cfg80211: avoid flushing the global workqueue for core reg hints
[safe/jmp/linux-2.6] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/random.h>
38 #include <linux/nl80211.h>
39 #include <linux/platform_device.h>
40 #include <net/cfg80211.h>
41 #include "core.h"
42 #include "reg.h"
43 #include "regdb.h"
44 #include "nl80211.h"
45
46 #ifdef CONFIG_CFG80211_REG_DEBUG
47 #define REG_DBG_PRINT(format, args...) \
48         do { \
49                 printk(KERN_DEBUG format , ## args); \
50         } while (0)
51 #else
52 #define REG_DBG_PRINT(args...)
53 #endif
54
55 /* Receipt of information from last regulatory request */
56 static struct regulatory_request *last_request;
57
58 /* To trigger userspace events */
59 static struct platform_device *reg_pdev;
60
61 /*
62  * Central wireless core regulatory domains, we only need two,
63  * the current one and a world regulatory domain in case we have no
64  * information to give us an alpha2
65  */
66 const struct ieee80211_regdomain *cfg80211_regdomain;
67
68 /*
69  * We use this as a place for the rd structure built from the
70  * last parsed country IE to rest until CRDA gets back to us with
71  * what it thinks should apply for the same country
72  */
73 static const struct ieee80211_regdomain *country_ie_regdomain;
74
75 /*
76  * Protects static reg.c components:
77  *     - cfg80211_world_regdom
78  *     - cfg80211_regdom
79  *     - country_ie_regdomain
80  *     - last_request
81  */
82 DEFINE_MUTEX(reg_mutex);
83 #define assert_reg_lock() WARN_ON(!mutex_is_locked(&reg_mutex))
84
85 /* Used to queue up regulatory hints */
86 static LIST_HEAD(reg_requests_list);
87 static spinlock_t reg_requests_lock;
88
89 /* Used to queue up beacon hints for review */
90 static LIST_HEAD(reg_pending_beacons);
91 static spinlock_t reg_pending_beacons_lock;
92
93 /* Used to keep track of processed beacon hints */
94 static LIST_HEAD(reg_beacon_list);
95
96 struct reg_beacon {
97         struct list_head list;
98         struct ieee80211_channel chan;
99 };
100
101 /* We keep a static world regulatory domain in case of the absence of CRDA */
102 static const struct ieee80211_regdomain world_regdom = {
103         .n_reg_rules = 5,
104         .alpha2 =  "00",
105         .reg_rules = {
106                 /* IEEE 802.11b/g, channels 1..11 */
107                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
108                 /* IEEE 802.11b/g, channels 12..13. No HT40
109                  * channel fits here. */
110                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
111                         NL80211_RRF_PASSIVE_SCAN |
112                         NL80211_RRF_NO_IBSS),
113                 /* IEEE 802.11 channel 14 - Only JP enables
114                  * this and for 802.11b only */
115                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
116                         NL80211_RRF_PASSIVE_SCAN |
117                         NL80211_RRF_NO_IBSS |
118                         NL80211_RRF_NO_OFDM),
119                 /* IEEE 802.11a, channel 36..48 */
120                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
121                         NL80211_RRF_PASSIVE_SCAN |
122                         NL80211_RRF_NO_IBSS),
123
124                 /* NB: 5260 MHz - 5700 MHz requies DFS */
125
126                 /* IEEE 802.11a, channel 149..165 */
127                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
128                         NL80211_RRF_PASSIVE_SCAN |
129                         NL80211_RRF_NO_IBSS),
130         }
131 };
132
133 static const struct ieee80211_regdomain *cfg80211_world_regdom =
134         &world_regdom;
135
136 static char *ieee80211_regdom = "00";
137
138 module_param(ieee80211_regdom, charp, 0444);
139 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
140
141 static void reset_regdomains(void)
142 {
143         /* avoid freeing static information or freeing something twice */
144         if (cfg80211_regdomain == cfg80211_world_regdom)
145                 cfg80211_regdomain = NULL;
146         if (cfg80211_world_regdom == &world_regdom)
147                 cfg80211_world_regdom = NULL;
148         if (cfg80211_regdomain == &world_regdom)
149                 cfg80211_regdomain = NULL;
150
151         kfree(cfg80211_regdomain);
152         kfree(cfg80211_world_regdom);
153
154         cfg80211_world_regdom = &world_regdom;
155         cfg80211_regdomain = NULL;
156 }
157
158 /*
159  * Dynamic world regulatory domain requested by the wireless
160  * core upon initialization
161  */
162 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
163 {
164         BUG_ON(!last_request);
165
166         reset_regdomains();
167
168         cfg80211_world_regdom = rd;
169         cfg80211_regdomain = rd;
170 }
171
172 bool is_world_regdom(const char *alpha2)
173 {
174         if (!alpha2)
175                 return false;
176         if (alpha2[0] == '0' && alpha2[1] == '0')
177                 return true;
178         return false;
179 }
180
181 static bool is_alpha2_set(const char *alpha2)
182 {
183         if (!alpha2)
184                 return false;
185         if (alpha2[0] != 0 && alpha2[1] != 0)
186                 return true;
187         return false;
188 }
189
190 static bool is_alpha_upper(char letter)
191 {
192         /* ASCII A - Z */
193         if (letter >= 65 && letter <= 90)
194                 return true;
195         return false;
196 }
197
198 static bool is_unknown_alpha2(const char *alpha2)
199 {
200         if (!alpha2)
201                 return false;
202         /*
203          * Special case where regulatory domain was built by driver
204          * but a specific alpha2 cannot be determined
205          */
206         if (alpha2[0] == '9' && alpha2[1] == '9')
207                 return true;
208         return false;
209 }
210
211 static bool is_intersected_alpha2(const char *alpha2)
212 {
213         if (!alpha2)
214                 return false;
215         /*
216          * Special case where regulatory domain is the
217          * result of an intersection between two regulatory domain
218          * structures
219          */
220         if (alpha2[0] == '9' && alpha2[1] == '8')
221                 return true;
222         return false;
223 }
224
225 static bool is_an_alpha2(const char *alpha2)
226 {
227         if (!alpha2)
228                 return false;
229         if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
230                 return true;
231         return false;
232 }
233
234 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
235 {
236         if (!alpha2_x || !alpha2_y)
237                 return false;
238         if (alpha2_x[0] == alpha2_y[0] &&
239                 alpha2_x[1] == alpha2_y[1])
240                 return true;
241         return false;
242 }
243
244 static bool regdom_changes(const char *alpha2)
245 {
246         assert_cfg80211_lock();
247
248         if (!cfg80211_regdomain)
249                 return true;
250         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
251                 return false;
252         return true;
253 }
254
255 /**
256  * country_ie_integrity_changes - tells us if the country IE has changed
257  * @checksum: checksum of country IE of fields we are interested in
258  *
259  * If the country IE has not changed you can ignore it safely. This is
260  * useful to determine if two devices are seeing two different country IEs
261  * even on the same alpha2. Note that this will return false if no IE has
262  * been set on the wireless core yet.
263  */
264 static bool country_ie_integrity_changes(u32 checksum)
265 {
266         /* If no IE has been set then the checksum doesn't change */
267         if (unlikely(!last_request->country_ie_checksum))
268                 return false;
269         if (unlikely(last_request->country_ie_checksum != checksum))
270                 return true;
271         return false;
272 }
273
274 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
275                          const struct ieee80211_regdomain *src_regd)
276 {
277         struct ieee80211_regdomain *regd;
278         int size_of_regd = 0;
279         unsigned int i;
280
281         size_of_regd = sizeof(struct ieee80211_regdomain) +
282           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
283
284         regd = kzalloc(size_of_regd, GFP_KERNEL);
285         if (!regd)
286                 return -ENOMEM;
287
288         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
289
290         for (i = 0; i < src_regd->n_reg_rules; i++)
291                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
292                         sizeof(struct ieee80211_reg_rule));
293
294         *dst_regd = regd;
295         return 0;
296 }
297
298 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
299 struct reg_regdb_search_request {
300         char alpha2[2];
301         struct list_head list;
302 };
303
304 static LIST_HEAD(reg_regdb_search_list);
305 static DEFINE_SPINLOCK(reg_regdb_search_lock);
306
307 static void reg_regdb_search(struct work_struct *work)
308 {
309         struct reg_regdb_search_request *request;
310         const struct ieee80211_regdomain *curdom, *regdom;
311         int i, r;
312
313         spin_lock(&reg_regdb_search_lock);
314         while (!list_empty(&reg_regdb_search_list)) {
315                 request = list_first_entry(&reg_regdb_search_list,
316                                            struct reg_regdb_search_request,
317                                            list);
318                 list_del(&request->list);
319
320                 for (i=0; i<reg_regdb_size; i++) {
321                         curdom = reg_regdb[i];
322
323                         if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
324                                 r = reg_copy_regd(&regdom, curdom);
325                                 if (r)
326                                         break;
327                                 spin_unlock(&reg_regdb_search_lock);
328                                 mutex_lock(&cfg80211_mutex);
329                                 set_regdom(regdom);
330                                 mutex_unlock(&cfg80211_mutex);
331                                 spin_lock(&reg_regdb_search_lock);
332                                 break;
333                         }
334                 }
335
336                 kfree(request);
337         }
338         spin_unlock(&reg_regdb_search_lock);
339 }
340
341 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
342
343 static void reg_regdb_query(const char *alpha2)
344 {
345         struct reg_regdb_search_request *request;
346
347         if (!alpha2)
348                 return;
349
350         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
351         if (!request)
352                 return;
353
354         memcpy(request->alpha2, alpha2, 2);
355
356         spin_lock(&reg_regdb_search_lock);
357         list_add_tail(&request->list, &reg_regdb_search_list);
358         spin_unlock(&reg_regdb_search_lock);
359
360         schedule_work(&reg_regdb_work);
361 }
362 #else
363 static inline void reg_regdb_query(const char *alpha2) {}
364 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
365
366 /*
367  * This lets us keep regulatory code which is updated on a regulatory
368  * basis in userspace.
