5f21a514f5811332bc2e2dcc0db98dd0a0e0fdfd
[safe/jmp/linux-2.6] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
17  *              Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78
79 #include "avc.h"
80 #include "objsec.h"
81 #include "netif.h"
82 #include "netnode.h"
83 #include "netport.h"
84 #include "xfrm.h"
85 #include "netlabel.h"
86 #include "audit.h"
87
88 #define XATTR_SELINUX_SUFFIX "selinux"
89 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
90
91 #define NUM_SEL_MNT_OPTS 4
92
93 extern unsigned int policydb_loaded_version;
94 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
95 extern int selinux_compat_net;
96 extern struct security_operations *security_ops;
97
98 /* SECMARK reference count */
99 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
100
101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
102 int selinux_enforcing;
103
104 static int __init enforcing_setup(char *str)
105 {
106         unsigned long enforcing;
107         if (!strict_strtoul(str, 0, &enforcing))
108                 selinux_enforcing = enforcing ? 1 : 0;
109         return 1;
110 }
111 __setup("enforcing=", enforcing_setup);
112 #endif
113
114 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
115 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
116
117 static int __init selinux_enabled_setup(char *str)
118 {
119         unsigned long enabled;
120         if (!strict_strtoul(str, 0, &enabled))
121                 selinux_enabled = enabled ? 1 : 0;
122         return 1;
123 }
124 __setup("selinux=", selinux_enabled_setup);
125 #else
126 int selinux_enabled = 1;
127 #endif
128
129
130 /*
131  * Minimal support for a secondary security module,
132  * just to allow the use of the capability module.
133  */
134 static struct security_operations *secondary_ops;
135
136 /* Lists of inode and superblock security structures initialized
137    before the policy was loaded. */
138 static LIST_HEAD(superblock_security_head);
139 static DEFINE_SPINLOCK(sb_security_lock);
140
141 static struct kmem_cache *sel_inode_cache;
142
143 /**
144  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
145  *
146  * Description:
147  * This function checks the SECMARK reference counter to see if any SECMARK
148  * targets are currently configured, if the reference counter is greater than
149  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
150  * enabled, false (0) if SECMARK is disabled.
151  *
152  */
153 static int selinux_secmark_enabled(void)
154 {
155         return (atomic_read(&selinux_secmark_refcount) > 0);
156 }
157
158 /* Allocate and free functions for each kind of security blob. */
159
160 static int task_alloc_security(struct task_struct *task)
161 {
162         struct task_security_struct *tsec;
163
164         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
165         if (!tsec)
166                 return -ENOMEM;
167
168         tsec->osid = tsec->sid = SECINITSID_UNLABELED;
169         task->security = tsec;
170
171         return 0;
172 }
173
174 static void task_free_security(struct task_struct *task)
175 {
176         struct task_security_struct *tsec = task->security;
177         task->security = NULL;
178         kfree(tsec);
179 }
180
181 static int inode_alloc_security(struct inode *inode)
182 {
183         struct task_security_struct *tsec = current->security;
184         struct inode_security_struct *isec;
185
186         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
187         if (!isec)
188                 return -ENOMEM;
189
190         mutex_init(&isec->lock);
191         INIT_LIST_HEAD(&isec->list);
192         isec->inode = inode;
193         isec->sid = SECINITSID_UNLABELED;
194         isec->sclass = SECCLASS_FILE;
195         isec->task_sid = tsec->sid;
196         inode->i_security = isec;
197
198         return 0;
199 }
200
201 static void inode_free_security(struct inode *inode)
202 {
203         struct inode_security_struct *isec = inode->i_security;
204         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
205
206         spin_lock(&sbsec->isec_lock);
207         if (!list_empty(&isec->list))
208                 list_del_init(&isec->list);
209         spin_unlock(&sbsec->isec_lock);
210
211         inode->i_security = NULL;
212         kmem_cache_free(sel_inode_cache, isec);
213 }
214
215 static int file_alloc_security(struct file *file)
216 {
217         struct task_security_struct *tsec = current->security;
218         struct file_security_struct *fsec;
219
220         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
221         if (!fsec)
222                 return -ENOMEM;
223
224         fsec->sid = tsec->sid;
225         fsec->fown_sid = tsec->sid;
226         file->f_security = fsec;
227
228         return 0;
229 }
230
231 static void file_free_security(struct file *file)
232 {
233         struct file_security_struct *fsec = file->f_security;
234         file->f_security = NULL;
235         kfree(fsec);
236 }
237
238 static int superblock_alloc_security(struct super_block *sb)
239 {
240         struct superblock_security_struct *sbsec;
241
242         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
243         if (!sbsec)
244                 return -ENOMEM;
245
246         mutex_init(&sbsec->lock);
247         INIT_LIST_HEAD(&sbsec->list);
248         INIT_LIST_HEAD(&sbsec->isec_head);
249         spin_lock_init(&sbsec->isec_lock);
250         sbsec->sb = sb;
251         sbsec->sid = SECINITSID_UNLABELED;
252         sbsec->def_sid = SECINITSID_FILE;
253         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
254         sb->s_security = sbsec;
255
256         return 0;
257 }
258
259 static void superblock_free_security(struct super_block *sb)
260 {
261         struct superblock_security_struct *sbsec = sb->s_security;
262
263         spin_lock(&sb_security_lock);
264         if (!list_empty(&sbsec->list))
265                 list_del_init(&sbsec->list);
266         spin_unlock(&sb_security_lock);
267
268         sb->s_security = NULL;
269         kfree(sbsec);
270 }
271
272 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
273 {
274         struct sk_security_struct *ssec;
275
276         ssec = kzalloc(sizeof(*ssec), priority);
277         if (!ssec)
278                 return -ENOMEM;
279
280         ssec->peer_sid = SECINITSID_UNLABELED;
281         ssec->sid = SECINITSID_UNLABELED;
282         sk->sk_security = ssec;
283
284         selinux_netlbl_sk_security_reset(ssec, family);
285
286         return 0;
287 }
288
289 static void sk_free_security(struct sock *sk)
290 {
291         struct sk_security_struct *ssec = sk->sk_security;
292
293         sk->sk_security = NULL;
294         selinux_netlbl_sk_security_free(ssec);
295         kfree(ssec);
296 }
297
298 /* The security server must be initialized before
299    any labeling or access decisions can be provided. */
300 extern int ss_initialized;
301
302 /* The file system's label must be initialized prior to use. */
303
304 static char *labeling_behaviors[6] = {
305         "uses xattr",
306         "uses transition SIDs",
307         "uses task SIDs",
308         "uses genfs_contexts",
309         "not configured for labeling",
310         "uses mountpoint labeling",
311 };
312
313 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
314
315 static inline int inode_doinit(struct inode *inode)
316 {
317         return inode_doinit_with_dentry(inode, NULL);
318 }
319
320 enum {
321         Opt_error = -1,
322         Opt_context = 1,
323         Opt_fscontext = 2,
324         Opt_defcontext = 3,
325         Opt_rootcontext = 4,
326 };
327
328 static match_table_t tokens = {
329         {Opt_context, CONTEXT_STR "%s"},
330         {Opt_fscontext, FSCONTEXT_STR "%s"},
331         {Opt_defcontext, DEFCONTEXT_STR "%s"},
332         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
333         {Opt_error, NULL},
334 };
335
336 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
337
338 static int may_context_mount_sb_relabel(u32 sid,
339                         struct superblock_security_struct *sbsec,
340                         struct task_security_struct *tsec)
341 {
342         int rc;
343
344         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
345                           FILESYSTEM__RELABELFROM, NULL);
346         if (rc)
347                 return rc;
348
349         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
350                           FILESYSTEM__RELABELTO, NULL);
351         return rc;
352 }
353
354 static int may_context_mount_inode_relabel(u32 sid,
355                         struct superblock_security_struct *sbsec,
356                         struct task_security_struct *tsec)
357 {
358         int rc;
359         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
360                           FILESYSTEM__RELABELFROM, NULL);
361         if (rc)
362                 return rc;
363
364         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
365                           FILESYSTEM__ASSOCIATE, NULL);
366         return rc;
367 }
368
369 static int sb_finish_set_opts(struct super_block *sb)
370 {
371         struct superblock_security_struct *sbsec = sb->s_security;
372         struct dentry *root = sb->s_root;
373         struct inode *root_inode = root->d_inode;
374         int rc = 0;
375
376         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
377                 /* Make sure that the xattr handler exists and that no
378                    error other than -ENODATA is returned by getxattr on
379                    the root directory.  -ENODATA is ok, as this may be
380                    the first boot of the SELinux kernel before we have
381                    assigned xattr values to the filesystem. */
382                 if (!root_inode->i_op->getxattr) {
383                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
384                                "xattr support\n", sb->s_id, sb->s_type->name);
385                         rc = -EOPNOTSUPP;
386                         goto out;
387                 }
388                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
389                 if (rc < 0 && rc != -ENODATA) {
390                         if (rc == -EOPNOTSUPP)
391                                 printk(KERN_WARNING "SELinux: (dev %s, type "
392                                        "%s) has no security xattr handler\n",
393                                        sb->s_id, sb->s_type->name);
394                         else
395                                 printk(KERN_WARNING "SELinux: (dev %s, type "
396                                        "%s) getxattr errno %d\n", sb->s_id,
397                                        sb->s_type->name, -rc);
398                         goto out;
399                 }
400         }
401
402         sbsec->initialized = 1;
403
404         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
405                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
406                        sb->s_id, sb->s_type->name);
407         else
408                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
409                        sb->s_id, sb->s_type->name,
410                        labeling_behaviors[sbsec->behavior-1]);
411
412         /* Initialize the root inode. */
413         rc = inode_doinit_with_dentry(root_inode, root);
414
415         /* Initialize any other inodes associated with the superblock, e.g.
416            inodes created prior to initial policy load or inodes created
417            during get_sb by a pseudo filesystem that directly
418            populates itself. */
419         spin_lock(&sbsec->isec_lock);
420 next_inode:
421         if (!list_empty(&sbsec->isec_head)) {
422                 struct inode_security_struct *isec =
423                                 list_entry(sbsec->isec_head.next,
424                                            struct inode_security_struct, list);
425                 struct inode *inode = isec->inode;
426                 spin_unlock(&sbsec->isec_lock);
427                 inode = igrab(inode);
428                 if (inode) {
429                         if (!IS_PRIVATE(inode))
430                                 inode_doinit(inode);
431                         iput(inode);
432                 }
433                 spin_lock(&sbsec->isec_lock);
434                 list_del_init(&isec->list);
435                 goto next_inode;
436         }
437         spin_unlock(&sbsec->isec_lock);
438 out:
439         return rc;
440 }
441
442 /*
443  * This function should allow an FS to ask what it's mount security
444  * options were so it can use those later for submounts, displaying
445  * mount options, or whatever.
446  */
447 static int selinux_get_mnt_opts(const struct super_block *sb,
448                                 struct security_mnt_opts *opts)
449 {
450         int rc = 0, i;
451         struct superblock_security_struct *sbsec = sb->s_security;
452         char *context = NULL;
453         u32 len;
454         char tmp;
455
456         security_init_mnt_opts(opts);
457
458         if (!sbsec->initialized)
459                 return -EINVAL;
460
461         if (!ss_initialized)
462                 return -EINVAL;
463
464         /*
465          * if we ever use sbsec flags for anything other than tracking mount
466          * settings this is going to need a mask
467          */
468         tmp = sbsec->flags;
469         /* count the number of mount options for this sb */
470         for (i = 0; i < 8; i++) {
471                 if (tmp & 0x01)
472                         opts->num_mnt_opts++;
473                 tmp >>= 1;
474         }
475
476         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
477         if (!opts->mnt_opts) {
478                 rc = -ENOMEM;
479                 goto out_free;
480         }
481
482         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
483         if (!opts->mnt_opts_flags) {
484                 rc = -ENOMEM;
485                 goto out_free;
486         }
487
488         i = 0;
489         if (sbsec->flags & FSCONTEXT_MNT) {
490                 rc = security_sid_to_context(sbsec->sid, &context, &len);
491                 if (rc)
492                         goto out_free;
493                 opts->mnt_opts[i] = context;
494                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
495         }
496         if (sbsec->flags & CONTEXT_MNT) {
497                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
498                 if (rc)
499                         goto out_free;
500                 opts->mnt_opts[i] = context;
501                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
502         }
503         if (sbsec->flags & DEFCONTEXT_MNT) {
504                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
505                 if (rc)
506                         goto out_free;
507                 opts->mnt_opts[i] = context;
508                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
509         }
510         if (sbsec->flags & ROOTCONTEXT_MNT) {
511                 struct inode *root = sbsec->sb->s_root->d_inode;
512                 struct inode_security_struct *isec = root->i_security;
513
514                 rc = security_sid_to_context(isec->sid, &context, &len);
515                 if (rc)
516                         goto out_free;
517                 opts->mnt_opts[i] = context;
518                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
519         }
520
521         BUG_ON(i != opts->num_mnt_opts);
522
523         return 0;
524
525 out_free:
526         security_free_mnt_opts(opts);
527         return rc;
528 }
529
530 static int bad_option(struct superblock_security_struct *sbsec, char flag,
531                       u32 old_sid, u32 new_sid)
532 {
533         /* check if the old mount command had the same options */
534         if (sbsec->initialized)
535                 if (!(sbsec->flags & flag) ||
536                     (old_sid != new_sid))
537                         return 1;
538
539         /* check if we were passed the same options twice,
540          * aka someone passed context=a,context=b
541          */
542         if (!sbsec->initialized)
543                 if (sbsec->flags & flag)
544                         return 1;
545         return 0;
546 }
547
548 /*
549  * Allow filesystems with binary mount data to explicitly set mount point
550  * labeling information.
551  */
552 static int selinux_set_mnt_opts(struct super_block *sb,
553                                 struct security_mnt_opts *opts)
554 {
555         int rc = 0, i;
556         struct task_security_struct *tsec = current->security;
557         struct superblock_security_struct *sbsec = sb->s_security;
558         const char *name = sb->s_type->name;
559         struct inode *inode = sbsec->sb->s_root->d_inode;
560         struct inode_security_struct *root_isec = inode->i_security;
561         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
562         u32 defcontext_sid = 0;
563         char **mount_options = opts->mnt_opts;
564         int *flags = opts->mnt_opts_flags;
565         int num_opts = opts->num_mnt_opts;
566
567         mutex_lock(&sbsec->lock);
568
569         if (!ss_initialized) {
570                 if (!num_opts) {
571                         /* Defer initialization until selinux_complete_init,
572                            after the initial policy is loaded and the security
573                            server is ready to handle calls. */
574                         spin_lock(&sb_security_lock);
575                         if (list_empty(&sbsec->list))
576                                 list_add(&sbsec->list, &superblock_security_head);
577                         spin_unlock(&sb_security_lock);
578                         goto out;
579                 }
580                 rc = -EINVAL;
581                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
582                         "before the security server is initialized\n");
583                 goto out;
584         }
585
586         /*
587          * Binary mount data FS will come through this function twice.  Once
588          * from an explicit call and once from the generic calls from the vfs.
589          * Since the generic VFS calls will not contain any security mount data
590          * we need to skip the double mount verification.
591          *
592          * This does open a hole in which we will not notice if the first
593          * mount using this sb set explict options and a second mount using
594          * this sb does not set any security options.  (The first options
595          * will be used for both mounts)
596          */
597         if (sbsec->initialized && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
598             && (num_opts == 0))
599                 goto out;
600
601         /*
602          * parse the mount options, check if they are valid sids.
603          * also check if someone is trying to mount the same sb more
604          * than once with different security options.
605          */
606         for (i = 0; i < num_opts; i++) {
607                 u32 sid;
608                 rc = security_context_to_sid(mount_options[i],
609                                              strlen(mount_options[i]), &sid);
610                 if (rc) {
611                         printk(KERN_WARNING "SELinux: security_context_to_sid"
612                                "(%s) failed for (dev %s, type %s) errno=%d\n",
613                                mount_options[i], sb->s_id, name, rc);
614                         goto out;
615                 }
616                 switch (flags[i]) {
617                 case FSCONTEXT_MNT:
618                         fscontext_sid = sid;
619
620                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
621                                         fscontext_sid))
622                                 goto out_double_mount;
623
624                         sbsec->flags |= FSCONTEXT_MNT;
625                         break;
626                 case CONTEXT_MNT:
627                         context_sid = sid;
628
629                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
630                                         context_sid))
631                                 goto out_double_mount;
632
633                         sbsec->flags |= CONTEXT_MNT;
634                         break;
635                 case ROOTCONTEXT_MNT:
636                         rootcontext_sid = sid;
637
638                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
639                                         rootcontext_sid))
640                                 goto out_double_mount;
641
642                         sbsec->flags |= ROOTCONTEXT_MNT;
643
644                         break;
645                 case DEFCONTEXT_MNT:
646                         defcontext_sid = sid;
647
648                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
649                                         defcontext_sid))
650                                 goto out_double_mount;
651
652                         sbsec->flags |= DEFCONTEXT_MNT;
653
654                         break;
655                 default:
656                         rc = -EINVAL;
657                         goto out;
658                 }
659         }
660
661         if (sbsec->initialized) {
662                 /* previously mounted with options, but not on this attempt? */
663                 if (sbsec->flags && !num_opts)
664                         goto out_double_mount;
665                 rc = 0;
666                 goto out;
667         }
668
669         if (strcmp(sb->s_type->name, "proc") == 0)
670                 sbsec->proc = 1;
671
672         /* Determine the labeling behavior to use for this filesystem type. */
673         rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
674         if (rc) {
675                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
676                        __func__, sb->s_type->name, rc);
677                 goto out;
678         }
679
680         /* sets the context of the superblock for the fs being mounted. */
681         if (fscontext_sid) {
682
683                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, tsec);
684                 if (rc)
685                         goto out;
686
687                 sbsec->sid = fscontext_sid;
688         }
689
690         /*
691          * Switch to using mount point labeling behavior.
692          * sets the label used on all file below the mountpoint, and will set
693          * the superblock context if not already set.
