
685                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
686                                         rootcontext_sid))
687                                 goto out_double_mount;
688
689                         sbsec->flags |= ROOTCONTEXT_MNT;
690
691                         break;
692                 case DEFCONTEXT_MNT:
693                         defcontext_sid = sid;
694
695                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
696                                         defcontext_sid))
697                                 goto out_double_mount;
698
699                         sbsec->flags |= DEFCONTEXT_MNT;
700
701                         break;
702                 default:
703                         rc = -EINVAL;
704                         goto out;
705                 }
706         }
707
708         if (sbsec->flags & SE_SBINITIALIZED) {
709                 /* previously mounted with options, but not on this attempt? */
710                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
711                         goto out_double_mount;
712                 rc = 0;
713                 goto out;
714         }
715
716         if (strcmp(sb->s_type->name, "proc") == 0)
717                 sbsec->flags |= SE_SBPROC;
718
719         /* Determine the labeling behavior to use for this filesystem type. */
720         rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
721         if (rc) {
722                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
723                        __func__, sb->s_type->name, rc);
724                 goto out;
725         }
726
727         /* sets the context of the superblock for the fs being mounted. */
728         if (fscontext_sid) {
729                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
730                 if (rc)
731                         goto out;
732
733                 sbsec->sid = fscontext_sid;
734         }
735
736         /*
737          * Switch to using mount point labeling behavior.
738          * sets the label used on all file below the mountpoint, and will set
739          * the superblock context if not already set.
740          */
741         if (context_sid) {
742                 if (!fscontext_sid) {
743                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
744                                                           cred);
745                         if (rc)
746                                 goto out;
747                         sbsec->sid = context_sid;
748                 } else {
749                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
750                                                              cred);
751                         if (rc)
752                                 goto out;
753                 }
754                 if (!rootcontext_sid)
755                         rootcontext_sid = context_sid;
756
757                 sbsec->mntpoint_sid = context_sid;
758                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
759         }
760
761         if (rootcontext_sid) {
762                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
763                                                      cred);
764                 if (rc)
765                         goto out;
766
767                 root_isec->sid = rootcontext_sid;
768                 root_isec->initialized = 1;
769         }
770
771         if (defcontext_sid) {
772                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
773                         rc = -EINVAL;
774                         printk(KERN_WARNING "SELinux: defcontext option is "
775                                "invalid for this filesystem type\n");
776                         goto out;
777                 }
778
779                 if (defcontext_sid != sbsec->def_sid) {
780                         rc = may_context_mount_inode_relabel(defcontext_sid,
781                                                              sbsec, cred);
782                         if (rc)
783                                 goto out;
784                 }
785
786                 sbsec->def_sid = defcontext_sid;
787         }
788
789         rc = sb_finish_set_opts(sb);
790 out:
791         mutex_unlock(&sbsec->lock);
792         return rc;
793 out_double_mount:
794         rc = -EINVAL;
795         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
796                "security settings for (dev %s, type %s)\n", sb->s_id, name);
797         goto out;
798 }
799
800 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
801                                         struct super_block *newsb)
802 {
803         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
804         struct superblock_security_struct *newsbsec = newsb->s_security;
805
806         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
807         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
808         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
809
810         /*
811          * if the parent was able to be mounted it clearly had no special lsm
812          * mount options.  thus we can safely put this sb on the list and deal
813          * with it later
814          */
815         if (!ss_initialized) {
816                 spin_lock(&sb_security_lock);
817                 if (list_empty(&newsbsec->list))
818                         list_add(&newsbsec->list, &superblock_security_head);
819                 spin_unlock(&sb_security_lock);
820                 return;
821         }
822
823         /* how can we clone if the old one wasn't set up?? */
824         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
825
826         /* if fs is reusing a sb, just let its options stand... */
827         if (newsbsec->flags & SE_SBINITIALIZED)
828                 return;
829
830         mutex_lock(&newsbsec->lock);
831
832         newsbsec->flags = oldsbsec->flags;
833
834         newsbsec->sid = oldsbsec->sid;
835         newsbsec->def_sid = oldsbsec->def_sid;
836         newsbsec->behavior = oldsbsec->behavior;
837
838         if (set_context) {
839                 u32 sid = oldsbsec->mntpoint_sid;
840
841                 if (!set_fscontext)
842                         newsbsec->sid = sid;
843                 if (!set_rootcontext) {
844                         struct inode *newinode = newsb->s_root->d_inode;
845                         struct inode_security_struct *newisec = newinode->i_security;
846                         newisec->sid = sid;
847                 }
848                 newsbsec->mntpoint_sid = sid;
849         }
850         if (set_rootcontext) {
851                 const struct inode *oldinode = oldsb->s_root->d_inode;
852                 const struct inode_security_struct *oldisec = oldinode->i_security;
853                 struct inode *newinode = newsb->s_root->d_inode;
854                 struct inode_security_struct *newisec = newinode->i_security;
855
856                 newisec->sid = oldisec->sid;
857         }
858
859         sb_finish_set_opts(newsb);
860         mutex_unlock(&newsbsec->lock);
861 }
862
863 static int selinux_parse_opts_str(char *options,
864                                   struct security_mnt_opts *opts)
865 {
866         char *p;
867         char *context = NULL, *defcontext = NULL;
868         char *fscontext = NULL, *rootcontext = NULL;
869         int rc, num_mnt_opts = 0;
870
871         opts->num_mnt_opts = 0;
872
873         /* Standard string-based options. */
874         while ((p = strsep(&options, "|")) != NULL) {
875                 int token;
876                 substring_t args[MAX_OPT_ARGS];
877
878                 if (!*p)
879                         continue;
880
881                 token = match_token(p, tokens, args);
882
883                 switch (token) {
884                 case Opt_context:
885                         if (context || defcontext) {
886                                 rc = -EINVAL;
887                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
888                                 goto out_err;
889                         }
890                         context = match_strdup(&args[0]);
891                         if (!context) {
892                                 rc = -ENOMEM;
893                                 goto out_err;
894                         }
895                         break;
896
897                 case Opt_fscontext:
898                         if (fscontext) {
899                                 rc = -EINVAL;
900                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
901                                 goto out_err;
902                         }
903                         fscontext = match_strdup(&args[0]);
904                         if (!fscontext) {
905                                 rc = -ENOMEM;
906                                 goto out_err;
907                         }
908                         break;
909
910                 case Opt_rootcontext:
911                         if (rootcontext) {
912                                 rc = -EINVAL;
913                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
914                                 goto out_err;
915                         }
916                         rootcontext = match_strdup(&args[0]);
917                         if (!rootcontext) {
918                                 rc = -ENOMEM;
919                                 goto out_err;
920                         }
921                         break;
922
923                 case Opt_defcontext:
924                         if (context || defcontext) {
925                                 rc = -EINVAL;
926                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
927                                 goto out_err;
928                         }
929                         defcontext = match_strdup(&args[0]);
930                         if (!defcontext) {
931                                 rc = -ENOMEM;
932                                 goto out_err;
933                         }
934                         break;
935                 case Opt_labelsupport:
936                         break;
937                 default:
938                         rc = -EINVAL;
939                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
940                         goto out_err;
941
942                 }
943         }
944
945         rc = -ENOMEM;
946         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
947         if (!opts->mnt_opts)
948                 goto out_err;
949
950         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
951         if (!opts->mnt_opts_flags) {
952                 kfree(opts->mnt_opts);
953                 goto out_err;
954         }
955
956         if (fscontext) {
957                 opts->mnt_opts[num_mnt_opts] = fscontext;
958                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
959         }
960         if (context) {
961                 opts->mnt_opts[num_mnt_opts] = context;
962                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
963         }
964         if (rootcontext) {
965                 opts->mnt_opts[num_mnt_opts] = rootcontext;
966                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
967         }
968         if (defcontext) {
969                 opts->mnt_opts[num_mnt_opts] = defcontext;
970                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
971         }
972
973         opts->num_mnt_opts = num_mnt_opts;
974         return 0;
975
976 out_err:
977         kfree(context);
978         kfree(defcontext);
979         kfree(fscontext);
980         kfree(rootcontext);
981         return rc;
982 }
983 /*
984  * string mount options parsing and call set the sbsec
985  */
986 static int superblock_doinit(struct super_block *sb, void *data)
987 {
988         int rc = 0;
989         char *options = data;
990         struct security_mnt_opts opts;
991
992         security_init_mnt_opts(&opts);
993
994         if (!data)
995                 goto out;
996
997         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
998
999         rc = selinux_parse_opts_str(options, &opts);
1000         if (rc)
1001                 goto out_err;
1002
1003 out:
1004         rc = selinux_set_mnt_opts(sb, &opts);
1005
1006 out_err:
1007         security_free_mnt_opts(&opts);
1008         return rc;
1009 }
1010
1011 static void selinux_write_opts(struct seq_file *m,
1012                                struct security_mnt_opts *opts)
1013 {
1014         int i;
1015         char *prefix;
1016
1017         for (i = 0; i < opts->num_mnt_opts; i++) {
1018                 char *has_comma;
1019
1020                 if (opts->mnt_opts[i])
1021                         has_comma = strchr(opts->mnt_opts[i], ',');
1022                 else
1023                         has_comma = NULL;
1024
1025                 switch (opts->mnt_opts_flags[i]) {
1026                 case CONTEXT_MNT:
1027                         prefix = CONTEXT_STR;
1028                         break;
1029                 case FSCONTEXT_MNT:
1030                         prefix = FSCONTEXT_STR;
1031                         break;
1032                 case ROOTCONTEXT_MNT:
1033                         prefix = ROOTCONTEXT_STR;
1034                         break;
1035                 case DEFCONTEXT_MNT:
1036                         prefix = DEFCONTEXT_STR;
1037                         break;
1038                 case SE_SBLABELSUPP:
1039                         seq_putc(m, ',');
1040                         seq_puts(m, LABELSUPP_STR);
1041                         continue;
1042                 default:
1043                         BUG();
1044                 };
1045                 /* we need a comma before each option */
1046                 seq_putc(m, ',');
1047                 seq_puts(m, prefix);
1048                 if (has_comma)
1049                         seq_putc(m, '\"');
1050                 seq_puts(m, opts->mnt_opts[i]);
1051                 if (has_comma)
1052                         seq_putc(m, '\"');
1053         }
1054 }
1055
1056 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1057 {
1058         struct security_mnt_opts opts;
1059         int rc;
1060
1061         rc = selinux_get_mnt_opts(sb, &opts);
1062         if (rc) {
1063                 /* before policy load we may get EINVAL, don't show anything */
1064                 if (rc == -EINVAL)
1065                         rc = 0;
1066                 return rc;
1067         }
1068
1069         selinux_write_opts(m, &opts);
1070
1071         security_free_mnt_opts(&opts);
1072
1073         return rc;
1074 }
1075
1076 static inline u16 inode_mode_to_security_class(umode_t mode)
1077 {
1078         switch (mode & S_IFMT) {
1079         case S_IFSOCK:
1080                 return SECCLASS_SOCK_FILE;
1081         case S_IFLNK:
1082                 return SECCLASS_LNK_FILE;
1083         case S_IFREG:
1084                 return SECCLASS_FILE;
1085         case S_IFBLK:
1086                 return SECCLASS_BLK_FILE;
1087         case S_IFDIR:
1088                 return SECCLASS_DIR;
1089         case S_IFCHR:
1090                 return SECCLASS_CHR_FILE;
1091         case S_IFIFO:
1092                 return SECCLASS_FIFO_FILE;
1093
1094         }
1095
1096         return SECCLASS_FILE;
1097 }
1098
1099 static inline int default_protocol_stream(int protocol)
1100 {
1101         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1102 }
1103
1104 static inline int default_protocol_dgram(int protocol)
1105 {
1106         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1107 }
1108
1109 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1110 {
1111         switch (family) {
1112         case PF_UNIX:
1113                 switch (type) {
1114                 case SOCK_STREAM:
1115                 case SOCK_SEQPACKET:
1116                         return SECCLASS_UNIX_STREAM_SOCKET;
1117                 case SOCK_DGRAM:
1118                         return SECCLASS_UNIX_DGRAM_SOCKET;
1119                 }
1120                 break;
1121         case PF_INET:
1122         case PF_INET6:
1123                 switch (type) {
1124                 case SOCK_STREAM:
1125                         if (default_protocol_stream(protocol))
1126                                 return SECCLASS_TCP_SOCKET;
1127                         else
1128                                 return SECCLASS_RAWIP_SOCKET;
1129                 case SOCK_DGRAM:
1130                         if (default_protocol_dgram(protocol))
1131                                 return SECCLASS_UDP_SOCKET;
1132                         else
1133                                 return SECCLASS_RAWIP_SOCKET;
1134                 case SOCK_DCCP:
1135                         return SECCLASS_DCCP_SOCKET;
1136                 default:
1137                         return SECCLASS_RAWIP_SOCKET;
1138                 }
1139                 break;
1140         case PF_NETLINK:
1141                 switch (protocol) {
1142                 case NETLINK_ROUTE:
1143                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1144                 case NETLINK_FIREWALL:
1145                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1146                 case NETLINK_INET_DIAG:
1147                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1148                 case NETLINK_NFLOG:
1149                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1150                 case NETLINK_XFRM:
1151                         return SECCLASS_NETLINK_XFRM_SOCKET;
1152                 case NETLINK_SELINUX:
1153                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1154                 case NETLINK_AUDIT:
1155                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1156                 case NETLINK_IP6_FW:
1157                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1158                 case NETLINK_DNRTMSG:
1159                         return SECCLASS_NETLINK_DNRT_SOCKET;
1160                 case NETLINK_KOBJECT_UEVENT:
1161                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1162                 default:
1163                         return SECCLASS_NETLINK_SOCKET;
1164                 }
1165         case PF_PACKET:
1166                 return SECCLASS_PACKET_SOCKET;
1167         case PF_KEY:
1168                 return SECCLASS_KEY_SOCKET;
1169         case PF_APPLETALK:
1170                 return SECCLASS_APPLETALK_SOCKET;
1171         }
1172
1173         return SECCLASS_SOCKET;
1174 }
1175
1176 #ifdef CONFIG_PROC_FS
1177 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1178                                 u16 tclass,
1179                                 u32 *sid)
1180 {
1181         int buflen, rc;
1182         char *buffer, *path, *end;
1183
1184         buffer = (char *)__get_free_page(GFP_KERNEL);
1185         if (!buffer)
1186                 return -ENOMEM;
1187
1188         buflen = PAGE_SIZE;
1189         end = buffer+buflen;
1190         *--end = '\0';
1191         buflen--;
1192         path = end-1;
1193         *path = '/';
1194         while (de && de != de->parent) {
1195                 buflen -= de->namelen + 1;
1196                 if (buflen < 0)
1197                         break;
1198                 end -= de->namelen;
1199                 memcpy(end, de->name, de->namelen);
1200                 *--end = '/';
1201                 path = end;
1202                 de = de->parent;
1203         }
1204         rc = security_genfs_sid("proc", path, tclass, sid);
1205         free_page((unsigned long)buffer);
1206         return rc;
1207 }
1208 #else
1209 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1210                                 u16 tclass,
1211                                 u32 *sid)
1212 {
1213         return -EINVAL;
1214 }
1215 #endif
1216
1217 /* The inode's security attributes must be initialized before first use. */
1218 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1219 {
1220         struct superblock_security_struct *sbsec = NULL;
1221         struct inode_security_struct *isec = inode->i_security;
1222         u32 sid;
1223         struct dentry *dentry;
1224 #define INITCONTEXTLEN 255
1225         char *context = NULL;
1226         unsigned len = 0;
1227         int rc = 0;
1228
1229         if (isec->initialized)
1230                 goto out;
1231
1232         mutex_lock(&isec->lock);
1233         if (isec->initialized)
1234                 goto out_unlock;
1235
1236         sbsec = inode->i_sb->s_security;
1237         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1238                 /* Defer initialization until selinux_complete_init,
1239                    after the initial policy is loaded and the security
1240                    server is ready to handle calls. */
1241                 spin_lock(&sbsec->isec_lock);
1242                 if (list_empty(&isec->list))
1243                         list_add(&isec->list, &sbsec->isec_head);
1244                 spin_unlock(&sbsec->isec_lock);
1245                 goto out_unlock;
1246         }
1247
1248         switch (sbsec->behavior) {
1249         case SECURITY_FS_USE_XATTR:
1250                 if (!inode->i_op->getxattr) {
1251                         isec->sid = sbsec->def_sid;
1252                         break;
1253                 }
1254
1255                 /* Need a dentry, since the xattr API requires one.
1256                    Life would be simpler if we could just pass the inode. */
1257                 if (opt_dentry) {
1258                         /* Called from d_instantiate or d_splice_alias. */
1259                         dentry = dget(opt_dentry);
1260                 } else {
1261                         /* Called from selinux_complete_init, try to find a dentry. */
1262                         dentry = d_find_alias(inode);
1263                 }
1264                 if (!dentry) {
1265                         /*
1266                          * this is can be hit on boot when a file is accessed
1267                          * before the policy is loaded.  When we load policy we
1268                          * may find inodes that have no dentry on the
1269                          * sbsec->isec_head list.  No reason to complain as these
1270                          * will get fixed up the next time we go through
1271                          * inode_doinit with a dentry, before these inodes could
1272                          * be used again by userspace.