369  */
370 static int call_crda(const char *alpha2)
371 {
372         char country_env[9 + 2] = "COUNTRY=";
373         char *envp[] = {
374                 country_env,
375                 NULL
376         };
377
378         if (!is_world_regdom((char *) alpha2))
379                 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
380                         alpha2[0], alpha2[1]);
381         else
382                 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
383                         "regulatory domain\n");
384
385         /* query internal regulatory database (if it exists) */
386         reg_regdb_query(alpha2);
387
388         country_env[8] = alpha2[0];
389         country_env[9] = alpha2[1];
390
391         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
392 }
393
394 /* Used by nl80211 before kmalloc'ing our regulatory domain */
395 bool reg_is_valid_request(const char *alpha2)
396 {
397         assert_cfg80211_lock();
398
399         if (!last_request)
400                 return false;
401
402         return alpha2_equal(last_request->alpha2, alpha2);
403 }
404
405 /* Sanity check on a regulatory rule */
406 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
407 {
408         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
409         u32 freq_diff;
410
411         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
412                 return false;
413
414         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
415                 return false;
416
417         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
418
419         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
420                         freq_range->max_bandwidth_khz > freq_diff)
421                 return false;
422
423         return true;
424 }
425
426 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
427 {
428         const struct ieee80211_reg_rule *reg_rule = NULL;
429         unsigned int i;
430
431         if (!rd->n_reg_rules)
432                 return false;
433
434         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
435                 return false;
436
437         for (i = 0; i < rd->n_reg_rules; i++) {
438                 reg_rule = &rd->reg_rules[i];
439                 if (!is_valid_reg_rule(reg_rule))
440                         return false;
441         }
442
443         return true;
444 }
445
446 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
447                             u32 center_freq_khz,
448                             u32 bw_khz)
449 {
450         u32 start_freq_khz, end_freq_khz;
451
452         start_freq_khz = center_freq_khz - (bw_khz/2);
453         end_freq_khz = center_freq_khz + (bw_khz/2);
454
455         if (start_freq_khz >= freq_range->start_freq_khz &&
456             end_freq_khz <= freq_range->end_freq_khz)
457                 return true;
458
459         return false;
460 }
461
462 /**
463  * freq_in_rule_band - tells us if a frequency is in a frequency band
464  * @freq_range: frequency rule we want to query
465  * @freq_khz: frequency we are inquiring about
466  *
467  * This lets us know if a specific frequency rule is or is not relevant to
468  * a specific frequency's band. Bands are device specific and artificial
469  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
470  * safe for now to assume that a frequency rule should not be part of a
471  * frequency's band if the start freq or end freq are off by more than 2 GHz.
472  * This resolution can be lowered and should be considered as we add
473  * regulatory rule support for other "bands".
474  **/
475 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
476         u32 freq_khz)
477 {
478 #define ONE_GHZ_IN_KHZ  1000000
479         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
480                 return true;
481         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
482                 return true;
483         return false;
484 #undef ONE_GHZ_IN_KHZ
485 }
486
487 /*
488  * This is a work around for sanity checking ieee80211_channel_to_frequency()'s
489  * work. ieee80211_channel_to_frequency() can for example currently provide a
490  * 2 GHz channel when in fact a 5 GHz channel was desired. An example would be
491  * an AP providing channel 8 on a country IE triplet when it sent this on the
492  * 5 GHz band, that channel is designed to be channel 8 on 5 GHz, not a 2 GHz
493  * channel.
494  *
495  * This can be removed once ieee80211_channel_to_frequency() takes in a band.
496  */
497 static bool chan_in_band(int chan, enum ieee80211_band band)
498 {
499         int center_freq = ieee80211_channel_to_frequency(chan);
500
501         switch (band) {
502         case IEEE80211_BAND_2GHZ:
503                 if (center_freq <= 2484)
504                         return true;
505                 return false;
506         case IEEE80211_BAND_5GHZ:
507                 if (center_freq >= 5005)
508                         return true;
509                 return false;
510         default:
511                 return false;
512         }
513 }
514
515 /*
516  * Some APs may send a country IE triplet for each channel they
517  * support and while this is completely overkill and silly we still
518  * need to support it. We avoid making a single rule for each channel
519  * though and to help us with this we use this helper to find the
520  * actual subband end channel. These type of country IE triplet
521  * scenerios are handled then, all yielding two regulaotry rules from
522  * parsing a country IE:
523  *
524  * [1]
525  * [2]
526  * [36]
527  * [40]
528  *
529  * [1]
530  * [2-4]
531  * [5-12]
532  * [36]
533  * [40-44]
534  *
535  * [1-4]
536  * [5-7]
537  * [36-44]
538  * [48-64]
539  *
540  * [36-36]
541  * [40-40]
542  * [44-44]
543  * [48-48]
544  * [52-52]
545  * [56-56]
546  * [60-60]
547  * [64-64]
548  * [100-100]
549  * [104-104]
550  * [108-108]
551  * [112-112]
552  * [116-116]
553  * [120-120]
554  * [124-124]
555  * [128-128]
556  * [132-132]
557  * [136-136]
558  * [140-140]
559  *
560  * Returns 0 if the IE has been found to be invalid in the middle
561  * somewhere.
562  */
563 static int max_subband_chan(enum ieee80211_band band,
564                             int orig_cur_chan,
565                             int orig_end_channel,
566                             s8 orig_max_power,
567                             u8 **country_ie,
568                             u8 *country_ie_len)
569 {
570         u8 *triplets_start = *country_ie;
571         u8 len_at_triplet = *country_ie_len;
572         int end_subband_chan = orig_end_channel;
573
574         /*
575          * We'll deal with padding for the caller unless
576          * its not immediate and we don't process any channels
577          */
578         if (*country_ie_len == 1) {
579                 *country_ie += 1;
580                 *country_ie_len -= 1;
581                 return orig_end_channel;
582         }
583
584         /* Move to the next triplet and then start search */
585         *country_ie += 3;
586         *country_ie_len -= 3;
587
588         if (!chan_in_band(orig_cur_chan, band))
589                 return 0;
590
591         while (*country_ie_len >= 3) {
592                 int end_channel = 0;
593                 struct ieee80211_country_ie_triplet *triplet =
594                         (struct ieee80211_country_ie_triplet *) *country_ie;
595                 int cur_channel = 0, next_expected_chan;
596
597                 /* means last triplet is completely unrelated to this one */
598                 if (triplet->ext.reg_extension_id >=
599                                 IEEE80211_COUNTRY_EXTENSION_ID) {
600                         *country_ie -= 3;
601                         *country_ie_len += 3;
602                         break;
603                 }
604
605                 if (triplet->chans.first_channel == 0) {
606                         *country_ie += 1;
607                         *country_ie_len -= 1;
608                         if (*country_ie_len != 0)
609                                 return 0;
610                         break;
611                 }
612
613                 if (triplet->chans.num_channels == 0)
614                         return 0;
615
616                 /* Monitonically increasing channel order */
617                 if (triplet->chans.first_channel <= end_subband_chan)
618                         return 0;
619
620                 if (!chan_in_band(triplet->chans.first_channel, band))
621                         return 0;
622
623                 /* 2 GHz */
624                 if (triplet->chans.first_channel <= 14) {
625                         end_channel = triplet->chans.first_channel +
626                                 triplet->chans.num_channels - 1;
627                 }
628                 else {
629                         end_channel =  triplet->chans.first_channel +
630                                 (4 * (triplet->chans.num_channels - 1));
631                 }
632
633                 if (!chan_in_band(end_channel, band))
634                         return 0;
635
636                 if (orig_max_power != triplet->chans.max_power) {
637                         *country_ie -= 3;
638                         *country_ie_len += 3;
639                         break;
640                 }
641
642                 cur_channel = triplet->chans.first_channel;
643
644                 /* The key is finding the right next expected channel */
645                 if (band == IEEE80211_BAND_2GHZ)
646                         next_expected_chan = end_subband_chan + 1;
647                  else
648                         next_expected_chan = end_subband_chan + 4;
649
650                 if (cur_channel != next_expected_chan) {
651                         *country_ie -= 3;
652                         *country_ie_len += 3;
653                         break;
654                 }
655
656                 end_subband_chan = end_channel;
657
658                 /* Move to the next one */
659                 *country_ie += 3;
660                 *country_ie_len -= 3;
661
662                 /*
663                  * Padding needs to be dealt with if we processed
664                  * some channels.
665                  */
666                 if (*country_ie_len == 1) {
667                         *country_ie += 1;
668                         *country_ie_len -= 1;
669                         break;
670                 }
671
672                 /* If seen, the IE is invalid */
673                 if (*country_ie_len == 2)
674                         return 0;
675         }
676
677         if (end_subband_chan == orig_end_channel) {
678                 *country_ie = triplets_start;
679                 *country_ie_len = len_at_triplet;
680                 return orig_end_channel;
681         }
682
683         return end_subband_chan;
684 }
685
686 /*
687  * Converts a country IE to a regulatory domain. A regulatory domain
688  * structure has a lot of information which the IE doesn't yet have,
689  * so for the other values we use upper max values as we will intersect
690  * with our userspace regulatory agent to get lower bounds.
