cfg80211: clean up includes
[safe/jmp/linux-2.6] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/random.h>
38 #include <linux/nl80211.h>
39 #include <linux/platform_device.h>
40 #include <net/cfg80211.h>
41 #include "core.h"
42 #include "reg.h"
43 #include "nl80211.h"
44
45 /* Receipt of information from last regulatory request */
46 static struct regulatory_request *last_request;
47
48 /* To trigger userspace events */
49 static struct platform_device *reg_pdev;
50
51 /* Keep the ordering from large to small */
52 static u32 supported_bandwidths[] = {
53         MHZ_TO_KHZ(40),
54         MHZ_TO_KHZ(20),
55 };
56
57 /*
58  * Central wireless core regulatory domains, we only need two,
59  * the current one and a world regulatory domain in case we have no
60  * information to give us an alpha2
61  */
62 const struct ieee80211_regdomain *cfg80211_regdomain;
63
64 /*
65  * We use this as a place for the rd structure built from the
66  * last parsed country IE to rest until CRDA gets back to us with
67  * what it thinks should apply for the same country
68  */
69 static const struct ieee80211_regdomain *country_ie_regdomain;
70
71 /* Used to queue up regulatory hints */
72 static LIST_HEAD(reg_requests_list);
73 static spinlock_t reg_requests_lock;
74
75 /* Used to queue up beacon hints for review */
76 static LIST_HEAD(reg_pending_beacons);
77 static spinlock_t reg_pending_beacons_lock;
78
79 /* Used to keep track of processed beacon hints */
80 static LIST_HEAD(reg_beacon_list);
81
82 struct reg_beacon {
83         struct list_head list;
84         struct ieee80211_channel chan;
85 };
86
87 /* We keep a static world regulatory domain in case of the absence of CRDA */
88 static const struct ieee80211_regdomain world_regdom = {
89         .n_reg_rules = 5,
90         .alpha2 =  "00",
91         .reg_rules = {
92                 /* IEEE 802.11b/g, channels 1..11 */
93                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
94                 /* IEEE 802.11b/g, channels 12..13. No HT40
95                  * channel fits here. */
96                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
97                         NL80211_RRF_PASSIVE_SCAN |
98                         NL80211_RRF_NO_IBSS),
99                 /* IEEE 802.11 channel 14 - Only JP enables
100                  * this and for 802.11b only */
101                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
102                         NL80211_RRF_PASSIVE_SCAN |
103                         NL80211_RRF_NO_IBSS |
104                         NL80211_RRF_NO_OFDM),
105                 /* IEEE 802.11a, channel 36..48 */
106                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
107                         NL80211_RRF_PASSIVE_SCAN |
108                         NL80211_RRF_NO_IBSS),
109
110                 /* NB: 5260 MHz - 5700 MHz requies DFS */
111
112                 /* IEEE 802.11a, channel 149..165 */
113                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
114                         NL80211_RRF_PASSIVE_SCAN |
115                         NL80211_RRF_NO_IBSS),
116         }
117 };
118
119 static const struct ieee80211_regdomain *cfg80211_world_regdom =
120         &world_regdom;
121
122 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
123 static char *ieee80211_regdom = "US";
124 #else
125 static char *ieee80211_regdom = "00";
126 #endif
127
128 module_param(ieee80211_regdom, charp, 0444);
129 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
130
131 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
132 /*
133  * We assume 40 MHz bandwidth for the old regulatory work.
134  * We make emphasis we are using the exact same frequencies
135  * as before
136  */
137
138 static const struct ieee80211_regdomain us_regdom = {
139         .n_reg_rules = 6,
140         .alpha2 =  "US",
141         .reg_rules = {
142                 /* IEEE 802.11b/g, channels 1..11 */
143                 REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
144                 /* IEEE 802.11a, channel 36 */
145                 REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
146                 /* IEEE 802.11a, channel 40 */
147                 REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
148                 /* IEEE 802.11a, channel 44 */
149                 REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
150                 /* IEEE 802.11a, channels 48..64 */
151                 REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
152                 /* IEEE 802.11a, channels 149..165, outdoor */
153                 REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
154         }
155 };
156
157 static const struct ieee80211_regdomain jp_regdom = {
158         .n_reg_rules = 3,
159         .alpha2 =  "JP",
160         .reg_rules = {
161                 /* IEEE 802.11b/g, channels 1..14 */
162                 REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
163                 /* IEEE 802.11a, channels 34..48 */
164                 REG_RULE(5170-10, 5240+10, 40, 6, 20,
165                         NL80211_RRF_PASSIVE_SCAN),
166                 /* IEEE 802.11a, channels 52..64 */
167                 REG_RULE(5260-10, 5320+10, 40, 6, 20,
168                         NL80211_RRF_NO_IBSS |
169                         NL80211_RRF_DFS),
170         }
171 };
172
173 static const struct ieee80211_regdomain eu_regdom = {
174         .n_reg_rules = 6,
175         /*
176          * This alpha2 is bogus, we leave it here just for stupid
177          * backward compatibility
178          */
179         .alpha2 =  "EU",
180         .reg_rules = {
181                 /* IEEE 802.11b/g, channels 1..13 */
182                 REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
183                 /* IEEE 802.11a, channel 36 */
184                 REG_RULE(5180-10, 5180+10, 40, 6, 23,
185                         NL80211_RRF_PASSIVE_SCAN),
186                 /* IEEE 802.11a, channel 40 */
187                 REG_RULE(5200-10, 5200+10, 40, 6, 23,
188                         NL80211_RRF_PASSIVE_SCAN),
189                 /* IEEE 802.11a, channel 44 */
190                 REG_RULE(5220-10, 5220+10, 40, 6, 23,
191                         NL80211_RRF_PASSIVE_SCAN),
192                 /* IEEE 802.11a, channels 48..64 */
193                 REG_RULE(5240-10, 5320+10, 40, 6, 20,
194                         NL80211_RRF_NO_IBSS |
195                         NL80211_RRF_DFS),
196                 /* IEEE 802.11a, channels 100..140 */
197                 REG_RULE(5500-10, 5700+10, 40, 6, 30,
198                         NL80211_RRF_NO_IBSS |
199                         NL80211_RRF_DFS),
200         }
201 };
202
203 static const struct ieee80211_regdomain *static_regdom(char *alpha2)
204 {
205         if (alpha2[0] == 'U' && alpha2[1] == 'S')
206                 return &us_regdom;
207         if (alpha2[0] == 'J' && alpha2[1] == 'P')
208                 return &jp_regdom;
209         if (alpha2[0] == 'E' && alpha2[1] == 'U')
210                 return &eu_regdom;
211         /* Default, as per the old rules */
212         return &us_regdom;
213 }
214
215 static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
216 {
217         if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
218                 return true;
219         return false;
220 }
221 #else
222 static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
223 {
224         return false;
225 }
226 #endif
227
228 static void reset_regdomains(void)
229 {
230         /* avoid freeing static information or freeing something twice */
231         if (cfg80211_regdomain == cfg80211_world_regdom)
232                 cfg80211_regdomain = NULL;
233         if (cfg80211_world_regdom == &world_regdom)
234                 cfg80211_world_regdom = NULL;
235         if (cfg80211_regdomain == &world_regdom)
236                 cfg80211_regdomain = NULL;
237         if (is_old_static_regdom(cfg80211_regdomain))
238                 cfg80211_regdomain = NULL;
239
240         kfree(cfg80211_regdomain);
241         kfree(cfg80211_world_regdom);
242
243         cfg80211_world_regdom = &world_regdom;
244         cfg80211_regdomain = NULL;
245 }
246
247 /*
248  * Dynamic world regulatory domain requested by the wireless
249  * core upon initialization
250  */
251 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
252 {
253         BUG_ON(!last_request);
254
255         reset_regdomains();
256
257         cfg80211_world_regdom = rd;
258         cfg80211_regdomain = rd;
259 }
260
261 bool is_world_regdom(const char *alpha2)
262 {
263         if (!alpha2)
264                 return false;
265         if (alpha2[0] == '0' && alpha2[1] == '0')
266                 return true;
267         return false;
268 }
269
270 static bool is_alpha2_set(const char *alpha2)
271 {
272         if (!alpha2)
273                 return false;
274         if (alpha2[0] != 0 && alpha2[1] != 0)
275                 return true;
276         return false;
277 }
278
279 static bool is_alpha_upper(char letter)
280 {
281         /* ASCII A - Z */
282         if (letter >= 65 && letter <= 90)
283                 return true;
284         return false;
285 }
286
287 static bool is_unknown_alpha2(const char *alpha2)
288 {
289         if (!alpha2)
290                 return false;
291         /*
292          * Special case where regulatory domain was built by driver
293          * but a specific alpha2 cannot be determined
294          */
295         if (alpha2[0] == '9' && alpha2[1] == '9')
296                 return true;
297         return false;
298 }
299
300 static bool is_intersected_alpha2(const char *alpha2)
301 {
302         if (!alpha2)
303                 return false;
304         /*
305          * Special case where regulatory domain is the
306          * result of an intersection between two regulatory domain
307          * structures
308          */
309         if (alpha2[0] == '9' && alpha2[1] == '8')
310                 return true;
311         return false;
312 }
313
314 static bool is_an_alpha2(const char *alpha2)
315 {
316         if (!alpha2)
317                 return false;
318         if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
319                 return true;
320         return false;
321 }
322
323 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
324 {
325         if (!alpha2_x || !alpha2_y)
326                 return false;
327         if (alpha2_x[0] == alpha2_y[0] &&
328                 alpha2_x[1] == alpha2_y[1])
329                 return true;
330         return false;
331 }
332
333 static bool regdom_changes(const char *alpha2)
334 {
335         assert_cfg80211_lock();
336
337         if (!cfg80211_regdomain)
338                 return true;
339         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
340                 return false;
341         return true;
342 }
343
344 /**
345  * country_ie_integrity_changes - tells us if the country IE has changed
346  * @checksum: checksum of country IE of fields we are interested in
347  *
348  * If the country IE has not changed you can ignore it safely. This is
349  * useful to determine if two devices are seeing two different country IEs
350  * even on the same alpha2. Note that this will return false if no IE has
351  * been set on the wireless core yet.