1273                          */
1274                         goto out_unlock;
1275                 }
1276
1277                 len = INITCONTEXTLEN;
1278                 context = kmalloc(len+1, GFP_NOFS);
1279                 if (!context) {
1280                         rc = -ENOMEM;
1281                         dput(dentry);
1282                         goto out_unlock;
1283                 }
1284                 context[len] = '\0';
1285                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1286                                            context, len);
1287                 if (rc == -ERANGE) {
1288                         /* Need a larger buffer.  Query for the right size. */
1289                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1290                                                    NULL, 0);
1291                         if (rc < 0) {
1292                                 dput(dentry);
1293                                 goto out_unlock;
1294                         }
1295                         kfree(context);
1296                         len = rc;
1297                         context = kmalloc(len+1, GFP_NOFS);
1298                         if (!context) {
1299                                 rc = -ENOMEM;
1300                                 dput(dentry);
1301                                 goto out_unlock;
1302                         }
1303                         context[len] = '\0';
1304                         rc = inode->i_op->getxattr(dentry,
1305                                                    XATTR_NAME_SELINUX,
1306                                                    context, len);
1307                 }
1308                 dput(dentry);
1309                 if (rc < 0) {
1310                         if (rc != -ENODATA) {
1311                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1312                                        "%d for dev=%s ino=%ld\n", __func__,
1313                                        -rc, inode->i_sb->s_id, inode->i_ino);
1314                                 kfree(context);
1315                                 goto out_unlock;
1316                         }
1317                         /* Map ENODATA to the default file SID */
1318                         sid = sbsec->def_sid;
1319                         rc = 0;
1320                 } else {
1321                         rc = security_context_to_sid_default(context, rc, &sid,
1322                                                              sbsec->def_sid,
1323                                                              GFP_NOFS);
1324                         if (rc) {
1325                                 char *dev = inode->i_sb->s_id;
1326                                 unsigned long ino = inode->i_ino;
1327
1328                                 if (rc == -EINVAL) {
1329                                         if (printk_ratelimit())
1330                                                 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1331                                                         "context=%s.  This indicates you may need to relabel the inode or the "
1332                                                         "filesystem in question.\n", ino, dev, context);
1333                                 } else {
1334                                         printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1335                                                "returned %d for dev=%s ino=%ld\n",
1336                                                __func__, context, -rc, dev, ino);
1337                                 }
1338                                 kfree(context);
1339                                 /* Leave with the unlabeled SID */
1340                                 rc = 0;
1341                                 break;
1342                         }
1343                 }
1344                 kfree(context);
1345                 isec->sid = sid;
1346                 break;
1347         case SECURITY_FS_USE_TASK:
1348                 isec->sid = isec->task_sid;
1349                 break;
1350         case SECURITY_FS_USE_TRANS:
1351                 /* Default to the fs SID. */
1352                 isec->sid = sbsec->sid;
1353
1354                 /* Try to obtain a transition SID. */
1355                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1356                 rc = security_transition_sid(isec->task_sid,
1357                                              sbsec->sid,
1358                                              isec->sclass,
1359                                              &sid);
1360                 if (rc)
1361                         goto out_unlock;
1362                 isec->sid = sid;
1363                 break;
1364         case SECURITY_FS_USE_MNTPOINT:
1365                 isec->sid = sbsec->mntpoint_sid;
1366                 break;
1367         default:
1368                 /* Default to the fs superblock SID. */
1369                 isec->sid = sbsec->sid;
1370
1371                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1372                         struct proc_inode *proci = PROC_I(inode);
1373                         if (proci->pde) {
1374                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1375                                 rc = selinux_proc_get_sid(proci->pde,
1376                                                           isec->sclass,
1377                                                           &sid);
1378                                 if (rc)
1379                                         goto out_unlock;
1380                                 isec->sid = sid;
1381                         }
1382                 }
1383                 break;
1384         }
1385
1386         isec->initialized = 1;
1387
1388 out_unlock:
1389         mutex_unlock(&isec->lock);
1390 out:
1391         if (isec->sclass == SECCLASS_FILE)
1392                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1393         return rc;
1394 }
1395
1396 /* Convert a Linux signal to an access vector. */
1397 static inline u32 signal_to_av(int sig)
1398 {
1399         u32 perm = 0;
1400
1401         switch (sig) {
1402         case SIGCHLD:
1403                 /* Commonly granted from child to parent. */
1404                 perm = PROCESS__SIGCHLD;
1405                 break;
1406         case SIGKILL:
1407                 /* Cannot be caught or ignored */
1408                 perm = PROCESS__SIGKILL;
1409                 break;
1410         case SIGSTOP:
1411                 /* Cannot be caught or ignored */
1412                 perm = PROCESS__SIGSTOP;
1413                 break;
1414         default:
1415                 /* All other signals. */
1416                 perm = PROCESS__SIGNAL;
1417                 break;
1418         }
1419
1420         return perm;
1421 }
1422
1423 /*
1424  * Check permission between a pair of credentials
1425  * fork check, ptrace check, etc.
1426  */
1427 static int cred_has_perm(const struct cred *actor,
1428                          const struct cred *target,
1429                          u32 perms)
1430 {
1431         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1432
1433         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1434 }
1435
1436 /*
1437  * Check permission between a pair of tasks, e.g. signal checks,
1438  * fork check, ptrace check, etc.
1439  * tsk1 is the actor and tsk2 is the target
1440  * - this uses the default subjective creds of tsk1
1441  */
1442 static int task_has_perm(const struct task_struct *tsk1,
1443                          const struct task_struct *tsk2,
1444                          u32 perms)
1445 {
1446         const struct task_security_struct *__tsec1, *__tsec2;
1447         u32 sid1, sid2;
1448
1449         rcu_read_lock();
1450         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1451         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1452         rcu_read_unlock();
1453         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1454 }
1455
1456 /*
1457  * Check permission between current and another task, e.g. signal checks,
1458  * fork check, ptrace check, etc.
1459  * current is the actor and tsk2 is the target
1460  * - this uses current's subjective creds
1461  */
1462 static int current_has_perm(const struct task_struct *tsk,
1463                             u32 perms)
1464 {
1465         u32 sid, tsid;
1466
1467         sid = current_sid();
1468         tsid = task_sid(tsk);
1469         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1470 }
1471
1472 #if CAP_LAST_CAP > 63
1473 #error Fix SELinux to handle capabilities > 63.
1474 #endif
1475
1476 /* Check whether a task is allowed to use a capability. */
1477 static int task_has_capability(struct task_struct *tsk,
1478                                const struct cred *cred,
1479                                int cap, int audit)
1480 {
1481         struct avc_audit_data ad;
1482         struct av_decision avd;
1483         u16 sclass;
1484         u32 sid = cred_sid(cred);
1485         u32 av = CAP_TO_MASK(cap);
1486         int rc;
1487
1488         AVC_AUDIT_DATA_INIT(&ad, CAP);
1489         ad.tsk = tsk;
1490         ad.u.cap = cap;
1491
1492         switch (CAP_TO_INDEX(cap)) {
1493         case 0:
1494                 sclass = SECCLASS_CAPABILITY;
1495                 break;
1496         case 1:
1497                 sclass = SECCLASS_CAPABILITY2;
1498                 break;
1499         default:
1500                 printk(KERN_ERR
1501                        "SELinux:  out of range capability %d\n", cap);
1502                 BUG();
1503         }
1504
1505         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1506         if (audit == SECURITY_CAP_AUDIT)
1507                 avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1508         return rc;
1509 }
1510
1511 /* Check whether a task is allowed to use a system operation. */
1512 static int task_has_system(struct task_struct *tsk,
1513                            u32 perms)
1514 {
1515         u32 sid = task_sid(tsk);
1516
1517         return avc_has_perm(sid, SECINITSID_KERNEL,
1518                             SECCLASS_SYSTEM, perms, NULL);
1519 }
1520
1521 /* Check whether a task has a particular permission to an inode.
1522    The 'adp' parameter is optional and allows other audit
1523    data to be passed (e.g. the dentry). */
1524 static int inode_has_perm(const struct cred *cred,
1525                           struct inode *inode,
1526                           u32 perms,
1527                           struct avc_audit_data *adp)
1528 {
1529         struct inode_security_struct *isec;
1530         struct avc_audit_data ad;
1531         u32 sid;
1532
1533         if (unlikely(IS_PRIVATE(inode)))
1534                 return 0;
1535
1536         sid = cred_sid(cred);
1537         isec = inode->i_security;
1538
1539         if (!adp) {
1540                 adp = &ad;
1541                 AVC_AUDIT_DATA_INIT(&ad, FS);
1542                 ad.u.fs.inode = inode;
1543         }
1544
1545         return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1546 }
1547
1548 /* Same as inode_has_perm, but pass explicit audit data containing
1549    the dentry to help the auditing code to more easily generate the
1550    pathname if needed. */
1551 static inline int dentry_has_perm(const struct cred *cred,
1552                                   struct vfsmount *mnt,
1553                                   struct dentry *dentry,
1554                                   u32 av)
1555 {
1556         struct inode *inode = dentry->d_inode;
1557         struct avc_audit_data ad;
1558
1559         AVC_AUDIT_DATA_INIT(&ad, FS);
1560         ad.u.fs.path.mnt = mnt;
1561         ad.u.fs.path.dentry = dentry;
1562         return inode_has_perm(cred, inode, av, &ad);
1563 }
1564
1565 /* Check whether a task can use an open file descriptor to
1566    access an inode in a given way.  Check access to the
1567    descriptor itself, and then use dentry_has_perm to
1568    check a particular permission to the file.
1569    Access to the descriptor is implicitly granted if it
1570    has the same SID as the process.  If av is zero, then
1571    access to the file is not checked, e.g. for cases
1572    where only the descriptor is affected like seek. */
1573 static int file_has_perm(const struct cred *cred,
1574                          struct file *file,
1575                          u32 av)
1576 {
1577         struct file_security_struct *fsec = file->f_security;
1578         struct inode *inode = file->f_path.dentry->d_inode;
1579         struct avc_audit_data ad;
1580         u32 sid = cred_sid(cred);
1581         int rc;
1582
1583         AVC_AUDIT_DATA_INIT(&ad, FS);
1584         ad.u.fs.path = file->f_path;
1585
1586         if (sid != fsec->sid) {
1587                 rc = avc_has_perm(sid, fsec->sid,
1588                                   SECCLASS_FD,
1589                                   FD__USE,
1590                                   &ad);
1591                 if (rc)
1592                         goto out;
1593         }
1594
1595         /* av is zero if only checking access to the descriptor. */
1596         rc = 0;
1597         if (av)
1598                 rc = inode_has_perm(cred, inode, av, &ad);
1599
1600 out:
1601         return rc;
1602 }
1603
1604 /* Check whether a task can create a file. */
1605 static int may_create(struct inode *dir,
1606                       struct dentry *dentry,
1607                       u16 tclass)
1608 {
1609         const struct cred *cred = current_cred();
1610         const struct task_security_struct *tsec = cred->security;
1611         struct inode_security_struct *dsec;
1612         struct superblock_security_struct *sbsec;
1613         u32 sid, newsid;
1614         struct avc_audit_data ad;
1615         int rc;
1616
1617         dsec = dir->i_security;
1618         sbsec = dir->i_sb->s_security;
1619
1620         sid = tsec->sid;
1621         newsid = tsec->create_sid;
1622
1623         AVC_AUDIT_DATA_INIT(&ad, FS);
1624         ad.u.fs.path.dentry = dentry;
1625
1626         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1627                           DIR__ADD_NAME | DIR__SEARCH,
1628                           &ad);
1629         if (rc)
1630                 return rc;
1631
1632         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1633                 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid);
1634                 if (rc)
1635                         return rc;
1636         }
1637
1638         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1639         if (rc)
1640                 return rc;
1641
1642         return avc_has_perm(newsid, sbsec->sid,
1643                             SECCLASS_FILESYSTEM,
1644                             FILESYSTEM__ASSOCIATE, &ad);
1645 }
1646
1647 /* Check whether a task can create a key. */
1648 static int may_create_key(u32 ksid,
1649                           struct task_struct *ctx)
1650 {
1651         u32 sid = task_sid(ctx);
1652
1653         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1654 }
1655
1656 #define MAY_LINK        0
1657 #define MAY_UNLINK      1
1658 #define MAY_RMDIR       2
1659
1660 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1661 static int may_link(struct inode *dir,
1662                     struct dentry *dentry,
1663                     int kind)
1664
1665 {
1666         struct inode_security_struct *dsec, *isec;
1667         struct avc_audit_data ad;
1668         u32 sid = current_sid();
1669         u32 av;
1670         int rc;
1671
1672         dsec = dir->i_security;
1673         isec = dentry->d_inode->i_security;
1674
1675         AVC_AUDIT_DATA_INIT(&ad, FS);
1676         ad.u.fs.path.dentry = dentry;
1677
1678         av = DIR__SEARCH;
1679         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1680         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1681         if (rc)
1682                 return rc;
1683
1684         switch (kind) {
1685         case MAY_LINK:
1686                 av = FILE__LINK;
1687                 break;
1688         case MAY_UNLINK:
1689                 av = FILE__UNLINK;
1690                 break;
1691         case MAY_RMDIR:
1692                 av = DIR__RMDIR;
1693                 break;
1694         default:
1695                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1696                         __func__, kind);
1697                 return 0;
1698         }
1699
1700         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1701         return rc;
1702 }
1703
1704 static inline int may_rename(struct inode *old_dir,
1705                              struct dentry *old_dentry,
1706                              struct inode *new_dir,
1707                              struct dentry *new_dentry)
1708 {
1709         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1710         struct avc_audit_data ad;
1711         u32 sid = current_sid();
1712         u32 av;
1713         int old_is_dir, new_is_dir;
1714         int rc;
1715
1716         old_dsec = old_dir->i_security;
1717         old_isec = old_dentry->d_inode->i_security;
1718         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1719         new_dsec = new_dir->i_security;
1720
1721         AVC_AUDIT_DATA_INIT(&ad, FS);
1722
1723         ad.u.fs.path.dentry = old_dentry;
1724         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1725                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1726         if (rc)
1727                 return rc;
1728         rc = avc_has_perm(sid, old_isec->sid,
1729                           old_isec->sclass, FILE__RENAME, &ad);
1730         if (rc)
1731                 return rc;
1732         if (old_is_dir && new_dir != old_dir) {
1733                 rc = avc_has_perm(sid, old_isec->sid,
1734                                   old_isec->sclass, DIR__REPARENT, &ad);
1735                 if (rc)
1736                         return rc;
1737         }
1738
1739         ad.u.fs.path.dentry = new_dentry;
1740         av = DIR__ADD_NAME | DIR__SEARCH;
1741         if (new_dentry->d_inode)
1742                 av |= DIR__REMOVE_NAME;
1743         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1744         if (rc)
1745                 return rc;
1746         if (new_dentry->d_inode) {
1747                 new_isec = new_dentry->d_inode->i_security;
1748                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1749                 rc = avc_has_perm(sid, new_isec->sid,
1750                                   new_isec->sclass,
1751                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1752                 if (rc)
1753                         return rc;
1754         }
1755
1756         return 0;
1757 }
1758
1759 /* Check whether a task can perform a filesystem operation. */
1760 static int superblock_has_perm(const struct cred *cred,
1761                                struct super_block *sb,
1762                                u32 perms,
1763                                struct avc_audit_data *ad)
1764 {
1765         struct superblock_security_struct *sbsec;
1766         u32 sid = cred_sid(cred);
1767
1768         sbsec = sb->s_security;
1769         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1770 }
1771
1772 /* Convert a Linux mode and permission mask to an access vector. */
1773 static inline u32 file_mask_to_av(int mode, int mask)
1774 {
1775         u32 av = 0;
1776
1777         if ((mode & S_IFMT) != S_IFDIR) {
1778                 if (mask & MAY_EXEC)
1779                         av |= FILE__EXECUTE;
1780                 if (mask & MAY_READ)
1781                         av |= FILE__READ;
1782
1783                 if (mask & MAY_APPEND)
1784                         av |= FILE__APPEND;
1785                 else if (mask & MAY_WRITE)
1786                         av |= FILE__WRITE;
1787
1788         } else {
1789                 if (mask & MAY_EXEC)
1790                         av |= DIR__SEARCH;
1791                 if (mask & MAY_WRITE)
1792                         av |= DIR__WRITE;
1793                 if (mask & MAY_READ)
1794                         av |= DIR__READ;
1795         }
1796
1797         return av;
1798 }
1799
1800 /* Convert a Linux file to an access vector. */
1801 static inline u32 file_to_av(struct file *file)
1802 {
1803         u32 av = 0;
1804
1805         if (file->f_mode & FMODE_READ)
1806                 av |= FILE__READ;
1807         if (file->f_mode & FMODE_WRITE) {
1808                 if (file->f_flags & O_APPEND)
1809                         av |= FILE__APPEND;
1810                 else
1811                         av |= FILE__WRITE;
1812         }
1813         if (!av) {
1814                 /*
1815                  * Special file opened with flags 3 for ioctl-only use.
1816                  */
1817                 av = FILE__IOCTL;
1818         }
1819
1820         return av;
1821 }
1822
1823 /*
1824  * Convert a file to an access vector and include the correct open
1825  * open permission.
1826  */
1827 static inline u32 open_file_to_av(struct file *file)
1828 {
1829         u32 av = file_to_av(file);
1830
1831         if (selinux_policycap_openperm) {
1832                 mode_t mode = file->f_path.dentry->d_inode->i_mode;
1833                 /*
1834                  * lnk files and socks do not really have an 'open'
1835                  */
1836                 if (S_ISREG(mode))
1837                         av |= FILE__OPEN;
1838                 else if (S_ISCHR(mode))
1839                         av |= CHR_FILE__OPEN;
1840                 else if (S_ISBLK(mode))
1841                         av |= BLK_FILE__OPEN;
1842                 else if (S_ISFIFO(mode))
1843                         av |= FIFO_FILE__OPEN;
1844                 else if (S_ISDIR(mode))
1845                         av |= DIR__OPEN;
1846                 else if (S_ISSOCK(mode))
1847                         av |= SOCK_FILE__OPEN;
1848                 else
1849                         printk(KERN_ERR "SELinux: WARNING: inside %s with "
1850                                 "unknown mode:%o\n", __func__, mode);
1851         }
1852         return av;
1853 }
1854
1855 /* Hook functions begin here. */
1856
1857 static int selinux_ptrace_access_check(struct task_struct *child,
1858                                      unsigned int mode)
1859 {
1860         int rc;
1861
1862         rc = cap_ptrace_access_check(child, mode);
1863         if (rc)
1864                 return rc;
1865
1866         if (mode == PTRACE_MODE_READ) {
1867                 u32 sid = current_sid();
1868                 u32 csid = task_sid(child);
1869                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1870         }
1871
1872         return current_has_perm(child, PROCESS__PTRACE);
1873 }
1874
1875 static int selinux_ptrace_traceme(struct task_struct *parent)
1876 {
1877         int rc;
1878
1879         rc = cap_ptrace_traceme(parent);
1880         if (rc)
1881                 return rc;
1882
1883         return task_has_perm(parent, current, PROCESS__PTRACE);
1884 }
1885
1886 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1887                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1888 {
1889         int error;
1890
1891         error = current_has_perm(target, PROCESS__GETCAP);
1892         if (error)
1893                 return error;
1894
1895         return cap_capget(target, effective, inheritable, permitted);
1896 }
1897
1898 static int selinux_capset(struct cred *new, const struct cred *old,
1899                           const kernel_cap_t *effective,
1900                           const kernel_cap_t *inheritable,
1901                           const kernel_cap_t *permitted)
1902 {
1903         int error;
1904
1905         error = cap_capset(new, old,
1906                                       effective, inheritable, permitted);
1907         if (error)
1908                 return error;
1909
1910         return cred_has_perm(old, new, PROCESS__SETCAP);
1911 }
1912
1913 /*
1914  * (This comment used to live with the selinux_task_setuid hook,
1915  * which was removed).