694          */
695         if (context_sid) {
696                 if (!fscontext_sid) {
697                         rc = may_context_mount_sb_relabel(context_sid, sbsec, tsec);
698                         if (rc)
699                                 goto out;
700                         sbsec->sid = context_sid;
701                 } else {
702                         rc = may_context_mount_inode_relabel(context_sid, sbsec, tsec);
703                         if (rc)
704                                 goto out;
705                 }
706                 if (!rootcontext_sid)
707                         rootcontext_sid = context_sid;
708
709                 sbsec->mntpoint_sid = context_sid;
710                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
711         }
712
713         if (rootcontext_sid) {
714                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, tsec);
715                 if (rc)
716                         goto out;
717
718                 root_isec->sid = rootcontext_sid;
719                 root_isec->initialized = 1;
720         }
721
722         if (defcontext_sid) {
723                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
724                         rc = -EINVAL;
725                         printk(KERN_WARNING "SELinux: defcontext option is "
726                                "invalid for this filesystem type\n");
727                         goto out;
728                 }
729
730                 if (defcontext_sid != sbsec->def_sid) {
731                         rc = may_context_mount_inode_relabel(defcontext_sid,
732                                                              sbsec, tsec);
733                         if (rc)
734                                 goto out;
735                 }
736
737                 sbsec->def_sid = defcontext_sid;
738         }
739
740         rc = sb_finish_set_opts(sb);
741 out:
742         mutex_unlock(&sbsec->lock);
743         return rc;
744 out_double_mount:
745         rc = -EINVAL;
746         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
747                "security settings for (dev %s, type %s)\n", sb->s_id, name);
748         goto out;
749 }
750
751 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
752                                         struct super_block *newsb)
753 {
754         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
755         struct superblock_security_struct *newsbsec = newsb->s_security;
756
757         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
758         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
759         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
760
761         /*
762          * if the parent was able to be mounted it clearly had no special lsm
763          * mount options.  thus we can safely put this sb on the list and deal
764          * with it later
765          */
766         if (!ss_initialized) {
767                 spin_lock(&sb_security_lock);
768                 if (list_empty(&newsbsec->list))
769                         list_add(&newsbsec->list, &superblock_security_head);
770                 spin_unlock(&sb_security_lock);
771                 return;
772         }
773
774         /* how can we clone if the old one wasn't set up?? */
775         BUG_ON(!oldsbsec->initialized);
776
777         /* if fs is reusing a sb, just let its options stand... */
778         if (newsbsec->initialized)
779                 return;
780
781         mutex_lock(&newsbsec->lock);
782
783         newsbsec->flags = oldsbsec->flags;
784
785         newsbsec->sid = oldsbsec->sid;
786         newsbsec->def_sid = oldsbsec->def_sid;
787         newsbsec->behavior = oldsbsec->behavior;
788
789         if (set_context) {
790                 u32 sid = oldsbsec->mntpoint_sid;
791
792                 if (!set_fscontext)
793                         newsbsec->sid = sid;
794                 if (!set_rootcontext) {
795                         struct inode *newinode = newsb->s_root->d_inode;
796                         struct inode_security_struct *newisec = newinode->i_security;
797                         newisec->sid = sid;
798                 }
799                 newsbsec->mntpoint_sid = sid;
800         }
801         if (set_rootcontext) {
802                 const struct inode *oldinode = oldsb->s_root->d_inode;
803                 const struct inode_security_struct *oldisec = oldinode->i_security;
804                 struct inode *newinode = newsb->s_root->d_inode;
805                 struct inode_security_struct *newisec = newinode->i_security;
806
807                 newisec->sid = oldisec->sid;
808         }
809
810         sb_finish_set_opts(newsb);
811         mutex_unlock(&newsbsec->lock);
812 }
813
814 static int selinux_parse_opts_str(char *options,
815                                   struct security_mnt_opts *opts)
816 {
817         char *p;
818         char *context = NULL, *defcontext = NULL;
819         char *fscontext = NULL, *rootcontext = NULL;
820         int rc, num_mnt_opts = 0;
821
822         opts->num_mnt_opts = 0;
823
824         /* Standard string-based options. */
825         while ((p = strsep(&options, "|")) != NULL) {
826                 int token;
827                 substring_t args[MAX_OPT_ARGS];
828
829                 if (!*p)
830                         continue;
831
832                 token = match_token(p, tokens, args);
833
834                 switch (token) {
835                 case Opt_context:
836                         if (context || defcontext) {
837                                 rc = -EINVAL;
838                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
839                                 goto out_err;
840                         }
841                         context = match_strdup(&args[0]);
842                         if (!context) {
843                                 rc = -ENOMEM;
844                                 goto out_err;
845                         }
846                         break;
847
848                 case Opt_fscontext:
849                         if (fscontext) {
850                                 rc = -EINVAL;
851                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
852                                 goto out_err;
853                         }
854                         fscontext = match_strdup(&args[0]);
855                         if (!fscontext) {
856                                 rc = -ENOMEM;
857                                 goto out_err;
858                         }
859                         break;
860
861                 case Opt_rootcontext:
862                         if (rootcontext) {
863                                 rc = -EINVAL;
864                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
865                                 goto out_err;
866                         }
867                         rootcontext = match_strdup(&args[0]);
868                         if (!rootcontext) {
869                                 rc = -ENOMEM;
870                                 goto out_err;
871                         }
872                         break;
873
874                 case Opt_defcontext:
875                         if (context || defcontext) {
876                                 rc = -EINVAL;
877                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
878                                 goto out_err;
879                         }
880                         defcontext = match_strdup(&args[0]);
881                         if (!defcontext) {
882                                 rc = -ENOMEM;
883                                 goto out_err;
884                         }
885                         break;
886
887                 default:
888                         rc = -EINVAL;
889                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
890                         goto out_err;
891
892                 }
893         }
894
895         rc = -ENOMEM;
896         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
897         if (!opts->mnt_opts)
898                 goto out_err;
899
900         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
901         if (!opts->mnt_opts_flags) {
902                 kfree(opts->mnt_opts);
903                 goto out_err;
904         }
905
906         if (fscontext) {
907                 opts->mnt_opts[num_mnt_opts] = fscontext;
908                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
909         }
910         if (context) {
911                 opts->mnt_opts[num_mnt_opts] = context;
912                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
913         }
914         if (rootcontext) {
915                 opts->mnt_opts[num_mnt_opts] = rootcontext;
916                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
917         }
918         if (defcontext) {
919                 opts->mnt_opts[num_mnt_opts] = defcontext;
920                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
921         }
922
923         opts->num_mnt_opts = num_mnt_opts;
924         return 0;
925
926 out_err:
927         kfree(context);
928         kfree(defcontext);
929         kfree(fscontext);
930         kfree(rootcontext);
931         return rc;
932 }
933 /*
934  * string mount options parsing and call set the sbsec
935  */
936 static int superblock_doinit(struct super_block *sb, void *data)
937 {
938         int rc = 0;
939         char *options = data;
940         struct security_mnt_opts opts;
941
942         security_init_mnt_opts(&opts);
943
944         if (!data)
945                 goto out;
946
947         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
948
949         rc = selinux_parse_opts_str(options, &opts);
950         if (rc)
951                 goto out_err;
952
953 out:
954         rc = selinux_set_mnt_opts(sb, &opts);
955
956 out_err:
957         security_free_mnt_opts(&opts);
958         return rc;
959 }
960
961 static void selinux_write_opts(struct seq_file *m,
962                                struct security_mnt_opts *opts)
963 {
964         int i;
965         char *prefix;
966
967         for (i = 0; i < opts->num_mnt_opts; i++) {
968                 char *has_comma = strchr(opts->mnt_opts[i], ',');
969
970                 switch (opts->mnt_opts_flags[i]) {
971                 case CONTEXT_MNT:
972                         prefix = CONTEXT_STR;
973                         break;
974                 case FSCONTEXT_MNT:
975                         prefix = FSCONTEXT_STR;
976                         break;
977                 case ROOTCONTEXT_MNT:
978                         prefix = ROOTCONTEXT_STR;
979                         break;
980                 case DEFCONTEXT_MNT:
981                         prefix = DEFCONTEXT_STR;
982                         break;
983                 default:
984                         BUG();
985                 };
986                 /* we need a comma before each option */
987                 seq_putc(m, ',');
988                 seq_puts(m, prefix);
989                 if (has_comma)
990                         seq_putc(m, '\"');
991                 seq_puts(m, opts->mnt_opts[i]);
992                 if (has_comma)
993                         seq_putc(m, '\"');
994         }
995 }
996
997 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
998 {
999         struct security_mnt_opts opts;
1000         int rc;
1001
1002         rc = selinux_get_mnt_opts(sb, &opts);
1003         if (rc) {
1004                 /* before policy load we may get EINVAL, don't show anything */
1005                 if (rc == -EINVAL)
1006                         rc = 0;
1007                 return rc;
1008         }
1009
1010         selinux_write_opts(m, &opts);
1011
1012         security_free_mnt_opts(&opts);
1013
1014         return rc;
1015 }
1016
1017 static inline u16 inode_mode_to_security_class(umode_t mode)
1018 {
1019         switch (mode & S_IFMT) {
1020         case S_IFSOCK:
1021                 return SECCLASS_SOCK_FILE;
1022         case S_IFLNK:
1023                 return SECCLASS_LNK_FILE;
1024         case S_IFREG:
1025                 return SECCLASS_FILE;
1026         case S_IFBLK:
1027                 return SECCLASS_BLK_FILE;
1028         case S_IFDIR:
1029                 return SECCLASS_DIR;
1030         case S_IFCHR:
1031                 return SECCLASS_CHR_FILE;
1032         case S_IFIFO:
1033                 return SECCLASS_FIFO_FILE;
1034
1035         }
1036
1037         return SECCLASS_FILE;
1038 }
1039
1040 static inline int default_protocol_stream(int protocol)
1041 {
1042         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1043 }
1044
1045 static inline int default_protocol_dgram(int protocol)
1046 {
1047         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1048 }
1049
1050 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1051 {
1052         switch (family) {
1053         case PF_UNIX:
1054                 switch (type) {
1055                 case SOCK_STREAM:
1056                 case SOCK_SEQPACKET:
1057                         return SECCLASS_UNIX_STREAM_SOCKET;
1058                 case SOCK_DGRAM:
1059                         return SECCLASS_UNIX_DGRAM_SOCKET;
1060                 }
1061                 break;
1062         case PF_INET:
1063         case PF_INET6:
1064                 switch (type) {
1065                 case SOCK_STREAM:
1066                         if (default_protocol_stream(protocol))
1067                                 return SECCLASS_TCP_SOCKET;
1068                         else
1069                                 return SECCLASS_RAWIP_SOCKET;
1070                 case SOCK_DGRAM:
1071                         if (default_protocol_dgram(protocol))
1072                                 return SECCLASS_UDP_SOCKET;
1073                         else
1074                                 return SECCLASS_RAWIP_SOCKET;
1075                 case SOCK_DCCP:
1076                         return SECCLASS_DCCP_SOCKET;
1077                 default:
1078                         return SECCLASS_RAWIP_SOCKET;
1079                 }
1080                 break;
1081         case PF_NETLINK:
1082                 switch (protocol) {
1083                 case NETLINK_ROUTE:
1084                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1085                 case NETLINK_FIREWALL:
1086                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1087                 case NETLINK_INET_DIAG:
1088                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1089                 case NETLINK_NFLOG:
1090                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1091                 case NETLINK_XFRM:
1092                         return SECCLASS_NETLINK_XFRM_SOCKET;
1093                 case NETLINK_SELINUX:
1094                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1095                 case NETLINK_AUDIT:
1096                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1097                 case NETLINK_IP6_FW:
1098                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1099                 case NETLINK_DNRTMSG:
1100                         return SECCLASS_NETLINK_DNRT_SOCKET;
1101                 case NETLINK_KOBJECT_UEVENT:
1102                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1103                 default:
1104                         return SECCLASS_NETLINK_SOCKET;
1105                 }
1106         case PF_PACKET:
1107                 return SECCLASS_PACKET_SOCKET;
1108         case PF_KEY:
1109                 return SECCLASS_KEY_SOCKET;
1110         case PF_APPLETALK:
1111                 return SECCLASS_APPLETALK_SOCKET;
1112         }
1113
1114         return SECCLASS_SOCKET;
1115 }
1116
1117 #ifdef CONFIG_PROC_FS
1118 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1119                                 u16 tclass,
1120                                 u32 *sid)
1121 {
1122         int buflen, rc;
1123         char *buffer, *path, *end;
1124
1125         buffer = (char *)__get_free_page(GFP_KERNEL);
1126         if (!buffer)
1127                 return -ENOMEM;
1128
1129         buflen = PAGE_SIZE;
1130         end = buffer+buflen;
1131         *--end = '\0';
1132         buflen--;
1133         path = end-1;
1134         *path = '/';
1135         while (de && de != de->parent) {
1136                 buflen -= de->namelen + 1;
1137                 if (buflen < 0)
1138                         break;
1139                 end -= de->namelen;
1140                 memcpy(end, de->name, de->namelen);
1141                 *--end = '/';
1142                 path = end;
1143                 de = de->parent;
1144         }
1145         rc = security_genfs_sid("proc", path, tclass, sid);
1146         free_page((unsigned long)buffer);
1147         return rc;
1148 }
1149 #else
1150 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1151                                 u16 tclass,
1152                                 u32 *sid)
1153 {
1154         return -EINVAL;
1155 }
1156 #endif
1157
1158 /* The inode's security attributes must be initialized before first use. */
1159 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1160 {
1161         struct superblock_security_struct *sbsec = NULL;
1162         struct inode_security_struct *isec = inode->i_security;
1163         u32 sid;
1164         struct dentry *dentry;
1165 #define INITCONTEXTLEN 255
1166         char *context = NULL;
1167         unsigned len = 0;
1168         int rc = 0;
1169
1170         if (isec->initialized)
1171                 goto out;
1172
1173         mutex_lock(&isec->lock);
1174         if (isec->initialized)
1175                 goto out_unlock;
1176
1177         sbsec = inode->i_sb->s_security;
1178         if (!sbsec->initialized) {
1179                 /* Defer initialization until selinux_complete_init,
1180                    after the initial policy is loaded and the security
1181                    server is ready to handle calls. */
1182                 spin_lock(&sbsec->isec_lock);
1183                 if (list_empty(&isec->list))
1184                         list_add(&isec->list, &sbsec->isec_head);
1185                 spin_unlock(&sbsec->isec_lock);
1186                 goto out_unlock;
1187         }
1188
1189         switch (sbsec->behavior) {
1190         case SECURITY_FS_USE_XATTR:
1191                 if (!inode->i_op->getxattr) {
1192                         isec->sid = sbsec->def_sid;
1193                         break;
1194                 }
1195
1196                 /* Need a dentry, since the xattr API requires one.
1197                    Life would be simpler if we could just pass the inode. */
1198                 if (opt_dentry) {
1199                         /* Called from d_instantiate or d_splice_alias. */
1200                         dentry = dget(opt_dentry);
1201                 } else {
1202                         /* Called from selinux_complete_init, try to find a dentry. */
1203                         dentry = d_find_alias(inode);
1204                 }
1205                 if (!dentry) {
1206                         printk(KERN_WARNING "SELinux: %s:  no dentry for dev=%s "
1207                                "ino=%ld\n", __func__, inode->i_sb->s_id,
1208                                inode->i_ino);
1209                         goto out_unlock;
1210                 }
1211
1212                 len = INITCONTEXTLEN;
1213                 context = kmalloc(len, GFP_NOFS);
1214                 if (!context) {
1215                         rc = -ENOMEM;
1216                         dput(dentry);
1217                         goto out_unlock;
1218                 }
1219                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1220                                            context, len);
1221                 if (rc == -ERANGE) {
1222                         /* Need a larger buffer.  Query for the right size. */
1223                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1224                                                    NULL, 0);
1225                         if (rc < 0) {
1226                                 dput(dentry);
1227                                 goto out_unlock;
1228                         }
1229                         kfree(context);
1230                         len = rc;
1231                         context = kmalloc(len, GFP_NOFS);
1232                         if (!context) {
1233                                 rc = -ENOMEM;
1234                                 dput(dentry);
1235                                 goto out_unlock;
1236                         }
1237                         rc = inode->i_op->getxattr(dentry,
1238                                                    XATTR_NAME_SELINUX,
1239                                                    context, len);
1240                 }
1241                 dput(dentry);
1242                 if (rc < 0) {
1243                         if (rc != -ENODATA) {
1244                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1245                                        "%d for dev=%s ino=%ld\n", __func__,
1246                                        -rc, inode->i_sb->s_id, inode->i_ino);
1247                                 kfree(context);
1248                                 goto out_unlock;
1249                         }
1250                         /* Map ENODATA to the default file SID */
1251                         sid = sbsec->def_sid;
1252                         rc = 0;
1253                 } else {
1254                         rc = security_context_to_sid_default(context, rc, &sid,
1255                                                              sbsec->def_sid,
1256                                                              GFP_NOFS);
1257                         if (rc) {
1258                                 printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1259                                        "returned %d for dev=%s ino=%ld\n",
1260                                        __func__, context, -rc,
1261                                        inode->i_sb->s_id, inode->i_ino);
1262                                 kfree(context);
1263                                 /* Leave with the unlabeled SID */
1264                                 rc = 0;
1265                                 break;
1266                         }
1267                 }
1268                 kfree(context);
1269                 isec->sid = sid;
1270                 break;
1271         case SECURITY_FS_USE_TASK:
1272                 isec->sid = isec->task_sid;
1273                 break;
1274         case SECURITY_FS_USE_TRANS:
1275                 /* Default to the fs SID. */
1276                 isec->sid = sbsec->sid;
1277
1278                 /* Try to obtain a transition SID. */
1279                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1280                 rc = security_transition_sid(isec->task_sid,
1281                                              sbsec->sid,
1282                                              isec->sclass,
1283                                              &sid);
1284                 if (rc)
1285                         goto out_unlock;
1286                 isec->sid = sid;
1287                 break;
1288         case SECURITY_FS_USE_MNTPOINT:
1289                 isec->sid = sbsec->mntpoint_sid;
1290                 break;
1291         default:
1292                 /* Default to the fs superblock SID. */
1293                 isec->sid = sbsec->sid;
1294
1295                 if (sbsec->proc && !S_ISLNK(inode->i_mode)) {
1296                         struct proc_inode *proci = PROC_I(inode);
1297                         if (proci->pde) {
1298                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1299                                 rc = selinux_proc_get_sid(proci->pde,
1300                                                           isec->sclass,
1301                                                           &sid);
1302                                 if (rc)
1303                                         goto out_unlock;
1304                                 isec->sid = sid;
1305                         }
1306                 }
1307                 break;
1308         }
1309
1310         isec->initialized = 1;
1311
1312 out_unlock:
1313         mutex_unlock(&isec->lock);
1314 out:
1315         if (isec->sclass == SECCLASS_FILE)
1316                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1317         return rc;
1318 }
1319
1320 /* Convert a Linux signal to an access vector. */
1321 static inline u32 signal_to_av(int sig)
1322 {
1323         u32 perm = 0;
1324
1325         switch (sig) {
1326         case SIGCHLD:
1327                 /* Commonly granted from child to parent. */
1328                 perm = PROCESS__SIGCHLD;
1329                 break;
1330         case SIGKILL:
1331                 /* Cannot be caught or ignored */
1332                 perm = PROCESS__SIGKILL;
1333                 break;
1334         case SIGSTOP:
1335                 /* Cannot be caught or ignored */
1336                 perm = PROCESS__SIGSTOP;
1337                 break;
1338         default:
1339                 /* All other signals. */
1340                 perm = PROCESS__SIGNAL;
1341                 break;
1342         }
1343
1344         return perm;
1345 }
1346
1347 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1348    fork check, ptrace check, etc. */
1349 static int task_has_perm(struct task_struct *tsk1,
1350                          struct task_struct *tsk2,
1351                          u32 perms)
1352 {
1353         struct task_security_struct *tsec1, *tsec2;
1354
1355         tsec1 = tsk1->security;
1356         tsec2 = tsk2->security;
1357         return avc_has_perm(tsec1->sid, tsec2->sid,
1358                             SECCLASS_PROCESS, perms, NULL);
1359 }
1360
1361 #if CAP_LAST_CAP > 63
1362 #error Fix SELinux to handle capabilities > 63.
1363 #endif
1364
1365 /* Check whether a task is allowed to use a capability. */
1366 static int task_has_capability(struct task_struct *tsk,
1367                                int cap)
1368 {
1369         struct task_security_struct *tsec;
1370         struct avc_audit_data ad;
1371         u16 sclass;
1372         u32 av = CAP_TO_MASK(cap);
1373
1374         tsec = tsk->security;
1375
1376         AVC_AUDIT_DATA_INIT(&ad, CAP);
1377         ad.tsk = tsk;
1378         ad.u.cap = cap;
1379
1380         switch (CAP_TO_INDEX(cap)) {
1381         case 0:
1382                 sclass = SECCLASS_CAPABILITY;
1383                 break;
1384         case 1:
1385                 sclass = SECCLASS_CAPABILITY2;
1386                 break;
1387         default:
1388                 printk(KERN_ERR
1389                        "SELinux:  out of range capability %d\n", cap);
1390                 BUG();
1391         }
1392         return avc_has_perm(tsec->sid, tsec->sid, sclass, av, &ad);
1393 }
1394
1395 /* Check whether a task is allowed to use a system operation. */
1396 static int task_has_system(struct task_struct *tsk,
1397                            u32 perms)
1398 {
1399         struct task_security_struct *tsec;
1400
1401         tsec = tsk->security;
1402
1403         return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1404                             SECCLASS_SYSTEM, perms, NULL);
1405 }
1406
1407 /* Check whether a task has a particular permission to an inode.
1408    The 'adp' parameter is optional and allows other audit
1409    data to be passed (e.g. the dentry). */
1410 static int inode_has_perm(struct task_struct *tsk,
1411                           struct inode *inode,
1412                           u32 perms,
1413                           struct avc_audit_data *adp)
1414 {
1415         struct task_security_struct *tsec;
1416         struct inode_security_struct *isec;
1417         struct avc_audit_data ad;
1418
1419         if (unlikely(IS_PRIVATE(inode)))
1420                 return 0;
1421
1422         tsec = tsk->security;
1423         isec = inode->i_security;
1424
1425         if (!adp) {
1426                 adp = &ad;
1427                 AVC_AUDIT_DATA_INIT(&ad, FS);
1428                 ad.u.fs.inode = inode;
1429         }
1430
1431         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1432 }
1433
1434 /* Same as inode_has_perm, but pass explicit audit data containing
1435    the dentry to help the auditing code to more easily generate the
1436    pathname if needed. */
1437 static inline int dentry_has_perm(struct task_struct *tsk,
1438                                   struct vfsmount *mnt,
1439                                   struct dentry *dentry,
1440                                   u32 av)
1441 {
1442         struct inode *inode = dentry->d_inode;
1443         struct avc_audit_data ad;
1444         AVC_AUDIT_DATA_INIT(&ad, FS);
1445         ad.u.fs.path.mnt = mnt;
1446         ad.u.fs.path.dentry = dentry;
1447         return inode_has_perm(tsk, inode, av, &ad);
1448 }
1449
1450 /* Check whether a task can use an open file descriptor to
1451    access an inode in a given way.  Check access to the
1452    descriptor itself, and then use dentry_has_perm to
1453    check a particular permission to the file.