691  */
692 static struct ieee80211_regdomain *country_ie_2_rd(
693                                 enum ieee80211_band band,
694                                 u8 *country_ie,
695                                 u8 country_ie_len,
696                                 u32 *checksum)
697 {
698         struct ieee80211_regdomain *rd = NULL;
699         unsigned int i = 0;
700         char alpha2[2];
701         u32 flags = 0;
702         u32 num_rules = 0, size_of_regd = 0;
703         u8 *triplets_start = NULL;
704         u8 len_at_triplet = 0;
705         /* the last channel we have registered in a subband (triplet) */
706         int last_sub_max_channel = 0;
707
708         *checksum = 0xDEADBEEF;
709
710         /* Country IE requirements */
711         BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
712                 country_ie_len & 0x01);
713
714         alpha2[0] = country_ie[0];
715         alpha2[1] = country_ie[1];
716
717         /*
718          * Third octet can be:
719          *    'I' - Indoor
720          *    'O' - Outdoor
721          *
722          *  anything else we assume is no restrictions
723          */
724         if (country_ie[2] == 'I')
725                 flags = NL80211_RRF_NO_OUTDOOR;
726         else if (country_ie[2] == 'O')
727                 flags = NL80211_RRF_NO_INDOOR;
728
729         country_ie += 3;
730         country_ie_len -= 3;
731
732         triplets_start = country_ie;
733         len_at_triplet = country_ie_len;
734
735         *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
736
737         /*
738          * We need to build a reg rule for each triplet, but first we must
739          * calculate the number of reg rules we will need. We will need one
740          * for each channel subband
741          */
742         while (country_ie_len >= 3) {
743                 int end_channel = 0;
744                 struct ieee80211_country_ie_triplet *triplet =
745                         (struct ieee80211_country_ie_triplet *) country_ie;
746                 int cur_sub_max_channel = 0, cur_channel = 0;
747
748                 if (triplet->ext.reg_extension_id >=
749                                 IEEE80211_COUNTRY_EXTENSION_ID) {
750                         country_ie += 3;
751                         country_ie_len -= 3;
752                         continue;
753                 }
754
755                 /*
756                  * APs can add padding to make length divisible
757                  * by two, required by the spec.
758                  */
759                 if (triplet->chans.first_channel == 0) {
760                         country_ie++;
761                         country_ie_len--;
762                         /* This is expected to be at the very end only */
763                         if (country_ie_len != 0)
764                                 return NULL;
765                         break;
766                 }
767
768                 if (triplet->chans.num_channels == 0)
769                         return NULL;
770
771                 if (!chan_in_band(triplet->chans.first_channel, band))
772                         return NULL;
773
774                 /* 2 GHz */
775                 if (band == IEEE80211_BAND_2GHZ)
776                         end_channel = triplet->chans.first_channel +
777                                 triplet->chans.num_channels - 1;
778                 else
779                         /*
780                          * 5 GHz -- For example in country IEs if the first
781                          * channel given is 36 and the number of channels is 4
782                          * then the individual channel numbers defined for the
783                          * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
784                          * and not 36, 37, 38, 39.
785                          *
786                          * See: http://tinyurl.com/11d-clarification
787                          */
788                         end_channel =  triplet->chans.first_channel +
789                                 (4 * (triplet->chans.num_channels - 1));
790
791                 cur_channel = triplet->chans.first_channel;
792
793                 /*
794                  * Enhancement for APs that send a triplet for every channel
795                  * or for whatever reason sends triplets with multiple channels
796                  * separated when in fact they should be together.
797                  */
798                 end_channel = max_subband_chan(band,
799                                                cur_channel,
800                                                end_channel,
801                                                triplet->chans.max_power,
802                                                &country_ie,
803                                                &country_ie_len);
804                 if (!end_channel)
805                         return NULL;
806
807                 if (!chan_in_band(end_channel, band))
808                         return NULL;
809
810                 cur_sub_max_channel = end_channel;
811
812                 /* Basic sanity check */
813                 if (cur_sub_max_channel < cur_channel)
814                         return NULL;
815
816                 /*
817                  * Do not allow overlapping channels. Also channels
818                  * passed in each subband must be monotonically
819                  * increasing
820                  */
821                 if (last_sub_max_channel) {
822                         if (cur_channel <= last_sub_max_channel)
823                                 return NULL;
824                         if (cur_sub_max_channel <= last_sub_max_channel)
825                                 return NULL;
826                 }
827
828                 /*
829                  * When dot11RegulatoryClassesRequired is supported
830                  * we can throw ext triplets as part of this soup,
831                  * for now we don't care when those change as we
832                  * don't support them
833                  */
834                 *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
835                   ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
836                   ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
837
838                 last_sub_max_channel = cur_sub_max_channel;
839
840                 num_rules++;
841
842                 if (country_ie_len >= 3) {
843                         country_ie += 3;
844                         country_ie_len -= 3;
845                 }
846
847                 /*
848                  * Note: this is not a IEEE requirement but
849                  * simply a memory requirement
850                  */
851                 if (num_rules > NL80211_MAX_SUPP_REG_RULES)
852                         return NULL;
853         }
854
855         country_ie = triplets_start;
856         country_ie_len = len_at_triplet;
857
858         size_of_regd = sizeof(struct ieee80211_regdomain) +
859                 (num_rules * sizeof(struct ieee80211_reg_rule));
860
861         rd = kzalloc(size_of_regd, GFP_KERNEL);
862         if (!rd)
863                 return NULL;
864
865         rd->n_reg_rules = num_rules;
866         rd->alpha2[0] = alpha2[0];
867         rd->alpha2[1] = alpha2[1];
868
869         /* This time around we fill in the rd */
870         while (country_ie_len >= 3) {
871                 int end_channel = 0;
872                 struct ieee80211_country_ie_triplet *triplet =
873                         (struct ieee80211_country_ie_triplet *) country_ie;
874                 struct ieee80211_reg_rule *reg_rule = NULL;
875                 struct ieee80211_freq_range *freq_range = NULL;
876                 struct ieee80211_power_rule *power_rule = NULL;
877
878                 /*
879                  * Must parse if dot11RegulatoryClassesRequired is true,
880                  * we don't support this yet
881                  */
882                 if (triplet->ext.reg_extension_id >=
883                                 IEEE80211_COUNTRY_EXTENSION_ID) {
884                         country_ie += 3;
885                         country_ie_len -= 3;
886                         continue;
887                 }
888
889                 if (triplet->chans.first_channel == 0) {
890                         country_ie++;
891                         country_ie_len--;
892                         break;
893                 }
894
895                 reg_rule = &rd->reg_rules[i];
896                 freq_range = &reg_rule->freq_range;
897                 power_rule = &reg_rule->power_rule;
898
899                 reg_rule->flags = flags;
900
901                 /* 2 GHz */
902                 if (band == IEEE80211_BAND_2GHZ)
903                         end_channel = triplet->chans.first_channel +
904                                 triplet->chans.num_channels -1;
905                 else
906                         end_channel =  triplet->chans.first_channel +
907                                 (4 * (triplet->chans.num_channels - 1));
908
909                 end_channel = max_subband_chan(band,
910                                                triplet->chans.first_channel,
911                                                end_channel,
912                                                triplet->chans.max_power,
913                                                &country_ie,
914                                                &country_ie_len);
915
916                 /*
917                  * The +10 is since the regulatory domain expects
918                  * the actual band edge, not the center of freq for
919                  * its start and end freqs, assuming 20 MHz bandwidth on
920                  * the channels passed
921                  */
922                 freq_range->start_freq_khz =
923                         MHZ_TO_KHZ(ieee80211_channel_to_frequency(
924                                 triplet->chans.first_channel) - 10);
925                 freq_range->end_freq_khz =
926                         MHZ_TO_KHZ(ieee80211_channel_to_frequency(
927                                 end_channel) + 10);
928
929                 /*
930                  * These are large arbitrary values we use to intersect later.
931                  * Increment this if we ever support >= 40 MHz channels
932                  * in IEEE 802.11
933                  */
934                 freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
935                 power_rule->max_antenna_gain = DBI_TO_MBI(100);
936                 power_rule->max_eirp = DBM_TO_MBM(triplet->chans.max_power);
937
938                 i++;
939
940                 if (country_ie_len >= 3) {
941                         country_ie += 3;
942                         country_ie_len -= 3;
943                 }
944
945                 BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
946         }
947
948         return rd;
949 }
950
951
952 /*
953  * Helper for regdom_intersect(), this does the real
954  * mathematical intersection fun
955  */
956 static int reg_rules_intersect(
957         const struct ieee80211_reg_rule *rule1,
958         const struct ieee80211_reg_rule *rule2,
959         struct ieee80211_reg_rule *intersected_rule)
960 {
961         const struct ieee80211_freq_range *freq_range1, *freq_range2;
962         struct ieee80211_freq_range *freq_range;
963         const struct ieee80211_power_rule *power_rule1, *power_rule2;
964         struct ieee80211_power_rule *power_rule;
965         u32 freq_diff;
966
967         freq_range1 = &rule1->freq_range;
968         freq_range2 = &rule2->freq_range;
969         freq_range = &intersected_rule->freq_range;
970
971         power_rule1 = &rule1->power_rule;
972         power_rule2 = &rule2->power_rule;
973         power_rule = &intersected_rule->power_rule;
974
975         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
976                 freq_range2->start_freq_khz);
977         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
978                 freq_range2->end_freq_khz);
979         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
980                 freq_range2->max_bandwidth_khz);
981
982         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
983         if (freq_range->max_bandwidth_khz > freq_diff)
984                 freq_range->max_bandwidth_khz = freq_diff;
985
986         power_rule->max_eirp = min(power_rule1->max_eirp,
987                 power_rule2->max_eirp);
988         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
989                 power_rule2->max_antenna_gain);
990
991         intersected_rule->flags = (rule1->flags | rule2->flags);
992
993         if (!is_valid_reg_rule(intersected_rule))
994                 return -EINVAL;
995
996         return 0;
997 }
998
999 /**
1000  * regdom_intersect - do the intersection between two regulatory domains
1001  * @rd1: first regulatory domain
1002  * @rd2: second regulatory domain
1003  *
1004  * Use this function to get the intersection between two regulatory domains.