1916  *
1917  * Since setuid only affects the current process, and since the SELinux
1918  * controls are not based on the Linux identity attributes, SELinux does not
1919  * need to control this operation.  However, SELinux does control the use of
1920  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1921  */
1922
1923 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1924                            int cap, int audit)
1925 {
1926         int rc;
1927
1928         rc = cap_capable(tsk, cred, cap, audit);
1929         if (rc)
1930                 return rc;
1931
1932         return task_has_capability(tsk, cred, cap, audit);
1933 }
1934
1935 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1936 {
1937         int buflen, rc;
1938         char *buffer, *path, *end;
1939
1940         rc = -ENOMEM;
1941         buffer = (char *)__get_free_page(GFP_KERNEL);
1942         if (!buffer)
1943                 goto out;
1944
1945         buflen = PAGE_SIZE;
1946         end = buffer+buflen;
1947         *--end = '\0';
1948         buflen--;
1949         path = end-1;
1950         *path = '/';
1951         while (table) {
1952                 const char *name = table->procname;
1953                 size_t namelen = strlen(name);
1954                 buflen -= namelen + 1;
1955                 if (buflen < 0)
1956                         goto out_free;
1957                 end -= namelen;
1958                 memcpy(end, name, namelen);
1959                 *--end = '/';
1960                 path = end;
1961                 table = table->parent;
1962         }
1963         buflen -= 4;
1964         if (buflen < 0)
1965                 goto out_free;
1966         end -= 4;
1967         memcpy(end, "/sys", 4);
1968         path = end;
1969         rc = security_genfs_sid("proc", path, tclass, sid);
1970 out_free:
1971         free_page((unsigned long)buffer);
1972 out:
1973         return rc;
1974 }
1975
1976 static int selinux_sysctl(ctl_table *table, int op)
1977 {
1978         int error = 0;
1979         u32 av;
1980         u32 tsid, sid;
1981         int rc;
1982
1983         sid = current_sid();
1984
1985         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1986                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1987         if (rc) {
1988                 /* Default to the well-defined sysctl SID. */
1989                 tsid = SECINITSID_SYSCTL;
1990         }
1991
1992         /* The op values are "defined" in sysctl.c, thereby creating
1993          * a bad coupling between this module and sysctl.c */
1994         if (op == 001) {
1995                 error = avc_has_perm(sid, tsid,
1996                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1997         } else {
1998                 av = 0;
1999                 if (op & 004)
2000                         av |= FILE__READ;
2001                 if (op & 002)
2002                         av |= FILE__WRITE;
2003                 if (av)
2004                         error = avc_has_perm(sid, tsid,
2005                                              SECCLASS_FILE, av, NULL);
2006         }
2007
2008         return error;
2009 }
2010
2011 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2012 {
2013         const struct cred *cred = current_cred();
2014         int rc = 0;
2015
2016         if (!sb)
2017                 return 0;
2018
2019         switch (cmds) {
2020         case Q_SYNC:
2021         case Q_QUOTAON:
2022         case Q_QUOTAOFF:
2023         case Q_SETINFO:
2024         case Q_SETQUOTA:
2025                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2026                 break;
2027         case Q_GETFMT:
2028         case Q_GETINFO:
2029         case Q_GETQUOTA:
2030                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2031                 break;
2032         default:
2033                 rc = 0;  /* let the kernel handle invalid cmds */
2034                 break;
2035         }
2036         return rc;
2037 }
2038
2039 static int selinux_quota_on(struct dentry *dentry)
2040 {
2041         const struct cred *cred = current_cred();
2042
2043         return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
2044 }
2045
2046 static int selinux_syslog(int type)
2047 {
2048         int rc;
2049
2050         rc = cap_syslog(type);
2051         if (rc)
2052                 return rc;
2053
2054         switch (type) {
2055         case 3:         /* Read last kernel messages */
2056         case 10:        /* Return size of the log buffer */
2057                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2058                 break;
2059         case 6:         /* Disable logging to console */
2060         case 7:         /* Enable logging to console */
2061         case 8:         /* Set level of messages printed to console */
2062                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2063                 break;
2064         case 0:         /* Close log */
2065         case 1:         /* Open log */
2066         case 2:         /* Read from log */
2067         case 4:         /* Read/clear last kernel messages */
2068         case 5:         /* Clear ring buffer */
2069         default:
2070                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2071                 break;
2072         }
2073         return rc;
2074 }
2075
2076 /*
2077  * Check that a process has enough memory to allocate a new virtual
2078  * mapping. 0 means there is enough memory for the allocation to
2079  * succeed and -ENOMEM implies there is not.
2080  *
2081  * Do not audit the selinux permission check, as this is applied to all
2082  * processes that allocate mappings.
2083  */
2084 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2085 {
2086         int rc, cap_sys_admin = 0;
2087
2088         rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
2089                              SECURITY_CAP_NOAUDIT);
2090         if (rc == 0)
2091                 cap_sys_admin = 1;
2092
2093         return __vm_enough_memory(mm, pages, cap_sys_admin);
2094 }
2095
2096 /* binprm security operations */
2097
2098 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2099 {
2100         const struct task_security_struct *old_tsec;
2101         struct task_security_struct *new_tsec;
2102         struct inode_security_struct *isec;
2103         struct avc_audit_data ad;
2104         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2105         int rc;
2106
2107         rc = cap_bprm_set_creds(bprm);
2108         if (rc)
2109                 return rc;
2110
2111         /* SELinux context only depends on initial program or script and not
2112          * the script interpreter */
2113         if (bprm->cred_prepared)
2114                 return 0;
2115
2116         old_tsec = current_security();
2117         new_tsec = bprm->cred->security;
2118         isec = inode->i_security;
2119
2120         /* Default to the current task SID. */
2121         new_tsec->sid = old_tsec->sid;
2122         new_tsec->osid = old_tsec->sid;
2123
2124         /* Reset fs, key, and sock SIDs on execve. */
2125         new_tsec->create_sid = 0;
2126         new_tsec->keycreate_sid = 0;
2127         new_tsec->sockcreate_sid = 0;
2128
2129         if (old_tsec->exec_sid) {
2130                 new_tsec->sid = old_tsec->exec_sid;
2131                 /* Reset exec SID on execve. */
2132                 new_tsec->exec_sid = 0;
2133         } else {
2134                 /* Check for a default transition on this program. */
2135                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2136                                              SECCLASS_PROCESS, &new_tsec->sid);
2137                 if (rc)
2138                         return rc;
2139         }
2140
2141         AVC_AUDIT_DATA_INIT(&ad, FS);
2142         ad.u.fs.path = bprm->file->f_path;
2143
2144         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2145                 new_tsec->sid = old_tsec->sid;
2146
2147         if (new_tsec->sid == old_tsec->sid) {
2148                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2149                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2150                 if (rc)
2151                         return rc;
2152         } else {
2153                 /* Check permissions for the transition. */
2154                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2155                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2156                 if (rc)
2157                         return rc;
2158
2159                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2160                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2161                 if (rc)
2162                         return rc;
2163
2164                 /* Check for shared state */
2165                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2166                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2167                                           SECCLASS_PROCESS, PROCESS__SHARE,
2168                                           NULL);
2169                         if (rc)
2170                                 return -EPERM;
2171                 }
2172
2173                 /* Make sure that anyone attempting to ptrace over a task that
2174                  * changes its SID has the appropriate permit */
2175                 if (bprm->unsafe &
2176                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2177                         struct task_struct *tracer;
2178                         struct task_security_struct *sec;
2179                         u32 ptsid = 0;
2180
2181                         rcu_read_lock();
2182                         tracer = tracehook_tracer_task(current);
2183                         if (likely(tracer != NULL)) {
2184                                 sec = __task_cred(tracer)->security;
2185                                 ptsid = sec->sid;
2186                         }
2187                         rcu_read_unlock();
2188
2189                         if (ptsid != 0) {
2190                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2191                                                   SECCLASS_PROCESS,
2192                                                   PROCESS__PTRACE, NULL);
2193                                 if (rc)
2194                                         return -EPERM;
2195                         }
2196                 }
2197
2198                 /* Clear any possibly unsafe personality bits on exec: */
2199                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2200         }
2201
2202         return 0;
2203 }
2204
2205 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2206 {
2207         const struct cred *cred = current_cred();
2208         const struct task_security_struct *tsec = cred->security;
2209         u32 sid, osid;
2210         int atsecure = 0;
2211
2212         sid = tsec->sid;
2213         osid = tsec->osid;
2214
2215         if (osid != sid) {
2216                 /* Enable secure mode for SIDs transitions unless
2217                    the noatsecure permission is granted between
2218                    the two SIDs, i.e. ahp returns 0. */
2219                 atsecure = avc_has_perm(osid, sid,
2220                                         SECCLASS_PROCESS,
2221                                         PROCESS__NOATSECURE, NULL);
2222         }
2223
2224         return (atsecure || cap_bprm_secureexec(bprm));
2225 }
2226
2227 extern struct vfsmount *selinuxfs_mount;
2228 extern struct dentry *selinux_null;
2229
2230 /* Derived from fs/exec.c:flush_old_files. */
2231 static inline void flush_unauthorized_files(const struct cred *cred,
2232                                             struct files_struct *files)
2233 {
2234         struct avc_audit_data ad;
2235         struct file *file, *devnull = NULL;
2236         struct tty_struct *tty;
2237         struct fdtable *fdt;
2238         long j = -1;
2239         int drop_tty = 0;
2240
2241         tty = get_current_tty();
2242         if (tty) {
2243                 file_list_lock();
2244                 if (!list_empty(&tty->tty_files)) {
2245                         struct inode *inode;
2246
2247                         /* Revalidate access to controlling tty.
2248                            Use inode_has_perm on the tty inode directly rather
2249                            than using file_has_perm, as this particular open
2250                            file may belong to another process and we are only
2251                            interested in the inode-based check here. */
2252                         file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2253                         inode = file->f_path.dentry->d_inode;
2254                         if (inode_has_perm(cred, inode,
2255                                            FILE__READ | FILE__WRITE, NULL)) {
2256                                 drop_tty = 1;
2257                         }
2258                 }
2259                 file_list_unlock();
2260                 tty_kref_put(tty);
2261         }
2262         /* Reset controlling tty. */
2263         if (drop_tty)
2264                 no_tty();
2265
2266         /* Revalidate access to inherited open files. */
2267
2268         AVC_AUDIT_DATA_INIT(&ad, FS);
2269
2270         spin_lock(&files->file_lock);
2271         for (;;) {
2272                 unsigned long set, i;
2273                 int fd;
2274
2275                 j++;
2276                 i = j * __NFDBITS;
2277                 fdt = files_fdtable(files);
2278                 if (i >= fdt->max_fds)
2279                         break;
2280                 set = fdt->open_fds->fds_bits[j];
2281                 if (!set)
2282                         continue;
2283                 spin_unlock(&files->file_lock);
2284                 for ( ; set ; i++, set >>= 1) {
2285                         if (set & 1) {
2286                                 file = fget(i);
2287                                 if (!file)
2288                                         continue;
2289                                 if (file_has_perm(cred,
2290                                                   file,
2291                                                   file_to_av(file))) {
2292                                         sys_close(i);
2293                                         fd = get_unused_fd();
2294                                         if (fd != i) {
2295                                                 if (fd >= 0)
2296                                                         put_unused_fd(fd);
2297                                                 fput(file);
2298                                                 continue;
2299                                         }
2300                                         if (devnull) {
2301                                                 get_file(devnull);
2302                                         } else {
2303                                                 devnull = dentry_open(
2304                                                         dget(selinux_null),
2305                                                         mntget(selinuxfs_mount),
2306                                                         O_RDWR, cred);
2307                                                 if (IS_ERR(devnull)) {
2308                                                         devnull = NULL;
2309                                                         put_unused_fd(fd);
2310                                                         fput(file);
2311                                                         continue;
2312                                                 }
2313                                         }
2314                                         fd_install(fd, devnull);
2315                                 }
2316                                 fput(file);
2317                         }
2318                 }
2319                 spin_lock(&files->file_lock);
2320
2321         }
2322         spin_unlock(&files->file_lock);
2323 }
2324
2325 /*
2326  * Prepare a process for imminent new credential changes due to exec
2327  */
2328 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2329 {
2330         struct task_security_struct *new_tsec;
2331         struct rlimit *rlim, *initrlim;
2332         int rc, i;
2333
2334         new_tsec = bprm->cred->security;
2335         if (new_tsec->sid == new_tsec->osid)
2336                 return;
2337
2338         /* Close files for which the new task SID is not authorized. */
2339         flush_unauthorized_files(bprm->cred, current->files);
2340
2341         /* Always clear parent death signal on SID transitions. */
2342         current->pdeath_signal = 0;
2343
2344         /* Check whether the new SID can inherit resource limits from the old
2345          * SID.  If not, reset all soft limits to the lower of the current
2346          * task's hard limit and the init task's soft limit.
2347          *
2348          * Note that the setting of hard limits (even to lower them) can be
2349          * controlled by the setrlimit check.  The inclusion of the init task's
2350          * soft limit into the computation is to avoid resetting soft limits
2351          * higher than the default soft limit for cases where the default is
2352          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2353          */
2354         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2355                           PROCESS__RLIMITINH, NULL);
2356         if (rc) {
2357                 for (i = 0; i < RLIM_NLIMITS; i++) {
2358                         rlim = current->signal->rlim + i;
2359                         initrlim = init_task.signal->rlim + i;
2360                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2361                 }
2362                 update_rlimit_cpu(rlim->rlim_cur);
2363         }
2364 }
2365
2366 /*
2367  * Clean up the process immediately after the installation of new credentials
2368  * due to exec
2369  */
2370 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2371 {
2372         const struct task_security_struct *tsec = current_security();
2373         struct itimerval itimer;
2374         u32 osid, sid;
2375         int rc, i;
2376
2377         osid = tsec->osid;
2378         sid = tsec->sid;
2379
2380         if (sid == osid)
2381                 return;
2382
2383         /* Check whether the new SID can inherit signal state from the old SID.
2384          * If not, clear itimers to avoid subsequent signal generation and
2385          * flush and unblock signals.
2386          *
2387          * This must occur _after_ the task SID has been updated so that any
2388          * kill done after the flush will be checked against the new SID.