1454    Access to the descriptor is implicitly granted if it
1455    has the same SID as the process.  If av is zero, then
1456    access to the file is not checked, e.g. for cases
1457    where only the descriptor is affected like seek. */
1458 static int file_has_perm(struct task_struct *tsk,
1459                                 struct file *file,
1460                                 u32 av)
1461 {
1462         struct task_security_struct *tsec = tsk->security;
1463         struct file_security_struct *fsec = file->f_security;
1464         struct inode *inode = file->f_path.dentry->d_inode;
1465         struct avc_audit_data ad;
1466         int rc;
1467
1468         AVC_AUDIT_DATA_INIT(&ad, FS);
1469         ad.u.fs.path = file->f_path;
1470
1471         if (tsec->sid != fsec->sid) {
1472                 rc = avc_has_perm(tsec->sid, fsec->sid,
1473                                   SECCLASS_FD,
1474                                   FD__USE,
1475                                   &ad);
1476                 if (rc)
1477                         return rc;
1478         }
1479
1480         /* av is zero if only checking access to the descriptor. */
1481         if (av)
1482                 return inode_has_perm(tsk, inode, av, &ad);
1483
1484         return 0;
1485 }
1486
1487 /* Check whether a task can create a file. */
1488 static int may_create(struct inode *dir,
1489                       struct dentry *dentry,
1490                       u16 tclass)
1491 {
1492         struct task_security_struct *tsec;
1493         struct inode_security_struct *dsec;
1494         struct superblock_security_struct *sbsec;
1495         u32 newsid;
1496         struct avc_audit_data ad;
1497         int rc;
1498
1499         tsec = current->security;
1500         dsec = dir->i_security;
1501         sbsec = dir->i_sb->s_security;
1502
1503         AVC_AUDIT_DATA_INIT(&ad, FS);
1504         ad.u.fs.path.dentry = dentry;
1505
1506         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1507                           DIR__ADD_NAME | DIR__SEARCH,
1508                           &ad);
1509         if (rc)
1510                 return rc;
1511
1512         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1513                 newsid = tsec->create_sid;
1514         } else {
1515                 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1516                                              &newsid);
1517                 if (rc)
1518                         return rc;
1519         }
1520
1521         rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1522         if (rc)
1523                 return rc;
1524
1525         return avc_has_perm(newsid, sbsec->sid,
1526                             SECCLASS_FILESYSTEM,
1527                             FILESYSTEM__ASSOCIATE, &ad);
1528 }
1529
1530 /* Check whether a task can create a key. */
1531 static int may_create_key(u32 ksid,
1532                           struct task_struct *ctx)
1533 {
1534         struct task_security_struct *tsec;
1535
1536         tsec = ctx->security;
1537
1538         return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1539 }
1540
1541 #define MAY_LINK        0
1542 #define MAY_UNLINK      1
1543 #define MAY_RMDIR       2
1544
1545 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1546 static int may_link(struct inode *dir,
1547                     struct dentry *dentry,
1548                     int kind)
1549
1550 {
1551         struct task_security_struct *tsec;
1552         struct inode_security_struct *dsec, *isec;
1553         struct avc_audit_data ad;
1554         u32 av;
1555         int rc;
1556
1557         tsec = current->security;
1558         dsec = dir->i_security;
1559         isec = dentry->d_inode->i_security;
1560
1561         AVC_AUDIT_DATA_INIT(&ad, FS);
1562         ad.u.fs.path.dentry = dentry;
1563
1564         av = DIR__SEARCH;
1565         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1566         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1567         if (rc)
1568                 return rc;
1569
1570         switch (kind) {
1571         case MAY_LINK:
1572                 av = FILE__LINK;
1573                 break;
1574         case MAY_UNLINK:
1575                 av = FILE__UNLINK;
1576                 break;
1577         case MAY_RMDIR:
1578                 av = DIR__RMDIR;
1579                 break;
1580         default:
1581                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1582                         __func__, kind);
1583                 return 0;
1584         }
1585
1586         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1587         return rc;
1588 }
1589
1590 static inline int may_rename(struct inode *old_dir,
1591                              struct dentry *old_dentry,
1592                              struct inode *new_dir,
1593                              struct dentry *new_dentry)
1594 {
1595         struct task_security_struct *tsec;
1596         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1597         struct avc_audit_data ad;
1598         u32 av;
1599         int old_is_dir, new_is_dir;
1600         int rc;
1601
1602         tsec = current->security;
1603         old_dsec = old_dir->i_security;
1604         old_isec = old_dentry->d_inode->i_security;
1605         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1606         new_dsec = new_dir->i_security;
1607
1608         AVC_AUDIT_DATA_INIT(&ad, FS);
1609
1610         ad.u.fs.path.dentry = old_dentry;
1611         rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1612                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1613         if (rc)
1614                 return rc;
1615         rc = avc_has_perm(tsec->sid, old_isec->sid,
1616                           old_isec->sclass, FILE__RENAME, &ad);
1617         if (rc)
1618                 return rc;
1619         if (old_is_dir && new_dir != old_dir) {
1620                 rc = avc_has_perm(tsec->sid, old_isec->sid,
1621                                   old_isec->sclass, DIR__REPARENT, &ad);
1622                 if (rc)
1623                         return rc;
1624         }
1625
1626         ad.u.fs.path.dentry = new_dentry;
1627         av = DIR__ADD_NAME | DIR__SEARCH;
1628         if (new_dentry->d_inode)
1629                 av |= DIR__REMOVE_NAME;
1630         rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1631         if (rc)
1632                 return rc;
1633         if (new_dentry->d_inode) {
1634                 new_isec = new_dentry->d_inode->i_security;
1635                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1636                 rc = avc_has_perm(tsec->sid, new_isec->sid,
1637                                   new_isec->sclass,
1638                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1639                 if (rc)
1640                         return rc;
1641         }
1642
1643         return 0;
1644 }
1645
1646 /* Check whether a task can perform a filesystem operation. */
1647 static int superblock_has_perm(struct task_struct *tsk,
1648                                struct super_block *sb,
1649                                u32 perms,
1650                                struct avc_audit_data *ad)
1651 {
1652         struct task_security_struct *tsec;
1653         struct superblock_security_struct *sbsec;
1654
1655         tsec = tsk->security;
1656         sbsec = sb->s_security;
1657         return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1658                             perms, ad);
1659 }
1660
1661 /* Convert a Linux mode and permission mask to an access vector. */
1662 static inline u32 file_mask_to_av(int mode, int mask)
1663 {
1664         u32 av = 0;
1665
1666         if ((mode & S_IFMT) != S_IFDIR) {
1667                 if (mask & MAY_EXEC)
1668                         av |= FILE__EXECUTE;
1669                 if (mask & MAY_READ)
1670                         av |= FILE__READ;
1671
1672                 if (mask & MAY_APPEND)
1673                         av |= FILE__APPEND;
1674                 else if (mask & MAY_WRITE)
1675                         av |= FILE__WRITE;
1676
1677         } else {
1678                 if (mask & MAY_EXEC)
1679                         av |= DIR__SEARCH;
1680                 if (mask & MAY_WRITE)
1681                         av |= DIR__WRITE;
1682                 if (mask & MAY_READ)
1683                         av |= DIR__READ;
1684         }
1685
1686         return av;
1687 }
1688
1689 /* Convert a Linux file to an access vector. */
1690 static inline u32 file_to_av(struct file *file)
1691 {
1692         u32 av = 0;
1693
1694         if (file->f_mode & FMODE_READ)
1695                 av |= FILE__READ;
1696         if (file->f_mode & FMODE_WRITE) {
1697                 if (file->f_flags & O_APPEND)
1698                         av |= FILE__APPEND;
1699                 else
1700                         av |= FILE__WRITE;
1701         }
1702         if (!av) {
1703                 /*
1704                  * Special file opened with flags 3 for ioctl-only use.
1705                  */
1706                 av = FILE__IOCTL;
1707         }
1708
1709         return av;
1710 }
1711
1712 /*
1713  * Convert a file to an access vector and include the correct open
1714  * open permission.
1715  */
1716 static inline u32 open_file_to_av(struct file *file)
1717 {
1718         u32 av = file_to_av(file);
1719
1720         if (selinux_policycap_openperm) {
1721                 mode_t mode = file->f_path.dentry->d_inode->i_mode;
1722                 /*
1723                  * lnk files and socks do not really have an 'open'
1724                  */
1725                 if (S_ISREG(mode))
1726                         av |= FILE__OPEN;
1727                 else if (S_ISCHR(mode))
1728                         av |= CHR_FILE__OPEN;
1729                 else if (S_ISBLK(mode))
1730                         av |= BLK_FILE__OPEN;
1731                 else if (S_ISFIFO(mode))
1732                         av |= FIFO_FILE__OPEN;
1733                 else if (S_ISDIR(mode))
1734                         av |= DIR__OPEN;
1735                 else
1736                         printk(KERN_ERR "SELinux: WARNING: inside %s with "
1737                                 "unknown mode:%o\n", __func__, mode);
1738         }
1739         return av;
1740 }
1741
1742 /* Hook functions begin here. */
1743
1744 static int selinux_ptrace_may_access(struct task_struct *child,
1745                                      unsigned int mode)
1746 {
1747         int rc;
1748
1749         rc = secondary_ops->ptrace_may_access(child, mode);
1750         if (rc)
1751                 return rc;
1752
1753         if (mode == PTRACE_MODE_READ) {
1754                 struct task_security_struct *tsec = current->security;
1755                 struct task_security_struct *csec = child->security;
1756                 return avc_has_perm(tsec->sid, csec->sid,
1757                                     SECCLASS_FILE, FILE__READ, NULL);
1758         }
1759
1760         return task_has_perm(current, child, PROCESS__PTRACE);
1761 }
1762
1763 static int selinux_ptrace_traceme(struct task_struct *parent)
1764 {
1765         int rc;
1766
1767         rc = secondary_ops->ptrace_traceme(parent);
1768         if (rc)
1769                 return rc;
1770
1771         return task_has_perm(parent, current, PROCESS__PTRACE);
1772 }
1773
1774 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1775                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1776 {
1777         int error;
1778
1779         error = task_has_perm(current, target, PROCESS__GETCAP);
1780         if (error)
1781                 return error;
1782
1783         return secondary_ops->capget(target, effective, inheritable, permitted);
1784 }
1785
1786 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1787                                 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1788 {
1789         int error;
1790
1791         error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1792         if (error)
1793                 return error;
1794
1795         return task_has_perm(current, target, PROCESS__SETCAP);
1796 }
1797
1798 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1799                                kernel_cap_t *inheritable, kernel_cap_t *permitted)
1800 {
1801         secondary_ops->capset_set(target, effective, inheritable, permitted);
1802 }
1803
1804 static int selinux_capable(struct task_struct *tsk, int cap)
1805 {
1806         int rc;
1807
1808         rc = secondary_ops->capable(tsk, cap);
1809         if (rc)
1810                 return rc;
1811
1812         return task_has_capability(tsk, cap);
1813 }
1814
1815 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1816 {
1817         int buflen, rc;
1818         char *buffer, *path, *end;
1819
1820         rc = -ENOMEM;
1821         buffer = (char *)__get_free_page(GFP_KERNEL);
1822         if (!buffer)
1823                 goto out;
1824
1825         buflen = PAGE_SIZE;
1826         end = buffer+buflen;
1827         *--end = '\0';
1828         buflen--;
1829         path = end-1;
1830         *path = '/';
1831         while (table) {
1832                 const char *name = table->procname;
1833                 size_t namelen = strlen(name);
1834                 buflen -= namelen + 1;
1835                 if (buflen < 0)
1836                         goto out_free;
1837                 end -= namelen;
1838                 memcpy(end, name, namelen);
1839                 *--end = '/';
1840                 path = end;
1841                 table = table->parent;
1842         }
1843         buflen -= 4;
1844         if (buflen < 0)
1845                 goto out_free;
1846         end -= 4;
1847         memcpy(end, "/sys", 4);
1848         path = end;
1849         rc = security_genfs_sid("proc", path, tclass, sid);
1850 out_free:
1851         free_page((unsigned long)buffer);
1852 out:
1853         return rc;
1854 }
1855
1856 static int selinux_sysctl(ctl_table *table, int op)
1857 {
1858         int error = 0;
1859         u32 av;
1860         struct task_security_struct *tsec;
1861         u32 tsid;
1862         int rc;
1863
1864         rc = secondary_ops->sysctl(table, op);
1865         if (rc)
1866                 return rc;
1867
1868         tsec = current->security;
1869
1870         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1871                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1872         if (rc) {
1873                 /* Default to the well-defined sysctl SID. */
1874                 tsid = SECINITSID_SYSCTL;
1875         }
1876
1877         /* The op values are "defined" in sysctl.c, thereby creating
1878          * a bad coupling between this module and sysctl.c */
1879         if (op == 001) {
1880                 error = avc_has_perm(tsec->sid, tsid,
1881                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1882         } else {
1883                 av = 0;
1884                 if (op & 004)
1885                         av |= FILE__READ;
1886                 if (op & 002)
1887                         av |= FILE__WRITE;
1888                 if (av)
1889                         error = avc_has_perm(tsec->sid, tsid,
1890                                              SECCLASS_FILE, av, NULL);
1891         }
1892
1893         return error;
1894 }
1895
1896 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1897 {
1898         int rc = 0;
1899
1900         if (!sb)
1901                 return 0;
1902
1903         switch (cmds) {
1904         case Q_SYNC:
1905         case Q_QUOTAON:
1906         case Q_QUOTAOFF:
1907         case Q_SETINFO:
1908         case Q_SETQUOTA:
1909                 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAMOD,
1910                                          NULL);
1911                 break;
1912         case Q_GETFMT:
1913         case Q_GETINFO:
1914         case Q_GETQUOTA:
1915                 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAGET,
1916                                          NULL);
1917                 break;
1918         default:
1919                 rc = 0;  /* let the kernel handle invalid cmds */
1920                 break;
1921         }
1922         return rc;
1923 }
1924
1925 static int selinux_quota_on(struct dentry *dentry)
1926 {
1927         return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1928 }
1929
1930 static int selinux_syslog(int type)
1931 {
1932         int rc;
1933
1934         rc = secondary_ops->syslog(type);
1935         if (rc)
1936                 return rc;
1937
1938         switch (type) {
1939         case 3:         /* Read last kernel messages */
1940         case 10:        /* Return size of the log buffer */
1941                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1942                 break;
1943         case 6:         /* Disable logging to console */
1944         case 7:         /* Enable logging to console */
1945         case 8:         /* Set level of messages printed to console */
1946                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1947                 break;
1948         case 0:         /* Close log */
1949         case 1:         /* Open log */
1950         case 2:         /* Read from log */
1951         case 4:         /* Read/clear last kernel messages */
1952         case 5:         /* Clear ring buffer */
1953         default:
1954                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1955                 break;
1956         }
1957         return rc;
1958 }
1959
1960 /*
1961  * Check that a process has enough memory to allocate a new virtual
1962  * mapping. 0 means there is enough memory for the allocation to
1963  * succeed and -ENOMEM implies there is not.
1964  *
1965  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1966  * if the capability is granted, but __vm_enough_memory requires 1 if
1967  * the capability is granted.
1968  *
1969  * Do not audit the selinux permission check, as this is applied to all
1970  * processes that allocate mappings.
1971  */
1972 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1973 {
1974         int rc, cap_sys_admin = 0;
1975         struct task_security_struct *tsec = current->security;
1976
1977         rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1978         if (rc == 0)
1979                 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1980                                           SECCLASS_CAPABILITY,
1981                                           CAP_TO_MASK(CAP_SYS_ADMIN),
1982                                           0,
1983                                           NULL);
1984
1985         if (rc == 0)
1986                 cap_sys_admin = 1;
1987
1988         return __vm_enough_memory(mm, pages, cap_sys_admin);
1989 }
1990
1991 /* binprm security operations */
1992
1993 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1994 {
1995         struct bprm_security_struct *bsec;
1996
1997         bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1998         if (!bsec)
1999                 return -ENOMEM;
2000
2001         bsec->sid = SECINITSID_UNLABELED;
2002         bsec->set = 0;
2003
2004         bprm->security = bsec;
2005         return 0;
2006 }
2007
2008 static int selinux_bprm_set_security(struct linux_binprm *bprm)
2009 {
2010         struct task_security_struct *tsec;
2011         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2012         struct inode_security_struct *isec;
2013         struct bprm_security_struct *bsec;
2014         u32 newsid;
2015         struct avc_audit_data ad;
2016         int rc;
2017
2018         rc = secondary_ops->bprm_set_security(bprm);
2019         if (rc)
2020                 return rc;
2021
2022         bsec = bprm->security;
2023
2024         if (bsec->set)
2025                 return 0;
2026
2027         tsec = current->security;
2028         isec = inode->i_security;
2029
2030         /* Default to the current task SID. */
2031         bsec->sid = tsec->sid;
2032
2033         /* Reset fs, key, and sock SIDs on execve. */
2034         tsec->create_sid = 0;
2035         tsec->keycreate_sid = 0;
2036         tsec->sockcreate_sid = 0;
2037
2038         if (tsec->exec_sid) {
2039                 newsid = tsec->exec_sid;
2040                 /* Reset exec SID on execve. */
2041                 tsec->exec_sid = 0;
2042         } else {
2043                 /* Check for a default transition on this program. */
2044                 rc = security_transition_sid(tsec->sid, isec->sid,
2045                                              SECCLASS_PROCESS, &newsid);
2046                 if (rc)
2047                         return rc;
2048         }
2049
2050         AVC_AUDIT_DATA_INIT(&ad, FS);
2051         ad.u.fs.path = bprm->file->f_path;
2052
2053         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2054                 newsid = tsec->sid;
2055
2056         if (tsec->sid == newsid) {
2057                 rc = avc_has_perm(tsec->sid, isec->sid,
2058                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2059                 if (rc)
2060                         return rc;
2061         } else {
2062                 /* Check permissions for the transition. */
2063                 rc = avc_has_perm(tsec->sid, newsid,
2064                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2065                 if (rc)
2066                         return rc;
2067
2068                 rc = avc_has_perm(newsid, isec->sid,
2069                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2070                 if (rc)
2071                         return rc;
2072
2073                 /* Clear any possibly unsafe personality bits on exec: */
2074                 current->personality &= ~PER_CLEAR_ON_SETID;
2075
2076                 /* Set the security field to the new SID. */
2077                 bsec->sid = newsid;
2078         }
2079
2080         bsec->set = 1;
2081         return 0;
2082 }
2083
2084 static int selinux_bprm_check_security(struct linux_binprm *bprm)
2085 {
2086         return secondary_ops->bprm_check_security(bprm);
2087 }
2088
2089
2090 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2091 {
2092         struct task_security_struct *tsec = current->security;
2093         int atsecure = 0;
2094
2095         if (tsec->osid != tsec->sid) {
2096                 /* Enable secure mode for SIDs transitions unless
2097                    the noatsecure permission is granted between
2098                    the two SIDs, i.e. ahp returns 0. */
2099                 atsecure = avc_has_perm(tsec->osid, tsec->sid,
2100                                          SECCLASS_PROCESS,
2101                                          PROCESS__NOATSECURE, NULL);
2102         }
2103
2104         return (atsecure || secondary_ops->bprm_secureexec(bprm));
2105 }
2106
2107 static void selinux_bprm_free_security(struct linux_binprm *bprm)
2108 {
2109         kfree(bprm->security);
2110         bprm->security = NULL;
2111 }
2112
2113 extern struct vfsmount *selinuxfs_mount;
2114 extern struct dentry *selinux_null;
2115
2116 /* Derived from fs/exec.c:flush_old_files. */
2117 static inline void flush_unauthorized_files(struct files_struct *files)
2118 {
2119         struct avc_audit_data ad;
2120         struct file *file, *devnull = NULL;
2121         struct tty_struct *tty;
2122         struct fdtable *fdt;
2123         long j = -1;
2124         int drop_tty = 0;
2125
2126         mutex_lock(&tty_mutex);
2127         tty = get_current_tty();
2128         if (tty) {
2129                 file_list_lock();
2130                 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
2131                 if (file) {
2132                         /* Revalidate access to controlling tty.
2133                            Use inode_has_perm on the tty inode directly rather
2134                            than using file_has_perm, as this particular open
2135                            file may belong to another process and we are only
2136                            interested in the inode-based check here. */
2137                         struct inode *inode = file->f_path.dentry->d_inode;
2138                         if (inode_has_perm(current, inode,
2139                                            FILE__READ | FILE__WRITE, NULL)) {
2140                                 drop_tty = 1;
2141                         }
2142                 }
2143                 file_list_unlock();
2144         }
2145         mutex_unlock(&tty_mutex);
2146         /* Reset controlling tty. */
2147         if (drop_tty)
2148                 no_tty();
2149
2150         /* Revalidate access to inherited open files. */
2151
2152         AVC_AUDIT_DATA_INIT(&ad, FS);
2153
2154         spin_lock(&files->file_lock);
2155         for (;;) {
2156                 unsigned long set, i;
2157                 int fd;
2158
2159                 j++;
2160                 i = j * __NFDBITS;
2161                 fdt = files_fdtable(files);
2162                 if (i >= fdt->max_fds)
2163                         break;
2164                 set = fdt->open_fds->fds_bits[j];
2165                 if (!set)
2166                         continue;
2167                 spin_unlock(&files->file_lock);
2168                 for ( ; set ; i++, set >>= 1) {
2169                         if (set & 1) {
2170                                 file = fget(i);
2171                                 if (!file)
2172                                         continue;
2173                                 if (file_has_perm(current,
2174                                                   file,
2175                                                   file_to_av(file))) {
2176                                         sys_close(i);
2177                                         fd = get_unused_fd();
2178                                         if (fd != i) {
2179                                                 if (fd >= 0)
2180                                                         put_unused_fd(fd);
2181                                                 fput(file);
2182                                                 continue;
2183                                         }
2184                                         if (devnull) {
2185                                                 get_file(devnull);
2186                                         } else {
2187                                                 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
2188                                                 if (IS_ERR(devnull)) {
2189                                                         devnull = NULL;
2190                                                         put_unused_fd(fd);
2191                                                         fput(file);
2192                                                         continue;
2193                                                 }
2194                                         }
2195                                         fd_install(fd, devnull);
2196                                 }
2197                                 fput(file);
2198                         }
2199                 }
2200                 spin_lock(&files->file_lock);
2201
2202         }
2203         spin_unlock(&files->file_lock);
2204 }
2205
2206 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
2207 {
2208         struct task_security_struct *tsec;
2209         struct bprm_security_struct *bsec;
2210         u32 sid;
2211         int rc;
2212
2213         secondary_ops->bprm_apply_creds(bprm, unsafe);
2214
2215         tsec = current->security;
2216
2217         bsec = bprm->security;
2218         sid = bsec->sid;
2219
2220         tsec->osid = tsec->sid;
2221         bsec->unsafe = 0;
2222         if (tsec->sid != sid) {
2223                 /* Check for shared state.  If not ok, leave SID
2224                    unchanged and kill. */
2225                 if (unsafe & LSM_UNSAFE_SHARE) {
2226                         rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
2227                                         PROCESS__SHARE, NULL);
2228                         if (rc) {
2229                                 bsec->unsafe = 1;
2230                                 return;
2231                         }
2232                 }
2233
2234                 /* Check for ptracing, and update the task SID if ok.