352  */
353 static bool country_ie_integrity_changes(u32 checksum)
354 {
355         /* If no IE has been set then the checksum doesn't change */
356         if (unlikely(!last_request->country_ie_checksum))
357                 return false;
358         if (unlikely(last_request->country_ie_checksum != checksum))
359                 return true;
360         return false;
361 }
362
363 /*
364  * This lets us keep regulatory code which is updated on a regulatory
365  * basis in userspace.
366  */
367 static int call_crda(const char *alpha2)
368 {
369         char country_env[9 + 2] = "COUNTRY=";
370         char *envp[] = {
371                 country_env,
372                 NULL
373         };
374
375         if (!is_world_regdom((char *) alpha2))
376                 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
377                         alpha2[0], alpha2[1]);
378         else
379                 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
380                         "regulatory domain\n");
381
382         country_env[8] = alpha2[0];
383         country_env[9] = alpha2[1];
384
385         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
386 }
387
388 /* Used by nl80211 before kmalloc'ing our regulatory domain */
389 bool reg_is_valid_request(const char *alpha2)
390 {
391         if (!last_request)
392                 return false;
393
394         return alpha2_equal(last_request->alpha2, alpha2);
395 }
396
397 /* Sanity check on a regulatory rule */
398 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
399 {
400         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
401         u32 freq_diff;
402
403         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
404                 return false;
405
406         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
407                 return false;
408
409         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
410
411         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
412                         freq_range->max_bandwidth_khz > freq_diff)
413                 return false;
414
415         return true;
416 }
417
418 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
419 {
420         const struct ieee80211_reg_rule *reg_rule = NULL;
421         unsigned int i;
422
423         if (!rd->n_reg_rules)
424                 return false;
425
426         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
427                 return false;
428
429         for (i = 0; i < rd->n_reg_rules; i++) {
430                 reg_rule = &rd->reg_rules[i];
431                 if (!is_valid_reg_rule(reg_rule))
432                         return false;
433         }
434
435         return true;
436 }
437
438 /* Returns value in KHz */
439 static u32 freq_max_bandwidth(const struct ieee80211_freq_range *freq_range,
440         u32 freq)
441 {
442         unsigned int i;
443         for (i = 0; i < ARRAY_SIZE(supported_bandwidths); i++) {
444                 u32 start_freq_khz = freq - supported_bandwidths[i]/2;
445                 u32 end_freq_khz = freq + supported_bandwidths[i]/2;
446                 if (start_freq_khz >= freq_range->start_freq_khz &&
447                         end_freq_khz <= freq_range->end_freq_khz)
448                         return supported_bandwidths[i];
449         }
450         return 0;
451 }
452
453 /**
454  * freq_in_rule_band - tells us if a frequency is in a frequency band
455  * @freq_range: frequency rule we want to query
456  * @freq_khz: frequency we are inquiring about
457  *
458  * This lets us know if a specific frequency rule is or is not relevant to
459  * a specific frequency's band. Bands are device specific and artificial
460  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
461  * safe for now to assume that a frequency rule should not be part of a
462  * frequency's band if the start freq or end freq are off by more than 2 GHz.
463  * This resolution can be lowered and should be considered as we add
464  * regulatory rule support for other "bands".
465  **/
466 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
467         u32 freq_khz)
468 {
469 #define ONE_GHZ_IN_KHZ  1000000
470         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
471                 return true;
472         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
473                 return true;
474         return false;
475 #undef ONE_GHZ_IN_KHZ
476 }
477
478 /*
479  * Converts a country IE to a regulatory domain. A regulatory domain
480  * structure has a lot of information which the IE doesn't yet have,
481  * so for the other values we use upper max values as we will intersect
482  * with our userspace regulatory agent to get lower bounds.
483  */
484 static struct ieee80211_regdomain *country_ie_2_rd(
485                                 u8 *country_ie,
486                                 u8 country_ie_len,
487                                 u32 *checksum)
488 {
489         struct ieee80211_regdomain *rd = NULL;
490         unsigned int i = 0;
491         char alpha2[2];
492         u32 flags = 0;
493         u32 num_rules = 0, size_of_regd = 0;
494         u8 *triplets_start = NULL;
495         u8 len_at_triplet = 0;
496         /* the last channel we have registered in a subband (triplet) */
497         int last_sub_max_channel = 0;
498
499         *checksum = 0xDEADBEEF;
500
501         /* Country IE requirements */
502         BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
503                 country_ie_len & 0x01);
504
505         alpha2[0] = country_ie[0];
506         alpha2[1] = country_ie[1];
507
508         /*
509          * Third octet can be:
510          *    'I' - Indoor
511          *    'O' - Outdoor
512          *
513          *  anything else we assume is no restrictions
514          */
515         if (country_ie[2] == 'I')
516                 flags = NL80211_RRF_NO_OUTDOOR;
517         else if (country_ie[2] == 'O')
518                 flags = NL80211_RRF_NO_INDOOR;
519
520         country_ie += 3;
521         country_ie_len -= 3;
522
523         triplets_start = country_ie;
524         len_at_triplet = country_ie_len;
525
526         *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
527
528         /*
529          * We need to build a reg rule for each triplet, but first we must
530          * calculate the number of reg rules we will need. We will need one
531          * for each channel subband
532          */
533         while (country_ie_len >= 3) {
534                 int end_channel = 0;
535                 struct ieee80211_country_ie_triplet *triplet =
536                         (struct ieee80211_country_ie_triplet *) country_ie;
537                 int cur_sub_max_channel = 0, cur_channel = 0;
538
539                 if (triplet->ext.reg_extension_id >=
540                                 IEEE80211_COUNTRY_EXTENSION_ID) {
541                         country_ie += 3;
542                         country_ie_len -= 3;
543                         continue;
544                 }
545
546                 /* 2 GHz */
547                 if (triplet->chans.first_channel <= 14)
548                         end_channel = triplet->chans.first_channel +
549                                 triplet->chans.num_channels;
550                 else
551                         /*
552                          * 5 GHz -- For example in country IEs if the first
553                          * channel given is 36 and the number of channels is 4
554                          * then the individual channel numbers defined for the
555                          * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
556                          * and not 36, 37, 38, 39.