2389          */
2390         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2391         if (rc) {
2392                 memset(&itimer, 0, sizeof itimer);
2393                 for (i = 0; i < 3; i++)
2394                         do_setitimer(i, &itimer, NULL);
2395                 spin_lock_irq(&current->sighand->siglock);
2396                 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2397                         __flush_signals(current);
2398                         flush_signal_handlers(current, 1);
2399                         sigemptyset(&current->blocked);
2400                 }
2401                 spin_unlock_irq(&current->sighand->siglock);
2402         }
2403
2404         /* Wake up the parent if it is waiting so that it can recheck
2405          * wait permission to the new task SID. */
2406         read_lock(&tasklist_lock);
2407         wake_up_interruptible(&current->real_parent->signal->wait_chldexit);
2408         read_unlock(&tasklist_lock);
2409 }
2410
2411 /* superblock security operations */
2412
2413 static int selinux_sb_alloc_security(struct super_block *sb)
2414 {
2415         return superblock_alloc_security(sb);
2416 }
2417
2418 static void selinux_sb_free_security(struct super_block *sb)
2419 {
2420         superblock_free_security(sb);
2421 }
2422
2423 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2424 {
2425         if (plen > olen)
2426                 return 0;
2427
2428         return !memcmp(prefix, option, plen);
2429 }
2430
2431 static inline int selinux_option(char *option, int len)
2432 {
2433         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2434                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2435                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2436                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2437                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2438 }
2439
2440 static inline void take_option(char **to, char *from, int *first, int len)
2441 {
2442         if (!*first) {
2443                 **to = ',';
2444                 *to += 1;
2445         } else
2446                 *first = 0;
2447         memcpy(*to, from, len);
2448         *to += len;
2449 }
2450
2451 static inline void take_selinux_option(char **to, char *from, int *first,
2452                                        int len)
2453 {
2454         int current_size = 0;
2455
2456         if (!*first) {
2457                 **to = '|';
2458                 *to += 1;
2459         } else
2460                 *first = 0;
2461
2462         while (current_size < len) {
2463                 if (*from != '"') {
2464                         **to = *from;
2465                         *to += 1;
2466                 }
2467                 from += 1;
2468                 current_size += 1;
2469         }
2470 }
2471
2472 static int selinux_sb_copy_data(char *orig, char *copy)
2473 {
2474         int fnosec, fsec, rc = 0;
2475         char *in_save, *in_curr, *in_end;
2476         char *sec_curr, *nosec_save, *nosec;
2477         int open_quote = 0;
2478
2479         in_curr = orig;
2480         sec_curr = copy;
2481
2482         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2483         if (!nosec) {
2484                 rc = -ENOMEM;
2485                 goto out;
2486         }
2487
2488         nosec_save = nosec;
2489         fnosec = fsec = 1;
2490         in_save = in_end = orig;
2491
2492         do {
2493                 if (*in_end == '"')
2494                         open_quote = !open_quote;
2495                 if ((*in_end == ',' && open_quote == 0) ||
2496                                 *in_end == '\0') {
2497                         int len = in_end - in_curr;
2498
2499                         if (selinux_option(in_curr, len))
2500                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2501                         else
2502                                 take_option(&nosec, in_curr, &fnosec, len);
2503
2504                         in_curr = in_end + 1;
2505                 }
2506         } while (*in_end++);
2507
2508         strcpy(in_save, nosec_save);
2509         free_page((unsigned long)nosec_save);
2510 out:
2511         return rc;
2512 }
2513
2514 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2515 {
2516         const struct cred *cred = current_cred();
2517         struct avc_audit_data ad;
2518         int rc;
2519
2520         rc = superblock_doinit(sb, data);
2521         if (rc)
2522                 return rc;
2523
2524         /* Allow all mounts performed by the kernel */
2525         if (flags & MS_KERNMOUNT)
2526                 return 0;
2527
2528         AVC_AUDIT_DATA_INIT(&ad, FS);
2529         ad.u.fs.path.dentry = sb->s_root;
2530         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2531 }
2532
2533 static int selinux_sb_statfs(struct dentry *dentry)
2534 {
2535         const struct cred *cred = current_cred();
2536         struct avc_audit_data ad;
2537
2538         AVC_AUDIT_DATA_INIT(&ad, FS);
2539         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2540         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2541 }
2542
2543 static int selinux_mount(char *dev_name,
2544                          struct path *path,
2545                          char *type,
2546                          unsigned long flags,
2547                          void *data)
2548 {
2549         const struct cred *cred = current_cred();
2550
2551         if (flags & MS_REMOUNT)
2552                 return superblock_has_perm(cred, path->mnt->mnt_sb,
2553                                            FILESYSTEM__REMOUNT, NULL);
2554         else
2555                 return dentry_has_perm(cred, path->mnt, path->dentry,
2556                                        FILE__MOUNTON);
2557 }
2558
2559 static int selinux_umount(struct vfsmount *mnt, int flags)
2560 {
2561         const struct cred *cred = current_cred();
2562
2563         return superblock_has_perm(cred, mnt->mnt_sb,
2564                                    FILESYSTEM__UNMOUNT, NULL);
2565 }
2566
2567 /* inode security operations */
2568
2569 static int selinux_inode_alloc_security(struct inode *inode)
2570 {
2571         return inode_alloc_security(inode);
2572 }
2573
2574 static void selinux_inode_free_security(struct inode *inode)
2575 {
2576         inode_free_security(inode);
2577 }
2578
2579 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2580                                        char **name, void **value,
2581                                        size_t *len)
2582 {
2583         const struct cred *cred = current_cred();
2584         const struct task_security_struct *tsec = cred->security;
2585         struct inode_security_struct *dsec;
2586         struct superblock_security_struct *sbsec;
2587         u32 sid, newsid, clen;
2588         int rc;
2589         char *namep = NULL, *context;
2590
2591         dsec = dir->i_security;
2592         sbsec = dir->i_sb->s_security;
2593
2594         sid = tsec->sid;
2595         newsid = tsec->create_sid;
2596
2597         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2598                 rc = security_transition_sid(sid, dsec->sid,
2599                                              inode_mode_to_security_class(inode->i_mode),
2600                                              &newsid);
2601                 if (rc) {
2602                         printk(KERN_WARNING "%s:  "
2603                                "security_transition_sid failed, rc=%d (dev=%s "
2604                                "ino=%ld)\n",
2605                                __func__,
2606                                -rc, inode->i_sb->s_id, inode->i_ino);
2607                         return rc;
2608                 }
2609         }
2610
2611         /* Possibly defer initialization to selinux_complete_init. */
2612         if (sbsec->flags & SE_SBINITIALIZED) {
2613                 struct inode_security_struct *isec = inode->i_security;
2614                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2615                 isec->sid = newsid;
2616                 isec->initialized = 1;
2617         }
2618
2619         if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2620                 return -EOPNOTSUPP;
2621
2622         if (name) {
2623                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2624                 if (!namep)
2625                         return -ENOMEM;
2626                 *name = namep;
2627         }
2628
2629         if (value && len) {
2630                 rc = security_sid_to_context_force(newsid, &context, &clen);
2631                 if (rc) {
2632                         kfree(namep);
2633                         return rc;
2634                 }
2635                 *value = context;
2636                 *len = clen;
2637         }
2638
2639         return 0;
2640 }
2641
2642 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2643 {
2644         return may_create(dir, dentry, SECCLASS_FILE);
2645 }
2646
2647 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2648 {
2649         return may_link(dir, old_dentry, MAY_LINK);
2650 }
2651
2652 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2653 {
2654         return may_link(dir, dentry, MAY_UNLINK);
2655 }
2656
2657 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2658 {
2659         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2660 }
2661
2662 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2663 {
2664         return may_create(dir, dentry, SECCLASS_DIR);
2665 }
2666
2667 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2668 {
2669         return may_link(dir, dentry, MAY_RMDIR);
2670 }
2671
2672 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2673 {
2674         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2675 }
2676
2677 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2678                                 struct inode *new_inode, struct dentry *new_dentry)
2679 {
2680         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2681 }
2682
2683 static int selinux_inode_readlink(struct dentry *dentry)
2684 {
2685         const struct cred *cred = current_cred();
2686
2687         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2688 }
2689
2690 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2691 {
2692         const struct cred *cred = current_cred();
2693
2694         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2695 }
2696
2697 static int selinux_inode_permission(struct inode *inode, int mask)
2698 {
2699         const struct cred *cred = current_cred();
2700
2701         if (!mask) {
2702                 /* No permission to check.  Existence test. */
2703                 return 0;
2704         }
2705
2706         return inode_has_perm(cred, inode,
2707                               file_mask_to_av(inode->i_mode, mask), NULL);
2708 }
2709
2710 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2711 {
2712         const struct cred *cred = current_cred();
2713
2714         if (iattr->ia_valid & ATTR_FORCE)
2715                 return 0;
2716
2717         if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2718                                ATTR_ATIME_SET | ATTR_MTIME_SET))
2719                 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2720
2721         return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2722 }
2723
2724 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2725 {
2726         const struct cred *cred = current_cred();
2727
2728         return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2729 }
2730
2731 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2732 {
2733         const struct cred *cred = current_cred();
2734
2735         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2736                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2737                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2738                         if (!capable(CAP_SETFCAP))
2739                                 return -EPERM;
2740                 } else if (!capable(CAP_SYS_ADMIN)) {
2741                         /* A different attribute in the security namespace.
2742                            Restrict to administrator. */
2743                         return -EPERM;
2744                 }
2745         }
2746
2747         /* Not an attribute we recognize, so just check the
2748            ordinary setattr permission. */
2749         return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2750 }
2751
2752 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2753                                   const void *value, size_t size, int flags)
2754 {
2755         struct inode *inode = dentry->d_inode;
2756         struct inode_security_struct *isec = inode->i_security;
2757         struct superblock_security_struct *sbsec;
2758         struct avc_audit_data ad;
2759         u32 newsid, sid = current_sid();
2760         int rc = 0;
2761
2762         if (strcmp(name, XATTR_NAME_SELINUX))
2763                 return selinux_inode_setotherxattr(dentry, name);
2764
2765         sbsec = inode->i_sb->s_security;
2766         if (!(sbsec->flags & SE_SBLABELSUPP))
2767                 return -EOPNOTSUPP;
2768
2769         if (!is_owner_or_cap(inode))
2770                 return -EPERM;
2771
2772         AVC_AUDIT_DATA_INIT(&ad, FS);
2773         ad.u.fs.path.dentry = dentry;
2774
2775         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2776                           FILE__RELABELFROM, &ad);
2777         if (rc)
2778                 return rc;
2779
2780         rc = security_context_to_sid(value, size, &newsid);
2781         if (rc == -EINVAL) {
2782                 if (!capable(CAP_MAC_ADMIN))
2783                         return rc;
2784                 rc = security_context_to_sid_force(value, size, &newsid);
2785         }
2786         if (rc)
2787                 return rc;
2788
2789         rc = avc_has_perm(sid, newsid, isec->sclass,
2790                           FILE__RELABELTO, &ad);
2791         if (rc)
2792                 return rc;
2793
2794         rc = security_validate_transition(isec->sid, newsid, sid,
2795                                           isec->sclass);
2796         if (rc)
2797                 return rc;
2798
2799         return avc_has_perm(newsid,
2800                             sbsec->sid,
2801                             SECCLASS_FILESYSTEM,
2802                             FILESYSTEM__ASSOCIATE,
2803                             &ad);
2804 }
2805
2806 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2807                                         const void *value, size_t size,
2808                                         int flags)
2809 {
2810         struct inode *inode = dentry->d_inode;
2811         struct inode_security_struct *isec = inode->i_security;
2812         u32 newsid;
2813         int rc;
2814
2815         if (strcmp(name, XATTR_NAME_SELINUX)) {
2816                 /* Not an attribute we recognize, so nothing to do. */
2817                 return;
2818         }
2819
2820         rc = security_context_to_sid_force(value, size, &newsid);
2821         if (rc) {
2822                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2823                        "for (%s, %lu), rc=%d\n",
2824                        inode->i_sb->s_id, inode->i_ino, -rc);
2825                 return;
2826         }
2827
2828         isec->sid = newsid;
2829         return;
2830 }
2831
2832 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2833 {
2834         const struct cred *cred = current_cred();
2835
2836         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2837 }
2838
2839 static int selinux_inode_listxattr(struct dentry *dentry)
2840 {
2841         const struct cred *cred = current_cred();
2842
2843         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2844 }
2845
2846 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2847 {
2848         if (strcmp(name, XATTR_NAME_SELINUX))
2849                 return selinux_inode_setotherxattr(dentry, name);
2850
2851         /* No one is allowed to remove a SELinux security label.
2852            You can change the label, but all data must be labeled. */
2853         return -EACCES;
2854 }
2855
2856 /*
2857  * Copy the inode security context value to the user.
2858  *
2859  * Permission check is handled by selinux_inode_getxattr hook.
2860  */
2861 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2862 {
2863         u32 size;
2864         int error;
2865         char *context = NULL;
2866         struct inode_security_struct *isec = inode->i_security;
2867
2868         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2869                 return -EOPNOTSUPP;
2870
2871         /*
2872          * If the caller has CAP_MAC_ADMIN, then get the raw context
2873          * value even if it is not defined by current policy; otherwise,
2874          * use the in-core value under current policy.
2875          * Use the non-auditing forms of the permission checks since
2876          * getxattr may be called by unprivileged processes commonly
2877          * and lack of permission just means that we fall back to the
2878          * in-core context value, not a denial.
2879          */
2880         error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2881                                 SECURITY_CAP_NOAUDIT);
2882         if (!error)
2883                 error = security_sid_to_context_force(isec->sid, &context,
2884                                                       &size);
2885         else
2886                 error = security_sid_to_context(isec->sid, &context, &size);
2887         if (error)
2888                 return error;
2889         error = size;
2890         if (alloc) {
2891                 *buffer = context;
2892                 goto out_nofree;
2893         }
2894         kfree(context);
2895 out_nofree:
2896         return error;
2897 }
2898
2899 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2900                                      const void *value, size_t size, int flags)
2901 {
2902         struct inode_security_struct *isec = inode->i_security;
2903         u32 newsid;
2904         int rc;
2905
2906         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2907                 return -EOPNOTSUPP;
2908
2909         if (!value || !size)
2910                 return -EACCES;
2911
2912         rc = security_context_to_sid((void *)value, size, &newsid);
2913         if (rc)
2914                 return rc;
2915
2916         isec->sid = newsid;
2917         return 0;
2918 }
2919
2920 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2921 {
2922         const int len = sizeof(XATTR_NAME_SELINUX);
2923         if (buffer && len <= buffer_size)
2924                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2925         return len;
2926 }
2927
2928 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2929 {
2930         struct inode_security_struct *isec = inode->i_security;
2931         *secid = isec->sid;
2932 }
2933
2934 /* file security operations */
2935
2936 static int selinux_revalidate_file_permission(struct file *file, int mask)
2937 {
2938         const struct cred *cred = current_cred();
2939         struct inode *inode = file->f_path.dentry->d_inode;
2940
2941         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2942         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2943                 mask |= MAY_APPEND;
2944
2945         return file_has_perm(cred, file,
2946                              file_mask_to_av(inode->i_mode, mask));
2947 }
2948
2949 static int selinux_file_permission(struct file *file, int mask)
2950 {
2951         struct inode *inode = file->f_path.dentry->d_inode;
2952         struct file_security_struct *fsec = file->f_security;
2953         struct inode_security_struct *isec = inode->i_security;
2954         u32 sid = current_sid();
2955
2956         if (!mask)
2957                 /* No permission to check.  Existence test. */
2958                 return 0;
2959
2960         if (sid == fsec->sid && fsec->isid == isec->sid &&
2961             fsec->pseqno == avc_policy_seqno())
2962                 /* No change since dentry_open check. */
2963                 return 0;
2964
2965         return selinux_revalidate_file_permission(file, mask);
2966 }
2967
2968 static int selinux_file_alloc_security(struct file *file)
2969 {
2970         return file_alloc_security(file);
2971 }
2972
2973 static void selinux_file_free_security(struct file *file)
2974 {
2975         file_free_security(file);
2976 }
2977
2978 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2979                               unsigned long arg)
2980 {
2981         const struct cred *cred = current_cred();
2982         u32 av = 0;
2983
2984         if (_IOC_DIR(cmd) & _IOC_WRITE)
2985                 av |= FILE__WRITE;
2986         if (_IOC_DIR(cmd) & _IOC_READ)
2987                 av |= FILE__READ;
2988         if (!av)
2989                 av = FILE__IOCTL;
2990
2991         return file_has_perm(cred, file, av);
2992 }
2993
2994 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2995 {
2996         const struct cred *cred = current_cred();
2997         int rc = 0;
2998
2999 #ifndef CONFIG_PPC32
3000         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3001                 /*
3002                  * We are making executable an anonymous mapping or a
3003                  * private file mapping that will also be writable.
3004                  * This has an additional check.
3005                  */
3006                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3007                 if (rc)
3008                         goto error;
3009         }
3010 #endif
3011
3012         if (file) {
3013                 /* read access is always possible with a mapping */
3014                 u32 av = FILE__READ;
3015
3016                 /* write access only matters if the mapping is shared */
3017                 if (shared && (prot & PROT_WRITE))
3018                         av |= FILE__WRITE;
3019
3020                 if (prot & PROT_EXEC)
3021                         av |= FILE__EXECUTE;
3022
3023                 return file_has_perm(cred, file, av);
3024         }
3025
3026 error:
3027         return rc;
3028 }
3029
3030 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3031                              unsigned long prot, unsigned long flags,
3032                              unsigned long addr, unsigned long addr_only)
3033 {
3034         int rc = 0;
3035         u32 sid = current_sid();
3036
3037         /*
3038          * notice that we are intentionally putting the SELinux check before
3039          * the secondary cap_file_mmap check.  This is such a likely attempt
3040          * at bad behaviour/exploit that we always want to get the AVC, even
3041          * if DAC would have also denied the operation.
3042          */
3043         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3044                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3045                                   MEMPROTECT__MMAP_ZERO, NULL);
3046                 if (rc)
3047                         return rc;
3048         }
3049
3050         /* do DAC check on address space usage */
3051         rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
3052         if (rc || addr_only)
3053                 return rc;
3054
3055         if (selinux_checkreqprot)
3056                 prot = reqprot;
3057
3058         return file_map_prot_check(file, prot,
3059                                    (flags & MAP_TYPE) == MAP_SHARED);
3060 }
3061
3062 static int selinux_file_mprotect(struct vm_area_struct *vma,
3063                                  unsigned long reqprot,
3064                                  unsigned long prot)
3065 {
3066         const struct cred *cred = current_cred();
3067
3068         if (selinux_checkreqprot)
3069                 prot = reqprot;
3070
3071 #ifndef CONFIG_PPC32
3072         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3073                 int rc = 0;
3074                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3075                     vma->vm_end <= vma->vm_mm->brk) {
3076                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3077                 } else if (!vma->vm_file &&
3078                            vma->vm_start <= vma->vm_mm->start_stack &&
3079                            vma->vm_end >= vma->vm_mm->start_stack) {
3080                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3081                 } else if (vma->vm_file && vma->anon_vma) {
3082                         /*
3083                          * We are making executable a file mapping that has
3084                          * had some COW done. Since pages might have been
3085                          * written, check ability to execute the possibly
3086                          * modified content.  This typically should only
3087                          * occur for text relocations.
3088                          */
3089                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3090                 }
3091                 if (rc)
3092                         return rc;
3093         }
3094 #endif
3095
3096         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3097 }
3098
3099 static int selinux_file_lock(struct file *file, unsigned int cmd)
3100 {
3101         const struct cred *cred = current_cred();
3102
3103         return file_has_perm(cred, file, FILE__LOCK);
3104 }
3105
3106 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3107                               unsigned long arg)
3108 {
3109         const struct cred *cred = current_cred();
3110         int err = 0;
3111
3112         switch (cmd) {
3113         case F_SETFL:
3114                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3115                         err = -EINVAL;
3116                         break;
3117                 }
3118
3119                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3120                         err = file_has_perm(cred, file, FILE__WRITE);
3121                         break;
3122                 }
3123                 /* fall through */
3124         case F_SETOWN:
3125         case F_SETSIG:
3126         case F_GETFL:
3127         case F_GETOWN:
3128         case F_GETSIG:
3129                 /* Just check FD__USE permission */
3130                 err = file_has_perm(cred, file, 0);
3131                 break;
3132         case F_GETLK:
3133         case F_SETLK:
3134         case F_SETLKW:
3135 #if BITS_PER_LONG == 32
3136         case F_GETLK64:
3137         case F_SETLK64:
3138         case F_SETLKW64:
3139 #endif
3140                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3141                         err = -EINVAL;
3142                         break;
3143                 }
3144                 err = file_has_perm(cred, file, FILE__LOCK);
3145                 break;
3146         }
3147
3148         return err;
3149 }
3150
3151 static int selinux_file_set_fowner(struct file *file)
3152 {
3153         struct file_security_struct *fsec;
3154
3155         fsec = file->f_security;
3156         fsec->fown_sid = current_sid();
3157
3158         return 0;
3159 }
3160
3161 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3162                                        struct fown_struct *fown, int signum)
3163 {
3164         struct file *file;
3165         u32 sid = task_sid(tsk);
3166         u32 perm;
3167         struct file_security_struct *fsec;
3168
3169         /* struct fown_struct is never outside the context of a struct file */
3170         file = container_of(fown, struct file, f_owner);
3171
3172         fsec = file->f_security;
3173
3174         if (!signum)
3175                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3176         else
3177                 perm = signal_to_av(signum);
3178
3179         return avc_has_perm(fsec->fown_sid, sid,
3180                             SECCLASS_PROCESS, perm, NULL);
3181 }
3182
3183 static int selinux_file_receive(struct file *file)
3184 {
3185         const struct cred *cred = current_cred();
3186
3187         return file_has_perm(cred, file, file_to_av(file));
3188 }
3189
3190 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3191 {
3192         struct file_security_struct *fsec;
3193         struct inode *inode;
3194         struct inode_security_struct *isec;
3195
3196         inode = file->f_path.dentry->d_inode;
3197         fsec = file->f_security;
3198         isec = inode->i_security;
3199         /*
3200          * Save inode label and policy sequence number
3201          * at open-time so that selinux_file_permission
3202          * can determine whether revalidation is necessary.