2235                    Otherwise, leave SID unchanged and kill. */
2236                 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2237                         struct task_struct *tracer;
2238                         struct task_security_struct *sec;
2239                         u32 ptsid = 0;
2240
2241                         rcu_read_lock();
2242                         tracer = tracehook_tracer_task(current);
2243                         if (likely(tracer != NULL)) {
2244                                 sec = tracer->security;
2245                                 ptsid = sec->sid;
2246                         }
2247                         rcu_read_unlock();
2248
2249                         if (ptsid != 0) {
2250                                 rc = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
2251                                                   PROCESS__PTRACE, NULL);
2252                                 if (rc) {
2253                                         bsec->unsafe = 1;
2254                                         return;
2255                                 }
2256                         }
2257                 }
2258                 tsec->sid = sid;
2259         }
2260 }
2261
2262 /*
2263  * called after apply_creds without the task lock held
2264  */
2265 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
2266 {
2267         struct task_security_struct *tsec;
2268         struct rlimit *rlim, *initrlim;
2269         struct itimerval itimer;
2270         struct bprm_security_struct *bsec;
2271         struct sighand_struct *psig;
2272         int rc, i;
2273         unsigned long flags;
2274
2275         tsec = current->security;
2276         bsec = bprm->security;
2277
2278         if (bsec->unsafe) {
2279                 force_sig_specific(SIGKILL, current);
2280                 return;
2281         }
2282         if (tsec->osid == tsec->sid)
2283                 return;
2284
2285         /* Close files for which the new task SID is not authorized. */
2286         flush_unauthorized_files(current->files);
2287
2288         /* Check whether the new SID can inherit signal state
2289            from the old SID.  If not, clear itimers to avoid
2290            subsequent signal generation and flush and unblock
2291            signals. This must occur _after_ the task SID has
2292           been updated so that any kill done after the flush
2293           will be checked against the new SID. */
2294         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2295                           PROCESS__SIGINH, NULL);
2296         if (rc) {
2297                 memset(&itimer, 0, sizeof itimer);
2298                 for (i = 0; i < 3; i++)
2299                         do_setitimer(i, &itimer, NULL);
2300                 flush_signals(current);
2301                 spin_lock_irq(&current->sighand->siglock);
2302                 flush_signal_handlers(current, 1);
2303                 sigemptyset(&current->blocked);
2304                 recalc_sigpending();
2305                 spin_unlock_irq(&current->sighand->siglock);
2306         }
2307
2308         /* Always clear parent death signal on SID transitions. */
2309         current->pdeath_signal = 0;
2310
2311         /* Check whether the new SID can inherit resource limits
2312            from the old SID.  If not, reset all soft limits to
2313            the lower of the current task's hard limit and the init
2314            task's soft limit.  Note that the setting of hard limits
2315            (even to lower them) can be controlled by the setrlimit
2316            check. The inclusion of the init task's soft limit into
2317            the computation is to avoid resetting soft limits higher
2318            than the default soft limit for cases where the default
2319            is lower than the hard limit, e.g. RLIMIT_CORE or
2320            RLIMIT_STACK.*/
2321         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2322                           PROCESS__RLIMITINH, NULL);
2323         if (rc) {
2324                 for (i = 0; i < RLIM_NLIMITS; i++) {
2325                         rlim = current->signal->rlim + i;
2326                         initrlim = init_task.signal->rlim+i;
2327                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2328                 }
2329                 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
2330                         /*
2331                          * This will cause RLIMIT_CPU calculations
2332                          * to be refigured.
2333                          */
2334                         current->it_prof_expires = jiffies_to_cputime(1);
2335                 }
2336         }
2337
2338         /* Wake up the parent if it is waiting so that it can
2339            recheck wait permission to the new task SID. */
2340         read_lock_irq(&tasklist_lock);
2341         psig = current->parent->sighand;
2342         spin_lock_irqsave(&psig->siglock, flags);
2343         wake_up_interruptible(&current->parent->signal->wait_chldexit);
2344         spin_unlock_irqrestore(&psig->siglock, flags);
2345         read_unlock_irq(&tasklist_lock);
2346 }
2347
2348 /* superblock security operations */
2349
2350 static int selinux_sb_alloc_security(struct super_block *sb)
2351 {
2352         return superblock_alloc_security(sb);
2353 }
2354
2355 static void selinux_sb_free_security(struct super_block *sb)
2356 {
2357         superblock_free_security(sb);
2358 }
2359
2360 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2361 {
2362         if (plen > olen)
2363                 return 0;
2364
2365         return !memcmp(prefix, option, plen);
2366 }
2367
2368 static inline int selinux_option(char *option, int len)
2369 {
2370         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2371                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2372                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2373                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len));
2374 }
2375
2376 static inline void take_option(char **to, char *from, int *first, int len)
2377 {
2378         if (!*first) {
2379                 **to = ',';
2380                 *to += 1;
2381         } else
2382                 *first = 0;
2383         memcpy(*to, from, len);
2384         *to += len;
2385 }
2386
2387 static inline void take_selinux_option(char **to, char *from, int *first,
2388                                        int len)
2389 {
2390         int current_size = 0;
2391
2392         if (!*first) {
2393                 **to = '|';
2394                 *to += 1;
2395         } else
2396                 *first = 0;
2397
2398         while (current_size < len) {
2399                 if (*from != '"') {
2400                         **to = *from;
2401                         *to += 1;
2402                 }
2403                 from += 1;
2404                 current_size += 1;
2405         }
2406 }
2407
2408 static int selinux_sb_copy_data(char *orig, char *copy)
2409 {
2410         int fnosec, fsec, rc = 0;
2411         char *in_save, *in_curr, *in_end;
2412         char *sec_curr, *nosec_save, *nosec;
2413         int open_quote = 0;
2414
2415         in_curr = orig;
2416         sec_curr = copy;
2417
2418         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2419         if (!nosec) {
2420                 rc = -ENOMEM;
2421                 goto out;
2422         }
2423
2424         nosec_save = nosec;
2425         fnosec = fsec = 1;
2426         in_save = in_end = orig;
2427
2428         do {
2429                 if (*in_end == '"')
2430                         open_quote = !open_quote;
2431                 if ((*in_end == ',' && open_quote == 0) ||
2432                                 *in_end == '\0') {
2433                         int len = in_end - in_curr;
2434
2435                         if (selinux_option(in_curr, len))
2436                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2437                         else
2438                                 take_option(&nosec, in_curr, &fnosec, len);
2439
2440                         in_curr = in_end + 1;
2441                 }
2442         } while (*in_end++);
2443
2444         strcpy(in_save, nosec_save);
2445         free_page((unsigned long)nosec_save);
2446 out:
2447         return rc;
2448 }
2449
2450 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2451 {
2452         struct avc_audit_data ad;
2453         int rc;
2454
2455         rc = superblock_doinit(sb, data);
2456         if (rc)
2457                 return rc;
2458
2459         AVC_AUDIT_DATA_INIT(&ad, FS);
2460         ad.u.fs.path.dentry = sb->s_root;
2461         return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2462 }
2463
2464 static int selinux_sb_statfs(struct dentry *dentry)
2465 {
2466         struct avc_audit_data ad;
2467
2468         AVC_AUDIT_DATA_INIT(&ad, FS);
2469         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2470         return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2471 }
2472
2473 static int selinux_mount(char *dev_name,
2474                          struct path *path,
2475                          char *type,
2476                          unsigned long flags,
2477                          void *data)
2478 {
2479         int rc;
2480
2481         rc = secondary_ops->sb_mount(dev_name, path, type, flags, data);
2482         if (rc)
2483                 return rc;
2484
2485         if (flags & MS_REMOUNT)
2486                 return superblock_has_perm(current, path->mnt->mnt_sb,
2487                                            FILESYSTEM__REMOUNT, NULL);
2488         else
2489                 return dentry_has_perm(current, path->mnt, path->dentry,
2490                                        FILE__MOUNTON);
2491 }
2492
2493 static int selinux_umount(struct vfsmount *mnt, int flags)
2494 {
2495         int rc;
2496
2497         rc = secondary_ops->sb_umount(mnt, flags);
2498         if (rc)
2499                 return rc;
2500
2501         return superblock_has_perm(current, mnt->mnt_sb,
2502                                    FILESYSTEM__UNMOUNT, NULL);
2503 }
2504
2505 /* inode security operations */
2506
2507 static int selinux_inode_alloc_security(struct inode *inode)
2508 {
2509         return inode_alloc_security(inode);
2510 }
2511
2512 static void selinux_inode_free_security(struct inode *inode)
2513 {
2514         inode_free_security(inode);
2515 }
2516
2517 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2518                                        char **name, void **value,
2519                                        size_t *len)
2520 {
2521         struct task_security_struct *tsec;
2522         struct inode_security_struct *dsec;
2523         struct superblock_security_struct *sbsec;
2524         u32 newsid, clen;
2525         int rc;
2526         char *namep = NULL, *context;
2527
2528         tsec = current->security;
2529         dsec = dir->i_security;
2530         sbsec = dir->i_sb->s_security;
2531
2532         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2533                 newsid = tsec->create_sid;
2534         } else {
2535                 rc = security_transition_sid(tsec->sid, dsec->sid,
2536                                              inode_mode_to_security_class(inode->i_mode),
2537                                              &newsid);
2538                 if (rc) {
2539                         printk(KERN_WARNING "%s:  "
2540                                "security_transition_sid failed, rc=%d (dev=%s "
2541                                "ino=%ld)\n",
2542                                __func__,
2543                                -rc, inode->i_sb->s_id, inode->i_ino);
2544                         return rc;
2545                 }
2546         }
2547
2548         /* Possibly defer initialization to selinux_complete_init. */
2549         if (sbsec->initialized) {
2550                 struct inode_security_struct *isec = inode->i_security;
2551                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2552                 isec->sid = newsid;
2553                 isec->initialized = 1;
2554         }
2555
2556         if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2557                 return -EOPNOTSUPP;
2558
2559         if (name) {
2560                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2561                 if (!namep)
2562                         return -ENOMEM;
2563                 *name = namep;
2564         }
2565
2566         if (value && len) {
2567                 rc = security_sid_to_context_force(newsid, &context, &clen);
2568                 if (rc) {
2569                         kfree(namep);
2570                         return rc;
2571                 }
2572                 *value = context;
2573                 *len = clen;
2574         }
2575
2576         return 0;
2577 }
2578
2579 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2580 {
2581         return may_create(dir, dentry, SECCLASS_FILE);
2582 }
2583
2584 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2585 {
2586         int rc;
2587
2588         rc = secondary_ops->inode_link(old_dentry, dir, new_dentry);
2589         if (rc)
2590                 return rc;
2591         return may_link(dir, old_dentry, MAY_LINK);
2592 }
2593
2594 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2595 {
2596         int rc;
2597
2598         rc = secondary_ops->inode_unlink(dir, dentry);
2599         if (rc)
2600                 return rc;
2601         return may_link(dir, dentry, MAY_UNLINK);
2602 }
2603
2604 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2605 {
2606         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2607 }
2608
2609 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2610 {
2611         return may_create(dir, dentry, SECCLASS_DIR);
2612 }
2613
2614 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2615 {
2616         return may_link(dir, dentry, MAY_RMDIR);
2617 }
2618
2619 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2620 {
2621         int rc;
2622
2623         rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2624         if (rc)
2625                 return rc;
2626
2627         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2628 }
2629
2630 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2631                                 struct inode *new_inode, struct dentry *new_dentry)
2632 {
2633         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2634 }
2635
2636 static int selinux_inode_readlink(struct dentry *dentry)
2637 {
2638         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2639 }
2640
2641 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2642 {
2643         int rc;
2644
2645         rc = secondary_ops->inode_follow_link(dentry, nameidata);
2646         if (rc)
2647                 return rc;
2648         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2649 }
2650
2651 static int selinux_inode_permission(struct inode *inode, int mask)
2652 {
2653         int rc;
2654
2655         rc = secondary_ops->inode_permission(inode, mask);
2656         if (rc)
2657                 return rc;
2658
2659         if (!mask) {
2660                 /* No permission to check.  Existence test. */
2661                 return 0;
2662         }
2663
2664         return inode_has_perm(current, inode,
2665                               file_mask_to_av(inode->i_mode, mask), NULL);
2666 }
2667
2668 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2669 {
2670         int rc;
2671
2672         rc = secondary_ops->inode_setattr(dentry, iattr);
2673         if (rc)
2674                 return rc;
2675
2676         if (iattr->ia_valid & ATTR_FORCE)
2677                 return 0;
2678
2679         if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2680                                ATTR_ATIME_SET | ATTR_MTIME_SET))
2681                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2682
2683         return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2684 }
2685
2686 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2687 {
2688         return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2689 }
2690
2691 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2692 {
2693         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2694                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2695                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2696                         if (!capable(CAP_SETFCAP))
2697                                 return -EPERM;
2698                 } else if (!capable(CAP_SYS_ADMIN)) {
2699                         /* A different attribute in the security namespace.
2700                            Restrict to administrator. */
2701                         return -EPERM;
2702                 }
2703         }
2704
2705         /* Not an attribute we recognize, so just check the
2706            ordinary setattr permission. */
2707         return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2708 }
2709
2710 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2711                                   const void *value, size_t size, int flags)
2712 {
2713         struct task_security_struct *tsec = current->security;
2714         struct inode *inode = dentry->d_inode;
2715         struct inode_security_struct *isec = inode->i_security;
2716         struct superblock_security_struct *sbsec;
2717         struct avc_audit_data ad;
2718         u32 newsid;
2719         int rc = 0;
2720
2721         if (strcmp(name, XATTR_NAME_SELINUX))
2722                 return selinux_inode_setotherxattr(dentry, name);
2723
2724         sbsec = inode->i_sb->s_security;
2725         if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2726                 return -EOPNOTSUPP;
2727
2728         if (!is_owner_or_cap(inode))
2729                 return -EPERM;
2730
2731         AVC_AUDIT_DATA_INIT(&ad, FS);
2732         ad.u.fs.path.dentry = dentry;
2733
2734         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2735                           FILE__RELABELFROM, &ad);
2736         if (rc)
2737                 return rc;
2738
2739         rc = security_context_to_sid(value, size, &newsid);
2740         if (rc == -EINVAL) {
2741                 if (!capable(CAP_MAC_ADMIN))
2742                         return rc;
2743                 rc = security_context_to_sid_force(value, size, &newsid);
2744         }
2745         if (rc)
2746                 return rc;
2747
2748         rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2749                           FILE__RELABELTO, &ad);
2750         if (rc)
2751                 return rc;
2752
2753         rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2754                                           isec->sclass);
2755         if (rc)
2756                 return rc;
2757
2758         return avc_has_perm(newsid,
2759                             sbsec->sid,
2760                             SECCLASS_FILESYSTEM,
2761                             FILESYSTEM__ASSOCIATE,
2762                             &ad);
2763 }
2764
2765 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2766                                         const void *value, size_t size,
2767                                         int flags)
2768 {
2769         struct inode *inode = dentry->d_inode;
2770         struct inode_security_struct *isec = inode->i_security;
2771         u32 newsid;
2772         int rc;
2773
2774         if (strcmp(name, XATTR_NAME_SELINUX)) {
2775                 /* Not an attribute we recognize, so nothing to do. */
2776                 return;
2777         }
2778
2779         rc = security_context_to_sid_force(value, size, &newsid);
2780         if (rc) {
2781                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2782                        "for (%s, %lu), rc=%d\n",
2783                        inode->i_sb->s_id, inode->i_ino, -rc);
2784                 return;
2785         }
2786
2787         isec->sid = newsid;
2788         return;
2789 }
2790
2791 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2792 {
2793         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2794 }
2795
2796 static int selinux_inode_listxattr(struct dentry *dentry)
2797 {
2798         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2799 }
2800
2801 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2802 {
2803         if (strcmp(name, XATTR_NAME_SELINUX))
2804                 return selinux_inode_setotherxattr(dentry, name);
2805
2806         /* No one is allowed to remove a SELinux security label.
2807            You can change the label, but all data must be labeled. */
2808         return -EACCES;
2809 }
2810
2811 /*
2812  * Copy the inode security context value to the user.
2813  *
2814  * Permission check is handled by selinux_inode_getxattr hook.
2815  */
2816 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2817 {
2818         u32 size;
2819         int error;
2820         char *context = NULL;
2821         struct task_security_struct *tsec = current->security;
2822         struct inode_security_struct *isec = inode->i_security;
2823
2824         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2825                 return -EOPNOTSUPP;
2826
2827         /*
2828          * If the caller has CAP_MAC_ADMIN, then get the raw context
2829          * value even if it is not defined by current policy; otherwise,
2830          * use the in-core value under current policy.
2831          * Use the non-auditing forms of the permission checks since
2832          * getxattr may be called by unprivileged processes commonly
2833          * and lack of permission just means that we fall back to the
2834          * in-core context value, not a denial.
2835          */
2836         error = secondary_ops->capable(current, CAP_MAC_ADMIN);
2837         if (!error)
2838                 error = avc_has_perm_noaudit(tsec->sid, tsec->sid,
2839                                              SECCLASS_CAPABILITY2,
2840                                              CAPABILITY2__MAC_ADMIN,
2841                                              0,
2842                                              NULL);
2843         if (!error)
2844                 error = security_sid_to_context_force(isec->sid, &context,
2845                                                       &size);
2846         else
2847                 error = security_sid_to_context(isec->sid, &context, &size);
2848         if (error)
2849                 return error;
2850         error = size;
2851         if (alloc) {
2852                 *buffer = context;
2853                 goto out_nofree;
2854         }
2855         kfree(context);
2856 out_nofree:
2857         return error;
2858 }
2859
2860 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2861                                      const void *value, size_t size, int flags)
2862 {
2863         struct inode_security_struct *isec = inode->i_security;
2864         u32 newsid;
2865         int rc;
2866
2867         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2868                 return -EOPNOTSUPP;
2869
2870         if (!value || !size)
2871                 return -EACCES;
2872
2873         rc = security_context_to_sid((void *)value, size, &newsid);
2874         if (rc)
2875                 return rc;
2876
2877         isec->sid = newsid;
2878         return 0;
2879 }
2880
2881 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2882 {
2883         const int len = sizeof(XATTR_NAME_SELINUX);
2884         if (buffer && len <= buffer_size)
2885                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2886         return len;
2887 }
2888
2889 static int selinux_inode_need_killpriv(struct dentry *dentry)
2890 {
2891         return secondary_ops->inode_need_killpriv(dentry);
2892 }
2893
2894 static int selinux_inode_killpriv(struct dentry *dentry)
2895 {
2896         return secondary_ops->inode_killpriv(dentry);
2897 }
2898
2899 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2900 {
2901         struct inode_security_struct *isec = inode->i_security;
2902         *secid = isec->sid;
2903 }
2904
2905 /* file security operations */
2906
2907 static int selinux_revalidate_file_permission(struct file *file, int mask)
2908 {
2909         int rc;
2910         struct inode *inode = file->f_path.dentry->d_inode;
2911
2912         if (!mask) {
2913                 /* No permission to check.  Existence test. */
2914                 return 0;
2915         }
2916
2917         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2918         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2919                 mask |= MAY_APPEND;
2920
2921         rc = file_has_perm(current, file,
2922                            file_mask_to_av(inode->i_mode, mask));
2923         if (rc)
2924                 return rc;
2925
2926         return selinux_netlbl_inode_permission(inode, mask);
2927 }
2928
2929 static int selinux_file_permission(struct file *file, int mask)
2930 {
2931         struct inode *inode = file->f_path.dentry->d_inode;
2932         struct task_security_struct *tsec = current->security;
2933         struct file_security_struct *fsec = file->f_security;
2934         struct inode_security_struct *isec = inode->i_security;
2935
2936         if (!mask) {
2937                 /* No permission to check.  Existence test. */
2938                 return 0;
2939         }
2940
2941         if (tsec->sid == fsec->sid && fsec->isid == isec->sid
2942             && fsec->pseqno == avc_policy_seqno())
2943                 return selinux_netlbl_inode_permission(inode, mask);
2944
2945         return selinux_revalidate_file_permission(file, mask);
2946 }
2947
2948 static int selinux_file_alloc_security(struct file *file)
2949 {
2950         return file_alloc_security(file);
2951 }
2952
2953 static void selinux_file_free_security(struct file *file)
2954 {
2955         file_free_security(file);
2956 }
2957
2958 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2959                               unsigned long arg)
2960 {
2961         u32 av = 0;
2962
2963         if (_IOC_DIR(cmd) & _IOC_WRITE)
2964                 av |= FILE__WRITE;
2965         if (_IOC_DIR(cmd) & _IOC_READ)
2966                 av |= FILE__READ;
2967         if (!av)
2968                 av = FILE__IOCTL;
2969
2970         return file_has_perm(current, file, av);
2971 }
2972
2973 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2974 {
2975 #ifndef CONFIG_PPC32
2976         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2977                 /*
2978                  * We are making executable an anonymous mapping or a
2979                  * private file mapping that will also be writable.
2980                  * This has an additional check.