1005  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1006  * as no one single alpha2 can represent this regulatory domain.
1007  *
1008  * Returns a pointer to the regulatory domain structure which will hold the
1009  * resulting intersection of rules between rd1 and rd2. We will
1010  * kzalloc() this structure for you.
1011  */
1012 static struct ieee80211_regdomain *regdom_intersect(
1013         const struct ieee80211_regdomain *rd1,
1014         const struct ieee80211_regdomain *rd2)
1015 {
1016         int r, size_of_regd;
1017         unsigned int x, y;
1018         unsigned int num_rules = 0, rule_idx = 0;
1019         const struct ieee80211_reg_rule *rule1, *rule2;
1020         struct ieee80211_reg_rule *intersected_rule;
1021         struct ieee80211_regdomain *rd;
1022         /* This is just a dummy holder to help us count */
1023         struct ieee80211_reg_rule irule;
1024
1025         /* Uses the stack temporarily for counter arithmetic */
1026         intersected_rule = &irule;
1027
1028         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
1029
1030         if (!rd1 || !rd2)
1031                 return NULL;
1032
1033         /*
1034          * First we get a count of the rules we'll need, then we actually
1035          * build them. This is to so we can malloc() and free() a
1036          * regdomain once. The reason we use reg_rules_intersect() here
1037          * is it will return -EINVAL if the rule computed makes no sense.
1038          * All rules that do check out OK are valid.
1039          */
1040
1041         for (x = 0; x < rd1->n_reg_rules; x++) {
1042                 rule1 = &rd1->reg_rules[x];
1043                 for (y = 0; y < rd2->n_reg_rules; y++) {
1044                         rule2 = &rd2->reg_rules[y];
1045                         if (!reg_rules_intersect(rule1, rule2,
1046                                         intersected_rule))
1047                                 num_rules++;
1048                         memset(intersected_rule, 0,
1049                                         sizeof(struct ieee80211_reg_rule));
1050                 }
1051         }
1052
1053         if (!num_rules)
1054                 return NULL;
1055
1056         size_of_regd = sizeof(struct ieee80211_regdomain) +
1057                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
1058
1059         rd = kzalloc(size_of_regd, GFP_KERNEL);
1060         if (!rd)
1061                 return NULL;
1062
1063         for (x = 0; x < rd1->n_reg_rules; x++) {
1064                 rule1 = &rd1->reg_rules[x];
1065                 for (y = 0; y < rd2->n_reg_rules; y++) {
1066                         rule2 = &rd2->reg_rules[y];
1067                         /*
1068                          * This time around instead of using the stack lets
1069                          * write to the target rule directly saving ourselves
1070                          * a memcpy()
1071                          */
1072                         intersected_rule = &rd->reg_rules[rule_idx];
1073                         r = reg_rules_intersect(rule1, rule2,
1074                                 intersected_rule);
1075                         /*
1076                          * No need to memset here the intersected rule here as
1077                          * we're not using the stack anymore
1078                          */
1079                         if (r)
1080                                 continue;
1081                         rule_idx++;
1082                 }
1083         }
1084
1085         if (rule_idx != num_rules) {
1086                 kfree(rd);
1087                 return NULL;
1088         }
1089
1090         rd->n_reg_rules = num_rules;
1091         rd->alpha2[0] = '9';
1092         rd->alpha2[1] = '8';
1093
1094         return rd;
1095 }
1096
1097 /*
1098  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1099  * want to just have the channel structure use these
1100  */
1101 static u32 map_regdom_flags(u32 rd_flags)
1102 {
1103         u32 channel_flags = 0;
1104         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
1105                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
1106         if (rd_flags & NL80211_RRF_NO_IBSS)
1107                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
1108         if (rd_flags & NL80211_RRF_DFS)
1109                 channel_flags |= IEEE80211_CHAN_RADAR;
1110         return channel_flags;
1111 }
1112
1113 static int freq_reg_info_regd(struct wiphy *wiphy,
1114                               u32 center_freq,
1115                               u32 desired_bw_khz,
1116                               const struct ieee80211_reg_rule **reg_rule,
1117                               const struct ieee80211_regdomain *custom_regd)
1118 {
1119         int i;
1120         bool band_rule_found = false;
1121         const struct ieee80211_regdomain *regd;
1122         bool bw_fits = false;
1123
1124         if (!desired_bw_khz)
1125                 desired_bw_khz = MHZ_TO_KHZ(20);
1126
1127         regd = custom_regd ? custom_regd : cfg80211_regdomain;
1128
1129         /*
1130          * Follow the driver's regulatory domain, if present, unless a country
1131          * IE has been processed or a user wants to help complaince further
1132          */
1133         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1134             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
1135             wiphy->regd)
1136                 regd = wiphy->regd;
1137
1138         if (!regd)
1139                 return -EINVAL;
1140
1141         for (i = 0; i < regd->n_reg_rules; i++) {
1142                 const struct ieee80211_reg_rule *rr;
1143                 const struct ieee80211_freq_range *fr = NULL;
1144                 const struct ieee80211_power_rule *pr = NULL;
1145
1146                 rr = &regd->reg_rules[i];
1147                 fr = &rr->freq_range;
1148                 pr = &rr->power_rule;
1149
1150                 /*
1151                  * We only need to know if one frequency rule was
1152                  * was in center_freq's band, that's enough, so lets
1153                  * not overwrite it once found
1154                  */
1155                 if (!band_rule_found)
1156                         band_rule_found = freq_in_rule_band(fr, center_freq);
1157
1158                 bw_fits = reg_does_bw_fit(fr,
1159                                           center_freq,
1160                                           desired_bw_khz);
1161
1162                 if (band_rule_found && bw_fits) {
1163                         *reg_rule = rr;
1164                         return 0;
1165                 }
1166         }
1167
1168         if (!band_rule_found)
1169                 return -ERANGE;
1170
1171         return -EINVAL;
1172 }
1173 EXPORT_SYMBOL(freq_reg_info);
1174
1175 int freq_reg_info(struct wiphy *wiphy,
1176                   u32 center_freq,
1177                   u32 desired_bw_khz,
1178                   const struct ieee80211_reg_rule **reg_rule)
1179 {
1180         assert_cfg80211_lock();
1181         return freq_reg_info_regd(wiphy,
1182                                   center_freq,
1183                                   desired_bw_khz,
1184                                   reg_rule,
1185                                   NULL);
1186 }
1187
1188 /*
1189  * Note that right now we assume the desired channel bandwidth
1190  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1191  * per channel, the primary and the extension channel). To support
1192  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
1193  * new ieee80211_channel.target_bw and re run the regulatory check
1194  * on the wiphy with the target_bw specified. Then we can simply use
1195  * that below for the desired_bw_khz below.