557                          *
558                          * See: http://tinyurl.com/11d-clarification
559                          */
560                         end_channel =  triplet->chans.first_channel +
561                                 (4 * (triplet->chans.num_channels - 1));
562
563                 cur_channel = triplet->chans.first_channel;
564                 cur_sub_max_channel = end_channel;
565
566                 /* Basic sanity check */
567                 if (cur_sub_max_channel < cur_channel)
568                         return NULL;
569
570                 /*
571                  * Do not allow overlapping channels. Also channels
572                  * passed in each subband must be monotonically
573                  * increasing
574                  */
575                 if (last_sub_max_channel) {
576                         if (cur_channel <= last_sub_max_channel)
577                                 return NULL;
578                         if (cur_sub_max_channel <= last_sub_max_channel)
579                                 return NULL;
580                 }
581
582                 /*
583                  * When dot11RegulatoryClassesRequired is supported
584                  * we can throw ext triplets as part of this soup,
585                  * for now we don't care when those change as we
586                  * don't support them
587                  */
588                 *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
589                   ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
590                   ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
591
592                 last_sub_max_channel = cur_sub_max_channel;
593
594                 country_ie += 3;
595                 country_ie_len -= 3;
596                 num_rules++;
597
598                 /*
599                  * Note: this is not a IEEE requirement but
600                  * simply a memory requirement
601                  */
602                 if (num_rules > NL80211_MAX_SUPP_REG_RULES)
603                         return NULL;
604         }
605
606         country_ie = triplets_start;
607         country_ie_len = len_at_triplet;
608
609         size_of_regd = sizeof(struct ieee80211_regdomain) +
610                 (num_rules * sizeof(struct ieee80211_reg_rule));
611
612         rd = kzalloc(size_of_regd, GFP_KERNEL);
613         if (!rd)
614                 return NULL;
615
616         rd->n_reg_rules = num_rules;
617         rd->alpha2[0] = alpha2[0];
618         rd->alpha2[1] = alpha2[1];
619
620         /* This time around we fill in the rd */
621         while (country_ie_len >= 3) {
622                 int end_channel = 0;
623                 struct ieee80211_country_ie_triplet *triplet =
624                         (struct ieee80211_country_ie_triplet *) country_ie;
625                 struct ieee80211_reg_rule *reg_rule = NULL;
626                 struct ieee80211_freq_range *freq_range = NULL;
627                 struct ieee80211_power_rule *power_rule = NULL;
628
629                 /*
630                  * Must parse if dot11RegulatoryClassesRequired is true,
631                  * we don't support this yet
632                  */
633                 if (triplet->ext.reg_extension_id >=
634                                 IEEE80211_COUNTRY_EXTENSION_ID) {
635                         country_ie += 3;
636                         country_ie_len -= 3;
637                         continue;
638                 }
639
640                 reg_rule = &rd->reg_rules[i];
641                 freq_range = &reg_rule->freq_range;
642                 power_rule = &reg_rule->power_rule;
643
644                 reg_rule->flags = flags;
645
646                 /* 2 GHz */
647                 if (triplet->chans.first_channel <= 14)
648                         end_channel = triplet->chans.first_channel +
649                                 triplet->chans.num_channels;
650                 else
651                         end_channel =  triplet->chans.first_channel +
652                                 (4 * (triplet->chans.num_channels - 1));
653
654                 /*
655                  * The +10 is since the regulatory domain expects
656                  * the actual band edge, not the center of freq for
657                  * its start and end freqs, assuming 20 MHz bandwidth on
658                  * the channels passed
659                  */
660                 freq_range->start_freq_khz =
661                         MHZ_TO_KHZ(ieee80211_channel_to_frequency(
662                                 triplet->chans.first_channel) - 10);
663                 freq_range->end_freq_khz =
664                         MHZ_TO_KHZ(ieee80211_channel_to_frequency(
665                                 end_channel) + 10);
666
667                 /*
668                  * These are large arbitrary values we use to intersect later.
669                  * Increment this if we ever support >= 40 MHz channels
670                  * in IEEE 802.11
671                  */
672                 freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
673                 power_rule->max_antenna_gain = DBI_TO_MBI(100);
674                 power_rule->max_eirp = DBM_TO_MBM(100);
675
676                 country_ie += 3;
677                 country_ie_len -= 3;
678                 i++;
679
680                 BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
681         }
682
683         return rd;
684 }
685
686
687 /*
688  * Helper for regdom_intersect(), this does the real
689  * mathematical intersection fun
690  */
691 static int reg_rules_intersect(
692         const struct ieee80211_reg_rule *rule1,
693         const struct ieee80211_reg_rule *rule2,
694         struct ieee80211_reg_rule *intersected_rule)
695 {
696         const struct ieee80211_freq_range *freq_range1, *freq_range2;
697         struct ieee80211_freq_range *freq_range;
698         const struct ieee80211_power_rule *power_rule1, *power_rule2;
699         struct ieee80211_power_rule *power_rule;
700         u32 freq_diff;
701
702         freq_range1 = &rule1->freq_range;
703         freq_range2 = &rule2->freq_range;
704         freq_range = &intersected_rule->freq_range;
705
706         power_rule1 = &rule1->power_rule;
707         power_rule2 = &rule2->power_rule;
708         power_rule = &intersected_rule->power_rule;
709
710         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
711                 freq_range2->start_freq_khz);
712         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
713                 freq_range2->end_freq_khz);
714         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
715                 freq_range2->max_bandwidth_khz);
716
717         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
718         if (freq_range->max_bandwidth_khz > freq_diff)
719                 freq_range->max_bandwidth_khz = freq_diff;
720
721         power_rule->max_eirp = min(power_rule1->max_eirp,
722                 power_rule2->max_eirp);
723         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
724                 power_rule2->max_antenna_gain);
725
726         intersected_rule->flags = (rule1->flags | rule2->flags);
727
728         if (!is_valid_reg_rule(intersected_rule))
729                 return -EINVAL;
730
731         return 0;
732 }
733
734 /**
735  * regdom_intersect - do the intersection between two regulatory domains
736  * @rd1: first regulatory domain
737  * @rd2: second regulatory domain
738  *
739  * Use this function to get the intersection between two regulatory domains.
740  * Once completed we will mark the alpha2 for the rd as intersected, "98",
741  * as no one single alpha2 can represent this regulatory domain.
742  *
743  * Returns a pointer to the regulatory domain structure which will hold the
744  * resulting intersection of rules between rd1 and rd2. We will
745  * kzalloc() this structure for you.
746  */
747 static struct ieee80211_regdomain *regdom_intersect(
748         const struct ieee80211_regdomain *rd1,
749         const struct ieee80211_regdomain *rd2)
750 {
751         int r, size_of_regd;
752         unsigned int x, y;
753         unsigned int num_rules = 0, rule_idx = 0;
754         const struct ieee80211_reg_rule *rule1, *rule2;
755         struct ieee80211_reg_rule *intersected_rule;
756         struct ieee80211_regdomain *rd;
757         /* This is just a dummy holder to help us count */
758         struct ieee80211_reg_rule irule;
759
760         /* Uses the stack temporarily for counter arithmetic */
761         intersected_rule = &irule;
762
763         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
764
765         if (!rd1 || !rd2)
766                 return NULL;
767
768         /*
769          * First we get a count of the rules we'll need, then we actually
770          * build them. This is to so we can malloc() and free() a
771          * regdomain once. The reason we use reg_rules_intersect() here
772          * is it will return -EINVAL if the rule computed makes no sense.
773          * All rules that do check out OK are valid.