2981                  */
2982                 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2983                 if (rc)
2984                         return rc;
2985         }
2986 #endif
2987
2988         if (file) {
2989                 /* read access is always possible with a mapping */
2990                 u32 av = FILE__READ;
2991
2992                 /* write access only matters if the mapping is shared */
2993                 if (shared && (prot & PROT_WRITE))
2994                         av |= FILE__WRITE;
2995
2996                 if (prot & PROT_EXEC)
2997                         av |= FILE__EXECUTE;
2998
2999                 return file_has_perm(current, file, av);
3000         }
3001         return 0;
3002 }
3003
3004 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3005                              unsigned long prot, unsigned long flags,
3006                              unsigned long addr, unsigned long addr_only)
3007 {
3008         int rc = 0;
3009         u32 sid = ((struct task_security_struct *)(current->security))->sid;
3010
3011         if (addr < mmap_min_addr)
3012                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3013                                   MEMPROTECT__MMAP_ZERO, NULL);
3014         if (rc || addr_only)
3015                 return rc;
3016
3017         if (selinux_checkreqprot)
3018                 prot = reqprot;
3019
3020         return file_map_prot_check(file, prot,
3021                                    (flags & MAP_TYPE) == MAP_SHARED);
3022 }
3023
3024 static int selinux_file_mprotect(struct vm_area_struct *vma,
3025                                  unsigned long reqprot,
3026                                  unsigned long prot)
3027 {
3028         int rc;
3029
3030         rc = secondary_ops->file_mprotect(vma, reqprot, prot);
3031         if (rc)
3032                 return rc;
3033
3034         if (selinux_checkreqprot)
3035                 prot = reqprot;
3036
3037 #ifndef CONFIG_PPC32
3038         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3039                 rc = 0;
3040                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3041                     vma->vm_end <= vma->vm_mm->brk) {
3042                         rc = task_has_perm(current, current,
3043                                            PROCESS__EXECHEAP);
3044                 } else if (!vma->vm_file &&
3045                            vma->vm_start <= vma->vm_mm->start_stack &&
3046                            vma->vm_end >= vma->vm_mm->start_stack) {
3047                         rc = task_has_perm(current, current, PROCESS__EXECSTACK);
3048                 } else if (vma->vm_file && vma->anon_vma) {
3049                         /*
3050                          * We are making executable a file mapping that has
3051                          * had some COW done. Since pages might have been
3052                          * written, check ability to execute the possibly
3053                          * modified content.  This typically should only
3054                          * occur for text relocations.
3055                          */
3056                         rc = file_has_perm(current, vma->vm_file,
3057                                            FILE__EXECMOD);
3058                 }
3059                 if (rc)
3060                         return rc;
3061         }
3062 #endif
3063
3064         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3065 }
3066
3067 static int selinux_file_lock(struct file *file, unsigned int cmd)
3068 {
3069         return file_has_perm(current, file, FILE__LOCK);
3070 }
3071
3072 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3073                               unsigned long arg)
3074 {
3075         int err = 0;
3076
3077         switch (cmd) {
3078         case F_SETFL:
3079                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3080                         err = -EINVAL;
3081                         break;
3082                 }
3083
3084                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3085                         err = file_has_perm(current, file, FILE__WRITE);
3086                         break;
3087                 }
3088                 /* fall through */
3089         case F_SETOWN:
3090         case F_SETSIG:
3091         case F_GETFL:
3092         case F_GETOWN:
3093         case F_GETSIG:
3094                 /* Just check FD__USE permission */
3095                 err = file_has_perm(current, file, 0);
3096                 break;
3097         case F_GETLK:
3098         case F_SETLK:
3099         case F_SETLKW:
3100 #if BITS_PER_LONG == 32
3101         case F_GETLK64:
3102         case F_SETLK64:
3103         case F_SETLKW64:
3104 #endif
3105                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3106                         err = -EINVAL;
3107                         break;
3108                 }
3109                 err = file_has_perm(current, file, FILE__LOCK);
3110                 break;
3111         }
3112
3113         return err;
3114 }
3115
3116 static int selinux_file_set_fowner(struct file *file)
3117 {
3118         struct task_security_struct *tsec;
3119         struct file_security_struct *fsec;
3120
3121         tsec = current->security;
3122         fsec = file->f_security;
3123         fsec->fown_sid = tsec->sid;
3124
3125         return 0;
3126 }
3127
3128 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3129                                        struct fown_struct *fown, int signum)
3130 {
3131         struct file *file;
3132         u32 perm;
3133         struct task_security_struct *tsec;
3134         struct file_security_struct *fsec;
3135
3136         /* struct fown_struct is never outside the context of a struct file */
3137         file = container_of(fown, struct file, f_owner);
3138
3139         tsec = tsk->security;
3140         fsec = file->f_security;
3141
3142         if (!signum)
3143                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3144         else
3145                 perm = signal_to_av(signum);
3146
3147         return avc_has_perm(fsec->fown_sid, tsec->sid,
3148                             SECCLASS_PROCESS, perm, NULL);
3149 }
3150
3151 static int selinux_file_receive(struct file *file)
3152 {
3153         return file_has_perm(current, file, file_to_av(file));
3154 }
3155
3156 static int selinux_dentry_open(struct file *file)
3157 {
3158         struct file_security_struct *fsec;
3159         struct inode *inode;
3160         struct inode_security_struct *isec;
3161         inode = file->f_path.dentry->d_inode;
3162         fsec = file->f_security;
3163         isec = inode->i_security;
3164         /*
3165          * Save inode label and policy sequence number
3166          * at open-time so that selinux_file_permission
3167          * can determine whether revalidation is necessary.
3168          * Task label is already saved in the file security
3169          * struct as its SID.
3170          */
3171         fsec->isid = isec->sid;
3172         fsec->pseqno = avc_policy_seqno();
3173         /*
3174          * Since the inode label or policy seqno may have changed
3175          * between the selinux_inode_permission check and the saving
3176          * of state above, recheck that access is still permitted.
3177          * Otherwise, access might never be revalidated against the
3178          * new inode label or new policy.
3179          * This check is not redundant - do not remove.
3180          */
3181         return inode_has_perm(current, inode, open_file_to_av(file), NULL);
3182 }
3183
3184 /* task security operations */
3185
3186 static int selinux_task_create(unsigned long clone_flags)
3187 {
3188         int rc;
3189
3190         rc = secondary_ops->task_create(clone_flags);
3191         if (rc)
3192                 return rc;
3193
3194         return task_has_perm(current, current, PROCESS__FORK);
3195 }
3196
3197 static int selinux_task_alloc_security(struct task_struct *tsk)
3198 {
3199         struct task_security_struct *tsec1, *tsec2;
3200         int rc;
3201
3202         tsec1 = current->security;
3203
3204         rc = task_alloc_security(tsk);
3205         if (rc)
3206                 return rc;
3207         tsec2 = tsk->security;
3208
3209         tsec2->osid = tsec1->osid;
3210         tsec2->sid = tsec1->sid;
3211
3212         /* Retain the exec, fs, key, and sock SIDs across fork */
3213         tsec2->exec_sid = tsec1->exec_sid;
3214         tsec2->create_sid = tsec1->create_sid;
3215         tsec2->keycreate_sid = tsec1->keycreate_sid;
3216         tsec2->sockcreate_sid = tsec1->sockcreate_sid;
3217
3218         return 0;
3219 }
3220
3221 static void selinux_task_free_security(struct task_struct *tsk)
3222 {
3223         task_free_security(tsk);
3224 }
3225
3226 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3227 {
3228         /* Since setuid only affects the current process, and
3229            since the SELinux controls are not based on the Linux
3230            identity attributes, SELinux does not need to control
3231            this operation.  However, SELinux does control the use
3232            of the CAP_SETUID and CAP_SETGID capabilities using the
3233            capable hook. */
3234         return 0;
3235 }
3236
3237 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3238 {
3239         return secondary_ops->task_post_setuid(id0, id1, id2, flags);
3240 }
3241
3242 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
3243 {
3244         /* See the comment for setuid above. */
3245         return 0;
3246 }
3247
3248 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3249 {
3250         return task_has_perm(current, p, PROCESS__SETPGID);
3251 }
3252
3253 static int selinux_task_getpgid(struct task_struct *p)
3254 {
3255         return task_has_perm(current, p, PROCESS__GETPGID);
3256 }
3257
3258 static int selinux_task_getsid(struct task_struct *p)
3259 {
3260         return task_has_perm(current, p, PROCESS__GETSESSION);
3261 }
3262
3263 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3264 {
3265         struct task_security_struct *tsec = p->security;
3266         *secid = tsec->sid;
3267 }
3268
3269 static int selinux_task_setgroups(struct group_info *group_info)
3270 {
3271         /* See the comment for setuid above. */
3272         return 0;
3273 }
3274
3275 static int selinux_task_setnice(struct task_struct *p, int nice)
3276 {
3277         int rc;
3278
3279         rc = secondary_ops->task_setnice(p, nice);
3280         if (rc)
3281                 return rc;
3282
3283         return task_has_perm(current, p, PROCESS__SETSCHED);
3284 }
3285
3286 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3287 {
3288         int rc;
3289
3290         rc = secondary_ops->task_setioprio(p, ioprio);
3291         if (rc)
3292                 return rc;
3293
3294         return task_has_perm(current, p, PROCESS__SETSCHED);
3295 }
3296
3297 static int selinux_task_getioprio(struct task_struct *p)
3298 {
3299         return task_has_perm(current, p, PROCESS__GETSCHED);
3300 }
3301
3302 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3303 {
3304         struct rlimit *old_rlim = current->signal->rlim + resource;
3305         int rc;
3306
3307         rc = secondary_ops->task_setrlimit(resource, new_rlim);
3308         if (rc)
3309                 return rc;
3310
3311         /* Control the ability to change the hard limit (whether
3312            lowering or raising it), so that the hard limit can
3313            later be used as a safe reset point for the soft limit
3314            upon context transitions. See selinux_bprm_apply_creds. */
3315         if (old_rlim->rlim_max != new_rlim->rlim_max)
3316                 return task_has_perm(current, current, PROCESS__SETRLIMIT);
3317
3318         return 0;
3319 }
3320
3321 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3322 {
3323         int rc;
3324
3325         rc = secondary_ops->task_setscheduler(p, policy, lp);
3326         if (rc)
3327                 return rc;
3328
3329         return task_has_perm(current, p, PROCESS__SETSCHED);
3330 }
3331
3332 static int selinux_task_getscheduler(struct task_struct *p)
3333 {
3334         return task_has_perm(current, p, PROCESS__GETSCHED);
3335 }
3336
3337 static int selinux_task_movememory(struct task_struct *p)
3338 {
3339         return task_has_perm(current, p, PROCESS__SETSCHED);
3340 }
3341
3342 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3343                                 int sig, u32 secid)
3344 {
3345         u32 perm;
3346         int rc;
3347         struct task_security_struct *tsec;
3348
3349         rc = secondary_ops->task_kill(p, info, sig, secid);
3350         if (rc)
3351                 return rc;
3352
3353         if (!sig)
3354                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3355         else
3356                 perm = signal_to_av(sig);
3357         tsec = p->security;
3358         if (secid)
3359                 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
3360         else
3361                 rc = task_has_perm(current, p, perm);
3362         return rc;
3363 }
3364
3365 static int selinux_task_prctl(int option,
3366                               unsigned long arg2,
3367                               unsigned long arg3,
3368                               unsigned long arg4,
3369                               unsigned long arg5,
3370                               long *rc_p)
3371 {
3372         /* The current prctl operations do not appear to require
3373            any SELinux controls since they merely observe or modify
3374            the state of the current process. */
3375         return secondary_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
3376 }
3377
3378 static int selinux_task_wait(struct task_struct *p)
3379 {
3380         return task_has_perm(p, current, PROCESS__SIGCHLD);
3381 }
3382
3383 static void selinux_task_reparent_to_init(struct task_struct *p)
3384 {
3385         struct task_security_struct *tsec;
3386
3387         secondary_ops->task_reparent_to_init(p);
3388
3389         tsec = p->security;
3390         tsec->osid = tsec->sid;
3391         tsec->sid = SECINITSID_KERNEL;
3392         return;
3393 }
3394
3395 static void selinux_task_to_inode(struct task_struct *p,
3396                                   struct inode *inode)
3397 {
3398         struct task_security_struct *tsec = p->security;
3399         struct inode_security_struct *isec = inode->i_security;
3400
3401         isec->sid = tsec->sid;
3402         isec->initialized = 1;
3403         return;
3404 }
3405
3406 /* Returns error only if unable to parse addresses */
3407 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3408                         struct avc_audit_data *ad, u8 *proto)
3409 {
3410         int offset, ihlen, ret = -EINVAL;
3411         struct iphdr _iph, *ih;
3412
3413         offset = skb_network_offset(skb);
3414         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3415         if (ih == NULL)
3416                 goto out;
3417
3418         ihlen = ih->ihl * 4;
3419         if (ihlen < sizeof(_iph))
3420                 goto out;
3421
3422         ad->u.net.v4info.saddr = ih->saddr;
3423         ad->u.net.v4info.daddr = ih->daddr;
3424         ret = 0;
3425
3426         if (proto)
3427                 *proto = ih->protocol;
3428
3429         switch (ih->protocol) {
3430         case IPPROTO_TCP: {
3431                 struct tcphdr _tcph, *th;
3432
3433                 if (ntohs(ih->frag_off) & IP_OFFSET)
3434                         break;
3435
3436                 offset += ihlen;
3437                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3438                 if (th == NULL)
3439                         break;
3440
3441                 ad->u.net.sport = th->source;
3442                 ad->u.net.dport = th->dest;
3443                 break;
3444         }
3445
3446         case IPPROTO_UDP: {
3447                 struct udphdr _udph, *uh;
3448
3449                 if (ntohs(ih->frag_off) & IP_OFFSET)
3450                         break;
3451
3452                 offset += ihlen;
3453                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3454                 if (uh == NULL)
3455                         break;
3456
3457                 ad->u.net.sport = uh->source;
3458                 ad->u.net.dport = uh->dest;
3459                 break;
3460         }
3461
3462         case IPPROTO_DCCP: {
3463                 struct dccp_hdr _dccph, *dh;
3464
3465                 if (ntohs(ih->frag_off) & IP_OFFSET)
3466                         break;
3467
3468                 offset += ihlen;
3469                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3470                 if (dh == NULL)
3471                         break;
3472
3473                 ad->u.net.sport = dh->dccph_sport;
3474                 ad->u.net.dport = dh->dccph_dport;
3475                 break;
3476         }
3477
3478         default:
3479                 break;
3480         }
3481 out:
3482         return ret;
3483 }
3484
3485 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3486
3487 /* Returns error only if unable to parse addresses */
3488 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3489                         struct avc_audit_data *ad, u8 *proto)
3490 {
3491         u8 nexthdr;
3492         int ret = -EINVAL, offset;
3493         struct ipv6hdr _ipv6h, *ip6;
3494
3495         offset = skb_network_offset(skb);
3496         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3497         if (ip6 == NULL)
3498                 goto out;
3499
3500         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3501         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3502         ret = 0;
3503
3504         nexthdr = ip6->nexthdr;
3505         offset += sizeof(_ipv6h);
3506         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3507         if (offset < 0)
3508                 goto out;
3509
3510         if (proto)
3511                 *proto = nexthdr;
3512
3513         switch (nexthdr) {
3514         case IPPROTO_TCP: {
3515                 struct tcphdr _tcph, *th;
3516
3517                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3518                 if (th == NULL)
3519                         break;
3520
3521                 ad->u.net.sport = th->source;
3522                 ad->u.net.dport = th->dest;
3523                 break;
3524         }
3525
3526         case IPPROTO_UDP: {
3527                 struct udphdr _udph, *uh;
3528
3529                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3530                 if (uh == NULL)
3531                         break;
3532
3533                 ad->u.net.sport = uh->source;
3534                 ad->u.net.dport = uh->dest;
3535                 break;
3536         }
3537
3538         case IPPROTO_DCCP: {
3539                 struct dccp_hdr _dccph, *dh;
3540
3541                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3542                 if (dh == NULL)
3543                         break;
3544
3545                 ad->u.net.sport = dh->dccph_sport;
3546                 ad->u.net.dport = dh->dccph_dport;
3547                 break;
3548         }
3549
3550         /* includes fragments */
3551         default:
3552                 break;
3553         }
3554 out:
3555         return ret;
3556 }
3557
3558 #endif /* IPV6 */
3559
3560 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3561                              char **_addrp, int src, u8 *proto)
3562 {
3563         char *addrp;
3564         int ret;
3565
3566         switch (ad->u.net.family) {
3567         case PF_INET:
3568                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3569                 if (ret)
3570                         goto parse_error;
3571                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3572                                        &ad->u.net.v4info.daddr);
3573                 goto okay;
3574
3575 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3576         case PF_INET6:
3577                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3578                 if (ret)
3579                         goto parse_error;
3580                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3581                                        &ad->u.net.v6info.daddr);
3582                 goto okay;
3583 #endif  /* IPV6 */
3584         default:
3585                 addrp = NULL;
3586                 goto okay;
3587         }
3588
3589 parse_error:
3590         printk(KERN_WARNING
3591                "SELinux: failure in selinux_parse_skb(),"
3592                " unable to parse packet\n");
3593         return ret;
3594
3595 okay:
3596         if (_addrp)
3597                 *_addrp = addrp;
3598         return 0;
3599 }
3600
3601 /**
3602  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3603  * @skb: the packet
3604  * @family: protocol family
3605  * @sid: the packet's peer label SID
3606  *
3607  * Description:
3608  * Check the various different forms of network peer labeling and determine
3609  * the peer label/SID for the packet; most of the magic actually occurs in
3610  * the security server function security_net_peersid_cmp().  The function
3611  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3612  * or -EACCES if @sid is invalid due to inconsistencies with the different
3613  * peer labels.
3614  *
3615  */
3616 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3617 {
3618         int err;
3619         u32 xfrm_sid;
3620         u32 nlbl_sid;
3621         u32 nlbl_type;
3622
3623         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3624         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3625
3626         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3627         if (unlikely(err)) {
3628                 printk(KERN_WARNING
3629                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3630                        " unable to determine packet's peer label\n");
3631                 return -EACCES;
3632         }
3633
3634         return 0;
3635 }
3636
3637 /* socket security operations */
3638 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3639                            u32 perms)
3640 {
3641         struct inode_security_struct *isec;
3642         struct task_security_struct *tsec;
3643         struct avc_audit_data ad;
3644         int err = 0;
3645
3646         tsec = task->security;
3647         isec = SOCK_INODE(sock)->i_security;
3648
3649         if (isec->sid == SECINITSID_KERNEL)
3650                 goto out;
3651
3652         AVC_AUDIT_DATA_INIT(&ad, NET);
3653         ad.u.net.sk = sock->sk;
3654         err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3655
3656 out:
3657         return err;
3658 }
3659
3660 static int selinux_socket_create(int family, int type,
3661                                  int protocol, int kern)
3662 {
3663         int err = 0;
3664         struct task_security_struct *tsec;
3665         u32 newsid;
3666
3667         if (kern)
3668                 goto out;
3669
3670         tsec = current->security;
3671         newsid = tsec->sockcreate_sid ? : tsec->sid;
3672         err = avc_has_perm(tsec->sid, newsid,
3673                            socket_type_to_security_class(family, type,
3674                            protocol), SOCKET__CREATE, NULL);
3675
3676 out:
3677         return err;
3678 }
3679
3680 static int selinux_socket_post_create(struct socket *sock, int family,
3681                                       int type, int protocol, int kern)
3682 {
3683         int err = 0;
3684         struct inode_security_struct *isec;
3685         struct task_security_struct *tsec;
3686         struct sk_security_struct *sksec;
3687         u32 newsid;
3688
3689         isec = SOCK_INODE(sock)->i_security;
3690
3691         tsec = current->security;
3692         newsid = tsec->sockcreate_sid ? : tsec->sid;
3693         isec->sclass = socket_type_to_security_class(family, type, protocol);
3694         isec->sid = kern ? SECINITSID_KERNEL : newsid;
3695         isec->initialized = 1;
3696
3697         if (sock->sk) {
3698                 sksec = sock->sk->sk_security;
3699                 sksec->sid = isec->sid;
3700                 sksec->sclass = isec->sclass;
3701                 err = selinux_netlbl_socket_post_create(sock);
3702         }
3703
3704         return err;
3705 }
3706
3707 /* Range of port numbers used to automatically bind.
3708    Need to determine whether we should perform a name_bind
3709    permission check between the socket and the port number. */
3710
3711 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3712 {
3713         u16 family;
3714         int err;
3715
3716         err = socket_has_perm(current, sock, SOCKET__BIND);
3717         if (err)
3718                 goto out;
3719
3720         /*
3721          * If PF_INET or PF_INET6, check name_bind permission for the port.
3722          * Multiple address binding for SCTP is not supported yet: we just
3723          * check the first address now.