3203          * Task label is already saved in the file security
3204          * struct as its SID.
3205          */
3206         fsec->isid = isec->sid;
3207         fsec->pseqno = avc_policy_seqno();
3208         /*
3209          * Since the inode label or policy seqno may have changed
3210          * between the selinux_inode_permission check and the saving
3211          * of state above, recheck that access is still permitted.
3212          * Otherwise, access might never be revalidated against the
3213          * new inode label or new policy.
3214          * This check is not redundant - do not remove.
3215          */
3216         return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3217 }
3218
3219 /* task security operations */
3220
3221 static int selinux_task_create(unsigned long clone_flags)
3222 {
3223         return current_has_perm(current, PROCESS__FORK);
3224 }
3225
3226 /*
3227  * detach and free the LSM part of a set of credentials
3228  */
3229 static void selinux_cred_free(struct cred *cred)
3230 {
3231         struct task_security_struct *tsec = cred->security;
3232         cred->security = NULL;
3233         kfree(tsec);
3234 }
3235
3236 /*
3237  * prepare a new set of credentials for modification
3238  */
3239 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3240                                 gfp_t gfp)
3241 {
3242         const struct task_security_struct *old_tsec;
3243         struct task_security_struct *tsec;
3244
3245         old_tsec = old->security;
3246
3247         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3248         if (!tsec)
3249                 return -ENOMEM;
3250
3251         new->security = tsec;
3252         return 0;
3253 }
3254
3255 /*
3256  * set the security data for a kernel service
3257  * - all the creation contexts are set to unlabelled
3258  */
3259 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3260 {
3261         struct task_security_struct *tsec = new->security;
3262         u32 sid = current_sid();
3263         int ret;
3264
3265         ret = avc_has_perm(sid, secid,
3266                            SECCLASS_KERNEL_SERVICE,
3267                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3268                            NULL);
3269         if (ret == 0) {
3270                 tsec->sid = secid;
3271                 tsec->create_sid = 0;
3272                 tsec->keycreate_sid = 0;
3273                 tsec->sockcreate_sid = 0;
3274         }
3275         return ret;
3276 }
3277
3278 /*
3279  * set the file creation context in a security record to the same as the
3280  * objective context of the specified inode
3281  */
3282 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3283 {
3284         struct inode_security_struct *isec = inode->i_security;
3285         struct task_security_struct *tsec = new->security;
3286         u32 sid = current_sid();
3287         int ret;
3288
3289         ret = avc_has_perm(sid, isec->sid,
3290                            SECCLASS_KERNEL_SERVICE,
3291                            KERNEL_SERVICE__CREATE_FILES_AS,
3292                            NULL);
3293
3294         if (ret == 0)
3295                 tsec->create_sid = isec->sid;
3296         return 0;
3297 }
3298
3299 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3300 {
3301         return current_has_perm(p, PROCESS__SETPGID);
3302 }
3303
3304 static int selinux_task_getpgid(struct task_struct *p)
3305 {
3306         return current_has_perm(p, PROCESS__GETPGID);
3307 }
3308
3309 static int selinux_task_getsid(struct task_struct *p)
3310 {
3311         return current_has_perm(p, PROCESS__GETSESSION);
3312 }
3313
3314 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3315 {
3316         *secid = task_sid(p);
3317 }
3318
3319 static int selinux_task_setnice(struct task_struct *p, int nice)
3320 {
3321         int rc;
3322
3323         rc = cap_task_setnice(p, nice);
3324         if (rc)
3325                 return rc;
3326
3327         return current_has_perm(p, PROCESS__SETSCHED);
3328 }
3329
3330 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3331 {
3332         int rc;
3333
3334         rc = cap_task_setioprio(p, ioprio);
3335         if (rc)
3336                 return rc;
3337
3338         return current_has_perm(p, PROCESS__SETSCHED);
3339 }
3340
3341 static int selinux_task_getioprio(struct task_struct *p)
3342 {
3343         return current_has_perm(p, PROCESS__GETSCHED);
3344 }
3345
3346 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3347 {
3348         struct rlimit *old_rlim = current->signal->rlim + resource;
3349
3350         /* Control the ability to change the hard limit (whether
3351            lowering or raising it), so that the hard limit can
3352            later be used as a safe reset point for the soft limit
3353            upon context transitions.  See selinux_bprm_committing_creds. */
3354         if (old_rlim->rlim_max != new_rlim->rlim_max)
3355                 return current_has_perm(current, PROCESS__SETRLIMIT);
3356
3357         return 0;
3358 }
3359
3360 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3361 {
3362         int rc;
3363
3364         rc = cap_task_setscheduler(p, policy, lp);
3365         if (rc)
3366                 return rc;
3367
3368         return current_has_perm(p, PROCESS__SETSCHED);
3369 }
3370
3371 static int selinux_task_getscheduler(struct task_struct *p)
3372 {
3373         return current_has_perm(p, PROCESS__GETSCHED);
3374 }
3375
3376 static int selinux_task_movememory(struct task_struct *p)
3377 {
3378         return current_has_perm(p, PROCESS__SETSCHED);
3379 }
3380
3381 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3382                                 int sig, u32 secid)
3383 {
3384         u32 perm;
3385         int rc;
3386
3387         if (!sig)
3388                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3389         else
3390                 perm = signal_to_av(sig);
3391         if (secid)
3392                 rc = avc_has_perm(secid, task_sid(p),
3393                                   SECCLASS_PROCESS, perm, NULL);
3394         else
3395                 rc = current_has_perm(p, perm);
3396         return rc;
3397 }
3398
3399 static int selinux_task_wait(struct task_struct *p)
3400 {
3401         return task_has_perm(p, current, PROCESS__SIGCHLD);
3402 }
3403
3404 static void selinux_task_to_inode(struct task_struct *p,
3405                                   struct inode *inode)
3406 {
3407         struct inode_security_struct *isec = inode->i_security;
3408         u32 sid = task_sid(p);
3409
3410         isec->sid = sid;
3411         isec->initialized = 1;
3412 }
3413
3414 /* Returns error only if unable to parse addresses */
3415 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3416                         struct avc_audit_data *ad, u8 *proto)
3417 {
3418         int offset, ihlen, ret = -EINVAL;
3419         struct iphdr _iph, *ih;
3420
3421         offset = skb_network_offset(skb);
3422         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3423         if (ih == NULL)
3424                 goto out;
3425
3426         ihlen = ih->ihl * 4;
3427         if (ihlen < sizeof(_iph))
3428                 goto out;
3429
3430         ad->u.net.v4info.saddr = ih->saddr;
3431         ad->u.net.v4info.daddr = ih->daddr;
3432         ret = 0;
3433
3434         if (proto)
3435                 *proto = ih->protocol;
3436
3437         switch (ih->protocol) {
3438         case IPPROTO_TCP: {
3439                 struct tcphdr _tcph, *th;
3440
3441                 if (ntohs(ih->frag_off) & IP_OFFSET)
3442                         break;
3443
3444                 offset += ihlen;
3445                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3446                 if (th == NULL)
3447                         break;
3448
3449                 ad->u.net.sport = th->source;
3450                 ad->u.net.dport = th->dest;
3451                 break;
3452         }
3453
3454         case IPPROTO_UDP: {
3455                 struct udphdr _udph, *uh;
3456
3457                 if (ntohs(ih->frag_off) & IP_OFFSET)
3458                         break;
3459
3460                 offset += ihlen;
3461                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3462                 if (uh == NULL)
3463                         break;
3464
3465                 ad->u.net.sport = uh->source;
3466                 ad->u.net.dport = uh->dest;
3467                 break;
3468         }
3469
3470         case IPPROTO_DCCP: {
3471                 struct dccp_hdr _dccph, *dh;
3472
3473                 if (ntohs(ih->frag_off) & IP_OFFSET)
3474                         break;
3475
3476                 offset += ihlen;
3477                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3478                 if (dh == NULL)
3479                         break;
3480
3481                 ad->u.net.sport = dh->dccph_sport;
3482                 ad->u.net.dport = dh->dccph_dport;
3483                 break;
3484         }
3485
3486         default:
3487                 break;
3488         }
3489 out:
3490         return ret;
3491 }
3492
3493 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3494
3495 /* Returns error only if unable to parse addresses */
3496 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3497                         struct avc_audit_data *ad, u8 *proto)
3498 {
3499         u8 nexthdr;
3500         int ret = -EINVAL, offset;
3501         struct ipv6hdr _ipv6h, *ip6;
3502
3503         offset = skb_network_offset(skb);
3504         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3505         if (ip6 == NULL)
3506                 goto out;
3507
3508         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3509         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3510         ret = 0;
3511
3512         nexthdr = ip6->nexthdr;
3513         offset += sizeof(_ipv6h);
3514         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3515         if (offset < 0)
3516                 goto out;
3517
3518         if (proto)
3519                 *proto = nexthdr;
3520
3521         switch (nexthdr) {
3522         case IPPROTO_TCP: {
3523                 struct tcphdr _tcph, *th;
3524
3525                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3526                 if (th == NULL)
3527                         break;
3528
3529                 ad->u.net.sport = th->source;
3530                 ad->u.net.dport = th->dest;
3531                 break;
3532         }
3533
3534         case IPPROTO_UDP: {
3535                 struct udphdr _udph, *uh;
3536
3537                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3538                 if (uh == NULL)
3539                         break;
3540
3541                 ad->u.net.sport = uh->source;
3542                 ad->u.net.dport = uh->dest;
3543                 break;
3544         }
3545
3546         case IPPROTO_DCCP: {
3547                 struct dccp_hdr _dccph, *dh;
3548
3549                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3550                 if (dh == NULL)
3551                         break;
3552
3553                 ad->u.net.sport = dh->dccph_sport;
3554                 ad->u.net.dport = dh->dccph_dport;
3555                 break;
3556         }
3557
3558         /* includes fragments */
3559         default:
3560                 break;
3561         }
3562 out:
3563         return ret;
3564 }
3565
3566 #endif /* IPV6 */
3567
3568 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3569                              char **_addrp, int src, u8 *proto)
3570 {
3571         char *addrp;
3572         int ret;
3573
3574         switch (ad->u.net.family) {
3575         case PF_INET:
3576                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3577                 if (ret)
3578                         goto parse_error;
3579                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3580                                        &ad->u.net.v4info.daddr);
3581                 goto okay;
3582
3583 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3584         case PF_INET6:
3585                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3586                 if (ret)
3587                         goto parse_error;
3588                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3589                                        &ad->u.net.v6info.daddr);
3590                 goto okay;
3591 #endif  /* IPV6 */
3592         default:
3593                 addrp = NULL;
3594                 goto okay;
3595         }
3596
3597 parse_error:
3598         printk(KERN_WARNING
3599                "SELinux: failure in selinux_parse_skb(),"
3600                " unable to parse packet\n");
3601         return ret;
3602
3603 okay:
3604         if (_addrp)
3605                 *_addrp = addrp;
3606         return 0;
3607 }
3608
3609 /**
3610  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3611  * @skb: the packet
3612  * @family: protocol family
3613  * @sid: the packet's peer label SID
3614  *
3615  * Description:
3616  * Check the various different forms of network peer labeling and determine
3617  * the peer label/SID for the packet; most of the magic actually occurs in
3618  * the security server function security_net_peersid_cmp().  The function
3619  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3620  * or -EACCES if @sid is invalid due to inconsistencies with the different
3621  * peer labels.
3622  *
3623  */
3624 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3625 {
3626         int err;
3627         u32 xfrm_sid;
3628         u32 nlbl_sid;
3629         u32 nlbl_type;
3630
3631         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3632         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3633
3634         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3635         if (unlikely(err)) {
3636                 printk(KERN_WARNING
3637                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3638                        " unable to determine packet's peer label\n");
3639                 return -EACCES;
3640         }
3641
3642         return 0;
3643 }
3644
3645 /* socket security operations */
3646 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3647                            u32 perms)
3648 {
3649         struct inode_security_struct *isec;
3650         struct avc_audit_data ad;
3651         u32 sid;
3652         int err = 0;
3653
3654         isec = SOCK_INODE(sock)->i_security;
3655
3656         if (isec->sid == SECINITSID_KERNEL)
3657                 goto out;
3658         sid = task_sid(task);
3659
3660         AVC_AUDIT_DATA_INIT(&ad, NET);
3661         ad.u.net.sk = sock->sk;
3662         err = avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
3663
3664 out:
3665         return err;
3666 }
3667
3668 static int selinux_socket_create(int family, int type,
3669                                  int protocol, int kern)
3670 {
3671         const struct cred *cred = current_cred();
3672         const struct task_security_struct *tsec = cred->security;
3673         u32 sid, newsid;
3674         u16 secclass;
3675         int err = 0;
3676
3677         if (kern)
3678                 goto out;
3679
3680         sid = tsec->sid;
3681         newsid = tsec->sockcreate_sid ?: sid;
3682
3683         secclass = socket_type_to_security_class(family, type, protocol);
3684         err = avc_has_perm(sid, newsid, secclass, SOCKET__CREATE, NULL);
3685
3686 out:
3687         return err;
3688 }
3689
3690 static int selinux_socket_post_create(struct socket *sock, int family,
3691                                       int type, int protocol, int kern)
3692 {
3693         const struct cred *cred = current_cred();
3694         const struct task_security_struct *tsec = cred->security;
3695         struct inode_security_struct *isec;
3696         struct sk_security_struct *sksec;
3697         u32 sid, newsid;
3698         int err = 0;
3699
3700         sid = tsec->sid;
3701         newsid = tsec->sockcreate_sid;
3702
3703         isec = SOCK_INODE(sock)->i_security;
3704
3705         if (kern)
3706                 isec->sid = SECINITSID_KERNEL;
3707         else if (newsid)
3708                 isec->sid = newsid;
3709         else
3710                 isec->sid = sid;
3711
3712         isec->sclass = socket_type_to_security_class(family, type, protocol);
3713         isec->initialized = 1;
3714
3715         if (sock->sk) {
3716                 sksec = sock->sk->sk_security;
3717                 sksec->sid = isec->sid;
3718                 sksec->sclass = isec->sclass;
3719                 err = selinux_netlbl_socket_post_create(sock->sk, family);
3720         }
3721
3722         return err;
3723 }
3724
3725 /* Range of port numbers used to automatically bind.
3726    Need to determine whether we should perform a name_bind
3727    permission check between the socket and the port number. */
3728
3729 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3730 {
3731         u16 family;
3732         int err;
3733
3734         err = socket_has_perm(current, sock, SOCKET__BIND);
3735         if (err)
3736                 goto out;
3737
3738         /*
3739          * If PF_INET or PF_INET6, check name_bind permission for the port.
3740          * Multiple address binding for SCTP is not supported yet: we just
3741          * check the first address now.
3742          */
3743         family = sock->sk->sk_family;
3744         if (family == PF_INET || family == PF_INET6) {
3745                 char *addrp;
3746                 struct inode_security_struct *isec;
3747                 struct avc_audit_data ad;
3748                 struct sockaddr_in *addr4 = NULL;
3749                 struct sockaddr_in6 *addr6 = NULL;
3750                 unsigned short snum;
3751                 struct sock *sk = sock->sk;
3752                 u32 sid, node_perm;
3753
3754                 isec = SOCK_INODE(sock)->i_security;
3755
3756                 if (family == PF_INET) {
3757                         addr4 = (struct sockaddr_in *)address;
3758                         snum = ntohs(addr4->sin_port);
3759                         addrp = (char *)&addr4->sin_addr.s_addr;
3760                 } else {
3761                         addr6 = (struct sockaddr_in6 *)address;
3762                         snum = ntohs(addr6->sin6_port);
3763                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3764                 }
3765
3766                 if (snum) {
3767                         int low, high;
3768
3769                         inet_get_local_port_range(&low, &high);
3770
3771                         if (snum < max(PROT_SOCK, low) || snum > high) {
3772                                 err = sel_netport_sid(sk->sk_protocol,
3773                                                       snum, &sid);
3774                                 if (err)
3775                                         goto out;
3776                                 AVC_AUDIT_DATA_INIT(&ad, NET);
3777                                 ad.u.net.sport = htons(snum);
3778                                 ad.u.net.family = family;
3779                                 err = avc_has_perm(isec->sid, sid,
3780                                                    isec->sclass,
3781                                                    SOCKET__NAME_BIND, &ad);
3782                                 if (err)
3783                                         goto out;
3784                         }
3785                 }
3786
3787                 switch (isec->sclass) {
3788                 case SECCLASS_TCP_SOCKET:
3789                         node_perm = TCP_SOCKET__NODE_BIND;
3790                         break;
3791
3792                 case SECCLASS_UDP_SOCKET:
3793                         node_perm = UDP_SOCKET__NODE_BIND;
3794                         break;
3795
3796                 case SECCLASS_DCCP_SOCKET:
3797                         node_perm = DCCP_SOCKET__NODE_BIND;
3798                         break;
3799
3800                 default:
3801                         node_perm = RAWIP_SOCKET__NODE_BIND;
3802                         break;
3803                 }
3804
3805                 err = sel_netnode_sid(addrp, family, &sid);
3806                 if (err)
3807                         goto out;
3808
3809                 AVC_AUDIT_DATA_INIT(&ad, NET);
3810                 ad.u.net.sport = htons(snum);
3811                 ad.u.net.family = family;
3812
3813                 if (family == PF_INET)
3814                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3815                 else
3816                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3817
3818                 err = avc_has_perm(isec->sid, sid,
3819                                    isec->sclass, node_perm, &ad);
3820                 if (err)
3821                         goto out;
3822         }
3823 out:
3824         return err;
3825 }
3826
3827 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3828 {
3829         struct sock *sk = sock->sk;
3830         struct inode_security_struct *isec;
3831         int err;
3832
3833         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3834         if (err)
3835                 return err;
3836
3837         /*
3838          * If a TCP or DCCP socket, check name_connect permission for the port.