774          */
775
776         for (x = 0; x < rd1->n_reg_rules; x++) {
777                 rule1 = &rd1->reg_rules[x];
778                 for (y = 0; y < rd2->n_reg_rules; y++) {
779                         rule2 = &rd2->reg_rules[y];
780                         if (!reg_rules_intersect(rule1, rule2,
781                                         intersected_rule))
782                                 num_rules++;
783                         memset(intersected_rule, 0,
784                                         sizeof(struct ieee80211_reg_rule));
785                 }
786         }
787
788         if (!num_rules)
789                 return NULL;
790
791         size_of_regd = sizeof(struct ieee80211_regdomain) +
792                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
793
794         rd = kzalloc(size_of_regd, GFP_KERNEL);
795         if (!rd)
796                 return NULL;
797
798         for (x = 0; x < rd1->n_reg_rules; x++) {
799                 rule1 = &rd1->reg_rules[x];
800                 for (y = 0; y < rd2->n_reg_rules; y++) {
801                         rule2 = &rd2->reg_rules[y];
802                         /*
803                          * This time around instead of using the stack lets
804                          * write to the target rule directly saving ourselves
805                          * a memcpy()
806                          */
807                         intersected_rule = &rd->reg_rules[rule_idx];
808                         r = reg_rules_intersect(rule1, rule2,
809                                 intersected_rule);
810                         /*
811                          * No need to memset here the intersected rule here as
812                          * we're not using the stack anymore
813                          */
814                         if (r)
815                                 continue;
816                         rule_idx++;
817                 }
818         }
819
820         if (rule_idx != num_rules) {
821                 kfree(rd);
822                 return NULL;
823         }
824
825         rd->n_reg_rules = num_rules;
826         rd->alpha2[0] = '9';
827         rd->alpha2[1] = '8';
828
829         return rd;
830 }
831
832 /*
833  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
834  * want to just have the channel structure use these
835  */
836 static u32 map_regdom_flags(u32 rd_flags)
837 {
838         u32 channel_flags = 0;
839         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
840                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
841         if (rd_flags & NL80211_RRF_NO_IBSS)
842                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
843         if (rd_flags & NL80211_RRF_DFS)
844                 channel_flags |= IEEE80211_CHAN_RADAR;
845         return channel_flags;
846 }
847
848 static int freq_reg_info_regd(struct wiphy *wiphy,
849                               u32 center_freq,
850                               u32 *bandwidth,
851                               const struct ieee80211_reg_rule **reg_rule,
852                               const struct ieee80211_regdomain *custom_regd)
853 {
854         int i;
855         bool band_rule_found = false;
856         const struct ieee80211_regdomain *regd;
857         u32 max_bandwidth = 0;
858
859         regd = custom_regd ? custom_regd : cfg80211_regdomain;
860
861         /*
862          * Follow the driver's regulatory domain, if present, unless a country
863          * IE has been processed or a user wants to help complaince further
864          */
865         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
866             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
867             wiphy->regd)
868                 regd = wiphy->regd;
869
870         if (!regd)
871                 return -EINVAL;
872
873         for (i = 0; i < regd->n_reg_rules; i++) {
874                 const struct ieee80211_reg_rule *rr;
875                 const struct ieee80211_freq_range *fr = NULL;
876                 const struct ieee80211_power_rule *pr = NULL;
877
878                 rr = &regd->reg_rules[i];
879                 fr = &rr->freq_range;
880                 pr = &rr->power_rule;
881
882                 /*
883                  * We only need to know if one frequency rule was
884                  * was in center_freq's band, that's enough, so lets
885                  * not overwrite it once found
886                  */
887                 if (!band_rule_found)
888                         band_rule_found = freq_in_rule_band(fr, center_freq);
889
890                 max_bandwidth = freq_max_bandwidth(fr, center_freq);
891
892                 if (max_bandwidth && *bandwidth <= max_bandwidth) {
893                         *reg_rule = rr;
894                         *bandwidth = max_bandwidth;
895                         break;
896                 }
897         }
898
899         if (!band_rule_found)
900                 return -ERANGE;
901
902         return !max_bandwidth;
903 }
904 EXPORT_SYMBOL(freq_reg_info);
905
906 int freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 *bandwidth,
907                          const struct ieee80211_reg_rule **reg_rule)
908 {
909         return freq_reg_info_regd(wiphy, center_freq,
910                 bandwidth, reg_rule, NULL);
911 }
912
913 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
914                            unsigned int chan_idx)
915 {
916         int r;
917         u32 flags;
918         u32 max_bandwidth = 0;
919         const struct ieee80211_reg_rule *reg_rule = NULL;
920         const struct ieee80211_power_rule *power_rule = NULL;
921         struct ieee80211_supported_band *sband;
922         struct ieee80211_channel *chan;
923         struct wiphy *request_wiphy = NULL;
924
925         assert_cfg80211_lock();
926
927         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
928
929         sband = wiphy->bands[band];
930         BUG_ON(chan_idx >= sband->n_channels);
931         chan = &sband->channels[chan_idx];
932
933         flags = chan->orig_flags;
934
935         r = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq),
936                 &max_bandwidth, &reg_rule);
937
938         if (r) {
939                 /*
940                  * This means no regulatory rule was found in the country IE
941                  * with a frequency range on the center_freq's band, since
942                  * IEEE-802.11 allows for a country IE to have a subset of the
943                  * regulatory information provided in a country we ignore
944                  * disabling the channel unless at least one reg rule was
945                  * found on the center_freq's band. For details see this
946                  * clarification:
947                  *
948                  * http://tinyurl.com/11d-clarification
949                  */
950                 if (r == -ERANGE &&
951                     last_request->initiator ==
952                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
953 #ifdef CONFIG_CFG80211_REG_DEBUG
954                         printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
955                                 "intact on %s - no rule found in band on "
956                                 "Country IE\n",
957                                 chan->center_freq, wiphy_name(wiphy));
958 #endif
959                 } else {
960                 /*
961                  * In this case we know the country IE has at least one reg rule
962                  * for the band so we respect its band definitions
963                  */
964 #ifdef CONFIG_CFG80211_REG_DEBUG
965                         if (last_request->initiator ==
966                             NL80211_REGDOM_SET_BY_COUNTRY_IE)
967                                 printk(KERN_DEBUG "cfg80211: Disabling "
968                                         "channel %d MHz on %s due to "
969                                         "Country IE\n",
970                                         chan->center_freq, wiphy_name(wiphy));
971 #endif
972                         flags |= IEEE80211_CHAN_DISABLED;
973                         chan->flags = flags;
974                 }
975                 return;
976         }
977
978         power_rule = &reg_rule->power_rule;
979
980         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
981             request_wiphy && request_wiphy == wiphy &&
982             request_wiphy->strict_regulatory) {
983                 /*
984                  * This gaurantees the driver's requested regulatory domain
985                  * will always be used as a base for further regulatory
986                  * settings
987                  */
988                 chan->flags = chan->orig_flags =
989                         map_regdom_flags(reg_rule->flags);
990                 chan->max_antenna_gain = chan->orig_mag =
991                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
992                 chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
993                 chan->max_power = chan->orig_mpwr =
994                         (int) MBM_TO_DBM(power_rule->max_eirp);
995                 return;
996         }
997
998         chan->flags = flags | map_regdom_flags(reg_rule->flags);
999         chan->max_antenna_gain = min(chan->orig_mag,
1000                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
1001         chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
1002         if (chan->orig_mpwr)
1003                 chan->max_power = min(chan->orig_mpwr,
1004                         (int) MBM_TO_DBM(power_rule->max_eirp));
1005         else
1006                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1007 }
1008
1009 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1010 {
1011         unsigned int i;
1012         struct ieee80211_supported_band *sband;
1013
1014         BUG_ON(!wiphy->bands[band]);
1015         sband = wiphy->bands[band];
1016
1017         for (i = 0; i < sband->n_channels; i++)
1018                 handle_channel(wiphy, band, i);
1019 }
1020
1021 static bool ignore_reg_update(struct wiphy *wiphy,
1022                               enum nl80211_reg_initiator initiator)
1023 {
1024         if (!last_request)
1025                 return true;
1026         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1027                   wiphy->custom_regulatory)
1028                 return true;
1029         /*
1030          * wiphy->regd will be set once the device has its own
1031          * desired regulatory domain set
1032          */
1033         if (wiphy->strict_regulatory && !wiphy->regd &&
1034             !is_world_regdom(last_request->alpha2))
1035                 return true;
1036         return false;
1037 }
1038
1039 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1040 {
1041         struct cfg80211_registered_device *drv;
1042
1043         list_for_each_entry(drv, &cfg80211_drv_list, list)
1044                 wiphy_update_regulatory(&drv->wiphy, initiator);
1045 }
1046
1047 static void handle_reg_beacon(struct wiphy *wiphy,
1048                               unsigned int chan_idx,
1049                               struct reg_beacon *reg_beacon)
1050 {
1051         struct ieee80211_supported_band *sband;
1052         struct ieee80211_channel *chan;
1053         bool channel_changed = false;
1054         struct ieee80211_channel chan_before;
1055
1056         assert_cfg80211_lock();
1057
1058         sband = wiphy->bands[reg_beacon->chan.band];
1059         chan = &sband->channels[chan_idx];
1060
1061         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1062                 return;
1063
1064         if (chan->beacon_found)
1065                 return;
1066
1067         chan->beacon_found = true;