3724          */
3725         family = sock->sk->sk_family;
3726         if (family == PF_INET || family == PF_INET6) {
3727                 char *addrp;
3728                 struct inode_security_struct *isec;
3729                 struct task_security_struct *tsec;
3730                 struct avc_audit_data ad;
3731                 struct sockaddr_in *addr4 = NULL;
3732                 struct sockaddr_in6 *addr6 = NULL;
3733                 unsigned short snum;
3734                 struct sock *sk = sock->sk;
3735                 u32 sid, node_perm;
3736
3737                 tsec = current->security;
3738                 isec = SOCK_INODE(sock)->i_security;
3739
3740                 if (family == PF_INET) {
3741                         addr4 = (struct sockaddr_in *)address;
3742                         snum = ntohs(addr4->sin_port);
3743                         addrp = (char *)&addr4->sin_addr.s_addr;
3744                 } else {
3745                         addr6 = (struct sockaddr_in6 *)address;
3746                         snum = ntohs(addr6->sin6_port);
3747                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3748                 }
3749
3750                 if (snum) {
3751                         int low, high;
3752
3753                         inet_get_local_port_range(&low, &high);
3754
3755                         if (snum < max(PROT_SOCK, low) || snum > high) {
3756                                 err = sel_netport_sid(sk->sk_protocol,
3757                                                       snum, &sid);
3758                                 if (err)
3759                                         goto out;
3760                                 AVC_AUDIT_DATA_INIT(&ad, NET);
3761                                 ad.u.net.sport = htons(snum);
3762                                 ad.u.net.family = family;
3763                                 err = avc_has_perm(isec->sid, sid,
3764                                                    isec->sclass,
3765                                                    SOCKET__NAME_BIND, &ad);
3766                                 if (err)
3767                                         goto out;
3768                         }
3769                 }
3770
3771                 switch (isec->sclass) {
3772                 case SECCLASS_TCP_SOCKET:
3773                         node_perm = TCP_SOCKET__NODE_BIND;
3774                         break;
3775
3776                 case SECCLASS_UDP_SOCKET:
3777                         node_perm = UDP_SOCKET__NODE_BIND;
3778                         break;
3779
3780                 case SECCLASS_DCCP_SOCKET:
3781                         node_perm = DCCP_SOCKET__NODE_BIND;
3782                         break;
3783
3784                 default:
3785                         node_perm = RAWIP_SOCKET__NODE_BIND;
3786                         break;
3787                 }
3788
3789                 err = sel_netnode_sid(addrp, family, &sid);
3790                 if (err)
3791                         goto out;
3792
3793                 AVC_AUDIT_DATA_INIT(&ad, NET);
3794                 ad.u.net.sport = htons(snum);
3795                 ad.u.net.family = family;
3796
3797                 if (family == PF_INET)
3798                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3799                 else
3800                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3801
3802                 err = avc_has_perm(isec->sid, sid,
3803                                    isec->sclass, node_perm, &ad);
3804                 if (err)
3805                         goto out;
3806         }
3807 out:
3808         return err;
3809 }
3810
3811 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3812 {
3813         struct sock *sk = sock->sk;
3814         struct inode_security_struct *isec;
3815         int err;
3816
3817         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3818         if (err)
3819                 return err;
3820
3821         /*
3822          * If a TCP or DCCP socket, check name_connect permission for the port.
3823          */
3824         isec = SOCK_INODE(sock)->i_security;
3825         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3826             isec->sclass == SECCLASS_DCCP_SOCKET) {
3827                 struct avc_audit_data ad;
3828                 struct sockaddr_in *addr4 = NULL;
3829                 struct sockaddr_in6 *addr6 = NULL;
3830                 unsigned short snum;
3831                 u32 sid, perm;
3832
3833                 if (sk->sk_family == PF_INET) {
3834                         addr4 = (struct sockaddr_in *)address;
3835                         if (addrlen < sizeof(struct sockaddr_in))
3836                                 return -EINVAL;
3837                         snum = ntohs(addr4->sin_port);
3838                 } else {
3839                         addr6 = (struct sockaddr_in6 *)address;
3840                         if (addrlen < SIN6_LEN_RFC2133)
3841                                 return -EINVAL;
3842                         snum = ntohs(addr6->sin6_port);
3843                 }
3844
3845                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3846                 if (err)
3847                         goto out;
3848
3849                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3850                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3851
3852                 AVC_AUDIT_DATA_INIT(&ad, NET);
3853                 ad.u.net.dport = htons(snum);
3854                 ad.u.net.family = sk->sk_family;
3855                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3856                 if (err)
3857                         goto out;
3858         }
3859
3860         err = selinux_netlbl_socket_connect(sk, address);
3861
3862 out:
3863         return err;
3864 }
3865
3866 static int selinux_socket_listen(struct socket *sock, int backlog)
3867 {
3868         return socket_has_perm(current, sock, SOCKET__LISTEN);
3869 }
3870
3871 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3872 {
3873         int err;
3874         struct inode_security_struct *isec;
3875         struct inode_security_struct *newisec;
3876
3877         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3878         if (err)
3879                 return err;
3880
3881         newisec = SOCK_INODE(newsock)->i_security;
3882
3883         isec = SOCK_INODE(sock)->i_security;
3884         newisec->sclass = isec->sclass;
3885         newisec->sid = isec->sid;
3886         newisec->initialized = 1;
3887
3888         return 0;
3889 }
3890
3891 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3892                                   int size)
3893 {
3894         int rc;
3895
3896         rc = socket_has_perm(current, sock, SOCKET__WRITE);
3897         if (rc)
3898                 return rc;
3899
3900         return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3901 }
3902
3903 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3904                                   int size, int flags)
3905 {
3906         return socket_has_perm(current, sock, SOCKET__READ);
3907 }
3908
3909 static int selinux_socket_getsockname(struct socket *sock)
3910 {
3911         return socket_has_perm(current, sock, SOCKET__GETATTR);
3912 }
3913
3914 static int selinux_socket_getpeername(struct socket *sock)
3915 {
3916         return socket_has_perm(current, sock, SOCKET__GETATTR);
3917 }
3918
3919 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3920 {
3921         int err;
3922
3923         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3924         if (err)
3925                 return err;
3926
3927         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3928 }
3929
3930 static int selinux_socket_getsockopt(struct socket *sock, int level,
3931                                      int optname)
3932 {
3933         return socket_has_perm(current, sock, SOCKET__GETOPT);
3934 }
3935
3936 static int selinux_socket_shutdown(struct socket *sock, int how)
3937 {
3938         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3939 }
3940
3941 static int selinux_socket_unix_stream_connect(struct socket *sock,
3942                                               struct socket *other,
3943                                               struct sock *newsk)
3944 {
3945         struct sk_security_struct *ssec;
3946         struct inode_security_struct *isec;
3947         struct inode_security_struct *other_isec;
3948         struct avc_audit_data ad;
3949         int err;
3950
3951         err = secondary_ops->unix_stream_connect(sock, other, newsk);
3952         if (err)
3953                 return err;
3954
3955         isec = SOCK_INODE(sock)->i_security;
3956         other_isec = SOCK_INODE(other)->i_security;
3957
3958         AVC_AUDIT_DATA_INIT(&ad, NET);
3959         ad.u.net.sk = other->sk;
3960
3961         err = avc_has_perm(isec->sid, other_isec->sid,
3962                            isec->sclass,
3963                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3964         if (err)
3965                 return err;
3966
3967         /* connecting socket */
3968         ssec = sock->sk->sk_security;
3969         ssec->peer_sid = other_isec->sid;
3970
3971         /* server child socket */
3972         ssec = newsk->sk_security;
3973         ssec->peer_sid = isec->sid;
3974         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3975
3976         return err;
3977 }
3978
3979 static int selinux_socket_unix_may_send(struct socket *sock,
3980                                         struct socket *other)
3981 {
3982         struct inode_security_struct *isec;
3983         struct inode_security_struct *other_isec;
3984         struct avc_audit_data ad;
3985         int err;
3986
3987         isec = SOCK_INODE(sock)->i_security;
3988         other_isec = SOCK_INODE(other)->i_security;
3989
3990         AVC_AUDIT_DATA_INIT(&ad, NET);
3991         ad.u.net.sk = other->sk;
3992
3993         err = avc_has_perm(isec->sid, other_isec->sid,
3994                            isec->sclass, SOCKET__SENDTO, &ad);
3995         if (err)
3996                 return err;
3997
3998         return 0;
3999 }
4000
4001 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4002                                     u32 peer_sid,
4003                                     struct avc_audit_data *ad)
4004 {
4005         int err;
4006         u32 if_sid;
4007         u32 node_sid;
4008
4009         err = sel_netif_sid(ifindex, &if_sid);
4010         if (err)
4011                 return err;
4012         err = avc_has_perm(peer_sid, if_sid,
4013                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4014         if (err)
4015                 return err;
4016
4017         err = sel_netnode_sid(addrp, family, &node_sid);
4018         if (err)
4019                 return err;
4020         return avc_has_perm(peer_sid, node_sid,
4021                             SECCLASS_NODE, NODE__RECVFROM, ad);
4022 }
4023
4024 static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk,
4025                                                 struct sk_buff *skb,
4026                                                 struct avc_audit_data *ad,
4027                                                 u16 family,
4028                                                 char *addrp)
4029 {
4030         int err;
4031         struct sk_security_struct *sksec = sk->sk_security;
4032         u16 sk_class;
4033         u32 netif_perm, node_perm, recv_perm;
4034         u32 port_sid, node_sid, if_sid, sk_sid;
4035
4036         sk_sid = sksec->sid;
4037         sk_class = sksec->sclass;
4038
4039         switch (sk_class) {
4040         case SECCLASS_UDP_SOCKET:
4041                 netif_perm = NETIF__UDP_RECV;
4042                 node_perm = NODE__UDP_RECV;
4043                 recv_perm = UDP_SOCKET__RECV_MSG;
4044                 break;
4045         case SECCLASS_TCP_SOCKET:
4046                 netif_perm = NETIF__TCP_RECV;
4047                 node_perm = NODE__TCP_RECV;
4048                 recv_perm = TCP_SOCKET__RECV_MSG;
4049                 break;
4050         case SECCLASS_DCCP_SOCKET:
4051                 netif_perm = NETIF__DCCP_RECV;
4052                 node_perm = NODE__DCCP_RECV;
4053                 recv_perm = DCCP_SOCKET__RECV_MSG;
4054                 break;
4055         default:
4056                 netif_perm = NETIF__RAWIP_RECV;
4057                 node_perm = NODE__RAWIP_RECV;
4058                 recv_perm = 0;
4059                 break;
4060         }
4061
4062         err = sel_netif_sid(skb->iif, &if_sid);
4063         if (err)
4064                 return err;
4065         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4066         if (err)
4067                 return err;
4068
4069         err = sel_netnode_sid(addrp, family, &node_sid);
4070         if (err)
4071                 return err;
4072         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4073         if (err)
4074                 return err;
4075
4076         if (!recv_perm)
4077                 return 0;
4078         err = sel_netport_sid(sk->sk_protocol,
4079                               ntohs(ad->u.net.sport), &port_sid);
4080         if (unlikely(err)) {
4081                 printk(KERN_WARNING
4082                        "SELinux: failure in"
4083                        " selinux_sock_rcv_skb_iptables_compat(),"
4084                        " network port label not found\n");
4085                 return err;
4086         }
4087         return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad);
4088 }
4089
4090 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4091                                        u16 family)
4092 {
4093         int err;
4094         struct sk_security_struct *sksec = sk->sk_security;
4095         u32 peer_sid;
4096         u32 sk_sid = sksec->sid;
4097         struct avc_audit_data ad;
4098         char *addrp;
4099
4100         AVC_AUDIT_DATA_INIT(&ad, NET);
4101         ad.u.net.netif = skb->iif;
4102         ad.u.net.family = family;
4103         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4104         if (err)
4105                 return err;
4106
4107         if (selinux_compat_net)
4108                 err = selinux_sock_rcv_skb_iptables_compat(sk, skb, &ad,
4109                                                            family, addrp);
4110         else
4111                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4112                                    PACKET__RECV, &ad);
4113         if (err)
4114                 return err;
4115
4116         if (selinux_policycap_netpeer) {
4117                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4118                 if (err)
4119                         return err;
4120                 err = avc_has_perm(sk_sid, peer_sid,
4121                                    SECCLASS_PEER, PEER__RECV, &ad);
4122                 if (err)
4123                         selinux_netlbl_err(skb, err, 0);
4124         } else {
4125                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4126                 if (err)
4127                         return err;
4128                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4129         }
4130
4131         return err;
4132 }
4133
4134 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4135 {
4136         int err;
4137         struct sk_security_struct *sksec = sk->sk_security;
4138         u16 family = sk->sk_family;
4139         u32 sk_sid = sksec->sid;
4140         struct avc_audit_data ad;
4141         char *addrp;
4142         u8 secmark_active;
4143         u8 peerlbl_active;
4144
4145         if (family != PF_INET && family != PF_INET6)
4146                 return 0;
4147
4148         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4149         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4150                 family = PF_INET;
4151
4152         /* If any sort of compatibility mode is enabled then handoff processing
4153          * to the selinux_sock_rcv_skb_compat() function to deal with the
4154          * special handling.  We do this in an attempt to keep this function
4155          * as fast and as clean as possible. */
4156         if (selinux_compat_net || !selinux_policycap_netpeer)
4157                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4158
4159         secmark_active = selinux_secmark_enabled();
4160         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4161         if (!secmark_active && !peerlbl_active)
4162                 return 0;
4163
4164         AVC_AUDIT_DATA_INIT(&ad, NET);
4165         ad.u.net.netif = skb->iif;
4166         ad.u.net.family = family;
4167         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4168         if (err)
4169                 return err;
4170
4171         if (peerlbl_active) {
4172                 u32 peer_sid;
4173
4174                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4175                 if (err)
4176                         return err;
4177                 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4178                                                peer_sid, &ad);
4179                 if (err) {
4180                         selinux_netlbl_err(skb, err, 0);
4181                         return err;
4182                 }
4183                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4184                                    PEER__RECV, &ad);
4185                 if (err)
4186                         selinux_netlbl_err(skb, err, 0);
4187         }
4188
4189         if (secmark_active) {
4190                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4191                                    PACKET__RECV, &ad);
4192                 if (err)
4193                         return err;
4194         }
4195
4196         return err;
4197 }
4198
4199 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4200                                             int __user *optlen, unsigned len)
4201 {
4202         int err = 0;
4203         char *scontext;
4204         u32 scontext_len;
4205         struct sk_security_struct *ssec;
4206         struct inode_security_struct *isec;
4207         u32 peer_sid = SECSID_NULL;
4208
4209         isec = SOCK_INODE(sock)->i_security;
4210
4211         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4212             isec->sclass == SECCLASS_TCP_SOCKET) {
4213                 ssec = sock->sk->sk_security;
4214                 peer_sid = ssec->peer_sid;
4215         }
4216         if (peer_sid == SECSID_NULL) {
4217                 err = -ENOPROTOOPT;
4218                 goto out;
4219         }
4220
4221         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4222
4223         if (err)
4224                 goto out;
4225
4226         if (scontext_len > len) {
4227                 err = -ERANGE;
4228                 goto out_len;
4229         }
4230
4231         if (copy_to_user(optval, scontext, scontext_len))
4232                 err = -EFAULT;
4233
4234 out_len:
4235         if (put_user(scontext_len, optlen))
4236                 err = -EFAULT;
4237
4238         kfree(scontext);
4239 out:
4240         return err;
4241 }
4242
4243 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4244 {
4245         u32 peer_secid = SECSID_NULL;
4246         u16 family;
4247
4248         if (skb && skb->protocol == htons(ETH_P_IP))
4249                 family = PF_INET;
4250         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4251                 family = PF_INET6;
4252         else if (sock)
4253                 family = sock->sk->sk_family;
4254         else
4255                 goto out;
4256
4257         if (sock && family == PF_UNIX)
4258                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4259         else if (skb)
4260                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4261
4262 out:
4263         *secid = peer_secid;
4264         if (peer_secid == SECSID_NULL)
4265                 return -EINVAL;
4266         return 0;
4267 }
4268
4269 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4270 {
4271         return sk_alloc_security(sk, family, priority);
4272 }
4273
4274 static void selinux_sk_free_security(struct sock *sk)
4275 {
4276         sk_free_security(sk);
4277 }
4278
4279 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4280 {
4281         struct sk_security_struct *ssec = sk->sk_security;
4282         struct sk_security_struct *newssec = newsk->sk_security;
4283
4284         newssec->sid = ssec->sid;
4285         newssec->peer_sid = ssec->peer_sid;
4286         newssec->sclass = ssec->sclass;
4287
4288         selinux_netlbl_sk_security_reset(newssec, newsk->sk_family);
4289 }
4290
4291 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4292 {
4293         if (!sk)
4294                 *secid = SECINITSID_ANY_SOCKET;
4295         else {
4296                 struct sk_security_struct *sksec = sk->sk_security;
4297
4298                 *secid = sksec->sid;
4299         }
4300 }
4301
4302 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4303 {
4304         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4305         struct sk_security_struct *sksec = sk->sk_security;
4306
4307         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4308             sk->sk_family == PF_UNIX)
4309                 isec->sid = sksec->sid;
4310         sksec->sclass = isec->sclass;
4311 }
4312
4313 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4314                                      struct request_sock *req)
4315 {
4316         struct sk_security_struct *sksec = sk->sk_security;
4317         int err;
4318         u16 family = sk->sk_family;
4319         u32 newsid;
4320         u32 peersid;
4321
4322         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4323         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4324                 family = PF_INET;
4325
4326         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4327         if (err)
4328                 return err;
4329         if (peersid == SECSID_NULL) {
4330                 req->secid = sksec->sid;
4331                 req->peer_secid = SECSID_NULL;
4332                 return 0;
4333         }
4334
4335         err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4336         if (err)
4337                 return err;
4338
4339         req->secid = newsid;
4340         req->peer_secid = peersid;
4341         return 0;
4342 }
4343
4344 static void selinux_inet_csk_clone(struct sock *newsk,
4345                                    const struct request_sock *req)
4346 {
4347         struct sk_security_struct *newsksec = newsk->sk_security;
4348
4349         newsksec->sid = req->secid;
4350         newsksec->peer_sid = req->peer_secid;
4351         /* NOTE: Ideally, we should also get the isec->sid for the
4352            new socket in sync, but we don't have the isec available yet.
4353            So we will wait until sock_graft to do it, by which
4354            time it will have been created and available. */
4355
4356         /* We don't need to take any sort of lock here as we are the only
4357          * thread with access to newsksec */
4358         selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
4359 }
4360
4361 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4362 {
4363         u16 family = sk->sk_family;
4364         struct sk_security_struct *sksec = sk->sk_security;
4365
4366         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4367         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4368                 family = PF_INET;
4369
4370         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4371
4372         selinux_netlbl_inet_conn_established(sk, family);
4373 }
4374
4375 static void selinux_req_classify_flow(const struct request_sock *req,
4376                                       struct flowi *fl)
4377 {
4378         fl->secid = req->secid;
4379 }
4380
4381 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4382 {
4383         int err = 0;
4384         u32 perm;
4385         struct nlmsghdr *nlh;
4386         struct socket *sock = sk->sk_socket;
4387         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4388
4389         if (skb->len < NLMSG_SPACE(0)) {
4390                 err = -EINVAL;
4391                 goto out;
4392         }
4393         nlh = nlmsg_hdr(skb);
4394
4395         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4396         if (err) {
4397                 if (err == -EINVAL) {
4398                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4399                                   "SELinux:  unrecognized netlink message"
4400                                   " type=%hu for sclass=%hu\n",
4401                                   nlh->nlmsg_type, isec->sclass);
4402                         if (!selinux_enforcing)
4403                                 err = 0;
4404                 }
4405
4406                 /* Ignore */
4407                 if (err == -ENOENT)
4408                         err = 0;
4409                 goto out;
4410         }
4411
4412         err = socket_has_perm(current, sock, perm);
4413 out:
4414         return err;
4415 }
4416
4417 #ifdef CONFIG_NETFILTER
4418
4419 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4420                                        u16 family)
4421 {
4422         int err;
4423         char *addrp;
4424         u32 peer_sid;
4425         struct avc_audit_data ad;
4426         u8 secmark_active;
4427         u8 netlbl_active;
4428         u8 peerlbl_active;
4429
4430         if (!selinux_policycap_netpeer)
4431                 return NF_ACCEPT;
4432
4433         secmark_active = selinux_secmark_enabled();
4434         netlbl_active = netlbl_enabled();
4435         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4436         if (!secmark_active && !peerlbl_active)
4437                 return NF_ACCEPT;
4438
4439         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4440                 return NF_DROP;
4441
4442         AVC_AUDIT_DATA_INIT(&ad, NET);
4443         ad.u.net.netif = ifindex;
4444         ad.u.net.family = family;
4445         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4446                 return NF_DROP;
4447
4448         if (peerlbl_active) {
4449                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4450                                                peer_sid, &ad);
4451                 if (err) {
4452                         selinux_netlbl_err(skb, err, 1);
4453                         return NF_DROP;
4454                 }
4455         }
4456
4457         if (secmark_active)
4458                 if (avc_has_perm(peer_sid, skb->secmark,
4459                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4460                         return NF_DROP;
4461
4462         if (netlbl_active)
4463                 /* we do this in the FORWARD path and not the POST_ROUTING
4464                  * path because we want to make sure we apply the necessary
4465                  * labeling before IPsec is applied so we can leverage AH
4466                  * protection */
4467                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4468                         return NF_DROP;
4469
4470         return NF_ACCEPT;
4471 }
4472
4473 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4474                                          struct sk_buff *skb,
4475                                          const struct net_device *in,
4476                                          const struct net_device *out,
4477                                          int (*okfn)(struct sk_buff *))
4478 {
4479         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4480 }
4481
4482 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4483 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4484                                          struct sk_buff *skb,
4485                                          const struct net_device *in,
4486                                          const struct net_device *out,
4487                                          int (*okfn)(struct sk_buff *))
4488 {
4489         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4490 }
4491 #endif  /* IPV6 */
4492
4493 static unsigned int selinux_ip_output(struct sk_buff *skb,
4494                                       u16 family)
4495 {
4496         u32 sid;
4497
4498         if (!netlbl_enabled())
4499                 return NF_ACCEPT;
4500
4501         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4502          * because we want to make sure we apply the necessary labeling
4503          * before IPsec is applied so we can leverage AH protection */
4504         if (skb->sk) {
4505                 struct sk_security_struct *sksec = skb->sk->sk_security;
4506                 sid = sksec->sid;
4507         } else
4508                 sid = SECINITSID_KERNEL;
4509         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4510                 return NF_DROP;
4511
4512         return NF_ACCEPT;
4513 }
4514
4515 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4516                                         struct sk_buff *skb,
4517                                         const struct net_device *in,
4518                                         const struct net_device *out,
4519                                         int (*okfn)(struct sk_buff *))
4520 {
4521         return selinux_ip_output(skb, PF_INET);
4522 }
4523
4524 static int selinux_ip_postroute_iptables_compat(struct sock *sk,
4525                                                 int ifindex,
4526                                                 struct avc_audit_data *ad,
4527                                                 u16 family, char *addrp)
4528 {
4529         int err;
4530         struct sk_security_struct *sksec = sk->sk_security;
4531         u16 sk_class;
4532         u32 netif_perm, node_perm, send_perm;
4533         u32 port_sid, node_sid, if_sid, sk_sid;
4534
4535         sk_sid = sksec->sid;
4536         sk_class = sksec->sclass;
4537
4538         switch (sk_class) {
4539         case SECCLASS_UDP_SOCKET:
4540                 netif_perm = NETIF__UDP_SEND;
4541                 node_perm = NODE__UDP_SEND;
4542                 send_perm = UDP_SOCKET__SEND_MSG;
4543                 break;
4544         case SECCLASS_TCP_SOCKET:
4545                 netif_perm = NETIF__TCP_SEND;
4546                 node_perm = NODE__TCP_SEND;
4547                 send_perm = TCP_SOCKET__SEND_MSG;
4548                 break;
4549         case SECCLASS_DCCP_SOCKET:
4550                 netif_perm = NETIF__DCCP_SEND;
4551                 node_perm = NODE__DCCP_SEND;
4552                 send_perm = DCCP_SOCKET__SEND_MSG;
4553                 break;
4554         default:
4555                 netif_perm = NETIF__RAWIP_SEND;
4556                 node_perm = NODE__RAWIP_SEND;
4557                 send_perm = 0;
4558                 break;
4559         }
4560
4561         err = sel_netif_sid(ifindex, &if_sid);
4562         if (err)
4563                 return err;
4564         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4565                 return err;
4566
4567         err = sel_netnode_sid(addrp, family, &node_sid);
4568         if (err)
4569                 return err;
4570         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4571         if (err)
4572                 return err;
4573
4574         if (send_perm != 0)
4575                 return 0;
4576
4577         err = sel_netport_sid(sk->sk_protocol,
4578                               ntohs(ad->u.net.dport), &port_sid);
4579         if (unlikely(err)) {
4580                 printk(KERN_WARNING
4581                        "SELinux: failure in"
4582                        " selinux_ip_postroute_iptables_compat(),"
4583                        " network port label not found\n");
4584                 return err;
4585         }
4586         return avc_has_perm(sk_sid, port_sid, sk_class, send_perm, ad);
4587 }
4588
4589 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4590                                                 int ifindex,
4591                                                 u16 family)
4592 {
4593         struct sock *sk = skb->sk;
4594         struct sk_security_struct *sksec;
4595         struct avc_audit_data ad;
4596         char *addrp;
4597         u8 proto;
4598
4599         if (sk == NULL)
4600                 return NF_ACCEPT;
4601         sksec = sk->sk_security;
4602
4603         AVC_AUDIT_DATA_INIT(&ad, NET);
4604         ad.u.net.netif = ifindex;
4605         ad.u.net.family = family;
4606         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4607                 return NF_DROP;
4608
4609         if (selinux_compat_net) {
4610                 if (selinux_ip_postroute_iptables_compat(skb->sk, ifindex,
4611                                                          &ad, family, addrp))
4612                         return NF_DROP;
4613         } else {
4614                 if (avc_has_perm(sksec->sid, skb->secmark,
4615                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4616                         return NF_DROP;
4617         }
4618
4619         if (selinux_policycap_netpeer)
4620                 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4621                         return NF_DROP;
4622
4623         return NF_ACCEPT;
4624 }
4625
4626 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4627                                          u16 family)
4628 {
4629         u32 secmark_perm;
4630         u32 peer_sid;
4631         struct sock *sk;
4632         struct avc_audit_data ad;
4633         char *addrp;
4634         u8 secmark_active;
4635         u8 peerlbl_active;
4636
4637         /* If any sort of compatibility mode is enabled then handoff processing
4638          * to the selinux_ip_postroute_compat() function to deal with the
4639          * special handling.  We do this in an attempt to keep this function
4640          * as fast and as clean as possible. */
4641         if (selinux_compat_net || !selinux_policycap_netpeer)
4642                 return selinux_ip_postroute_compat(skb, ifindex, family);
4643
4644         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4645          * packet transformation so allow the packet to pass without any checks
4646          * since we'll have another chance to perform access control checks
4647          * when the packet is on it's final way out.