3839          */
3840         isec = SOCK_INODE(sock)->i_security;
3841         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3842             isec->sclass == SECCLASS_DCCP_SOCKET) {
3843                 struct avc_audit_data ad;
3844                 struct sockaddr_in *addr4 = NULL;
3845                 struct sockaddr_in6 *addr6 = NULL;
3846                 unsigned short snum;
3847                 u32 sid, perm;
3848
3849                 if (sk->sk_family == PF_INET) {
3850                         addr4 = (struct sockaddr_in *)address;
3851                         if (addrlen < sizeof(struct sockaddr_in))
3852                                 return -EINVAL;
3853                         snum = ntohs(addr4->sin_port);
3854                 } else {
3855                         addr6 = (struct sockaddr_in6 *)address;
3856                         if (addrlen < SIN6_LEN_RFC2133)
3857                                 return -EINVAL;
3858                         snum = ntohs(addr6->sin6_port);
3859                 }
3860
3861                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3862                 if (err)
3863                         goto out;
3864
3865                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3866                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3867
3868                 AVC_AUDIT_DATA_INIT(&ad, NET);
3869                 ad.u.net.dport = htons(snum);
3870                 ad.u.net.family = sk->sk_family;
3871                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3872                 if (err)
3873                         goto out;
3874         }
3875
3876         err = selinux_netlbl_socket_connect(sk, address);
3877
3878 out:
3879         return err;
3880 }
3881
3882 static int selinux_socket_listen(struct socket *sock, int backlog)
3883 {
3884         return socket_has_perm(current, sock, SOCKET__LISTEN);
3885 }
3886
3887 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3888 {
3889         int err;
3890         struct inode_security_struct *isec;
3891         struct inode_security_struct *newisec;
3892
3893         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3894         if (err)
3895                 return err;
3896
3897         newisec = SOCK_INODE(newsock)->i_security;
3898
3899         isec = SOCK_INODE(sock)->i_security;
3900         newisec->sclass = isec->sclass;
3901         newisec->sid = isec->sid;
3902         newisec->initialized = 1;
3903
3904         return 0;
3905 }
3906
3907 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3908                                   int size)
3909 {
3910         return socket_has_perm(current, sock, SOCKET__WRITE);
3911 }
3912
3913 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3914                                   int size, int flags)
3915 {
3916         return socket_has_perm(current, sock, SOCKET__READ);
3917 }
3918
3919 static int selinux_socket_getsockname(struct socket *sock)
3920 {
3921         return socket_has_perm(current, sock, SOCKET__GETATTR);
3922 }
3923
3924 static int selinux_socket_getpeername(struct socket *sock)
3925 {
3926         return socket_has_perm(current, sock, SOCKET__GETATTR);
3927 }
3928
3929 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3930 {
3931         int err;
3932
3933         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3934         if (err)
3935                 return err;
3936
3937         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3938 }
3939
3940 static int selinux_socket_getsockopt(struct socket *sock, int level,
3941                                      int optname)
3942 {
3943         return socket_has_perm(current, sock, SOCKET__GETOPT);
3944 }
3945
3946 static int selinux_socket_shutdown(struct socket *sock, int how)
3947 {
3948         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3949 }
3950
3951 static int selinux_socket_unix_stream_connect(struct socket *sock,
3952                                               struct socket *other,
3953                                               struct sock *newsk)
3954 {
3955         struct sk_security_struct *ssec;
3956         struct inode_security_struct *isec;
3957         struct inode_security_struct *other_isec;
3958         struct avc_audit_data ad;
3959         int err;
3960
3961         isec = SOCK_INODE(sock)->i_security;
3962         other_isec = SOCK_INODE(other)->i_security;
3963
3964         AVC_AUDIT_DATA_INIT(&ad, NET);
3965         ad.u.net.sk = other->sk;
3966
3967         err = avc_has_perm(isec->sid, other_isec->sid,
3968                            isec->sclass,
3969                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3970         if (err)
3971                 return err;
3972
3973         /* connecting socket */
3974         ssec = sock->sk->sk_security;
3975         ssec->peer_sid = other_isec->sid;
3976
3977         /* server child socket */
3978         ssec = newsk->sk_security;
3979         ssec->peer_sid = isec->sid;
3980         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3981
3982         return err;
3983 }
3984
3985 static int selinux_socket_unix_may_send(struct socket *sock,
3986                                         struct socket *other)
3987 {
3988         struct inode_security_struct *isec;
3989         struct inode_security_struct *other_isec;
3990         struct avc_audit_data ad;
3991         int err;
3992
3993         isec = SOCK_INODE(sock)->i_security;
3994         other_isec = SOCK_INODE(other)->i_security;
3995
3996         AVC_AUDIT_DATA_INIT(&ad, NET);
3997         ad.u.net.sk = other->sk;
3998
3999         err = avc_has_perm(isec->sid, other_isec->sid,
4000                            isec->sclass, SOCKET__SENDTO, &ad);
4001         if (err)
4002                 return err;
4003
4004         return 0;
4005 }
4006
4007 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4008                                     u32 peer_sid,
4009                                     struct avc_audit_data *ad)
4010 {
4011         int err;
4012         u32 if_sid;
4013         u32 node_sid;
4014
4015         err = sel_netif_sid(ifindex, &if_sid);
4016         if (err)
4017                 return err;
4018         err = avc_has_perm(peer_sid, if_sid,
4019                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4020         if (err)
4021                 return err;
4022
4023         err = sel_netnode_sid(addrp, family, &node_sid);
4024         if (err)
4025                 return err;
4026         return avc_has_perm(peer_sid, node_sid,
4027                             SECCLASS_NODE, NODE__RECVFROM, ad);
4028 }
4029
4030 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4031                                        u16 family)
4032 {
4033         int err = 0;
4034         struct sk_security_struct *sksec = sk->sk_security;
4035         u32 peer_sid;
4036         u32 sk_sid = sksec->sid;
4037         struct avc_audit_data ad;
4038         char *addrp;
4039
4040         AVC_AUDIT_DATA_INIT(&ad, NET);
4041         ad.u.net.netif = skb->iif;
4042         ad.u.net.family = family;
4043         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4044         if (err)
4045                 return err;
4046
4047         if (selinux_secmark_enabled()) {
4048                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4049                                    PACKET__RECV, &ad);
4050                 if (err)
4051                         return err;
4052         }
4053
4054         if (selinux_policycap_netpeer) {
4055                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4056                 if (err)
4057                         return err;
4058                 err = avc_has_perm(sk_sid, peer_sid,
4059                                    SECCLASS_PEER, PEER__RECV, &ad);
4060                 if (err)
4061                         selinux_netlbl_err(skb, err, 0);
4062         } else {
4063                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4064                 if (err)
4065                         return err;
4066                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4067         }
4068
4069         return err;
4070 }
4071
4072 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4073 {
4074         int err;
4075         struct sk_security_struct *sksec = sk->sk_security;
4076         u16 family = sk->sk_family;
4077         u32 sk_sid = sksec->sid;
4078         struct avc_audit_data ad;
4079         char *addrp;
4080         u8 secmark_active;
4081         u8 peerlbl_active;
4082
4083         if (family != PF_INET && family != PF_INET6)
4084                 return 0;
4085
4086         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4087         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4088                 family = PF_INET;
4089
4090         /* If any sort of compatibility mode is enabled then handoff processing
4091          * to the selinux_sock_rcv_skb_compat() function to deal with the
4092          * special handling.  We do this in an attempt to keep this function
4093          * as fast and as clean as possible. */
4094         if (!selinux_policycap_netpeer)
4095                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4096
4097         secmark_active = selinux_secmark_enabled();
4098         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4099         if (!secmark_active && !peerlbl_active)
4100                 return 0;
4101
4102         AVC_AUDIT_DATA_INIT(&ad, NET);
4103         ad.u.net.netif = skb->iif;
4104         ad.u.net.family = family;
4105         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4106         if (err)
4107                 return err;
4108
4109         if (peerlbl_active) {
4110                 u32 peer_sid;
4111
4112                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4113                 if (err)
4114                         return err;
4115                 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4116                                                peer_sid, &ad);
4117                 if (err) {
4118                         selinux_netlbl_err(skb, err, 0);
4119                         return err;
4120                 }
4121                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4122                                    PEER__RECV, &ad);
4123                 if (err)
4124                         selinux_netlbl_err(skb, err, 0);
4125         }
4126
4127         if (secmark_active) {
4128                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4129                                    PACKET__RECV, &ad);
4130                 if (err)
4131                         return err;
4132         }
4133
4134         return err;
4135 }
4136
4137 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4138                                             int __user *optlen, unsigned len)
4139 {
4140         int err = 0;
4141         char *scontext;
4142         u32 scontext_len;
4143         struct sk_security_struct *ssec;
4144         struct inode_security_struct *isec;
4145         u32 peer_sid = SECSID_NULL;
4146
4147         isec = SOCK_INODE(sock)->i_security;
4148
4149         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4150             isec->sclass == SECCLASS_TCP_SOCKET) {
4151                 ssec = sock->sk->sk_security;
4152                 peer_sid = ssec->peer_sid;
4153         }
4154         if (peer_sid == SECSID_NULL) {
4155                 err = -ENOPROTOOPT;
4156                 goto out;
4157         }
4158
4159         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4160
4161         if (err)
4162                 goto out;
4163
4164         if (scontext_len > len) {
4165                 err = -ERANGE;
4166                 goto out_len;
4167         }
4168
4169         if (copy_to_user(optval, scontext, scontext_len))
4170                 err = -EFAULT;
4171
4172 out_len:
4173         if (put_user(scontext_len, optlen))
4174                 err = -EFAULT;
4175
4176         kfree(scontext);
4177 out:
4178         return err;
4179 }
4180
4181 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4182 {
4183         u32 peer_secid = SECSID_NULL;
4184         u16 family;
4185
4186         if (skb && skb->protocol == htons(ETH_P_IP))
4187                 family = PF_INET;
4188         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4189                 family = PF_INET6;
4190         else if (sock)
4191                 family = sock->sk->sk_family;
4192         else
4193                 goto out;
4194
4195         if (sock && family == PF_UNIX)
4196                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4197         else if (skb)
4198                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4199
4200 out:
4201         *secid = peer_secid;
4202         if (peer_secid == SECSID_NULL)
4203                 return -EINVAL;
4204         return 0;
4205 }
4206
4207 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4208 {
4209         return sk_alloc_security(sk, family, priority);
4210 }
4211
4212 static void selinux_sk_free_security(struct sock *sk)
4213 {
4214         sk_free_security(sk);
4215 }
4216
4217 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4218 {
4219         struct sk_security_struct *ssec = sk->sk_security;
4220         struct sk_security_struct *newssec = newsk->sk_security;
4221
4222         newssec->sid = ssec->sid;
4223         newssec->peer_sid = ssec->peer_sid;
4224         newssec->sclass = ssec->sclass;
4225
4226         selinux_netlbl_sk_security_reset(newssec);
4227 }
4228
4229 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4230 {
4231         if (!sk)
4232                 *secid = SECINITSID_ANY_SOCKET;
4233         else {
4234                 struct sk_security_struct *sksec = sk->sk_security;
4235
4236                 *secid = sksec->sid;
4237         }
4238 }
4239
4240 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4241 {
4242         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4243         struct sk_security_struct *sksec = sk->sk_security;
4244
4245         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4246             sk->sk_family == PF_UNIX)
4247                 isec->sid = sksec->sid;
4248         sksec->sclass = isec->sclass;
4249 }
4250
4251 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4252                                      struct request_sock *req)
4253 {
4254         struct sk_security_struct *sksec = sk->sk_security;
4255         int err;
4256         u16 family = sk->sk_family;
4257         u32 newsid;
4258         u32 peersid;
4259
4260         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4261         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4262                 family = PF_INET;
4263
4264         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4265         if (err)
4266                 return err;
4267         if (peersid == SECSID_NULL) {
4268                 req->secid = sksec->sid;
4269                 req->peer_secid = SECSID_NULL;
4270         } else {
4271                 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4272                 if (err)
4273                         return err;
4274                 req->secid = newsid;
4275                 req->peer_secid = peersid;
4276         }
4277
4278         return selinux_netlbl_inet_conn_request(req, family);
4279 }
4280
4281 static void selinux_inet_csk_clone(struct sock *newsk,
4282                                    const struct request_sock *req)
4283 {
4284         struct sk_security_struct *newsksec = newsk->sk_security;
4285
4286         newsksec->sid = req->secid;
4287         newsksec->peer_sid = req->peer_secid;
4288         /* NOTE: Ideally, we should also get the isec->sid for the
4289            new socket in sync, but we don't have the isec available yet.
4290            So we will wait until sock_graft to do it, by which
4291            time it will have been created and available. */
4292
4293         /* We don't need to take any sort of lock here as we are the only
4294          * thread with access to newsksec */
4295         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4296 }
4297
4298 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4299 {
4300         u16 family = sk->sk_family;
4301         struct sk_security_struct *sksec = sk->sk_security;
4302
4303         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4304         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4305                 family = PF_INET;
4306
4307         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4308 }
4309
4310 static void selinux_req_classify_flow(const struct request_sock *req,
4311                                       struct flowi *fl)
4312 {
4313         fl->secid = req->secid;
4314 }
4315
4316 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4317 {
4318         int err = 0;
4319         u32 perm;
4320         struct nlmsghdr *nlh;
4321         struct socket *sock = sk->sk_socket;
4322         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4323
4324         if (skb->len < NLMSG_SPACE(0)) {
4325                 err = -EINVAL;
4326                 goto out;
4327         }
4328         nlh = nlmsg_hdr(skb);
4329
4330         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4331         if (err) {
4332                 if (err == -EINVAL) {
4333                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4334                                   "SELinux:  unrecognized netlink message"
4335                                   " type=%hu for sclass=%hu\n",
4336                                   nlh->nlmsg_type, isec->sclass);
4337                         if (!selinux_enforcing || security_get_allow_unknown())
4338                                 err = 0;
4339                 }
4340
4341                 /* Ignore */
4342                 if (err == -ENOENT)
4343                         err = 0;
4344                 goto out;
4345         }
4346
4347         err = socket_has_perm(current, sock, perm);
4348 out:
4349         return err;
4350 }
4351
4352 #ifdef CONFIG_NETFILTER
4353
4354 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4355                                        u16 family)
4356 {
4357         int err;
4358         char *addrp;
4359         u32 peer_sid;
4360         struct avc_audit_data ad;
4361         u8 secmark_active;
4362         u8 netlbl_active;
4363         u8 peerlbl_active;
4364
4365         if (!selinux_policycap_netpeer)
4366                 return NF_ACCEPT;
4367
4368         secmark_active = selinux_secmark_enabled();
4369         netlbl_active = netlbl_enabled();
4370         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4371         if (!secmark_active && !peerlbl_active)
4372                 return NF_ACCEPT;
4373
4374         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4375                 return NF_DROP;
4376
4377         AVC_AUDIT_DATA_INIT(&ad, NET);
4378         ad.u.net.netif = ifindex;
4379         ad.u.net.family = family;
4380         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4381                 return NF_DROP;
4382
4383         if (peerlbl_active) {
4384                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4385                                                peer_sid, &ad);
4386                 if (err) {
4387                         selinux_netlbl_err(skb, err, 1);
4388                         return NF_DROP;
4389                 }
4390         }
4391
4392         if (secmark_active)
4393                 if (avc_has_perm(peer_sid, skb->secmark,
4394                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4395                         return NF_DROP;
4396
4397         if (netlbl_active)
4398                 /* we do this in the FORWARD path and not the POST_ROUTING
4399                  * path because we want to make sure we apply the necessary
4400                  * labeling before IPsec is applied so we can leverage AH
4401                  * protection */
4402                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4403                         return NF_DROP;
4404
4405         return NF_ACCEPT;
4406 }
4407
4408 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4409                                          struct sk_buff *skb,
4410                                          const struct net_device *in,
4411                                          const struct net_device *out,
4412                                          int (*okfn)(struct sk_buff *))
4413 {
4414         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4415 }
4416
4417 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4418 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4419                                          struct sk_buff *skb,
4420                                          const struct net_device *in,
4421                                          const struct net_device *out,
4422                                          int (*okfn)(struct sk_buff *))
4423 {
4424         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4425 }
4426 #endif  /* IPV6 */
4427
4428 static unsigned int selinux_ip_output(struct sk_buff *skb,
4429                                       u16 family)
4430 {
4431         u32 sid;
4432
4433         if (!netlbl_enabled())
4434                 return NF_ACCEPT;
4435
4436         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4437          * because we want to make sure we apply the necessary labeling
4438          * before IPsec is applied so we can leverage AH protection */
4439         if (skb->sk) {
4440                 struct sk_security_struct *sksec = skb->sk->sk_security;
4441                 sid = sksec->sid;
4442         } else
4443                 sid = SECINITSID_KERNEL;
4444         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4445                 return NF_DROP;
4446
4447         return NF_ACCEPT;
4448 }
4449
4450 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4451                                         struct sk_buff *skb,
4452                                         const struct net_device *in,
4453                                         const struct net_device *out,
4454                                         int (*okfn)(struct sk_buff *))
4455 {
4456         return selinux_ip_output(skb, PF_INET);
4457 }
4458
4459 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4460                                                 int ifindex,
4461                                                 u16 family)
4462 {
4463         struct sock *sk = skb->sk;
4464         struct sk_security_struct *sksec;
4465         struct avc_audit_data ad;
4466         char *addrp;
4467         u8 proto;
4468
4469         if (sk == NULL)
4470                 return NF_ACCEPT;
4471         sksec = sk->sk_security;
4472
4473         AVC_AUDIT_DATA_INIT(&ad, NET);
4474         ad.u.net.netif = ifindex;
4475         ad.u.net.family = family;
4476         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4477                 return NF_DROP;
4478
4479         if (selinux_secmark_enabled())
4480                 if (avc_has_perm(sksec->sid, skb->secmark,
4481                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4482                         return NF_DROP;
4483
4484         if (selinux_policycap_netpeer)
4485                 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4486                         return NF_DROP;
4487
4488         return NF_ACCEPT;
4489 }
4490
4491 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4492                                          u16 family)
4493 {
4494         u32 secmark_perm;
4495         u32 peer_sid;
4496         struct sock *sk;
4497         struct avc_audit_data ad;
4498         char *addrp;
4499         u8 secmark_active;
4500         u8 peerlbl_active;
4501
4502         /* If any sort of compatibility mode is enabled then handoff processing
4503          * to the selinux_ip_postroute_compat() function to deal with the
4504          * special handling.  We do this in an attempt to keep this function
4505          * as fast and as clean as possible. */
4506         if (!selinux_policycap_netpeer)
4507                 return selinux_ip_postroute_compat(skb, ifindex, family);
4508 #ifdef CONFIG_XFRM
4509         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4510          * packet transformation so allow the packet to pass without any checks
4511          * since we'll have another chance to perform access control checks
4512          * when the packet is on it's final way out.