1068
1069         chan_before.center_freq = chan->center_freq;
1070         chan_before.flags = chan->flags;
1071
1072         if ((chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) &&
1073             !(chan->orig_flags & IEEE80211_CHAN_PASSIVE_SCAN)) {
1074                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1075                 channel_changed = true;
1076         }
1077
1078         if ((chan->flags & IEEE80211_CHAN_NO_IBSS) &&
1079             !(chan->orig_flags & IEEE80211_CHAN_NO_IBSS)) {
1080                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1081                 channel_changed = true;
1082         }
1083
1084         if (channel_changed)
1085                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1086 }
1087
1088 /*
1089  * Called when a scan on a wiphy finds a beacon on
1090  * new channel
1091  */
1092 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1093                                     struct reg_beacon *reg_beacon)
1094 {
1095         unsigned int i;
1096         struct ieee80211_supported_band *sband;
1097
1098         assert_cfg80211_lock();
1099
1100         if (!wiphy->bands[reg_beacon->chan.band])
1101                 return;
1102
1103         sband = wiphy->bands[reg_beacon->chan.band];
1104
1105         for (i = 0; i < sband->n_channels; i++)
1106                 handle_reg_beacon(wiphy, i, reg_beacon);
1107 }
1108
1109 /*
1110  * Called upon reg changes or a new wiphy is added
1111  */
1112 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1113 {
1114         unsigned int i;
1115         struct ieee80211_supported_band *sband;
1116         struct reg_beacon *reg_beacon;
1117
1118         assert_cfg80211_lock();
1119
1120         if (list_empty(&reg_beacon_list))
1121                 return;
1122
1123         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1124                 if (!wiphy->bands[reg_beacon->chan.band])
1125                         continue;
1126                 sband = wiphy->bands[reg_beacon->chan.band];
1127                 for (i = 0; i < sband->n_channels; i++)
1128                         handle_reg_beacon(wiphy, i, reg_beacon);
1129         }
1130 }
1131
1132 static bool reg_is_world_roaming(struct wiphy *wiphy)
1133 {
1134         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1135             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1136                 return true;
1137         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1138             wiphy->custom_regulatory)
1139                 return true;
1140         return false;
1141 }
1142
1143 /* Reap the advantages of previously found beacons */
1144 static void reg_process_beacons(struct wiphy *wiphy)
1145 {
1146         if (!reg_is_world_roaming(wiphy))
1147                 return;
1148         wiphy_update_beacon_reg(wiphy);
1149 }
1150
1151 void wiphy_update_regulatory(struct wiphy *wiphy,
1152                              enum nl80211_reg_initiator initiator)
1153 {
1154         enum ieee80211_band band;
1155
1156         if (ignore_reg_update(wiphy, initiator))
1157                 goto out;
1158         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1159                 if (wiphy->bands[band])
1160                         handle_band(wiphy, band);
1161         }
1162 out:
1163         reg_process_beacons(wiphy);
1164         if (wiphy->reg_notifier)
1165                 wiphy->reg_notifier(wiphy, last_request);
1166 }
1167
1168 static void handle_channel_custom(struct wiphy *wiphy,
1169                                   enum ieee80211_band band,
1170                                   unsigned int chan_idx,
1171                                   const struct ieee80211_regdomain *regd)
1172 {
1173         int r;
1174         u32 max_bandwidth = 0;
1175         const struct ieee80211_reg_rule *reg_rule = NULL;
1176         const struct ieee80211_power_rule *power_rule = NULL;
1177         struct ieee80211_supported_band *sband;
1178         struct ieee80211_channel *chan;
1179
1180         sband = wiphy->bands[band];
1181         BUG_ON(chan_idx >= sband->n_channels);
1182         chan = &sband->channels[chan_idx];
1183
1184         r = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1185                 &max_bandwidth, &reg_rule, regd);
1186
1187         if (r) {
1188                 chan->flags = IEEE80211_CHAN_DISABLED;
1189                 return;
1190         }
1191
1192         power_rule = &reg_rule->power_rule;
1193
1194         chan->flags |= map_regdom_flags(reg_rule->flags);
1195         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1196         chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
1197         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1198 }
1199
1200 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1201                                const struct ieee80211_regdomain *regd)
1202 {
1203         unsigned int i;
1204         struct ieee80211_supported_band *sband;
1205
1206         BUG_ON(!wiphy->bands[band]);
1207         sband = wiphy->bands[band];
1208
1209         for (i = 0; i < sband->n_channels; i++)
1210                 handle_channel_custom(wiphy, band, i, regd);
1211 }
1212
1213 /* Used by drivers prior to wiphy registration */
1214 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1215                                    const struct ieee80211_regdomain *regd)
1216 {
1217         enum ieee80211_band band;
1218         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1219                 if (wiphy->bands[band])
1220                         handle_band_custom(wiphy, band, regd);
1221         }
1222 }
1223 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1224
1225 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
1226                          const struct ieee80211_regdomain *src_regd)
1227 {
1228         struct ieee80211_regdomain *regd;
1229         int size_of_regd = 0;
1230         unsigned int i;
1231
1232         size_of_regd = sizeof(struct ieee80211_regdomain) +
1233           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
1234
1235         regd = kzalloc(size_of_regd, GFP_KERNEL);
1236         if (!regd)
1237                 return -ENOMEM;
1238
1239         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
1240
1241         for (i = 0; i < src_regd->n_reg_rules; i++)
1242                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
1243                         sizeof(struct ieee80211_reg_rule));
1244
1245         *dst_regd = regd;
1246         return 0;
1247 }
1248
1249 /*
1250  * Return value which can be used by ignore_request() to indicate
1251  * it has been determined we should intersect two regulatory domains
1252  */
1253 #define REG_INTERSECT   1
1254
1255 /* This has the logic which determines when a new request
1256  * should be ignored. */
1257 static int ignore_request(struct wiphy *wiphy,
1258                           struct regulatory_request *pending_request)
1259 {
1260         struct wiphy *last_wiphy = NULL;
1261
1262         assert_cfg80211_lock();
1263
1264         /* All initial requests are respected */
1265         if (!last_request)
1266                 return 0;
1267
1268         switch (pending_request->initiator) {
1269         case NL80211_REGDOM_SET_BY_CORE:
1270                 return -EINVAL;
1271         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1272
1273                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1274
1275                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1276                         return -EINVAL;
1277                 if (last_request->initiator ==
1278                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1279                         if (last_wiphy != wiphy) {
1280                                 /*
1281                                  * Two cards with two APs claiming different
1282                                  * different Country IE alpha2s. We could
1283                                  * intersect them, but that seems unlikely
1284                                  * to be correct. Reject second one for now.
1285                                  */
1286                                 if (regdom_changes(pending_request->alpha2))
1287                                         return -EOPNOTSUPP;
1288                                 return -EALREADY;
1289                         }
1290                         /*
1291                          * Two consecutive Country IE hints on the same wiphy.
1292                          * This should be picked up early by the driver/stack
1293                          */
1294                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1295                                 return 0;
1296                         return -EALREADY;
1297                 }
1298                 return REG_INTERSECT;
1299         case NL80211_REGDOM_SET_BY_DRIVER:
1300                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1301                         if (is_old_static_regdom(cfg80211_regdomain))
1302                                 return 0;
1303                         if (regdom_changes(pending_request->alpha2))
1304                                 return 0;
1305                         return -EALREADY;
1306                 }
1307
1308                 /*
1309                  * This would happen if you unplug and plug your card
1310                  * back in or if you add a new device for which the previously
1311                  * loaded card also agrees on the regulatory domain.
1312                  */
1313                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1314                     !regdom_changes(pending_request->alpha2))
1315                         return -EALREADY;
1316
1317                 return REG_INTERSECT;
1318         case NL80211_REGDOM_SET_BY_USER:
1319                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1320                         return REG_INTERSECT;
1321                 /*
1322                  * If the user knows better the user should set the regdom
1323                  * to their country before the IE is picked up
1324                  */
1325                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1326                           last_request->intersect)
1327                         return -EOPNOTSUPP;
1328                 /*
1329                  * Process user requests only after previous user/driver/core
1330                  * requests have been processed
1331                  */
1332                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1333                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1334                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1335                         if (regdom_changes(last_request->alpha2))
1336                                 return -EAGAIN;
1337                 }
1338
1339                 if (!is_old_static_regdom(cfg80211_regdomain) &&
1340                     !regdom_changes(pending_request->alpha2))
1341                         return -EALREADY;
1342
1343                 return 0;
1344         }
1345
1346         return -EINVAL;
1347 }
1348
1349 /**
1350  * __regulatory_hint - hint to the wireless core a regulatory domain
1351  * @wiphy: if the hint comes from country information from an AP, this
1352  *      is required to be set to the wiphy that received the information
1353  * @pending_request: the regulatory request currently being processed
1354  *
1355  * The Wireless subsystem can use this function to hint to the wireless core
1356  * what it believes should be the current regulatory domain.
1357  *
1358  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1359  * already been set or other standard error codes.