4648          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4649          *       is NULL, in this case go ahead and apply access control. */
4650         if (skb->dst != NULL && skb->dst->xfrm != NULL)
4651                 return NF_ACCEPT;
4652
4653         secmark_active = selinux_secmark_enabled();
4654         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4655         if (!secmark_active && !peerlbl_active)
4656                 return NF_ACCEPT;
4657
4658         /* if the packet is being forwarded then get the peer label from the
4659          * packet itself; otherwise check to see if it is from a local
4660          * application or the kernel, if from an application get the peer label
4661          * from the sending socket, otherwise use the kernel's sid */
4662         sk = skb->sk;
4663         if (sk == NULL) {
4664                 switch (family) {
4665                 case PF_INET:
4666                         if (IPCB(skb)->flags & IPSKB_FORWARDED)
4667                                 secmark_perm = PACKET__FORWARD_OUT;
4668                         else
4669                                 secmark_perm = PACKET__SEND;
4670                         break;
4671                 case PF_INET6:
4672                         if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4673                                 secmark_perm = PACKET__FORWARD_OUT;
4674                         else
4675                                 secmark_perm = PACKET__SEND;
4676                         break;
4677                 default:
4678                         return NF_DROP;
4679                 }
4680                 if (secmark_perm == PACKET__FORWARD_OUT) {
4681                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4682                                 return NF_DROP;
4683                 } else
4684                         peer_sid = SECINITSID_KERNEL;
4685         } else {
4686                 struct sk_security_struct *sksec = sk->sk_security;
4687                 peer_sid = sksec->sid;
4688                 secmark_perm = PACKET__SEND;
4689         }
4690
4691         AVC_AUDIT_DATA_INIT(&ad, NET);
4692         ad.u.net.netif = ifindex;
4693         ad.u.net.family = family;
4694         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4695                 return NF_DROP;
4696
4697         if (secmark_active)
4698                 if (avc_has_perm(peer_sid, skb->secmark,
4699                                  SECCLASS_PACKET, secmark_perm, &ad))
4700                         return NF_DROP;
4701
4702         if (peerlbl_active) {
4703                 u32 if_sid;
4704                 u32 node_sid;
4705
4706                 if (sel_netif_sid(ifindex, &if_sid))
4707                         return NF_DROP;
4708                 if (avc_has_perm(peer_sid, if_sid,
4709                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4710                         return NF_DROP;
4711
4712                 if (sel_netnode_sid(addrp, family, &node_sid))
4713                         return NF_DROP;
4714                 if (avc_has_perm(peer_sid, node_sid,
4715                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4716                         return NF_DROP;
4717         }
4718
4719         return NF_ACCEPT;
4720 }
4721
4722 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4723                                            struct sk_buff *skb,
4724                                            const struct net_device *in,
4725                                            const struct net_device *out,
4726                                            int (*okfn)(struct sk_buff *))
4727 {
4728         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4729 }
4730
4731 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4732 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4733                                            struct sk_buff *skb,
4734                                            const struct net_device *in,
4735                                            const struct net_device *out,
4736                                            int (*okfn)(struct sk_buff *))
4737 {
4738         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4739 }
4740 #endif  /* IPV6 */
4741
4742 #endif  /* CONFIG_NETFILTER */
4743
4744 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4745 {
4746         int err;
4747
4748         err = secondary_ops->netlink_send(sk, skb);
4749         if (err)
4750                 return err;
4751
4752         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4753                 err = selinux_nlmsg_perm(sk, skb);
4754
4755         return err;
4756 }
4757
4758 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4759 {
4760         int err;
4761         struct avc_audit_data ad;
4762
4763         err = secondary_ops->netlink_recv(skb, capability);
4764         if (err)
4765                 return err;
4766
4767         AVC_AUDIT_DATA_INIT(&ad, CAP);
4768         ad.u.cap = capability;
4769
4770         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4771                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4772 }
4773
4774 static int ipc_alloc_security(struct task_struct *task,
4775                               struct kern_ipc_perm *perm,
4776                               u16 sclass)
4777 {
4778         struct task_security_struct *tsec = task->security;
4779         struct ipc_security_struct *isec;
4780
4781         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4782         if (!isec)
4783                 return -ENOMEM;
4784
4785         isec->sclass = sclass;
4786         isec->sid = tsec->sid;
4787         perm->security = isec;
4788
4789         return 0;
4790 }
4791
4792 static void ipc_free_security(struct kern_ipc_perm *perm)
4793 {
4794         struct ipc_security_struct *isec = perm->security;
4795         perm->security = NULL;
4796         kfree(isec);
4797 }
4798
4799 static int msg_msg_alloc_security(struct msg_msg *msg)
4800 {
4801         struct msg_security_struct *msec;
4802
4803         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4804         if (!msec)
4805                 return -ENOMEM;
4806
4807         msec->sid = SECINITSID_UNLABELED;
4808         msg->security = msec;
4809
4810         return 0;
4811 }
4812
4813 static void msg_msg_free_security(struct msg_msg *msg)
4814 {
4815         struct msg_security_struct *msec = msg->security;
4816
4817         msg->security = NULL;
4818         kfree(msec);
4819 }
4820
4821 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4822                         u32 perms)
4823 {
4824         struct task_security_struct *tsec;
4825         struct ipc_security_struct *isec;
4826         struct avc_audit_data ad;
4827
4828         tsec = current->security;
4829         isec = ipc_perms->security;
4830
4831         AVC_AUDIT_DATA_INIT(&ad, IPC);
4832         ad.u.ipc_id = ipc_perms->key;
4833
4834         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4835 }
4836
4837 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4838 {
4839         return msg_msg_alloc_security(msg);
4840 }
4841
4842 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4843 {
4844         msg_msg_free_security(msg);
4845 }
4846
4847 /* message queue security operations */
4848 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4849 {
4850         struct task_security_struct *tsec;
4851         struct ipc_security_struct *isec;
4852         struct avc_audit_data ad;
4853         int rc;
4854
4855         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4856         if (rc)
4857                 return rc;
4858
4859         tsec = current->security;
4860         isec = msq->q_perm.security;
4861
4862         AVC_AUDIT_DATA_INIT(&ad, IPC);
4863         ad.u.ipc_id = msq->q_perm.key;
4864
4865         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4866                           MSGQ__CREATE, &ad);
4867         if (rc) {
4868                 ipc_free_security(&msq->q_perm);
4869                 return rc;
4870         }
4871         return 0;
4872 }
4873
4874 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4875 {
4876         ipc_free_security(&msq->q_perm);
4877 }
4878
4879 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4880 {
4881         struct task_security_struct *tsec;
4882         struct ipc_security_struct *isec;
4883         struct avc_audit_data ad;
4884
4885         tsec = current->security;
4886         isec = msq->q_perm.security;
4887
4888         AVC_AUDIT_DATA_INIT(&ad, IPC);
4889         ad.u.ipc_id = msq->q_perm.key;
4890
4891         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4892                             MSGQ__ASSOCIATE, &ad);
4893 }
4894
4895 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4896 {
4897         int err;
4898         int perms;
4899
4900         switch (cmd) {
4901         case IPC_INFO:
4902         case MSG_INFO:
4903                 /* No specific object, just general system-wide information. */
4904                 return task_has_system(current, SYSTEM__IPC_INFO);
4905         case IPC_STAT:
4906         case MSG_STAT:
4907                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4908                 break;
4909         case IPC_SET:
4910                 perms = MSGQ__SETATTR;
4911                 break;
4912         case IPC_RMID:
4913                 perms = MSGQ__DESTROY;
4914                 break;
4915         default:
4916                 return 0;
4917         }
4918
4919         err = ipc_has_perm(&msq->q_perm, perms);
4920         return err;
4921 }
4922
4923 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4924 {
4925         struct task_security_struct *tsec;
4926         struct ipc_security_struct *isec;
4927         struct msg_security_struct *msec;
4928         struct avc_audit_data ad;
4929         int rc;
4930
4931         tsec = current->security;
4932         isec = msq->q_perm.security;
4933         msec = msg->security;
4934
4935         /*
4936          * First time through, need to assign label to the message
4937          */
4938         if (msec->sid == SECINITSID_UNLABELED) {
4939                 /*
4940                  * Compute new sid based on current process and
4941                  * message queue this message will be stored in
4942                  */
4943                 rc = security_transition_sid(tsec->sid,
4944                                              isec->sid,
4945                                              SECCLASS_MSG,
4946                                              &msec->sid);
4947                 if (rc)
4948                         return rc;
4949         }
4950
4951         AVC_AUDIT_DATA_INIT(&ad, IPC);
4952         ad.u.ipc_id = msq->q_perm.key;
4953
4954         /* Can this process write to the queue? */
4955         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4956                           MSGQ__WRITE, &ad);
4957         if (!rc)
4958                 /* Can this process send the message */
4959                 rc = avc_has_perm(tsec->sid, msec->sid,
4960                                   SECCLASS_MSG, MSG__SEND, &ad);
4961         if (!rc)
4962                 /* Can the message be put in the queue? */
4963                 rc = avc_has_perm(msec->sid, isec->sid,
4964                                   SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4965
4966         return rc;
4967 }
4968
4969 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4970                                     struct task_struct *target,
4971                                     long type, int mode)
4972 {
4973         struct task_security_struct *tsec;
4974         struct ipc_security_struct *isec;
4975         struct msg_security_struct *msec;
4976         struct avc_audit_data ad;
4977         int rc;
4978
4979         tsec = target->security;
4980         isec = msq->q_perm.security;
4981         msec = msg->security;
4982
4983         AVC_AUDIT_DATA_INIT(&ad, IPC);
4984         ad.u.ipc_id = msq->q_perm.key;
4985
4986         rc = avc_has_perm(tsec->sid, isec->sid,
4987                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4988         if (!rc)
4989                 rc = avc_has_perm(tsec->sid, msec->sid,
4990                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4991         return rc;
4992 }
4993
4994 /* Shared Memory security operations */
4995 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4996 {
4997         struct task_security_struct *tsec;
4998         struct ipc_security_struct *isec;
4999         struct avc_audit_data ad;
5000         int rc;
5001
5002         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5003         if (rc)
5004                 return rc;
5005
5006         tsec = current->security;
5007         isec = shp->shm_perm.security;
5008
5009         AVC_AUDIT_DATA_INIT(&ad, IPC);
5010         ad.u.ipc_id = shp->shm_perm.key;
5011
5012         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
5013                           SHM__CREATE, &ad);
5014         if (rc) {
5015                 ipc_free_security(&shp->shm_perm);
5016                 return rc;
5017         }
5018         return 0;
5019 }
5020
5021 static void selinux_shm_free_security(struct shmid_kernel *shp)
5022 {
5023         ipc_free_security(&shp->shm_perm);
5024 }
5025
5026 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5027 {
5028         struct task_security_struct *tsec;
5029         struct ipc_security_struct *isec;
5030         struct avc_audit_data ad;
5031
5032         tsec = current->security;
5033         isec = shp->shm_perm.security;
5034
5035         AVC_AUDIT_DATA_INIT(&ad, IPC);
5036         ad.u.ipc_id = shp->shm_perm.key;
5037
5038         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
5039                             SHM__ASSOCIATE, &ad);
5040 }
5041
5042 /* Note, at this point, shp is locked down */
5043 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5044 {
5045         int perms;
5046         int err;
5047
5048         switch (cmd) {
5049         case IPC_INFO:
5050         case SHM_INFO:
5051                 /* No specific object, just general system-wide information. */
5052                 return task_has_system(current, SYSTEM__IPC_INFO);
5053         case IPC_STAT:
5054         case SHM_STAT:
5055                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5056                 break;
5057         case IPC_SET:
5058                 perms = SHM__SETATTR;
5059                 break;
5060         case SHM_LOCK:
5061         case SHM_UNLOCK:
5062                 perms = SHM__LOCK;
5063                 break;
5064         case IPC_RMID:
5065                 perms = SHM__DESTROY;
5066                 break;
5067         default:
5068                 return 0;
5069         }
5070
5071         err = ipc_has_perm(&shp->shm_perm, perms);
5072         return err;
5073 }
5074
5075 static int selinux_shm_shmat(struct shmid_kernel *shp,
5076                              char __user *shmaddr, int shmflg)
5077 {
5078         u32 perms;
5079         int rc;
5080
5081         rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
5082         if (rc)
5083                 return rc;
5084
5085         if (shmflg & SHM_RDONLY)
5086                 perms = SHM__READ;
5087         else
5088                 perms = SHM__READ | SHM__WRITE;
5089
5090         return ipc_has_perm(&shp->shm_perm, perms);
5091 }
5092
5093 /* Semaphore security operations */
5094 static int selinux_sem_alloc_security(struct sem_array *sma)
5095 {
5096         struct task_security_struct *tsec;
5097         struct ipc_security_struct *isec;
5098         struct avc_audit_data ad;
5099         int rc;
5100
5101         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5102         if (rc)
5103                 return rc;
5104
5105         tsec = current->security;
5106         isec = sma->sem_perm.security;
5107
5108         AVC_AUDIT_DATA_INIT(&ad, IPC);
5109         ad.u.ipc_id = sma->sem_perm.key;
5110
5111         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
5112                           SEM__CREATE, &ad);
5113         if (rc) {
5114                 ipc_free_security(&sma->sem_perm);
5115                 return rc;
5116         }
5117         return 0;
5118 }
5119
5120 static void selinux_sem_free_security(struct sem_array *sma)
5121 {
5122         ipc_free_security(&sma->sem_perm);
5123 }
5124
5125 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5126 {
5127         struct task_security_struct *tsec;
5128         struct ipc_security_struct *isec;
5129         struct avc_audit_data ad;
5130
5131         tsec = current->security;
5132         isec = sma->sem_perm.security;
5133
5134         AVC_AUDIT_DATA_INIT(&ad, IPC);
5135         ad.u.ipc_id = sma->sem_perm.key;
5136
5137         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
5138                             SEM__ASSOCIATE, &ad);
5139 }
5140
5141 /* Note, at this point, sma is locked down */
5142 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5143 {
5144         int err;
5145         u32 perms;
5146
5147         switch (cmd) {
5148         case IPC_INFO:
5149         case SEM_INFO:
5150                 /* No specific object, just general system-wide information. */
5151                 return task_has_system(current, SYSTEM__IPC_INFO);
5152         case GETPID:
5153         case GETNCNT:
5154         case GETZCNT:
5155                 perms = SEM__GETATTR;
5156                 break;
5157         case GETVAL:
5158         case GETALL:
5159                 perms = SEM__READ;
5160                 break;
5161         case SETVAL:
5162         case SETALL:
5163                 perms = SEM__WRITE;
5164                 break;
5165         case IPC_RMID:
5166                 perms = SEM__DESTROY;
5167                 break;
5168         case IPC_SET:
5169                 perms = SEM__SETATTR;
5170                 break;
5171         case IPC_STAT:
5172         case SEM_STAT:
5173                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5174                 break;
5175         default:
5176                 return 0;
5177         }
5178
5179         err = ipc_has_perm(&sma->sem_perm, perms);
5180         return err;
5181 }
5182
5183 static int selinux_sem_semop(struct sem_array *sma,
5184                              struct sembuf *sops, unsigned nsops, int alter)
5185 {
5186         u32 perms;
5187
5188         if (alter)
5189                 perms = SEM__READ | SEM__WRITE;
5190         else
5191                 perms = SEM__READ;
5192
5193         return ipc_has_perm(&sma->sem_perm, perms);
5194 }
5195
5196 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5197 {
5198         u32 av = 0;
5199
5200         av = 0;
5201         if (flag & S_IRUGO)
5202                 av |= IPC__UNIX_READ;
5203         if (flag & S_IWUGO)
5204                 av |= IPC__UNIX_WRITE;
5205
5206         if (av == 0)
5207                 return 0;
5208
5209         return ipc_has_perm(ipcp, av);
5210 }
5211
5212 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5213 {
5214         struct ipc_security_struct *isec = ipcp->security;
5215         *secid = isec->sid;
5216 }
5217
5218 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5219 {
5220         if (inode)
5221                 inode_doinit_with_dentry(inode, dentry);
5222 }
5223
5224 static int selinux_getprocattr(struct task_struct *p,
5225                                char *name, char **value)
5226 {
5227         struct task_security_struct *tsec;
5228         u32 sid;
5229         int error;
5230         unsigned len;
5231
5232         if (current != p) {
5233                 error = task_has_perm(current, p, PROCESS__GETATTR);
5234                 if (error)
5235                         return error;
5236         }
5237
5238         tsec = p->security;
5239
5240         if (!strcmp(name, "current"))
5241                 sid = tsec->sid;
5242         else if (!strcmp(name, "prev"))
5243                 sid = tsec->osid;
5244         else if (!strcmp(name, "exec"))
5245                 sid = tsec->exec_sid;
5246         else if (!strcmp(name, "fscreate"))
5247                 sid = tsec->create_sid;
5248         else if (!strcmp(name, "keycreate"))
5249                 sid = tsec->keycreate_sid;
5250         else if (!strcmp(name, "sockcreate"))
5251                 sid = tsec->sockcreate_sid;
5252         else
5253                 return -EINVAL;
5254
5255         if (!sid)
5256                 return 0;
5257
5258         error = security_sid_to_context(sid, value, &len);
5259         if (error)
5260                 return error;
5261         return len;
5262 }
5263
5264 static int selinux_setprocattr(struct task_struct *p,
5265                                char *name, void *value, size_t size)
5266 {
5267         struct task_security_struct *tsec;
5268         struct task_struct *tracer;
5269         u32 sid = 0;
5270         int error;
5271         char *str = value;
5272
5273         if (current != p) {
5274                 /* SELinux only allows a process to change its own
5275                    security attributes. */
5276                 return -EACCES;
5277         }
5278
5279         /*
5280          * Basic control over ability to set these attributes at all.