4513          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4514          *       is NULL, in this case go ahead and apply access control. */
4515         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4516                 return NF_ACCEPT;
4517 #endif
4518         secmark_active = selinux_secmark_enabled();
4519         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4520         if (!secmark_active && !peerlbl_active)
4521                 return NF_ACCEPT;
4522
4523         /* if the packet is being forwarded then get the peer label from the
4524          * packet itself; otherwise check to see if it is from a local
4525          * application or the kernel, if from an application get the peer label
4526          * from the sending socket, otherwise use the kernel's sid */
4527         sk = skb->sk;
4528         if (sk == NULL) {
4529                 switch (family) {
4530                 case PF_INET:
4531                         if (IPCB(skb)->flags & IPSKB_FORWARDED)
4532                                 secmark_perm = PACKET__FORWARD_OUT;
4533                         else
4534                                 secmark_perm = PACKET__SEND;
4535                         break;
4536                 case PF_INET6:
4537                         if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4538                                 secmark_perm = PACKET__FORWARD_OUT;
4539                         else
4540                                 secmark_perm = PACKET__SEND;
4541                         break;
4542                 default:
4543                         return NF_DROP;
4544                 }
4545                 if (secmark_perm == PACKET__FORWARD_OUT) {
4546                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4547                                 return NF_DROP;
4548                 } else
4549                         peer_sid = SECINITSID_KERNEL;
4550         } else {
4551                 struct sk_security_struct *sksec = sk->sk_security;
4552                 peer_sid = sksec->sid;
4553                 secmark_perm = PACKET__SEND;
4554         }
4555
4556         AVC_AUDIT_DATA_INIT(&ad, NET);
4557         ad.u.net.netif = ifindex;
4558         ad.u.net.family = family;
4559         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4560                 return NF_DROP;
4561
4562         if (secmark_active)
4563                 if (avc_has_perm(peer_sid, skb->secmark,
4564                                  SECCLASS_PACKET, secmark_perm, &ad))
4565                         return NF_DROP;
4566
4567         if (peerlbl_active) {
4568                 u32 if_sid;
4569                 u32 node_sid;
4570
4571                 if (sel_netif_sid(ifindex, &if_sid))
4572                         return NF_DROP;
4573                 if (avc_has_perm(peer_sid, if_sid,
4574                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4575                         return NF_DROP;
4576
4577                 if (sel_netnode_sid(addrp, family, &node_sid))
4578                         return NF_DROP;
4579                 if (avc_has_perm(peer_sid, node_sid,
4580                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4581                         return NF_DROP;
4582         }
4583
4584         return NF_ACCEPT;
4585 }
4586
4587 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4588                                            struct sk_buff *skb,
4589                                            const struct net_device *in,
4590                                            const struct net_device *out,
4591                                            int (*okfn)(struct sk_buff *))
4592 {
4593         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4594 }
4595
4596 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4597 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4598                                            struct sk_buff *skb,
4599                                            const struct net_device *in,
4600                                            const struct net_device *out,
4601                                            int (*okfn)(struct sk_buff *))
4602 {
4603         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4604 }
4605 #endif  /* IPV6 */
4606
4607 #endif  /* CONFIG_NETFILTER */
4608
4609 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4610 {
4611         int err;
4612
4613         err = cap_netlink_send(sk, skb);
4614         if (err)
4615                 return err;
4616
4617         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4618                 err = selinux_nlmsg_perm(sk, skb);
4619
4620         return err;
4621 }
4622
4623 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4624 {
4625         int err;
4626         struct avc_audit_data ad;
4627
4628         err = cap_netlink_recv(skb, capability);
4629         if (err)
4630                 return err;
4631
4632         AVC_AUDIT_DATA_INIT(&ad, CAP);
4633         ad.u.cap = capability;
4634
4635         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4636                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4637 }
4638
4639 static int ipc_alloc_security(struct task_struct *task,
4640                               struct kern_ipc_perm *perm,
4641                               u16 sclass)
4642 {
4643         struct ipc_security_struct *isec;
4644         u32 sid;
4645
4646         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4647         if (!isec)
4648                 return -ENOMEM;
4649
4650         sid = task_sid(task);
4651         isec->sclass = sclass;
4652         isec->sid = sid;
4653         perm->security = isec;
4654
4655         return 0;
4656 }
4657
4658 static void ipc_free_security(struct kern_ipc_perm *perm)
4659 {
4660         struct ipc_security_struct *isec = perm->security;
4661         perm->security = NULL;
4662         kfree(isec);
4663 }
4664
4665 static int msg_msg_alloc_security(struct msg_msg *msg)
4666 {
4667         struct msg_security_struct *msec;
4668
4669         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4670         if (!msec)
4671                 return -ENOMEM;
4672
4673         msec->sid = SECINITSID_UNLABELED;
4674         msg->security = msec;
4675
4676         return 0;
4677 }
4678
4679 static void msg_msg_free_security(struct msg_msg *msg)
4680 {
4681         struct msg_security_struct *msec = msg->security;
4682
4683         msg->security = NULL;
4684         kfree(msec);
4685 }
4686
4687 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4688                         u32 perms)
4689 {
4690         struct ipc_security_struct *isec;
4691         struct avc_audit_data ad;
4692         u32 sid = current_sid();
4693
4694         isec = ipc_perms->security;
4695
4696         AVC_AUDIT_DATA_INIT(&ad, IPC);
4697         ad.u.ipc_id = ipc_perms->key;
4698
4699         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4700 }
4701
4702 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4703 {
4704         return msg_msg_alloc_security(msg);
4705 }
4706
4707 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4708 {
4709         msg_msg_free_security(msg);
4710 }
4711
4712 /* message queue security operations */
4713 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4714 {
4715         struct ipc_security_struct *isec;
4716         struct avc_audit_data ad;
4717         u32 sid = current_sid();
4718         int rc;
4719
4720         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4721         if (rc)
4722                 return rc;
4723
4724         isec = msq->q_perm.security;
4725
4726         AVC_AUDIT_DATA_INIT(&ad, IPC);
4727         ad.u.ipc_id = msq->q_perm.key;
4728
4729         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4730                           MSGQ__CREATE, &ad);
4731         if (rc) {
4732                 ipc_free_security(&msq->q_perm);
4733                 return rc;
4734         }
4735         return 0;
4736 }
4737
4738 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4739 {
4740         ipc_free_security(&msq->q_perm);
4741 }
4742
4743 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4744 {
4745         struct ipc_security_struct *isec;
4746         struct avc_audit_data ad;
4747         u32 sid = current_sid();
4748
4749         isec = msq->q_perm.security;
4750
4751         AVC_AUDIT_DATA_INIT(&ad, IPC);
4752         ad.u.ipc_id = msq->q_perm.key;
4753
4754         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4755                             MSGQ__ASSOCIATE, &ad);
4756 }
4757
4758 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4759 {
4760         int err;
4761         int perms;
4762
4763         switch (cmd) {
4764         case IPC_INFO:
4765         case MSG_INFO:
4766                 /* No specific object, just general system-wide information. */
4767                 return task_has_system(current, SYSTEM__IPC_INFO);
4768         case IPC_STAT:
4769         case MSG_STAT:
4770                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4771                 break;
4772         case IPC_SET:
4773                 perms = MSGQ__SETATTR;
4774                 break;
4775         case IPC_RMID:
4776                 perms = MSGQ__DESTROY;
4777                 break;
4778         default:
4779                 return 0;
4780         }
4781
4782         err = ipc_has_perm(&msq->q_perm, perms);
4783         return err;
4784 }
4785
4786 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4787 {
4788         struct ipc_security_struct *isec;
4789         struct msg_security_struct *msec;
4790         struct avc_audit_data ad;
4791         u32 sid = current_sid();
4792         int rc;
4793
4794         isec = msq->q_perm.security;
4795         msec = msg->security;
4796
4797         /*
4798          * First time through, need to assign label to the message
4799          */
4800         if (msec->sid == SECINITSID_UNLABELED) {
4801                 /*
4802                  * Compute new sid based on current process and
4803                  * message queue this message will be stored in
4804                  */
4805                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4806                                              &msec->sid);
4807                 if (rc)
4808                         return rc;
4809         }
4810
4811         AVC_AUDIT_DATA_INIT(&ad, IPC);
4812         ad.u.ipc_id = msq->q_perm.key;
4813
4814         /* Can this process write to the queue? */
4815         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4816                           MSGQ__WRITE, &ad);
4817         if (!rc)
4818                 /* Can this process send the message */
4819                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4820                                   MSG__SEND, &ad);
4821         if (!rc)
4822                 /* Can the message be put in the queue? */
4823                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4824                                   MSGQ__ENQUEUE, &ad);
4825
4826         return rc;
4827 }
4828
4829 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4830                                     struct task_struct *target,
4831                                     long type, int mode)
4832 {
4833         struct ipc_security_struct *isec;
4834         struct msg_security_struct *msec;
4835         struct avc_audit_data ad;
4836         u32 sid = task_sid(target);
4837         int rc;
4838
4839         isec = msq->q_perm.security;
4840         msec = msg->security;
4841
4842         AVC_AUDIT_DATA_INIT(&ad, IPC);
4843         ad.u.ipc_id = msq->q_perm.key;
4844
4845         rc = avc_has_perm(sid, isec->sid,
4846                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4847         if (!rc)
4848                 rc = avc_has_perm(sid, msec->sid,
4849                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4850         return rc;
4851 }
4852
4853 /* Shared Memory security operations */
4854 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4855 {
4856         struct ipc_security_struct *isec;
4857         struct avc_audit_data ad;
4858         u32 sid = current_sid();
4859         int rc;
4860
4861         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4862         if (rc)
4863                 return rc;
4864
4865         isec = shp->shm_perm.security;
4866
4867         AVC_AUDIT_DATA_INIT(&ad, IPC);
4868         ad.u.ipc_id = shp->shm_perm.key;
4869
4870         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4871                           SHM__CREATE, &ad);
4872         if (rc) {
4873                 ipc_free_security(&shp->shm_perm);
4874                 return rc;
4875         }
4876         return 0;
4877 }
4878
4879 static void selinux_shm_free_security(struct shmid_kernel *shp)
4880 {
4881         ipc_free_security(&shp->shm_perm);
4882 }
4883
4884 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4885 {
4886         struct ipc_security_struct *isec;
4887         struct avc_audit_data ad;
4888         u32 sid = current_sid();
4889
4890         isec = shp->shm_perm.security;
4891
4892         AVC_AUDIT_DATA_INIT(&ad, IPC);
4893         ad.u.ipc_id = shp->shm_perm.key;
4894
4895         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4896                             SHM__ASSOCIATE, &ad);
4897 }
4898
4899 /* Note, at this point, shp is locked down */
4900 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4901 {
4902         int perms;
4903         int err;
4904
4905         switch (cmd) {
4906         case IPC_INFO:
4907         case SHM_INFO:
4908                 /* No specific object, just general system-wide information. */
4909                 return task_has_system(current, SYSTEM__IPC_INFO);
4910         case IPC_STAT:
4911         case SHM_STAT:
4912                 perms = SHM__GETATTR | SHM__ASSOCIATE;
4913                 break;
4914         case IPC_SET:
4915                 perms = SHM__SETATTR;
4916                 break;
4917         case SHM_LOCK:
4918         case SHM_UNLOCK:
4919                 perms = SHM__LOCK;
4920                 break;
4921         case IPC_RMID:
4922                 perms = SHM__DESTROY;
4923                 break;
4924         default:
4925                 return 0;
4926         }
4927
4928         err = ipc_has_perm(&shp->shm_perm, perms);
4929         return err;
4930 }
4931
4932 static int selinux_shm_shmat(struct shmid_kernel *shp,
4933                              char __user *shmaddr, int shmflg)
4934 {
4935         u32 perms;
4936
4937         if (shmflg & SHM_RDONLY)
4938                 perms = SHM__READ;
4939         else
4940                 perms = SHM__READ | SHM__WRITE;
4941
4942         return ipc_has_perm(&shp->shm_perm, perms);
4943 }
4944
4945 /* Semaphore security operations */
4946 static int selinux_sem_alloc_security(struct sem_array *sma)
4947 {
4948         struct ipc_security_struct *isec;
4949         struct avc_audit_data ad;
4950         u32 sid = current_sid();
4951         int rc;
4952
4953         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4954         if (rc)
4955                 return rc;
4956
4957         isec = sma->sem_perm.security;
4958
4959         AVC_AUDIT_DATA_INIT(&ad, IPC);
4960         ad.u.ipc_id = sma->sem_perm.key;
4961
4962         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
4963                           SEM__CREATE, &ad);
4964         if (rc) {
4965                 ipc_free_security(&sma->sem_perm);
4966                 return rc;
4967         }
4968         return 0;
4969 }
4970
4971 static void selinux_sem_free_security(struct sem_array *sma)
4972 {
4973         ipc_free_security(&sma->sem_perm);
4974 }
4975
4976 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4977 {
4978         struct ipc_security_struct *isec;
4979         struct avc_audit_data ad;
4980         u32 sid = current_sid();
4981
4982         isec = sma->sem_perm.security;
4983
4984         AVC_AUDIT_DATA_INIT(&ad, IPC);
4985         ad.u.ipc_id = sma->sem_perm.key;
4986
4987         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
4988                             SEM__ASSOCIATE, &ad);
4989 }
4990
4991 /* Note, at this point, sma is locked down */
4992 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4993 {
4994         int err;
4995         u32 perms;
4996
4997         switch (cmd) {
4998         case IPC_INFO:
4999         case SEM_INFO:
5000                 /* No specific object, just general system-wide information. */
5001                 return task_has_system(current, SYSTEM__IPC_INFO);
5002         case GETPID:
5003         case GETNCNT:
5004         case GETZCNT:
5005                 perms = SEM__GETATTR;
5006                 break;
5007         case GETVAL:
5008         case GETALL:
5009                 perms = SEM__READ;
5010                 break;
5011         case SETVAL:
5012         case SETALL:
5013                 perms = SEM__WRITE;
5014                 break;
5015         case IPC_RMID:
5016                 perms = SEM__DESTROY;
5017                 break;
5018         case IPC_SET:
5019                 perms = SEM__SETATTR;
5020                 break;
5021         case IPC_STAT:
5022         case SEM_STAT:
5023                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5024                 break;
5025         default:
5026                 return 0;
5027         }
5028
5029         err = ipc_has_perm(&sma->sem_perm, perms);
5030         return err;
5031 }
5032
5033 static int selinux_sem_semop(struct sem_array *sma,
5034                              struct sembuf *sops, unsigned nsops, int alter)
5035 {
5036         u32 perms;
5037
5038         if (alter)
5039                 perms = SEM__READ | SEM__WRITE;
5040         else
5041                 perms = SEM__READ;
5042
5043         return ipc_has_perm(&sma->sem_perm, perms);
5044 }
5045
5046 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5047 {
5048         u32 av = 0;
5049
5050         av = 0;
5051         if (flag & S_IRUGO)
5052                 av |= IPC__UNIX_READ;
5053         if (flag & S_IWUGO)
5054                 av |= IPC__UNIX_WRITE;
5055
5056         if (av == 0)
5057                 return 0;
5058
5059         return ipc_has_perm(ipcp, av);
5060 }
5061
5062 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5063 {
5064         struct ipc_security_struct *isec = ipcp->security;
5065         *secid = isec->sid;
5066 }
5067
5068 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5069 {
5070         if (inode)
5071                 inode_doinit_with_dentry(inode, dentry);
5072 }
5073
5074 static int selinux_getprocattr(struct task_struct *p,
5075                                char *name, char **value)
5076 {
5077         const struct task_security_struct *__tsec;
5078         u32 sid;
5079         int error;
5080         unsigned len;
5081
5082         if (current != p) {
5083                 error = current_has_perm(p, PROCESS__GETATTR);
5084                 if (error)
5085                         return error;
5086         }
5087
5088         rcu_read_lock();
5089         __tsec = __task_cred(p)->security;
5090
5091         if (!strcmp(name, "current"))
5092                 sid = __tsec->sid;
5093         else if (!strcmp(name, "prev"))
5094                 sid = __tsec->osid;
5095         else if (!strcmp(name, "exec"))
5096                 sid = __tsec->exec_sid;
5097         else if (!strcmp(name, "fscreate"))
5098                 sid = __tsec->create_sid;
5099         else if (!strcmp(name, "keycreate"))
5100                 sid = __tsec->keycreate_sid;
5101         else if (!strcmp(name, "sockcreate"))
5102                 sid = __tsec->sockcreate_sid;
5103         else
5104                 goto invalid;
5105         rcu_read_unlock();
5106
5107         if (!sid)
5108                 return 0;
5109
5110         error = security_sid_to_context(sid, value, &len);
5111         if (error)
5112                 return error;
5113         return len;
5114
5115 invalid:
5116         rcu_read_unlock();
5117         return -EINVAL;
5118 }
5119
5120 static int selinux_setprocattr(struct task_struct *p,
5121                                char *name, void *value, size_t size)
5122 {
5123         struct task_security_struct *tsec;
5124         struct task_struct *tracer;
5125         struct cred *new;
5126         u32 sid = 0, ptsid;
5127         int error;
5128         char *str = value;
5129
5130         if (current != p) {
5131                 /* SELinux only allows a process to change its own
5132                    security attributes. */
5133                 return -EACCES;
5134         }
5135
5136         /*
5137          * Basic control over ability to set these attributes at all.
5138          * current == p, but we'll pass them separately in case the
5139          * above restriction is ever removed.