1360  *
1361  * Caller must hold &cfg80211_mutex
1362  */
1363 static int __regulatory_hint(struct wiphy *wiphy,
1364                              struct regulatory_request *pending_request)
1365 {
1366         bool intersect = false;
1367         int r = 0;
1368
1369         assert_cfg80211_lock();
1370
1371         r = ignore_request(wiphy, pending_request);
1372
1373         if (r == REG_INTERSECT) {
1374                 if (pending_request->initiator ==
1375                     NL80211_REGDOM_SET_BY_DRIVER) {
1376                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1377                         if (r) {
1378                                 kfree(pending_request);
1379                                 return r;
1380                         }
1381                 }
1382                 intersect = true;
1383         } else if (r) {
1384                 /*
1385                  * If the regulatory domain being requested by the
1386                  * driver has already been set just copy it to the
1387                  * wiphy
1388                  */
1389                 if (r == -EALREADY &&
1390                     pending_request->initiator ==
1391                     NL80211_REGDOM_SET_BY_DRIVER) {
1392                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1393                         if (r) {
1394                                 kfree(pending_request);
1395                                 return r;
1396                         }
1397                         r = -EALREADY;
1398                         goto new_request;
1399                 }
1400                 kfree(pending_request);
1401                 return r;
1402         }
1403
1404 new_request:
1405         kfree(last_request);
1406
1407         last_request = pending_request;
1408         last_request->intersect = intersect;
1409
1410         pending_request = NULL;
1411
1412         /* When r == REG_INTERSECT we do need to call CRDA */
1413         if (r < 0) {
1414                 /*
1415                  * Since CRDA will not be called in this case as we already
1416                  * have applied the requested regulatory domain before we just
1417                  * inform userspace we have processed the request
1418                  */
1419                 if (r == -EALREADY)
1420                         nl80211_send_reg_change_event(last_request);
1421                 return r;
1422         }
1423
1424         return call_crda(last_request->alpha2);
1425 }
1426
1427 /* This currently only processes user and driver regulatory hints */
1428 static void reg_process_hint(struct regulatory_request *reg_request)
1429 {
1430         int r = 0;
1431         struct wiphy *wiphy = NULL;
1432
1433         BUG_ON(!reg_request->alpha2);
1434
1435         mutex_lock(&cfg80211_mutex);
1436
1437         if (wiphy_idx_valid(reg_request->wiphy_idx))
1438                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1439
1440         if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1441             !wiphy) {
1442                 kfree(reg_request);
1443                 goto out;
1444         }
1445
1446         r = __regulatory_hint(wiphy, reg_request);
1447         /* This is required so that the orig_* parameters are saved */
1448         if (r == -EALREADY && wiphy && wiphy->strict_regulatory)
1449                 wiphy_update_regulatory(wiphy, reg_request->initiator);
1450 out:
1451         mutex_unlock(&cfg80211_mutex);
1452 }
1453
1454 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1455 static void reg_process_pending_hints(void)
1456         {
1457         struct regulatory_request *reg_request;
1458
1459         spin_lock(&reg_requests_lock);
1460         while (!list_empty(&reg_requests_list)) {
1461                 reg_request = list_first_entry(&reg_requests_list,
1462                                                struct regulatory_request,
1463                                                list);
1464                 list_del_init(&reg_request->list);
1465
1466                 spin_unlock(&reg_requests_lock);
1467                 reg_process_hint(reg_request);
1468                 spin_lock(&reg_requests_lock);
1469         }
1470         spin_unlock(&reg_requests_lock);
1471 }
1472
1473 /* Processes beacon hints -- this has nothing to do with country IEs */
1474 static void reg_process_pending_beacon_hints(void)
1475 {
1476         struct cfg80211_registered_device *drv;
1477         struct reg_beacon *pending_beacon, *tmp;
1478
1479         mutex_lock(&cfg80211_mutex);
1480
1481         /* This goes through the _pending_ beacon list */
1482         spin_lock_bh(&reg_pending_beacons_lock);
1483
1484         if (list_empty(&reg_pending_beacons)) {
1485                 spin_unlock_bh(&reg_pending_beacons_lock);
1486                 goto out;
1487         }
1488
1489         list_for_each_entry_safe(pending_beacon, tmp,
1490                                  &reg_pending_beacons, list) {
1491
1492                 list_del_init(&pending_beacon->list);
1493
1494                 /* Applies the beacon hint to current wiphys */
1495                 list_for_each_entry(drv, &cfg80211_drv_list, list)
1496                         wiphy_update_new_beacon(&drv->wiphy, pending_beacon);
1497
1498                 /* Remembers the beacon hint for new wiphys or reg changes */
1499                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1500         }
1501
1502         spin_unlock_bh(&reg_pending_beacons_lock);
1503 out:
1504         mutex_unlock(&cfg80211_mutex);
1505 }
1506
1507 static void reg_todo(struct work_struct *work)
1508 {
1509         reg_process_pending_hints();
1510         reg_process_pending_beacon_hints();
1511 }
1512
1513 static DECLARE_WORK(reg_work, reg_todo);
1514
1515 static void queue_regulatory_request(struct regulatory_request *request)
1516 {
1517         spin_lock(&reg_requests_lock);
1518         list_add_tail(&request->list, &reg_requests_list);
1519         spin_unlock(&reg_requests_lock);
1520
1521         schedule_work(&reg_work);
1522 }
1523
1524 /* Core regulatory hint -- happens once during cfg80211_init() */
1525 static int regulatory_hint_core(const char *alpha2)
1526 {
1527         struct regulatory_request *request;
1528
1529         BUG_ON(last_request);
1530
1531         request = kzalloc(sizeof(struct regulatory_request),
1532                           GFP_KERNEL);
1533         if (!request)
1534                 return -ENOMEM;
1535
1536         request->alpha2[0] = alpha2[0];
1537         request->alpha2[1] = alpha2[1];
1538         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1539
1540         queue_regulatory_request(request);
1541
1542         return 0;
1543 }
1544
1545 /* User hints */
1546 int regulatory_hint_user(const char *alpha2)
1547 {
1548         struct regulatory_request *request;
1549
1550         BUG_ON(!alpha2);
1551
1552         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1553         if (!request)
1554                 return -ENOMEM;
1555
1556         request->wiphy_idx = WIPHY_IDX_STALE;
1557         request->alpha2[0] = alpha2[0];
1558         request->alpha2[1] = alpha2[1];
1559         request->initiator = NL80211_REGDOM_SET_BY_USER,
1560
1561         queue_regulatory_request(request);
1562
1563         return 0;
1564 }
1565
1566 /* Driver hints */
1567 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1568 {
1569         struct regulatory_request *request;
1570
1571         BUG_ON(!alpha2);
1572         BUG_ON(!wiphy);
1573
1574         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1575         if (!request)
1576                 return -ENOMEM;
1577
1578         request->wiphy_idx = get_wiphy_idx(wiphy);
1579
1580         /* Must have registered wiphy first */
1581         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1582
1583         request->alpha2[0] = alpha2[0];
1584         request->alpha2[1] = alpha2[1];
1585         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1586
1587         queue_regulatory_request(request);
1588
1589         return 0;
1590 }
1591 EXPORT_SYMBOL(regulatory_hint);
1592
1593 static bool reg_same_country_ie_hint(struct wiphy *wiphy,
1594                         u32 country_ie_checksum)
1595 {
1596         struct wiphy *request_wiphy;
1597
1598         assert_cfg80211_lock();
1599
1600         if (unlikely(last_request->initiator !=
1601             NL80211_REGDOM_SET_BY_COUNTRY_IE))
1602                 return false;
1603
1604         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1605
1606         if (!request_wiphy)
1607                 return false;
1608
1609         if (likely(request_wiphy != wiphy))
1610                 return !country_ie_integrity_changes(country_ie_checksum);
1611         /*
1612          * We should not have let these through at this point, they
1613          * should have been picked up earlier by the first alpha2 check
1614          * on the device
1615          */
1616         if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
1617                 return true;
1618         return false;
1619 }
1620
1621 void regulatory_hint_11d(struct wiphy *wiphy,
1622                         u8 *country_ie,
1623                         u8 country_ie_len)
1624 {
1625         struct ieee80211_regdomain *rd = NULL;
1626         char alpha2[2];
1627         u32 checksum = 0;
1628         enum environment_cap env = ENVIRON_ANY;
1629         struct regulatory_request *request;
1630
1631         mutex_lock(&cfg80211_mutex);
1632
1633         if (unlikely(!last_request)) {
1634                 mutex_unlock(&cfg80211_mutex);
1635                 return;
1636         }
1637
1638         /* IE len must be evenly divisible by 2 */
1639         if (country_ie_len & 0x01)
1640                 goto out;
1641
1642         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1643                 goto out;
1644
1645         /*
1646          * Pending country IE processing, this can happen after we
1647          * call CRDA and wait for a response if a beacon was received before
1648          * we were able to process the last regulatory_hint_11d() call
1649          */
1650         if (country_ie_regdomain)
1651                 goto out;
1652
1653         alpha2[0] = country_ie[0];
1654         alpha2[1] = country_ie[1];
1655
1656         if (country_ie[2] == 'I')
1657                 env = ENVIRON_INDOOR;
1658         else if (country_ie[2] == 'O')
1659                 env = ENVIRON_OUTDOOR;
1660
1661         /*
1662          * We will run this for *every* beacon processed for the BSSID, so
1663          * we optimize an early check to exit out early if we don't have to
1664          * do anything
1665          */
1666         if (likely(last_request->initiator ==
1667             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1668             wiphy_idx_valid(last_request->wiphy_idx))) {
1669                 struct cfg80211_registered_device *drv_last_ie;
1670
1671                 drv_last_ie =
1672                         cfg80211_drv_by_wiphy_idx(last_request->wiphy_idx);
1673
1674                 /*
1675                  * Lets keep this simple -- we trust the first AP
1676                  * after we intersect with CRDA
1677                  */
1678                 if (likely(&drv_last_ie->wiphy == wiphy)) {
1679                         /*
1680                          * Ignore IEs coming in on this wiphy with
1681                          * the same alpha2 and environment cap
1682                          */
1683                         if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1684                                   alpha2) &&
1685                                   env == drv_last_ie->env)) {
1686                                 goto out;
1687                         }
1688                         /*
1689                          * the wiphy moved on to another BSSID or the AP
1690                          * was reconfigured. XXX: We need to deal with the
1691                          * case where the user suspends and goes to goes
1692                          * to another country, and then gets IEs from an
1693                          * AP with different settings
1694                          */
1695                         goto out;
1696                 } else {
1697                         /*
1698                          * Ignore IEs coming in on two separate wiphys with
1699                          * the same alpha2 and environment cap
1700                          */
1701                         if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1702                                   alpha2) &&
1703                                   env == drv_last_ie->env)) {
1704                                 goto out;
1705                         }
1706                         /* We could potentially intersect though */
1707                         goto out;
1708                 }
1709         }
1710
1711         rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
1712         if (!rd)
1713                 goto out;
1714
1715         /*
1716          * This will not happen right now but we leave it here for the
1717          * the future when we want to add suspend/resume support and having
1718          * the user move to another country after doing so, or having the user
1719          * move to another AP. Right now we just trust the first AP.