5281          * current == p, but we'll pass them separately in case the
5282          * above restriction is ever removed.
5283          */
5284         if (!strcmp(name, "exec"))
5285                 error = task_has_perm(current, p, PROCESS__SETEXEC);
5286         else if (!strcmp(name, "fscreate"))
5287                 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
5288         else if (!strcmp(name, "keycreate"))
5289                 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
5290         else if (!strcmp(name, "sockcreate"))
5291                 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
5292         else if (!strcmp(name, "current"))
5293                 error = task_has_perm(current, p, PROCESS__SETCURRENT);
5294         else
5295                 error = -EINVAL;
5296         if (error)
5297                 return error;
5298
5299         /* Obtain a SID for the context, if one was specified. */
5300         if (size && str[1] && str[1] != '\n') {
5301                 if (str[size-1] == '\n') {
5302                         str[size-1] = 0;
5303                         size--;
5304                 }
5305                 error = security_context_to_sid(value, size, &sid);
5306                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5307                         if (!capable(CAP_MAC_ADMIN))
5308                                 return error;
5309                         error = security_context_to_sid_force(value, size,
5310                                                               &sid);
5311                 }
5312                 if (error)
5313                         return error;
5314         }
5315
5316         /* Permission checking based on the specified context is
5317            performed during the actual operation (execve,
5318            open/mkdir/...), when we know the full context of the
5319            operation.  See selinux_bprm_set_security for the execve
5320            checks and may_create for the file creation checks. The
5321            operation will then fail if the context is not permitted. */
5322         tsec = p->security;
5323         if (!strcmp(name, "exec"))
5324                 tsec->exec_sid = sid;
5325         else if (!strcmp(name, "fscreate"))
5326                 tsec->create_sid = sid;
5327         else if (!strcmp(name, "keycreate")) {
5328                 error = may_create_key(sid, p);
5329                 if (error)
5330                         return error;
5331                 tsec->keycreate_sid = sid;
5332         } else if (!strcmp(name, "sockcreate"))
5333                 tsec->sockcreate_sid = sid;
5334         else if (!strcmp(name, "current")) {
5335                 struct av_decision avd;
5336
5337                 if (sid == 0)
5338                         return -EINVAL;
5339                 /*
5340                  * SELinux allows to change context in the following case only.
5341                  *  - Single threaded processes.
5342                  *  - Multi threaded processes intend to change its context into
5343                  *    more restricted domain (defined by TYPEBOUNDS statement).
5344                  */
5345                 if (atomic_read(&p->mm->mm_users) != 1) {
5346                         struct task_struct *g, *t;
5347                         struct mm_struct *mm = p->mm;
5348                         read_lock(&tasklist_lock);
5349                         do_each_thread(g, t) {
5350                                 if (t->mm == mm && t != p) {
5351                                         read_unlock(&tasklist_lock);
5352                                         error = security_bounded_transition(tsec->sid, sid);
5353                                         if (!error)
5354                                                 goto boundary_ok;
5355
5356                                         return error;
5357                                 }
5358                         } while_each_thread(g, t);
5359                         read_unlock(&tasklist_lock);
5360                 }
5361 boundary_ok:
5362
5363                 /* Check permissions for the transition. */
5364                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5365                                      PROCESS__DYNTRANSITION, NULL);
5366                 if (error)
5367                         return error;
5368
5369                 /* Check for ptracing, and update the task SID if ok.
5370                    Otherwise, leave SID unchanged and fail. */
5371                 task_lock(p);
5372                 rcu_read_lock();
5373                 tracer = tracehook_tracer_task(p);
5374                 if (tracer != NULL) {
5375                         struct task_security_struct *ptsec = tracer->security;
5376                         u32 ptsid = ptsec->sid;
5377                         rcu_read_unlock();
5378                         error = avc_has_perm_noaudit(ptsid, sid,
5379                                                      SECCLASS_PROCESS,
5380                                                      PROCESS__PTRACE, 0, &avd);
5381                         if (!error)
5382                                 tsec->sid = sid;
5383                         task_unlock(p);
5384                         avc_audit(ptsid, sid, SECCLASS_PROCESS,
5385                                   PROCESS__PTRACE, &avd, error, NULL);
5386                         if (error)
5387                                 return error;
5388                 } else {
5389                         rcu_read_unlock();
5390                         tsec->sid = sid;
5391                         task_unlock(p);
5392                 }
5393         } else
5394                 return -EINVAL;
5395
5396         return size;
5397 }
5398
5399 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5400 {
5401         return security_sid_to_context(secid, secdata, seclen);
5402 }
5403
5404 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5405 {
5406         return security_context_to_sid(secdata, seclen, secid);
5407 }
5408
5409 static void selinux_release_secctx(char *secdata, u32 seclen)
5410 {
5411         kfree(secdata);
5412 }
5413
5414 #ifdef CONFIG_KEYS
5415
5416 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
5417                              unsigned long flags)
5418 {
5419         struct task_security_struct *tsec = tsk->security;
5420         struct key_security_struct *ksec;
5421
5422         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5423         if (!ksec)
5424                 return -ENOMEM;
5425
5426         if (tsec->keycreate_sid)
5427                 ksec->sid = tsec->keycreate_sid;
5428         else
5429                 ksec->sid = tsec->sid;
5430         k->security = ksec;
5431
5432         return 0;
5433 }
5434
5435 static void selinux_key_free(struct key *k)
5436 {
5437         struct key_security_struct *ksec = k->security;
5438
5439         k->security = NULL;
5440         kfree(ksec);
5441 }
5442
5443 static int selinux_key_permission(key_ref_t key_ref,
5444                             struct task_struct *ctx,
5445                             key_perm_t perm)
5446 {
5447         struct key *key;
5448         struct task_security_struct *tsec;
5449         struct key_security_struct *ksec;
5450
5451         key = key_ref_to_ptr(key_ref);
5452
5453         tsec = ctx->security;
5454         ksec = key->security;
5455
5456         /* if no specific permissions are requested, we skip the
5457            permission check. No serious, additional covert channels
5458            appear to be created. */
5459         if (perm == 0)
5460                 return 0;
5461
5462         return avc_has_perm(tsec->sid, ksec->sid,
5463                             SECCLASS_KEY, perm, NULL);
5464 }
5465
5466 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5467 {
5468         struct key_security_struct *ksec = key->security;
5469         char *context = NULL;
5470         unsigned len;
5471         int rc;
5472
5473         rc = security_sid_to_context(ksec->sid, &context, &len);
5474         if (!rc)
5475                 rc = len;
5476         *_buffer = context;
5477         return rc;
5478 }
5479
5480 #endif
5481
5482 static struct security_operations selinux_ops = {
5483         .name =                         "selinux",
5484
5485         .ptrace_may_access =            selinux_ptrace_may_access,
5486         .ptrace_traceme =               selinux_ptrace_traceme,
5487         .capget =                       selinux_capget,
5488         .capset_check =                 selinux_capset_check,
5489         .capset_set =                   selinux_capset_set,
5490         .sysctl =                       selinux_sysctl,
5491         .capable =                      selinux_capable,
5492         .quotactl =                     selinux_quotactl,
5493         .quota_on =                     selinux_quota_on,
5494         .syslog =                       selinux_syslog,
5495         .vm_enough_memory =             selinux_vm_enough_memory,
5496
5497         .netlink_send =                 selinux_netlink_send,
5498         .netlink_recv =                 selinux_netlink_recv,
5499
5500         .bprm_alloc_security =          selinux_bprm_alloc_security,
5501         .bprm_free_security =           selinux_bprm_free_security,
5502         .bprm_apply_creds =             selinux_bprm_apply_creds,
5503         .bprm_post_apply_creds =        selinux_bprm_post_apply_creds,
5504         .bprm_set_security =            selinux_bprm_set_security,
5505         .bprm_check_security =          selinux_bprm_check_security,
5506         .bprm_secureexec =              selinux_bprm_secureexec,
5507
5508         .sb_alloc_security =            selinux_sb_alloc_security,
5509         .sb_free_security =             selinux_sb_free_security,
5510         .sb_copy_data =                 selinux_sb_copy_data,
5511         .sb_kern_mount =                selinux_sb_kern_mount,
5512         .sb_show_options =              selinux_sb_show_options,
5513         .sb_statfs =                    selinux_sb_statfs,
5514         .sb_mount =                     selinux_mount,
5515         .sb_umount =                    selinux_umount,
5516         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5517         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5518         .sb_parse_opts_str =            selinux_parse_opts_str,
5519
5520
5521         .inode_alloc_security =         selinux_inode_alloc_security,
5522         .inode_free_security =          selinux_inode_free_security,
5523         .inode_init_security =          selinux_inode_init_security,
5524         .inode_create =                 selinux_inode_create,
5525         .inode_link =                   selinux_inode_link,
5526         .inode_unlink =                 selinux_inode_unlink,
5527         .inode_symlink =                selinux_inode_symlink,
5528         .inode_mkdir =                  selinux_inode_mkdir,
5529         .inode_rmdir =                  selinux_inode_rmdir,
5530         .inode_mknod =                  selinux_inode_mknod,
5531         .inode_rename =                 selinux_inode_rename,
5532         .inode_readlink =               selinux_inode_readlink,
5533         .inode_follow_link =            selinux_inode_follow_link,
5534         .inode_permission =             selinux_inode_permission,
5535         .inode_setattr =                selinux_inode_setattr,
5536         .inode_getattr =                selinux_inode_getattr,
5537         .inode_setxattr =               selinux_inode_setxattr,
5538         .inode_post_setxattr =          selinux_inode_post_setxattr,
5539         .inode_getxattr =               selinux_inode_getxattr,
5540         .inode_listxattr =              selinux_inode_listxattr,
5541         .inode_removexattr =            selinux_inode_removexattr,
5542         .inode_getsecurity =            selinux_inode_getsecurity,
5543         .inode_setsecurity =            selinux_inode_setsecurity,
5544         .inode_listsecurity =           selinux_inode_listsecurity,
5545         .inode_need_killpriv =          selinux_inode_need_killpriv,
5546         .inode_killpriv =               selinux_inode_killpriv,
5547         .inode_getsecid =               selinux_inode_getsecid,
5548
5549         .file_permission =              selinux_file_permission,
5550         .file_alloc_security =          selinux_file_alloc_security,
5551         .file_free_security =           selinux_file_free_security,
5552         .file_ioctl =                   selinux_file_ioctl,
5553         .file_mmap =                    selinux_file_mmap,
5554         .file_mprotect =                selinux_file_mprotect,
5555         .file_lock =                    selinux_file_lock,
5556         .file_fcntl =                   selinux_file_fcntl,
5557         .file_set_fowner =              selinux_file_set_fowner,
5558         .file_send_sigiotask =          selinux_file_send_sigiotask,
5559         .file_receive =                 selinux_file_receive,
5560
5561         .dentry_open =                  selinux_dentry_open,
5562
5563         .task_create =                  selinux_task_create,
5564         .task_alloc_security =          selinux_task_alloc_security,
5565         .task_free_security =           selinux_task_free_security,
5566         .task_setuid =                  selinux_task_setuid,
5567         .task_post_setuid =             selinux_task_post_setuid,
5568         .task_setgid =                  selinux_task_setgid,
5569         .task_setpgid =                 selinux_task_setpgid,
5570         .task_getpgid =                 selinux_task_getpgid,
5571         .task_getsid =                  selinux_task_getsid,
5572         .task_getsecid =                selinux_task_getsecid,
5573         .task_setgroups =               selinux_task_setgroups,
5574         .task_setnice =                 selinux_task_setnice,
5575         .task_setioprio =               selinux_task_setioprio,
5576         .task_getioprio =               selinux_task_getioprio,
5577         .task_setrlimit =               selinux_task_setrlimit,
5578         .task_setscheduler =            selinux_task_setscheduler,
5579         .task_getscheduler =            selinux_task_getscheduler,
5580         .task_movememory =              selinux_task_movememory,
5581         .task_kill =                    selinux_task_kill,
5582         .task_wait =                    selinux_task_wait,
5583         .task_prctl =                   selinux_task_prctl,
5584         .task_reparent_to_init =        selinux_task_reparent_to_init,
5585         .task_to_inode =                selinux_task_to_inode,
5586
5587         .ipc_permission =               selinux_ipc_permission,
5588         .ipc_getsecid =                 selinux_ipc_getsecid,
5589
5590         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5591         .msg_msg_free_security =        selinux_msg_msg_free_security,
5592
5593         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5594         .msg_queue_free_security =      selinux_msg_queue_free_security,
5595         .msg_queue_associate =          selinux_msg_queue_associate,
5596         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5597         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5598         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5599
5600         .shm_alloc_security =           selinux_shm_alloc_security,
5601         .shm_free_security =            selinux_shm_free_security,
5602         .shm_associate =                selinux_shm_associate,
5603         .shm_shmctl =                   selinux_shm_shmctl,
5604         .shm_shmat =                    selinux_shm_shmat,
5605
5606         .sem_alloc_security =           selinux_sem_alloc_security,
5607         .sem_free_security =            selinux_sem_free_security,
5608         .sem_associate =                selinux_sem_associate,
5609         .sem_semctl =                   selinux_sem_semctl,
5610         .sem_semop =                    selinux_sem_semop,
5611
5612         .d_instantiate =                selinux_d_instantiate,
5613
5614         .getprocattr =                  selinux_getprocattr,
5615         .setprocattr =                  selinux_setprocattr,
5616
5617         .secid_to_secctx =              selinux_secid_to_secctx,
5618         .secctx_to_secid =              selinux_secctx_to_secid,
5619         .release_secctx =               selinux_release_secctx,
5620
5621         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5622         .unix_may_send =                selinux_socket_unix_may_send,
5623
5624         .socket_create =                selinux_socket_create,
5625         .socket_post_create =           selinux_socket_post_create,
5626         .socket_bind =                  selinux_socket_bind,
5627         .socket_connect =               selinux_socket_connect,
5628         .socket_listen =                selinux_socket_listen,
5629         .socket_accept =                selinux_socket_accept,
5630         .socket_sendmsg =               selinux_socket_sendmsg,
5631         .socket_recvmsg =               selinux_socket_recvmsg,
5632         .socket_getsockname =           selinux_socket_getsockname,
5633         .socket_getpeername =           selinux_socket_getpeername,
5634         .socket_getsockopt =            selinux_socket_getsockopt,
5635         .socket_setsockopt =            selinux_socket_setsockopt,
5636         .socket_shutdown =              selinux_socket_shutdown,
5637         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5638         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5639         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5640         .sk_alloc_security =            selinux_sk_alloc_security,
5641         .sk_free_security =             selinux_sk_free_security,
5642         .sk_clone_security =            selinux_sk_clone_security,
5643         .sk_getsecid =                  selinux_sk_getsecid,
5644         .sock_graft =                   selinux_sock_graft,
5645         .inet_conn_request =            selinux_inet_conn_request,
5646         .inet_csk_clone =               selinux_inet_csk_clone,
5647         .inet_conn_established =        selinux_inet_conn_established,
5648         .req_classify_flow =            selinux_req_classify_flow,
5649
5650 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5651         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5652         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5653         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5654         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5655         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5656         .xfrm_state_free_security =     selinux_xfrm_state_free,
5657         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5658         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5659         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5660         .xfrm_decode_session =          selinux_xfrm_decode_session,
5661 #endif
5662
5663 #ifdef CONFIG_KEYS
5664         .key_alloc =                    selinux_key_alloc,
5665         .key_free =                     selinux_key_free,
5666         .key_permission =               selinux_key_permission,
5667         .key_getsecurity =              selinux_key_getsecurity,
5668 #endif
5669
5670 #ifdef CONFIG_AUDIT
5671         .audit_rule_init =              selinux_audit_rule_init,
5672         .audit_rule_known =             selinux_audit_rule_known,
5673         .audit_rule_match =             selinux_audit_rule_match,
5674         .audit_rule_free =              selinux_audit_rule_free,
5675 #endif
5676 };
5677
5678 static __init int selinux_init(void)
5679 {
5680         struct task_security_struct *tsec;
5681
5682         if (!security_module_enable(&selinux_ops)) {
5683                 selinux_enabled = 0;
5684                 return 0;
5685         }
5686
5687         if (!selinux_enabled) {
5688                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5689                 return 0;
5690         }
5691
5692         printk(KERN_INFO "SELinux:  Initializing.\n");
5693
5694         /* Set the security state for the initial task. */
5695         if (task_alloc_security(current))
5696                 panic("SELinux:  Failed to initialize initial task.\n");
5697         tsec = current->security;
5698         tsec->osid = tsec->sid = SECINITSID_KERNEL;
5699
5700         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5701                                             sizeof(struct inode_security_struct),
5702                                             0, SLAB_PANIC, NULL);
5703         avc_init();
5704
5705         secondary_ops = security_ops;
5706         if (!secondary_ops)
5707                 panic("SELinux: No initial security operations\n");
5708         if (register_security(&selinux_ops))
5709                 panic("SELinux: Unable to register with kernel.\n");
5710
5711         if (selinux_enforcing)
5712                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5713         else
5714                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5715
5716         return 0;
5717 }
5718
5719 void selinux_complete_init(void)
5720 {
5721         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5722
5723         /* Set up any superblocks initialized prior to the policy load. */
5724         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5725         spin_lock(&sb_lock);
5726         spin_lock(&sb_security_lock);
5727 next_sb:
5728         if (!list_empty(&superblock_security_head)) {
5729                 struct superblock_security_struct *sbsec =
5730                                 list_entry(superblock_security_head.next,
5731                                            struct superblock_security_struct,
5732                                            list);
5733                 struct super_block *sb = sbsec->sb;
5734                 sb->s_count++;
5735                 spin_unlock(&sb_security_lock);
5736                 spin_unlock(&sb_lock);
5737                 down_read(&sb->s_umount);
5738                 if (sb->s_root)
5739                         superblock_doinit(sb, NULL);
5740                 drop_super(sb);
5741                 spin_lock(&sb_lock);
5742                 spin_lock(&sb_security_lock);
5743                 list_del_init(&sbsec->list);
5744                 goto next_sb;
5745         }
5746         spin_unlock(&sb_security_lock);
5747         spin_unlock(&sb_lock);
5748 }
5749
5750 /* SELinux requires early initialization in order to label
5751    all processes and objects when they are created. */
5752 security_initcall(selinux_init);
5753
5754 #if defined(CONFIG_NETFILTER)
5755
5756 static struct nf_hook_ops selinux_ipv4_ops[] = {
5757         {
5758                 .hook =         selinux_ipv4_postroute,
5759                 .owner =        THIS_MODULE,
5760                 .pf =           PF_INET,
5761                 .hooknum =      NF_INET_POST_ROUTING,
5762                 .priority =     NF_IP_PRI_SELINUX_LAST,
5763         },
5764         {
5765                 .hook =         selinux_ipv4_forward,
5766                 .owner =        THIS_MODULE,
5767                 .pf =           PF_INET,
5768                 .hooknum =      NF_INET_FORWARD,
5769                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5770         },
5771         {
5772                 .hook =         selinux_ipv4_output,
5773                 .owner =        THIS_MODULE,
5774                 .pf =           PF_INET,
5775                 .hooknum =      NF_INET_LOCAL_OUT,
5776                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5777         }
5778 };
5779
5780 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5781
5782 static struct nf_hook_ops selinux_ipv6_ops[] = {
5783         {
5784                 .hook =         selinux_ipv6_postroute,
5785                 .owner =        THIS_MODULE,
5786                 .pf =           PF_INET6,
5787                 .hooknum =      NF_INET_POST_ROUTING,
5788                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5789         },
5790         {
5791                 .hook =         selinux_ipv6_forward,
5792                 .owner =        THIS_MODULE,
5793                 .pf =           PF_INET6,
5794                 .hooknum =      NF_INET_FORWARD,
5795                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5796         }
5797 };
5798
5799 #endif  /* IPV6 */
5800
5801 static int __init selinux_nf_ip_init(void)
5802 {
5803         int err = 0;
5804
5805         if (!selinux_enabled)
5806                 goto out;
5807
5808         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5809
5810         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5811         if (err)
5812                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5813
5814 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5815         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5816         if (err)
5817                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5818 #endif  /* IPV6 */
5819
5820 out:
5821         return err;
5822 }
5823
5824 __initcall(selinux_nf_ip_init);
5825
5826 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5827 static void selinux_nf_ip_exit(void)
5828 {
5829         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5830
5831         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5832 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5833         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5834 #endif  /* IPV6 */
5835 }
5836 #endif
5837
5838 #else /* CONFIG_NETFILTER */
5839
5840 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5841 #define selinux_nf_ip_exit()
5842 #endif
5843
5844 #endif /* CONFIG_NETFILTER */
5845
5846 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5847 static int selinux_disabled;
5848
5849 int selinux_disable(void)
5850 {
5851         extern void exit_sel_fs(void);
5852
5853         if (ss_initialized) {
5854                 /* Not permitted after initial policy load. */
5855                 return -EINVAL;
5856         }
5857
5858         if (selinux_disabled) {
5859                 /* Only do this once. */
5860                 return -EINVAL;
5861         }
5862
5863         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5864
5865         selinux_disabled = 1;
5866         selinux_enabled = 0;
5867
5868         /* Reset security_ops to the secondary module, dummy or capability. */
5869         security_ops = secondary_ops;
5870
5871         /* Unregister netfilter hooks. */
5872         selinux_nf_ip_exit();
5873
5874         /* Unregister selinuxfs. */
5875         exit_sel_fs();
5876
5877         return 0;
5878 }
5879 #endif