1196  */
1197 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
1198                            unsigned int chan_idx)
1199 {
1200         int r;
1201         u32 flags, bw_flags = 0;
1202         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1203         const struct ieee80211_reg_rule *reg_rule = NULL;
1204         const struct ieee80211_power_rule *power_rule = NULL;
1205         const struct ieee80211_freq_range *freq_range = NULL;
1206         struct ieee80211_supported_band *sband;
1207         struct ieee80211_channel *chan;
1208         struct wiphy *request_wiphy = NULL;
1209
1210         assert_cfg80211_lock();
1211
1212         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1213
1214         sband = wiphy->bands[band];
1215         BUG_ON(chan_idx >= sband->n_channels);
1216         chan = &sband->channels[chan_idx];
1217
1218         flags = chan->orig_flags;
1219
1220         r = freq_reg_info(wiphy,
1221                           MHZ_TO_KHZ(chan->center_freq),
1222                           desired_bw_khz,
1223                           &reg_rule);
1224
1225         if (r) {
1226                 /*
1227                  * This means no regulatory rule was found in the country IE
1228                  * with a frequency range on the center_freq's band, since
1229                  * IEEE-802.11 allows for a country IE to have a subset of the
1230                  * regulatory information provided in a country we ignore
1231                  * disabling the channel unless at least one reg rule was
1232                  * found on the center_freq's band. For details see this
1233                  * clarification:
1234                  *
1235                  * http://tinyurl.com/11d-clarification
1236                  */
1237                 if (r == -ERANGE &&
1238                     last_request->initiator ==
1239                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1240                         REG_DBG_PRINT("cfg80211: Leaving channel %d MHz "
1241                                 "intact on %s - no rule found in band on "
1242                                 "Country IE\n",
1243                         chan->center_freq, wiphy_name(wiphy));
1244                 } else {
1245                 /*
1246                  * In this case we know the country IE has at least one reg rule
1247                  * for the band so we respect its band definitions
1248                  */
1249                         if (last_request->initiator ==
1250                             NL80211_REGDOM_SET_BY_COUNTRY_IE)
1251                                 REG_DBG_PRINT("cfg80211: Disabling "
1252                                         "channel %d MHz on %s due to "
1253                                         "Country IE\n",
1254                                         chan->center_freq, wiphy_name(wiphy));
1255                         flags |= IEEE80211_CHAN_DISABLED;
1256                         chan->flags = flags;
1257                 }
1258                 return;
1259         }
1260
1261         power_rule = &reg_rule->power_rule;
1262         freq_range = &reg_rule->freq_range;
1263
1264         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1265                 bw_flags = IEEE80211_CHAN_NO_HT40;
1266
1267         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1268             request_wiphy && request_wiphy == wiphy &&
1269             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1270                 /*
1271                  * This gaurantees the driver's requested regulatory domain
1272                  * will always be used as a base for further regulatory
1273                  * settings
1274                  */
1275                 chan->flags = chan->orig_flags =
1276                         map_regdom_flags(reg_rule->flags) | bw_flags;
1277                 chan->max_antenna_gain = chan->orig_mag =
1278                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1279                 chan->max_power = chan->orig_mpwr =
1280                         (int) MBM_TO_DBM(power_rule->max_eirp);
1281                 return;
1282         }
1283
1284         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1285         chan->max_antenna_gain = min(chan->orig_mag,
1286                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
1287         if (chan->orig_mpwr)
1288                 chan->max_power = min(chan->orig_mpwr,
1289                         (int) MBM_TO_DBM(power_rule->max_eirp));
1290         else
1291                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1292 }
1293
1294 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1295 {
1296         unsigned int i;
1297         struct ieee80211_supported_band *sband;
1298
1299         BUG_ON(!wiphy->bands[band]);
1300         sband = wiphy->bands[band];
1301
1302         for (i = 0; i < sband->n_channels; i++)
1303                 handle_channel(wiphy, band, i);
1304 }
1305
1306 static bool ignore_reg_update(struct wiphy *wiphy,
1307                               enum nl80211_reg_initiator initiator)
1308 {
1309         if (!last_request)
1310                 return true;
1311         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1312             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1313                 return true;
1314         /*
1315          * wiphy->regd will be set once the device has its own
1316          * desired regulatory domain set
1317          */
1318         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1319             !is_world_regdom(last_request->alpha2))
1320                 return true;
1321         return false;
1322 }
1323
1324 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1325 {
1326         struct cfg80211_registered_device *rdev;
1327
1328         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1329                 wiphy_update_regulatory(&rdev->wiphy, initiator);
1330 }
1331
1332 static void handle_reg_beacon(struct wiphy *wiphy,
1333                               unsigned int chan_idx,
1334                               struct reg_beacon *reg_beacon)
1335 {
1336         struct ieee80211_supported_band *sband;
1337         struct ieee80211_channel *chan;
1338         bool channel_changed = false;
1339         struct ieee80211_channel chan_before;
1340
1341         assert_cfg80211_lock();
1342
1343         sband = wiphy->bands[reg_beacon->chan.band];
1344         chan = &sband->channels[chan_idx];
1345
1346         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1347                 return;
1348
1349         if (chan->beacon_found)
1350                 return;
1351
1352         chan->beacon_found = true;
1353
1354         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1355                 return;
1356
1357         chan_before.center_freq = chan->center_freq;
1358         chan_before.flags = chan->flags;
1359
1360         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1361                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1362                 channel_changed = true;
1363         }
1364
1365         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1366                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1367                 channel_changed = true;
1368         }
1369
1370         if (channel_changed)
1371                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1372 }
1373
1374 /*
1375  * Called when a scan on a wiphy finds a beacon on
1376  * new channel
1377  */
1378 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1379                                     struct reg_beacon *reg_beacon)
1380 {
1381         unsigned int i;
1382         struct ieee80211_supported_band *sband;
1383
1384         assert_cfg80211_lock();
1385
1386         if (!wiphy->bands[reg_beacon->chan.band])
1387                 return;
1388
1389         sband = wiphy->bands[reg_beacon->chan.band];
1390
1391         for (i = 0; i < sband->n_channels; i++)
1392                 handle_reg_beacon(wiphy, i, reg_beacon);
1393 }
1394
1395 /*
1396  * Called upon reg changes or a new wiphy is added
1397  */
1398 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1399 {
1400         unsigned int i;
1401         struct ieee80211_supported_band *sband;
1402         struct reg_beacon *reg_beacon;
1403
1404         assert_cfg80211_lock();
1405
1406         if (list_empty(&reg_beacon_list))
1407                 return;
1408
1409         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1410                 if (!wiphy->bands[reg_beacon->chan.band])
1411                         continue;
1412                 sband = wiphy->bands[reg_beacon->chan.band];
1413                 for (i = 0; i < sband->n_channels; i++)
1414                         handle_reg_beacon(wiphy, i, reg_beacon);
1415         }
1416 }
1417
1418 static bool reg_is_world_roaming(struct wiphy *wiphy)
1419 {
1420         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1421             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1422                 return true;
1423         if (last_request &&
1424             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1425             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1426                 return true;
1427         return false;
1428 }
1429
1430 /* Reap the advantages of previously found beacons */
1431 static void reg_process_beacons(struct wiphy *wiphy)
1432 {
1433         /*
1434          * Means we are just firing up cfg80211, so no beacons would
1435          * have been processed yet.
1436          */
1437         if (!last_request)
1438                 return;
1439         if (!reg_is_world_roaming(wiphy))
1440                 return;
1441         wiphy_update_beacon_reg(wiphy);
1442 }
1443
1444 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1445 {
1446         if (!chan)
1447                 return true;
1448         if (chan->flags & IEEE80211_CHAN_DISABLED)
1449                 return true;
1450         /* This would happen when regulatory rules disallow HT40 completely */
1451         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1452                 return true;
1453         return false;
1454 }
1455
1456 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1457                                          enum ieee80211_band band,
1458                                          unsigned int chan_idx)
1459 {
1460         struct ieee80211_supported_band *sband;
1461         struct ieee80211_channel *channel;
1462         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1463         unsigned int i;
1464
1465         assert_cfg80211_lock();
1466
1467         sband = wiphy->bands[band];
1468         BUG_ON(chan_idx >= sband->n_channels);
1469         channel = &sband->channels[chan_idx];
1470
1471         if (is_ht40_not_allowed(channel)) {
1472                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1473                 return;
1474         }
1475
1476         /*
1477          * We need to ensure the extension channels exist to
1478          * be able to use HT40- or HT40+, this finds them (or not)
1479          */
1480         for (i = 0; i < sband->n_channels; i++) {
1481                 struct ieee80211_channel *c = &sband->channels[i];
1482                 if (c->center_freq == (channel->center_freq - 20))
1483                         channel_before = c;
1484                 if (c->center_freq == (channel->center_freq + 20))
1485                         channel_after = c;
1486         }
1487
1488         /*
1489          * Please note that this assumes target bandwidth is 20 MHz,
1490          * if that ever changes we also need to change the below logic
1491          * to include that as well.
1492          */
1493         if (is_ht40_not_allowed(channel_before))
1494                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1495         else
1496                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1497
1498         if (is_ht40_not_allowed(channel_after))
1499                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1500         else
1501                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1502 }
1503
1504 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1505                                       enum ieee80211_band band)
1506 {
1507         unsigned int i;
1508         struct ieee80211_supported_band *sband;
1509
1510         BUG_ON(!wiphy->bands[band]);
1511         sband = wiphy->bands[band];
1512
1513         for (i = 0; i < sband->n_channels; i++)
1514                 reg_process_ht_flags_channel(wiphy, band, i);
1515 }
1516
1517 static void reg_process_ht_flags(struct wiphy *wiphy)
1518 {
1519         enum ieee80211_band band;
1520
1521         if (!wiphy)
1522                 return;
1523
1524         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1525                 if (wiphy->bands[band])
1526                         reg_process_ht_flags_band(wiphy, band);
1527         }
1528
1529 }
1530
1531 void wiphy_update_regulatory(struct wiphy *wiphy,
1532                              enum nl80211_reg_initiator initiator)
1533 {
1534         enum ieee80211_band band;
1535
1536         if (ignore_reg_update(wiphy, initiator))
1537                 goto out;
1538         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1539                 if (wiphy->bands[band])
1540                         handle_band(wiphy, band);
1541         }
1542 out:
1543         reg_process_beacons(wiphy);
1544         reg_process_ht_flags(wiphy);
1545         if (wiphy->reg_notifier)
1546                 wiphy->reg_notifier(wiphy, last_request);
1547 }
1548
1549 static void handle_channel_custom(struct wiphy *wiphy,
1550                                   enum ieee80211_band band,
1551                                   unsigned int chan_idx,
1552                                   const struct ieee80211_regdomain *regd)
1553 {
1554         int r;
1555         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1556         u32 bw_flags = 0;
1557         const struct ieee80211_reg_rule *reg_rule = NULL;
1558         const struct ieee80211_power_rule *power_rule = NULL;
1559         const struct ieee80211_freq_range *freq_range = NULL;
1560         struct ieee80211_supported_band *sband;
1561         struct ieee80211_channel *chan;
1562
1563         assert_reg_lock();
1564
1565         sband = wiphy->bands[band];
1566         BUG_ON(chan_idx >= sband->n_channels);
1567         chan = &sband->channels[chan_idx];
1568
1569         r = freq_reg_info_regd(wiphy,
1570                                MHZ_TO_KHZ(chan->center_freq),
1571                                desired_bw_khz,
1572                                &reg_rule,
1573                                regd);
1574
1575         if (r) {
1576                 chan->flags = IEEE80211_CHAN_DISABLED;
1577                 return;
1578         }
1579
1580         power_rule = &reg_rule->power_rule;
1581         freq_range = &reg_rule->freq_range;
1582
1583         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1584                 bw_flags = IEEE80211_CHAN_NO_HT40;
1585
1586         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1587         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1588         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1589 }
1590
1591 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1592                                const struct ieee80211_regdomain *regd)
1593 {
1594         unsigned int i;
1595         struct ieee80211_supported_band *sband;
1596
1597         BUG_ON(!wiphy->bands[band]);
1598         sband = wiphy->bands[band];
1599
1600         for (i = 0; i < sband->n_channels; i++)
1601                 handle_channel_custom(wiphy, band, i, regd);
1602 }
1603
1604 /* Used by drivers prior to wiphy registration */
1605 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1606                                    const struct ieee80211_regdomain *regd)
1607 {
1608         enum ieee80211_band band;
1609         unsigned int bands_set = 0;
1610
1611         mutex_lock(&reg_mutex);
1612         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1613                 if (!wiphy->bands[band])
1614                         continue;
1615                 handle_band_custom(wiphy, band, regd);
1616                 bands_set++;
1617         }
1618         mutex_unlock(&reg_mutex);
1619
1620         /*
1621          * no point in calling this if it won't have any effect
1622          * on your device's supportd bands.