1720          *
1721          * If we hit this before we add this support we want to be informed of
1722          * it as it would indicate a mistake in the current design
1723          */
1724         if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1725                 goto free_rd_out;
1726
1727         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1728         if (!request)
1729                 goto free_rd_out;
1730
1731         /*
1732          * We keep this around for when CRDA comes back with a response so
1733          * we can intersect with that
1734          */
1735         country_ie_regdomain = rd;
1736
1737         request->wiphy_idx = get_wiphy_idx(wiphy);
1738         request->alpha2[0] = rd->alpha2[0];
1739         request->alpha2[1] = rd->alpha2[1];
1740         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1741         request->country_ie_checksum = checksum;
1742         request->country_ie_env = env;
1743
1744         mutex_unlock(&cfg80211_mutex);
1745
1746         queue_regulatory_request(request);
1747
1748         return;
1749
1750 free_rd_out:
1751         kfree(rd);
1752 out:
1753         mutex_unlock(&cfg80211_mutex);
1754 }
1755 EXPORT_SYMBOL(regulatory_hint_11d);
1756
1757 static bool freq_is_chan_12_13_14(u16 freq)
1758 {
1759         if (freq == ieee80211_channel_to_frequency(12) ||
1760             freq == ieee80211_channel_to_frequency(13) ||
1761             freq == ieee80211_channel_to_frequency(14))
1762                 return true;
1763         return false;
1764 }
1765
1766 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1767                                  struct ieee80211_channel *beacon_chan,
1768                                  gfp_t gfp)
1769 {
1770         struct reg_beacon *reg_beacon;
1771
1772         if (likely((beacon_chan->beacon_found ||
1773             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1774             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1775              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1776                 return 0;
1777
1778         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1779         if (!reg_beacon)
1780                 return -ENOMEM;
1781
1782 #ifdef CONFIG_CFG80211_REG_DEBUG
1783         printk(KERN_DEBUG "cfg80211: Found new beacon on "
1784                 "frequency: %d MHz (Ch %d) on %s\n",
1785                 beacon_chan->center_freq,
1786                 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1787                 wiphy_name(wiphy));
1788 #endif
1789         memcpy(&reg_beacon->chan, beacon_chan,
1790                 sizeof(struct ieee80211_channel));
1791
1792
1793         /*
1794          * Since we can be called from BH or and non-BH context
1795          * we must use spin_lock_bh()
1796          */
1797         spin_lock_bh(&reg_pending_beacons_lock);
1798         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1799         spin_unlock_bh(&reg_pending_beacons_lock);
1800
1801         schedule_work(&reg_work);
1802
1803         return 0;
1804 }
1805
1806 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1807 {
1808         unsigned int i;
1809         const struct ieee80211_reg_rule *reg_rule = NULL;
1810         const struct ieee80211_freq_range *freq_range = NULL;
1811         const struct ieee80211_power_rule *power_rule = NULL;
1812
1813         printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
1814                 "(max_antenna_gain, max_eirp)\n");
1815
1816         for (i = 0; i < rd->n_reg_rules; i++) {
1817                 reg_rule = &rd->reg_rules[i];
1818                 freq_range = &reg_rule->freq_range;
1819                 power_rule = &reg_rule->power_rule;
1820
1821                 /*
1822                  * There may not be documentation for max antenna gain
1823                  * in certain regions
1824                  */
1825                 if (power_rule->max_antenna_gain)
1826                         printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1827                                 "(%d mBi, %d mBm)\n",
1828                                 freq_range->start_freq_khz,
1829                                 freq_range->end_freq_khz,
1830                                 freq_range->max_bandwidth_khz,
1831                                 power_rule->max_antenna_gain,
1832                                 power_rule->max_eirp);
1833                 else
1834                         printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1835                                 "(N/A, %d mBm)\n",
1836                                 freq_range->start_freq_khz,
1837                                 freq_range->end_freq_khz,
1838                                 freq_range->max_bandwidth_khz,
1839                                 power_rule->max_eirp);
1840         }
1841 }
1842
1843 static void print_regdomain(const struct ieee80211_regdomain *rd)
1844 {
1845
1846         if (is_intersected_alpha2(rd->alpha2)) {
1847
1848                 if (last_request->initiator ==
1849                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1850                         struct cfg80211_registered_device *drv;
1851                         drv = cfg80211_drv_by_wiphy_idx(
1852                                 last_request->wiphy_idx);
1853                         if (drv) {
1854                                 printk(KERN_INFO "cfg80211: Current regulatory "
1855                                         "domain updated by AP to: %c%c\n",
1856                                         drv->country_ie_alpha2[0],
1857                                         drv->country_ie_alpha2[1]);
1858                         } else
1859                                 printk(KERN_INFO "cfg80211: Current regulatory "
1860                                         "domain intersected: \n");
1861                 } else
1862                                 printk(KERN_INFO "cfg80211: Current regulatory "
1863                                         "domain intersected: \n");
1864         } else if (is_world_regdom(rd->alpha2))
1865                 printk(KERN_INFO "cfg80211: World regulatory "
1866                         "domain updated:\n");
1867         else {
1868                 if (is_unknown_alpha2(rd->alpha2))
1869                         printk(KERN_INFO "cfg80211: Regulatory domain "
1870                                 "changed to driver built-in settings "
1871                                 "(unknown country)\n");
1872                 else
1873                         printk(KERN_INFO "cfg80211: Regulatory domain "
1874                                 "changed to country: %c%c\n",
1875                                 rd->alpha2[0], rd->alpha2[1]);
1876         }
1877         print_rd_rules(rd);
1878 }
1879
1880 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1881 {
1882         printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
1883                 rd->alpha2[0], rd->alpha2[1]);
1884         print_rd_rules(rd);
1885 }
1886
1887 #ifdef CONFIG_CFG80211_REG_DEBUG
1888 static void reg_country_ie_process_debug(
1889         const struct ieee80211_regdomain *rd,
1890         const struct ieee80211_regdomain *country_ie_regdomain,
1891         const struct ieee80211_regdomain *intersected_rd)
1892 {
1893         printk(KERN_DEBUG "cfg80211: Received country IE:\n");
1894         print_regdomain_info(country_ie_regdomain);
1895         printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
1896         print_regdomain_info(rd);
1897         if (intersected_rd) {
1898                 printk(KERN_DEBUG "cfg80211: We intersect both of these "
1899                         "and get:\n");
1900                 print_regdomain_info(intersected_rd);
1901                 return;
1902         }
1903         printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
1904 }
1905 #else
1906 static inline void reg_country_ie_process_debug(
1907         const struct ieee80211_regdomain *rd,
1908         const struct ieee80211_regdomain *country_ie_regdomain,
1909         const struct ieee80211_regdomain *intersected_rd)
1910 {
1911 }
1912 #endif
1913
1914 /* Takes ownership of rd only if it doesn't fail */
1915 static int __set_regdom(const struct ieee80211_regdomain *rd)
1916 {
1917         const struct ieee80211_regdomain *intersected_rd = NULL;
1918         struct cfg80211_registered_device *drv = NULL;
1919         struct wiphy *request_wiphy;
1920         /* Some basic sanity checks first */
1921
1922         if (is_world_regdom(rd->alpha2)) {
1923                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1924                         return -EINVAL;
1925                 update_world_regdomain(rd);
1926                 return 0;
1927         }
1928
1929         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1930                         !is_unknown_alpha2(rd->alpha2))
1931                 return -EINVAL;
1932
1933         if (!last_request)
1934                 return -EINVAL;
1935
1936         /*
1937          * Lets only bother proceeding on the same alpha2 if the current
1938          * rd is non static (it means CRDA was present and was used last)
1939          * and the pending request came in from a country IE
1940          */
1941         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1942                 /*
1943                  * If someone else asked us to change the rd lets only bother
1944                  * checking if the alpha2 changes if CRDA was already called
1945                  */
1946                 if (!is_old_static_regdom(cfg80211_regdomain) &&
1947                     !regdom_changes(rd->alpha2))
1948                         return -EINVAL;
1949         }
1950
1951         /*
1952          * Now lets set the regulatory domain, update all driver channels
1953          * and finally inform them of what we have done, in case they want
1954          * to review or adjust their own settings based on their own
1955          * internal EEPROM data
1956          */
1957
1958         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1959                 return -EINVAL;
1960
1961         if (!is_valid_rd(rd)) {
1962                 printk(KERN_ERR "cfg80211: Invalid "
1963                         "regulatory domain detected:\n");
1964                 print_regdomain_info(rd);
1965                 return -EINVAL;
1966         }
1967
1968         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1969
1970         if (!last_request->intersect) {
1971                 int r;
1972
1973                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1974                         reset_regdomains();
1975                         cfg80211_regdomain = rd;
1976                         return 0;
1977                 }
1978
1979                 /*
1980                  * For a driver hint, lets copy the regulatory domain the
1981                  * driver wanted to the wiphy to deal with conflicts
1982                  */
1983
1984                 BUG_ON(request_wiphy->regd);
1985
1986                 r = reg_copy_regd(&request_wiphy->regd, rd);
1987                 if (r)
1988                         return r;
1989
1990                 reset_regdomains();
1991                 cfg80211_regdomain = rd;
1992                 return 0;
1993         }
1994
1995         /* Intersection requires a bit more work */
1996
1997         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1998
1999                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2000                 if (!intersected_rd)
2001                         return -EINVAL;
2002
2003                 /*
2004                  * We can trash what CRDA provided now.