5140          */
5141         if (!strcmp(name, "exec"))
5142                 error = current_has_perm(p, PROCESS__SETEXEC);
5143         else if (!strcmp(name, "fscreate"))
5144                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5145         else if (!strcmp(name, "keycreate"))
5146                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5147         else if (!strcmp(name, "sockcreate"))
5148                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5149         else if (!strcmp(name, "current"))
5150                 error = current_has_perm(p, PROCESS__SETCURRENT);
5151         else
5152                 error = -EINVAL;
5153         if (error)
5154                 return error;
5155
5156         /* Obtain a SID for the context, if one was specified. */
5157         if (size && str[1] && str[1] != '\n') {
5158                 if (str[size-1] == '\n') {
5159                         str[size-1] = 0;
5160                         size--;
5161                 }
5162                 error = security_context_to_sid(value, size, &sid);
5163                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5164                         if (!capable(CAP_MAC_ADMIN))
5165                                 return error;
5166                         error = security_context_to_sid_force(value, size,
5167                                                               &sid);
5168                 }
5169                 if (error)
5170                         return error;
5171         }
5172
5173         new = prepare_creds();
5174         if (!new)
5175                 return -ENOMEM;
5176
5177         /* Permission checking based on the specified context is
5178            performed during the actual operation (execve,
5179            open/mkdir/...), when we know the full context of the
5180            operation.  See selinux_bprm_set_creds for the execve
5181            checks and may_create for the file creation checks. The
5182            operation will then fail if the context is not permitted. */
5183         tsec = new->security;
5184         if (!strcmp(name, "exec")) {
5185                 tsec->exec_sid = sid;
5186         } else if (!strcmp(name, "fscreate")) {
5187                 tsec->create_sid = sid;
5188         } else if (!strcmp(name, "keycreate")) {
5189                 error = may_create_key(sid, p);
5190                 if (error)
5191                         goto abort_change;
5192                 tsec->keycreate_sid = sid;
5193         } else if (!strcmp(name, "sockcreate")) {
5194                 tsec->sockcreate_sid = sid;
5195         } else if (!strcmp(name, "current")) {
5196                 error = -EINVAL;
5197                 if (sid == 0)
5198                         goto abort_change;
5199
5200                 /* Only allow single threaded processes to change context */
5201                 error = -EPERM;
5202                 if (!current_is_single_threaded()) {
5203                         error = security_bounded_transition(tsec->sid, sid);
5204                         if (error)
5205                                 goto abort_change;
5206                 }
5207
5208                 /* Check permissions for the transition. */
5209                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5210                                      PROCESS__DYNTRANSITION, NULL);
5211                 if (error)
5212                         goto abort_change;
5213
5214                 /* Check for ptracing, and update the task SID if ok.
5215                    Otherwise, leave SID unchanged and fail. */
5216                 ptsid = 0;
5217                 task_lock(p);
5218                 tracer = tracehook_tracer_task(p);
5219                 if (tracer)
5220                         ptsid = task_sid(tracer);
5221                 task_unlock(p);
5222
5223                 if (tracer) {
5224                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5225                                              PROCESS__PTRACE, NULL);
5226                         if (error)
5227                                 goto abort_change;
5228                 }
5229
5230                 tsec->sid = sid;
5231         } else {
5232                 error = -EINVAL;
5233                 goto abort_change;
5234         }
5235
5236         commit_creds(new);
5237         return size;
5238
5239 abort_change:
5240         abort_creds(new);
5241         return error;
5242 }
5243
5244 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5245 {
5246         return security_sid_to_context(secid, secdata, seclen);
5247 }
5248
5249 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5250 {
5251         return security_context_to_sid(secdata, seclen, secid);
5252 }
5253
5254 static void selinux_release_secctx(char *secdata, u32 seclen)
5255 {
5256         kfree(secdata);
5257 }
5258
5259 #ifdef CONFIG_KEYS
5260
5261 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5262                              unsigned long flags)
5263 {
5264         const struct task_security_struct *tsec;
5265         struct key_security_struct *ksec;
5266
5267         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5268         if (!ksec)
5269                 return -ENOMEM;
5270
5271         tsec = cred->security;
5272         if (tsec->keycreate_sid)
5273                 ksec->sid = tsec->keycreate_sid;
5274         else
5275                 ksec->sid = tsec->sid;
5276
5277         k->security = ksec;
5278         return 0;
5279 }
5280
5281 static void selinux_key_free(struct key *k)
5282 {
5283         struct key_security_struct *ksec = k->security;
5284
5285         k->security = NULL;
5286         kfree(ksec);
5287 }
5288
5289 static int selinux_key_permission(key_ref_t key_ref,
5290                                   const struct cred *cred,
5291                                   key_perm_t perm)
5292 {
5293         struct key *key;
5294         struct key_security_struct *ksec;
5295         u32 sid;
5296
5297         /* if no specific permissions are requested, we skip the
5298            permission check. No serious, additional covert channels
5299            appear to be created. */
5300         if (perm == 0)
5301                 return 0;
5302
5303         sid = cred_sid(cred);
5304
5305         key = key_ref_to_ptr(key_ref);
5306         ksec = key->security;
5307
5308         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5309 }
5310
5311 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5312 {
5313         struct key_security_struct *ksec = key->security;
5314         char *context = NULL;
5315         unsigned len;
5316         int rc;
5317
5318         rc = security_sid_to_context(ksec->sid, &context, &len);
5319         if (!rc)
5320                 rc = len;
5321         *_buffer = context;
5322         return rc;
5323 }
5324
5325 #endif
5326
5327 static struct security_operations selinux_ops = {
5328         .name =                         "selinux",
5329
5330         .ptrace_access_check =          selinux_ptrace_access_check,
5331         .ptrace_traceme =               selinux_ptrace_traceme,
5332         .capget =                       selinux_capget,
5333         .capset =                       selinux_capset,
5334         .sysctl =                       selinux_sysctl,
5335         .capable =                      selinux_capable,
5336         .quotactl =                     selinux_quotactl,
5337         .quota_on =                     selinux_quota_on,
5338         .syslog =                       selinux_syslog,
5339         .vm_enough_memory =             selinux_vm_enough_memory,
5340
5341         .netlink_send =                 selinux_netlink_send,
5342         .netlink_recv =                 selinux_netlink_recv,
5343
5344         .bprm_set_creds =               selinux_bprm_set_creds,
5345         .bprm_committing_creds =        selinux_bprm_committing_creds,
5346         .bprm_committed_creds =         selinux_bprm_committed_creds,
5347         .bprm_secureexec =              selinux_bprm_secureexec,
5348
5349         .sb_alloc_security =            selinux_sb_alloc_security,
5350         .sb_free_security =             selinux_sb_free_security,
5351         .sb_copy_data =                 selinux_sb_copy_data,
5352         .sb_kern_mount =                selinux_sb_kern_mount,
5353         .sb_show_options =              selinux_sb_show_options,
5354         .sb_statfs =                    selinux_sb_statfs,
5355         .sb_mount =                     selinux_mount,
5356         .sb_umount =                    selinux_umount,
5357         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5358         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5359         .sb_parse_opts_str =            selinux_parse_opts_str,
5360
5361
5362         .inode_alloc_security =         selinux_inode_alloc_security,
5363         .inode_free_security =          selinux_inode_free_security,
5364         .inode_init_security =          selinux_inode_init_security,
5365         .inode_create =                 selinux_inode_create,
5366         .inode_link =                   selinux_inode_link,
5367         .inode_unlink =                 selinux_inode_unlink,
5368         .inode_symlink =                selinux_inode_symlink,
5369         .inode_mkdir =                  selinux_inode_mkdir,
5370         .inode_rmdir =                  selinux_inode_rmdir,
5371         .inode_mknod =                  selinux_inode_mknod,
5372         .inode_rename =                 selinux_inode_rename,
5373         .inode_readlink =               selinux_inode_readlink,
5374         .inode_follow_link =            selinux_inode_follow_link,
5375         .inode_permission =             selinux_inode_permission,
5376         .inode_setattr =                selinux_inode_setattr,
5377         .inode_getattr =                selinux_inode_getattr,
5378         .inode_setxattr =               selinux_inode_setxattr,
5379         .inode_post_setxattr =          selinux_inode_post_setxattr,
5380         .inode_getxattr =               selinux_inode_getxattr,
5381         .inode_listxattr =              selinux_inode_listxattr,
5382         .inode_removexattr =            selinux_inode_removexattr,
5383         .inode_getsecurity =            selinux_inode_getsecurity,
5384         .inode_setsecurity =            selinux_inode_setsecurity,
5385         .inode_listsecurity =           selinux_inode_listsecurity,
5386         .inode_getsecid =               selinux_inode_getsecid,
5387
5388         .file_permission =              selinux_file_permission,
5389         .file_alloc_security =          selinux_file_alloc_security,
5390         .file_free_security =           selinux_file_free_security,
5391         .file_ioctl =                   selinux_file_ioctl,
5392         .file_mmap =                    selinux_file_mmap,
5393         .file_mprotect =                selinux_file_mprotect,
5394         .file_lock =                    selinux_file_lock,
5395         .file_fcntl =                   selinux_file_fcntl,
5396         .file_set_fowner =              selinux_file_set_fowner,
5397         .file_send_sigiotask =          selinux_file_send_sigiotask,
5398         .file_receive =                 selinux_file_receive,
5399
5400         .dentry_open =                  selinux_dentry_open,
5401
5402         .task_create =                  selinux_task_create,
5403         .cred_free =                    selinux_cred_free,
5404         .cred_prepare =                 selinux_cred_prepare,
5405         .kernel_act_as =                selinux_kernel_act_as,
5406         .kernel_create_files_as =       selinux_kernel_create_files_as,
5407         .task_setpgid =                 selinux_task_setpgid,
5408         .task_getpgid =                 selinux_task_getpgid,
5409         .task_getsid =                  selinux_task_getsid,
5410         .task_getsecid =                selinux_task_getsecid,
5411         .task_setnice =                 selinux_task_setnice,
5412         .task_setioprio =               selinux_task_setioprio,
5413         .task_getioprio =               selinux_task_getioprio,
5414         .task_setrlimit =               selinux_task_setrlimit,
5415         .task_setscheduler =            selinux_task_setscheduler,
5416         .task_getscheduler =            selinux_task_getscheduler,
5417         .task_movememory =              selinux_task_movememory,
5418         .task_kill =                    selinux_task_kill,
5419         .task_wait =                    selinux_task_wait,
5420         .task_to_inode =                selinux_task_to_inode,
5421
5422         .ipc_permission =               selinux_ipc_permission,
5423         .ipc_getsecid =                 selinux_ipc_getsecid,
5424
5425         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5426         .msg_msg_free_security =        selinux_msg_msg_free_security,
5427
5428         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5429         .msg_queue_free_security =      selinux_msg_queue_free_security,
5430         .msg_queue_associate =          selinux_msg_queue_associate,
5431         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5432         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5433         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5434
5435         .shm_alloc_security =           selinux_shm_alloc_security,
5436         .shm_free_security =            selinux_shm_free_security,
5437         .shm_associate =                selinux_shm_associate,
5438         .shm_shmctl =                   selinux_shm_shmctl,
5439         .shm_shmat =                    selinux_shm_shmat,
5440
5441         .sem_alloc_security =           selinux_sem_alloc_security,
5442         .sem_free_security =            selinux_sem_free_security,
5443         .sem_associate =                selinux_sem_associate,
5444         .sem_semctl =                   selinux_sem_semctl,
5445         .sem_semop =                    selinux_sem_semop,
5446
5447         .d_instantiate =                selinux_d_instantiate,
5448
5449         .getprocattr =                  selinux_getprocattr,
5450         .setprocattr =                  selinux_setprocattr,
5451
5452         .secid_to_secctx =              selinux_secid_to_secctx,
5453         .secctx_to_secid =              selinux_secctx_to_secid,
5454         .release_secctx =               selinux_release_secctx,
5455
5456         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5457         .unix_may_send =                selinux_socket_unix_may_send,
5458
5459         .socket_create =                selinux_socket_create,
5460         .socket_post_create =           selinux_socket_post_create,
5461         .socket_bind =                  selinux_socket_bind,
5462         .socket_connect =               selinux_socket_connect,
5463         .socket_listen =                selinux_socket_listen,
5464         .socket_accept =                selinux_socket_accept,
5465         .socket_sendmsg =               selinux_socket_sendmsg,
5466         .socket_recvmsg =               selinux_socket_recvmsg,
5467         .socket_getsockname =           selinux_socket_getsockname,
5468         .socket_getpeername =           selinux_socket_getpeername,
5469         .socket_getsockopt =            selinux_socket_getsockopt,
5470         .socket_setsockopt =            selinux_socket_setsockopt,
5471         .socket_shutdown =              selinux_socket_shutdown,
5472         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5473         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5474         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5475         .sk_alloc_security =            selinux_sk_alloc_security,
5476         .sk_free_security =             selinux_sk_free_security,
5477         .sk_clone_security =            selinux_sk_clone_security,
5478         .sk_getsecid =                  selinux_sk_getsecid,
5479         .sock_graft =                   selinux_sock_graft,
5480         .inet_conn_request =            selinux_inet_conn_request,
5481         .inet_csk_clone =               selinux_inet_csk_clone,
5482         .inet_conn_established =        selinux_inet_conn_established,
5483         .req_classify_flow =            selinux_req_classify_flow,
5484
5485 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5486         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5487         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5488         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5489         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5490         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5491         .xfrm_state_free_security =     selinux_xfrm_state_free,
5492         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5493         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5494         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5495         .xfrm_decode_session =          selinux_xfrm_decode_session,
5496 #endif
5497
5498 #ifdef CONFIG_KEYS
5499         .key_alloc =                    selinux_key_alloc,
5500         .key_free =                     selinux_key_free,
5501         .key_permission =               selinux_key_permission,
5502         .key_getsecurity =              selinux_key_getsecurity,
5503 #endif
5504
5505 #ifdef CONFIG_AUDIT
5506         .audit_rule_init =              selinux_audit_rule_init,
5507         .audit_rule_known =             selinux_audit_rule_known,
5508         .audit_rule_match =             selinux_audit_rule_match,
5509         .audit_rule_free =              selinux_audit_rule_free,
5510 #endif
5511 };
5512
5513 static __init int selinux_init(void)
5514 {
5515         if (!security_module_enable(&selinux_ops)) {
5516                 selinux_enabled = 0;
5517                 return 0;
5518         }
5519
5520         if (!selinux_enabled) {
5521                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5522                 return 0;
5523         }
5524
5525         printk(KERN_INFO "SELinux:  Initializing.\n");
5526
5527         /* Set the security state for the initial task. */
5528         cred_init_security();
5529
5530         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5531                                             sizeof(struct inode_security_struct),
5532                                             0, SLAB_PANIC, NULL);
5533         avc_init();
5534
5535         secondary_ops = security_ops;
5536         if (!secondary_ops)
5537                 panic("SELinux: No initial security operations\n");
5538         if (register_security(&selinux_ops))
5539                 panic("SELinux: Unable to register with kernel.\n");
5540
5541         if (selinux_enforcing)
5542                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5543         else
5544                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5545
5546         return 0;
5547 }
5548
5549 void selinux_complete_init(void)
5550 {
5551         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5552
5553         /* Set up any superblocks initialized prior to the policy load. */
5554         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5555         spin_lock(&sb_lock);
5556         spin_lock(&sb_security_lock);
5557 next_sb:
5558         if (!list_empty(&superblock_security_head)) {
5559                 struct superblock_security_struct *sbsec =
5560                                 list_entry(superblock_security_head.next,
5561                                            struct superblock_security_struct,
5562                                            list);
5563                 struct super_block *sb = sbsec->sb;
5564                 sb->s_count++;
5565                 spin_unlock(&sb_security_lock);
5566                 spin_unlock(&sb_lock);
5567                 down_read(&sb->s_umount);
5568                 if (sb->s_root)
5569                         superblock_doinit(sb, NULL);
5570                 drop_super(sb);
5571                 spin_lock(&sb_lock);
5572                 spin_lock(&sb_security_lock);
5573                 list_del_init(&sbsec->list);
5574                 goto next_sb;
5575         }
5576         spin_unlock(&sb_security_lock);
5577         spin_unlock(&sb_lock);
5578 }
5579
5580 /* SELinux requires early initialization in order to label
5581    all processes and objects when they are created. */
5582 security_initcall(selinux_init);
5583
5584 #if defined(CONFIG_NETFILTER)
5585
5586 static struct nf_hook_ops selinux_ipv4_ops[] = {
5587         {
5588                 .hook =         selinux_ipv4_postroute,
5589                 .owner =        THIS_MODULE,
5590                 .pf =           PF_INET,
5591                 .hooknum =      NF_INET_POST_ROUTING,
5592                 .priority =     NF_IP_PRI_SELINUX_LAST,
5593         },
5594         {
5595                 .hook =         selinux_ipv4_forward,
5596                 .owner =        THIS_MODULE,
5597                 .pf =           PF_INET,
5598                 .hooknum =      NF_INET_FORWARD,
5599                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5600         },
5601         {
5602                 .hook =         selinux_ipv4_output,
5603                 .owner =        THIS_MODULE,
5604                 .pf =           PF_INET,
5605                 .hooknum =      NF_INET_LOCAL_OUT,
5606                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5607         }
5608 };
5609
5610 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5611
5612 static struct nf_hook_ops selinux_ipv6_ops[] = {
5613         {
5614                 .hook =         selinux_ipv6_postroute,
5615                 .owner =        THIS_MODULE,
5616                 .pf =           PF_INET6,
5617                 .hooknum =      NF_INET_POST_ROUTING,
5618                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5619         },
5620         {
5621                 .hook =         selinux_ipv6_forward,
5622                 .owner =        THIS_MODULE,
5623                 .pf =           PF_INET6,
5624                 .hooknum =      NF_INET_FORWARD,
5625                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5626         }
5627 };
5628
5629 #endif  /* IPV6 */
5630
5631 static int __init selinux_nf_ip_init(void)
5632 {
5633         int err = 0;
5634
5635         if (!selinux_enabled)
5636                 goto out;
5637
5638         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5639
5640         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5641         if (err)
5642                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5643
5644 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5645         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5646         if (err)
5647                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5648 #endif  /* IPV6 */
5649
5650 out:
5651         return err;
5652 }
5653
5654 __initcall(selinux_nf_ip_init);
5655
5656 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5657 static void selinux_nf_ip_exit(void)
5658 {
5659         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5660
5661         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5662 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5663         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5664 #endif  /* IPV6 */
5665 }
5666 #endif
5667
5668 #else /* CONFIG_NETFILTER */
5669
5670 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5671 #define selinux_nf_ip_exit()
5672 #endif
5673
5674 #endif /* CONFIG_NETFILTER */
5675
5676 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5677 static int selinux_disabled;
5678
5679 int selinux_disable(void)
5680 {
5681         extern void exit_sel_fs(void);
5682
5683         if (ss_initialized) {
5684                 /* Not permitted after initial policy load. */
5685                 return -EINVAL;
5686         }
5687
5688         if (selinux_disabled) {
5689                 /* Only do this once. */
5690                 return -EINVAL;
5691         }
5692
5693         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5694
5695         selinux_disabled = 1;
5696         selinux_enabled = 0;
5697
5698         /* Try to destroy the avc node cache */
5699         avc_disable();
5700
5701         /* Reset security_ops to the secondary module, dummy or capability. */
5702         security_ops = secondary_ops;
5703
5704         /* Unregister netfilter hooks. */
5705         selinux_nf_ip_exit();
5706
5707         /* Unregister selinuxfs. */
5708         exit_sel_fs();
5709
5710         return 0;
5711 }
5712 #endif