1623          */
1624         WARN_ON(!bands_set);
1625 }
1626 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1627
1628 /*
1629  * Return value which can be used by ignore_request() to indicate
1630  * it has been determined we should intersect two regulatory domains
1631  */
1632 #define REG_INTERSECT   1
1633
1634 /* This has the logic which determines when a new request
1635  * should be ignored. */
1636 static int ignore_request(struct wiphy *wiphy,
1637                           struct regulatory_request *pending_request)
1638 {
1639         struct wiphy *last_wiphy = NULL;
1640
1641         assert_cfg80211_lock();
1642
1643         /* All initial requests are respected */
1644         if (!last_request)
1645                 return 0;
1646
1647         switch (pending_request->initiator) {
1648         case NL80211_REGDOM_SET_BY_CORE:
1649                 return -EINVAL;
1650         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1651
1652                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1653
1654                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1655                         return -EINVAL;
1656                 if (last_request->initiator ==
1657                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1658                         if (last_wiphy != wiphy) {
1659                                 /*
1660                                  * Two cards with two APs claiming different
1661                                  * Country IE alpha2s. We could
1662                                  * intersect them, but that seems unlikely
1663                                  * to be correct. Reject second one for now.
1664                                  */
1665                                 if (regdom_changes(pending_request->alpha2))
1666                                         return -EOPNOTSUPP;
1667                                 return -EALREADY;
1668                         }
1669                         /*
1670                          * Two consecutive Country IE hints on the same wiphy.
1671                          * This should be picked up early by the driver/stack
1672                          */
1673                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1674                                 return 0;
1675                         return -EALREADY;
1676                 }
1677                 return REG_INTERSECT;
1678         case NL80211_REGDOM_SET_BY_DRIVER:
1679                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1680                         if (regdom_changes(pending_request->alpha2))
1681                                 return 0;
1682                         return -EALREADY;
1683                 }
1684
1685                 /*
1686                  * This would happen if you unplug and plug your card
1687                  * back in or if you add a new device for which the previously
1688                  * loaded card also agrees on the regulatory domain.
1689                  */
1690                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1691                     !regdom_changes(pending_request->alpha2))
1692                         return -EALREADY;
1693
1694                 return REG_INTERSECT;
1695         case NL80211_REGDOM_SET_BY_USER:
1696                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1697                         return REG_INTERSECT;
1698                 /*
1699                  * If the user knows better the user should set the regdom
1700                  * to their country before the IE is picked up
1701                  */
1702                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1703                           last_request->intersect)
1704                         return -EOPNOTSUPP;
1705                 /*
1706                  * Process user requests only after previous user/driver/core
1707                  * requests have been processed
1708                  */
1709                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1710                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1711                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1712                         if (regdom_changes(last_request->alpha2))
1713                                 return -EAGAIN;
1714                 }
1715
1716                 if (!regdom_changes(pending_request->alpha2))
1717                         return -EALREADY;
1718
1719                 return 0;
1720         }
1721
1722         return -EINVAL;
1723 }
1724
1725 /**
1726  * __regulatory_hint - hint to the wireless core a regulatory domain
1727  * @wiphy: if the hint comes from country information from an AP, this
1728  *      is required to be set to the wiphy that received the information
1729  * @pending_request: the regulatory request currently being processed
1730  *
1731  * The Wireless subsystem can use this function to hint to the wireless core
1732  * what it believes should be the current regulatory domain.
1733  *
1734  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1735  * already been set or other standard error codes.
1736  *
1737  * Caller must hold &cfg80211_mutex and &reg_mutex
1738  */
1739 static int __regulatory_hint(struct wiphy *wiphy,
1740                              struct regulatory_request *pending_request)
1741 {
1742         bool intersect = false;
1743         int r = 0;
1744
1745         assert_cfg80211_lock();
1746
1747         r = ignore_request(wiphy, pending_request);
1748
1749         if (r == REG_INTERSECT) {
1750                 if (pending_request->initiator ==
1751                     NL80211_REGDOM_SET_BY_DRIVER) {
1752                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1753                         if (r) {
1754                                 kfree(pending_request);
1755                                 return r;
1756                         }
1757                 }
1758                 intersect = true;
1759         } else if (r) {
1760                 /*
1761                  * If the regulatory domain being requested by the
1762                  * driver has already been set just copy it to the
1763                  * wiphy
1764                  */
1765                 if (r == -EALREADY &&
1766                     pending_request->initiator ==
1767                     NL80211_REGDOM_SET_BY_DRIVER) {
1768                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1769                         if (r) {
1770                                 kfree(pending_request);
1771                                 return r;
1772                         }
1773                         r = -EALREADY;
1774                         goto new_request;
1775                 }
1776                 kfree(pending_request);
1777                 return r;
1778         }
1779
1780 new_request:
1781         kfree(last_request);
1782
1783         last_request = pending_request;
1784         last_request->intersect = intersect;
1785
1786         pending_request = NULL;
1787
1788         /* When r == REG_INTERSECT we do need to call CRDA */
1789         if (r < 0) {
1790                 /*
1791                  * Since CRDA will not be called in this case as we already
1792                  * have applied the requested regulatory domain before we just
1793                  * inform userspace we have processed the request
1794                  */
1795                 if (r == -EALREADY)
1796                         nl80211_send_reg_change_event(last_request);
1797                 return r;
1798         }
1799
1800         return call_crda(last_request->alpha2);
1801 }
1802
1803 /* This processes *all* regulatory hints */
1804 static void reg_process_hint(struct regulatory_request *reg_request)
1805 {
1806         int r = 0;
1807         struct wiphy *wiphy = NULL;
1808
1809         BUG_ON(!reg_request->alpha2);
1810
1811         mutex_lock(&cfg80211_mutex);
1812         mutex_lock(&reg_mutex);
1813
1814         if (wiphy_idx_valid(reg_request->wiphy_idx))
1815                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1816
1817         if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1818             !wiphy) {
1819                 kfree(reg_request);
1820                 goto out;
1821         }
1822
1823         r = __regulatory_hint(wiphy, reg_request);
1824         /* This is required so that the orig_* parameters are saved */
1825         if (r == -EALREADY && wiphy &&
1826             wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1827                 wiphy_update_regulatory(wiphy, reg_request->initiator);
1828 out:
1829         mutex_unlock(&reg_mutex);
1830         mutex_unlock(&cfg80211_mutex);
1831 }
1832
1833 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1834 static void reg_process_pending_hints(void)
1835         {
1836         struct regulatory_request *reg_request;
1837
1838         spin_lock(&reg_requests_lock);
1839         while (!list_empty(&reg_requests_list)) {
1840                 reg_request = list_first_entry(&reg_requests_list,
1841                                                struct regulatory_request,
1842                                                list);
1843                 list_del_init(&reg_request->list);
1844
1845                 spin_unlock(&reg_requests_lock);
1846                 reg_process_hint(reg_request);
1847                 spin_lock(&reg_requests_lock);
1848         }
1849         spin_unlock(&reg_requests_lock);
1850 }
1851
1852 /* Processes beacon hints -- this has nothing to do with country IEs */
1853 static void reg_process_pending_beacon_hints(void)
1854 {
1855         struct cfg80211_registered_device *rdev;
1856         struct reg_beacon *pending_beacon, *tmp;
1857
1858         /*
1859          * No need to hold the reg_mutex here as we just touch wiphys
1860          * and do not read or access regulatory variables.
1861          */
1862         mutex_lock(&cfg80211_mutex);
1863
1864         /* This goes through the _pending_ beacon list */
1865         spin_lock_bh(&reg_pending_beacons_lock);
1866
1867         if (list_empty(&reg_pending_beacons)) {
1868                 spin_unlock_bh(&reg_pending_beacons_lock);
1869                 goto out;
1870         }
1871
1872         list_for_each_entry_safe(pending_beacon, tmp,
1873                                  &reg_pending_beacons, list) {
1874
1875                 list_del_init(&pending_beacon->list);
1876
1877                 /* Applies the beacon hint to current wiphys */
1878                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1879                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1880
1881                 /* Remembers the beacon hint for new wiphys or reg changes */
1882                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1883         }
1884
1885         spin_unlock_bh(&reg_pending_beacons_lock);
1886 out:
1887         mutex_unlock(&cfg80211_mutex);
1888 }
1889
1890 static void reg_todo(struct work_struct *work)
1891 {
1892         reg_process_pending_hints();
1893         reg_process_pending_beacon_hints();
1894 }
1895
1896 static DECLARE_WORK(reg_work, reg_todo);
1897
1898 static void queue_regulatory_request(struct regulatory_request *request)
1899 {
1900         spin_lock(&reg_requests_lock);
1901         list_add_tail(&request->list, &reg_requests_list);
1902         spin_unlock(&reg_requests_lock);
1903
1904         schedule_work(&reg_work);
1905 }
1906
1907 /* Core regulatory hint -- happens once during cfg80211_init() */
1908 static int regulatory_hint_core(const char *alpha2)
1909 {
1910         struct regulatory_request *request;
1911
1912         BUG_ON(last_request);
1913
1914         request = kzalloc(sizeof(struct regulatory_request),
1915                           GFP_KERNEL);
1916         if (!request)
1917                 return -ENOMEM;
1918
1919         request->alpha2[0] = alpha2[0];
1920         request->alpha2[1] = alpha2[1];
1921         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1922
1923         /*
1924          * This ensures last_request is populated once modules
1925          * come swinging in and calling regulatory hints and
1926          * wiphy_apply_custom_regulatory().