2005                  * However if a driver requested this specific regulatory
2006                  * domain we keep it for its private use
2007                  */
2008                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2009                         request_wiphy->regd = rd;
2010                 else
2011                         kfree(rd);
2012
2013                 rd = NULL;
2014
2015                 reset_regdomains();
2016                 cfg80211_regdomain = intersected_rd;
2017
2018                 return 0;
2019         }
2020
2021         /*
2022          * Country IE requests are handled a bit differently, we intersect
2023          * the country IE rd with what CRDA believes that country should have
2024          */
2025
2026         BUG_ON(!country_ie_regdomain);
2027         BUG_ON(rd == country_ie_regdomain);
2028
2029         /*
2030          * Intersect what CRDA returned and our what we
2031          * had built from the Country IE received
2032          */
2033
2034         intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2035
2036         reg_country_ie_process_debug(rd,
2037                                      country_ie_regdomain,
2038                                      intersected_rd);
2039
2040         kfree(country_ie_regdomain);
2041         country_ie_regdomain = NULL;
2042
2043         if (!intersected_rd)
2044                 return -EINVAL;
2045
2046         drv = wiphy_to_dev(request_wiphy);
2047
2048         drv->country_ie_alpha2[0] = rd->alpha2[0];
2049         drv->country_ie_alpha2[1] = rd->alpha2[1];
2050         drv->env = last_request->country_ie_env;
2051
2052         BUG_ON(intersected_rd == rd);
2053
2054         kfree(rd);
2055         rd = NULL;
2056
2057         reset_regdomains();
2058         cfg80211_regdomain = intersected_rd;
2059
2060         return 0;
2061 }
2062
2063
2064 /*
2065  * Use this call to set the current regulatory domain. Conflicts with
2066  * multiple drivers can be ironed out later. Caller must've already
2067  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2068  */
2069 int set_regdom(const struct ieee80211_regdomain *rd)
2070 {
2071         int r;
2072
2073         assert_cfg80211_lock();
2074
2075         /* Note that this doesn't update the wiphys, this is done below */
2076         r = __set_regdom(rd);
2077         if (r) {
2078                 kfree(rd);
2079                 return r;
2080         }
2081
2082         /* This would make this whole thing pointless */
2083         if (!last_request->intersect)
2084                 BUG_ON(rd != cfg80211_regdomain);
2085
2086         /* update all wiphys now with the new established regulatory domain */
2087         update_all_wiphy_regulatory(last_request->initiator);
2088
2089         print_regdomain(cfg80211_regdomain);
2090
2091         nl80211_send_reg_change_event(last_request);
2092
2093         return r;
2094 }
2095
2096 /* Caller must hold cfg80211_mutex */
2097 void reg_device_remove(struct wiphy *wiphy)
2098 {
2099         struct wiphy *request_wiphy = NULL;
2100
2101         assert_cfg80211_lock();
2102
2103         if (last_request)
2104                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2105
2106         kfree(wiphy->regd);
2107         if (!last_request || !request_wiphy)
2108                 return;
2109         if (request_wiphy != wiphy)
2110                 return;
2111         last_request->wiphy_idx = WIPHY_IDX_STALE;
2112         last_request->country_ie_env = ENVIRON_ANY;
2113 }
2114
2115 int regulatory_init(void)
2116 {
2117         int err = 0;
2118
2119         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2120         if (IS_ERR(reg_pdev))
2121                 return PTR_ERR(reg_pdev);
2122
2123         spin_lock_init(&reg_requests_lock);
2124         spin_lock_init(&reg_pending_beacons_lock);
2125
2126 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
2127         cfg80211_regdomain = static_regdom(ieee80211_regdom);
2128
2129         printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
2130         print_regdomain_info(cfg80211_regdomain);
2131         /*
2132          * The old code still requests for a new regdomain and if
2133          * you have CRDA you get it updated, otherwise you get
2134          * stuck with the static values. Since "EU" is not a valid
2135          * ISO / IEC 3166 alpha2 code we can't expect userpace to
2136          * give us a regulatory domain for it. We need last_request
2137          * iniitalized though so lets just send a request which we
2138          * know will be ignored... this crap will be removed once
2139          * OLD_REG dies.
2140          */
2141         err = regulatory_hint_core(ieee80211_regdom);
2142 #else
2143         cfg80211_regdomain = cfg80211_world_regdom;
2144
2145         err = regulatory_hint_core(ieee80211_regdom);
2146 #endif
2147         if (err) {
2148                 if (err == -ENOMEM)
2149                         return err;
2150                 /*
2151                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2152                  * memory which is handled and propagated appropriately above
2153                  * but it can also fail during a netlink_broadcast() or during
2154                  * early boot for call_usermodehelper(). For now treat these
2155                  * errors as non-fatal.
2156                  */
2157                 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2158                         "to call CRDA during init");
2159 #ifdef CONFIG_CFG80211_REG_DEBUG
2160                 /* We want to find out exactly why when debugging */
2161                 WARN_ON(err);
2162 #endif
2163         }
2164
2165         return 0;
2166 }
2167
2168 void regulatory_exit(void)
2169 {
2170         struct regulatory_request *reg_request, *tmp;
2171         struct reg_beacon *reg_beacon, *btmp;
2172
2173         cancel_work_sync(&reg_work);
2174
2175         mutex_lock(&cfg80211_mutex);
2176
2177         reset_regdomains();
2178
2179         kfree(country_ie_regdomain);
2180         country_ie_regdomain = NULL;
2181
2182         kfree(last_request);
2183
2184         platform_device_unregister(reg_pdev);
2185
2186         spin_lock_bh(&reg_pending_beacons_lock);
2187         if (!list_empty(&reg_pending_beacons)) {
2188                 list_for_each_entry_safe(reg_beacon, btmp,
2189                                          &reg_pending_beacons, list) {
2190                         list_del(&reg_beacon->list);
2191                         kfree(reg_beacon);
2192                 }
2193         }
2194         spin_unlock_bh(&reg_pending_beacons_lock);
2195
2196         if (!list_empty(&reg_beacon_list)) {
2197                 list_for_each_entry_safe(reg_beacon, btmp,
2198                                          &reg_beacon_list, list) {
2199                         list_del(&reg_beacon->list);
2200                         kfree(reg_beacon);
2201                 }
2202         }
2203
2204         spin_lock(&reg_requests_lock);
2205         if (!list_empty(&reg_requests_list)) {
2206                 list_for_each_entry_safe(reg_request, tmp,
2207                                          &reg_requests_list, list) {
2208                         list_del(&reg_request->list);
2209                         kfree(reg_request);
2210                 }
2211         }
2212         spin_unlock(&reg_requests_lock);
2213
2214         mutex_unlock(&cfg80211_mutex);
2215 }