1927          */
1928         reg_process_hint(request);
1929
1930         return 0;
1931 }
1932
1933 /* User hints */
1934 int regulatory_hint_user(const char *alpha2)
1935 {
1936         struct regulatory_request *request;
1937
1938         BUG_ON(!alpha2);
1939
1940         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1941         if (!request)
1942                 return -ENOMEM;
1943
1944         request->wiphy_idx = WIPHY_IDX_STALE;
1945         request->alpha2[0] = alpha2[0];
1946         request->alpha2[1] = alpha2[1];
1947         request->initiator = NL80211_REGDOM_SET_BY_USER;
1948
1949         queue_regulatory_request(request);
1950
1951         return 0;
1952 }
1953
1954 /* Driver hints */
1955 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1956 {
1957         struct regulatory_request *request;
1958
1959         BUG_ON(!alpha2);
1960         BUG_ON(!wiphy);
1961
1962         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1963         if (!request)
1964                 return -ENOMEM;
1965
1966         request->wiphy_idx = get_wiphy_idx(wiphy);
1967
1968         /* Must have registered wiphy first */
1969         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1970
1971         request->alpha2[0] = alpha2[0];
1972         request->alpha2[1] = alpha2[1];
1973         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1974
1975         queue_regulatory_request(request);
1976
1977         return 0;
1978 }
1979 EXPORT_SYMBOL(regulatory_hint);
1980
1981 /* Caller must hold reg_mutex */
1982 static bool reg_same_country_ie_hint(struct wiphy *wiphy,
1983                         u32 country_ie_checksum)
1984 {
1985         struct wiphy *request_wiphy;
1986
1987         assert_reg_lock();
1988
1989         if (unlikely(last_request->initiator !=
1990             NL80211_REGDOM_SET_BY_COUNTRY_IE))
1991                 return false;
1992
1993         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1994
1995         if (!request_wiphy)
1996                 return false;
1997
1998         if (likely(request_wiphy != wiphy))
1999                 return !country_ie_integrity_changes(country_ie_checksum);
2000         /*
2001          * We should not have let these through at this point, they
2002          * should have been picked up earlier by the first alpha2 check
2003          * on the device
2004          */
2005         if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
2006                 return true;
2007         return false;
2008 }
2009
2010 /*
2011  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
2012  * therefore cannot iterate over the rdev list here.
2013  */
2014 void regulatory_hint_11d(struct wiphy *wiphy,
2015                          enum ieee80211_band band,
2016                          u8 *country_ie,
2017                          u8 country_ie_len)
2018 {
2019         struct ieee80211_regdomain *rd = NULL;
2020         char alpha2[2];
2021         u32 checksum = 0;
2022         enum environment_cap env = ENVIRON_ANY;
2023         struct regulatory_request *request;
2024
2025         mutex_lock(&reg_mutex);
2026
2027         if (unlikely(!last_request))
2028                 goto out;
2029
2030         /* IE len must be evenly divisible by 2 */
2031         if (country_ie_len & 0x01)
2032                 goto out;
2033
2034         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2035                 goto out;
2036
2037         /*
2038          * Pending country IE processing, this can happen after we
2039          * call CRDA and wait for a response if a beacon was received before
2040          * we were able to process the last regulatory_hint_11d() call
2041          */
2042         if (country_ie_regdomain)
2043                 goto out;
2044
2045         alpha2[0] = country_ie[0];
2046         alpha2[1] = country_ie[1];
2047
2048         if (country_ie[2] == 'I')
2049                 env = ENVIRON_INDOOR;
2050         else if (country_ie[2] == 'O')
2051                 env = ENVIRON_OUTDOOR;
2052
2053         /*
2054          * We will run this only upon a successful connection on cfg80211.
2055          * We leave conflict resolution to the workqueue, where can hold
2056          * cfg80211_mutex.
2057          */
2058         if (likely(last_request->initiator ==
2059             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2060             wiphy_idx_valid(last_request->wiphy_idx)))
2061                 goto out;
2062
2063         rd = country_ie_2_rd(band, country_ie, country_ie_len, &checksum);
2064         if (!rd) {
2065                 REG_DBG_PRINT("cfg80211: Ignoring bogus country IE\n");
2066                 goto out;
2067         }
2068
2069         /*
2070          * This will not happen right now but we leave it here for the
2071          * the future when we want to add suspend/resume support and having
2072          * the user move to another country after doing so, or having the user
2073          * move to another AP. Right now we just trust the first AP.
2074          *
2075          * If we hit this before we add this support we want to be informed of
2076          * it as it would indicate a mistake in the current design
2077          */
2078         if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
2079                 goto free_rd_out;
2080
2081         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2082         if (!request)
2083                 goto free_rd_out;
2084
2085         /*
2086          * We keep this around for when CRDA comes back with a response so
2087          * we can intersect with that
2088          */
2089         country_ie_regdomain = rd;
2090
2091         request->wiphy_idx = get_wiphy_idx(wiphy);
2092         request->alpha2[0] = rd->alpha2[0];
2093         request->alpha2[1] = rd->alpha2[1];
2094         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2095         request->country_ie_checksum = checksum;
2096         request->country_ie_env = env;
2097
2098         mutex_unlock(&reg_mutex);
2099
2100         queue_regulatory_request(request);
2101
2102         return;
2103
2104 free_rd_out:
2105         kfree(rd);
2106 out:
2107         mutex_unlock(&reg_mutex);
2108 }
2109
2110 static bool freq_is_chan_12_13_14(u16 freq)
2111 {
2112         if (freq == ieee80211_channel_to_frequency(12) ||
2113             freq == ieee80211_channel_to_frequency(13) ||
2114             freq == ieee80211_channel_to_frequency(14))
2115                 return true;
2116         return false;
2117 }
2118
2119 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2120                                  struct ieee80211_channel *beacon_chan,
2121                                  gfp_t gfp)
2122 {
2123         struct reg_beacon *reg_beacon;
2124
2125         if (likely((beacon_chan->beacon_found ||
2126             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
2127             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2128              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
2129                 return 0;
2130
2131         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2132         if (!reg_beacon)
2133                 return -ENOMEM;
2134
2135         REG_DBG_PRINT("cfg80211: Found new beacon on "
2136                       "frequency: %d MHz (Ch %d) on %s\n",
2137                       beacon_chan->center_freq,
2138                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
2139                       wiphy_name(wiphy));
2140
2141         memcpy(&reg_beacon->chan, beacon_chan,
2142                 sizeof(struct ieee80211_channel));
2143
2144
2145         /*
2146          * Since we can be called from BH or and non-BH context
2147          * we must use spin_lock_bh()
2148          */
2149         spin_lock_bh(&reg_pending_beacons_lock);
2150         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2151         spin_unlock_bh(&reg_pending_beacons_lock);
2152
2153         schedule_work(&reg_work);
2154
2155         return 0;
2156 }
2157
2158 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2159 {
2160         unsigned int i;
2161         const struct ieee80211_reg_rule *reg_rule = NULL;
2162         const struct ieee80211_freq_range *freq_range = NULL;
2163         const struct ieee80211_power_rule *power_rule = NULL;
2164
2165         printk(KERN_INFO "    (start_freq - end_freq @ bandwidth), "
2166                 "(max_antenna_gain, max_eirp)\n");
2167
2168         for (i = 0; i < rd->n_reg_rules; i++) {
2169                 reg_rule = &rd->reg_rules[i];
2170                 freq_range = &reg_rule->freq_range;
2171                 power_rule = &reg_rule->power_rule;
2172
2173                 /*
2174                  * There may not be documentation for max antenna gain
2175                  * in certain regions
2176                  */
2177                 if (power_rule->max_antenna_gain)
2178                         printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
2179                                 "(%d mBi, %d mBm)\n",
2180                                 freq_range->start_freq_khz,
2181                                 freq_range->end_freq_khz,
2182                                 freq_range->max_bandwidth_khz,
2183                                 power_rule->max_antenna_gain,
2184                                 power_rule->max_eirp);
2185                 else
2186                         printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
2187                                 "(N/A, %d mBm)\n",
2188                                 freq_range->start_freq_khz,
2189                                 freq_range->end_freq_khz,
2190                                 freq_range->max_bandwidth_khz,
2191                                 power_rule->max_eirp);
2192         }
2193 }
2194
2195 static void print_regdomain(const struct ieee80211_regdomain *rd)
2196 {
2197
2198         if (is_intersected_alpha2(rd->alpha2)) {
2199
2200                 if (last_request->initiator ==
2201                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2202                         struct cfg80211_registered_device *rdev;
2203                         rdev = cfg80211_rdev_by_wiphy_idx(
2204                                 last_request->wiphy_idx);
2205                         if (rdev) {
2206                                 printk(KERN_INFO "cfg80211: Current regulatory "
2207                                         "domain updated by AP to: %c%c\n",
2208                                         rdev->country_ie_alpha2[0],
2209                                         rdev->country_ie_alpha2[1]);
2210                         } else
2211                                 printk(KERN_INFO "cfg80211: Current regulatory "
2212                                         "domain intersected: \n");
2213                 } else
2214                                 printk(KERN_INFO "cfg80211: Current regulatory "
2215                                         "domain intersected: \n");
2216         } else if (is_world_regdom(rd->alpha2))
2217                 printk(KERN_INFO "cfg80211: World regulatory "
2218                         "domain updated:\n");
2219         else {
2220                 if (is_unknown_alpha2(rd->alpha2))
2221                         printk(KERN_INFO "cfg80211: Regulatory domain "
2222                                 "changed to driver built-in settings "
2223                                 "(unknown country)\n");
2224                 else
2225                         printk(KERN_INFO "cfg80211: Regulatory domain "
2226                                 "changed to country: %c%c\n",
2227                                 rd->alpha2[0], rd->alpha2[1]);
2228         }
2229         print_rd_rules(rd);
2230 }
2231
2232 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2233 {
2234         printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
2235                 rd->alpha2[0], rd->alpha2[1]);
2236         print_rd_rules(rd);
2237 }
2238
2239 #ifdef CONFIG_CFG80211_REG_DEBUG
2240 static void reg_country_ie_process_debug(
2241         const struct ieee80211_regdomain *rd,
2242         const struct ieee80211_regdomain *country_ie_regdomain,
2243         const struct ieee80211_regdomain *intersected_rd)
2244 {
2245         printk(KERN_DEBUG "cfg80211: Received country IE:\n");
2246         print_regdomain_info(country_ie_regdomain);
2247         printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
2248         print_regdomain_info(rd);
2249         if (intersected_rd) {
2250                 printk(KERN_DEBUG "cfg80211: We intersect both of these "
2251                         "and get:\n");
2252                 print_regdomain_info(intersected_rd);
2253                 return;
2254         }
2255         printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
2256 }
2257 #else
2258 static inline void reg_country_ie_process_debug(
2259         const struct ieee80211_regdomain *rd,
2260         const struct ieee80211_regdomain *country_ie_regdomain,
2261         const struct ieee80211_regdomain *intersected_rd)
2262 {
2263 }
2264 #endif
2265
2266 /* Takes ownership of rd only if it doesn't fail */
2267 static int __set_regdom(const struct ieee80211_regdomain *rd)
2268 {
2269         const struct ieee80211_regdomain *intersected_rd = NULL;
2270         struct cfg80211_registered_device *rdev = NULL;
2271         struct wiphy *request_wiphy;
2272         /* Some basic sanity checks first */
2273
2274         if (is_world_regdom(rd->alpha2)) {
2275                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2276                         return -EINVAL;
2277                 update_world_regdomain(rd);
2278                 return 0;
2279         }
2280
2281         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2282                         !is_unknown_alpha2(rd->alpha2))
2283                 return -EINVAL;
2284
2285         if (!last_request)
2286                 return -EINVAL;
2287
2288         /*
2289          * Lets only bother proceeding on the same alpha2 if the current
2290          * rd is non static (it means CRDA was present and was used last)
2291          * and the pending request came in from a country IE
2292          */
2293         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2294                 /*
2295                  * If someone else asked us to change the rd lets only bother
2296                  * checking if the alpha2 changes if CRDA was already called
2297                  */
2298                 if (!regdom_changes(rd->alpha2))
2299                         return -EINVAL;
2300         }
2301
2302         /*
2303          * Now lets set the regulatory domain, update all driver channels
2304          * and finally inform them of what we have done, in case they want
2305          * to review or adjust their own settings based on their own
2306          * internal EEPROM data
2307          */
2308
2309         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2310                 return -EINVAL;
2311
2312         if (!is_valid_rd(rd)) {
2313                 printk(KERN_ERR "cfg80211: Invalid "
2314                         "regulatory domain detected:\n");
2315                 print_regdomain_info(rd);
2316                 return -EINVAL;
2317         }
2318
2319         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2320
2321         if (!last_request->intersect) {
2322                 int r;
2323
2324                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2325                         reset_regdomains();
2326                         cfg80211_regdomain = rd;
2327                         return 0;
2328                 }
2329
2330                 /*
2331                  * For a driver hint, lets copy the regulatory domain the
2332                  * driver wanted to the wiphy to deal with conflicts
2333                  */
2334
2335                 /*
2336                  * Userspace could have sent two replies with only
2337                  * one kernel request.
2338                  */
2339                 if (request_wiphy->regd)
2340                         return -EALREADY;
2341
2342                 r = reg_copy_regd(&request_wiphy->regd, rd);
2343                 if (r)
2344                         return r;
2345
2346                 reset_regdomains();
2347                 cfg80211_regdomain = rd;
2348                 return 0;
2349         }
2350
2351         /* Intersection requires a bit more work */
2352
2353         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2354
2355                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2356                 if (!intersected_rd)
2357                         return -EINVAL;
2358
2359                 /*
2360                  * We can trash what CRDA provided now.
2361                  * However if a driver requested this specific regulatory
2362                  * domain we keep it for its private use
2363                  */
2364                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2365                         request_wiphy->regd = rd;
2366                 else
2367                         kfree(rd);
2368
2369                 rd = NULL;
2370
2371                 reset_regdomains();
2372                 cfg80211_regdomain = intersected_rd;
2373
2374                 return 0;
2375         }
2376
2377         /*
2378          * Country IE requests are handled a bit differently, we intersect
2379          * the country IE rd with what CRDA believes that country should have
2380          */
2381
2382         /*
2383          * Userspace could have sent two replies with only
2384          * one kernel request. By the second reply we would have
2385          * already processed and consumed the country_ie_regdomain.
2386          */
2387         if (!country_ie_regdomain)
2388                 return -EALREADY;
2389         BUG_ON(rd == country_ie_regdomain);
2390
2391         /*
2392          * Intersect what CRDA returned and our what we
2393          * had built from the Country IE received
2394          */
2395
2396         intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2397
2398         reg_country_ie_process_debug(rd,
2399                                      country_ie_regdomain,
2400                                      intersected_rd);
2401
2402         kfree(country_ie_regdomain);
2403         country_ie_regdomain = NULL;
2404
2405         if (!intersected_rd)
2406                 return -EINVAL;
2407
2408         rdev = wiphy_to_dev(request_wiphy);
2409
2410         rdev->country_ie_alpha2[0] = rd->alpha2[0];
2411         rdev->country_ie_alpha2[1] = rd->alpha2[1];
2412         rdev->env = last_request->country_ie_env;
2413
2414         BUG_ON(intersected_rd == rd);
2415
2416         kfree(rd);
2417         rd = NULL;
2418
2419         reset_regdomains();
2420         cfg80211_regdomain = intersected_rd;
2421
2422         return 0;
2423 }
2424
2425
2426 /*
2427  * Use this call to set the current regulatory domain. Conflicts with
2428  * multiple drivers can be ironed out later. Caller must've already
2429  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2430  */
2431 int set_regdom(const struct ieee80211_regdomain *rd)
2432 {
2433         int r;
2434
2435         assert_cfg80211_lock();
2436
2437         mutex_lock(&reg_mutex);
2438
2439         /* Note that this doesn't update the wiphys, this is done below */
2440         r = __set_regdom(rd);
2441         if (r) {
2442                 kfree(rd);
2443                 mutex_unlock(&reg_mutex);
2444                 return r;
2445         }
2446
2447         /* This would make this whole thing pointless */
2448         if (!last_request->intersect)
2449                 BUG_ON(rd != cfg80211_regdomain);
2450
2451         /* update all wiphys now with the new established regulatory domain */
2452         update_all_wiphy_regulatory(last_request->initiator);
2453
2454         print_regdomain(cfg80211_regdomain);
2455
2456         nl80211_send_reg_change_event(last_request);
2457
2458         mutex_unlock(&reg_mutex);
2459
2460         return r;
2461 }
2462
2463 /* Caller must hold cfg80211_mutex */
2464 void reg_device_remove(struct wiphy *wiphy)
2465 {
2466         struct wiphy *request_wiphy = NULL;
2467
2468         assert_cfg80211_lock();
2469
2470         mutex_lock(&reg_mutex);
2471
2472         kfree(wiphy->regd);
2473
2474         if (last_request)
2475                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2476
2477         if (!request_wiphy || request_wiphy != wiphy)
2478                 goto out;
2479
2480         last_request->wiphy_idx = WIPHY_IDX_STALE;
2481         last_request->country_ie_env = ENVIRON_ANY;
2482 out:
2483         mutex_unlock(&reg_mutex);
2484 }
2485
2486 int regulatory_init(void)
2487 {
2488         int err = 0;
2489
2490         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2491         if (IS_ERR(reg_pdev))
2492                 return PTR_ERR(reg_pdev);
2493
2494         spin_lock_init(&reg_requests_lock);
2495         spin_lock_init(&reg_pending_beacons_lock);
2496
2497         cfg80211_regdomain = cfg80211_world_regdom;
2498
2499         /* We always try to get an update for the static regdomain */
2500         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2501         if (err) {
2502                 if (err == -ENOMEM)
2503                         return err;
2504                 /*
2505                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2506                  * memory which is handled and propagated appropriately above
2507                  * but it can also fail during a netlink_broadcast() or during
2508                  * early boot for call_usermodehelper(). For now treat these
2509                  * errors as non-fatal.
2510                  */
2511                 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2512                         "to call CRDA during init");
2513 #ifdef CONFIG_CFG80211_REG_DEBUG
2514                 /* We want to find out exactly why when debugging */
2515                 WARN_ON(err);
2516 #endif
2517         }
2518
2519         /*
2520          * Finally, if the user set the module parameter treat it
2521          * as a user hint.
2522          */
2523         if (!is_world_regdom(ieee80211_regdom))
2524                 regulatory_hint_user(ieee80211_regdom);
2525
2526         return 0;
2527 }
2528
2529 void regulatory_exit(void)
2530 {
2531         struct regulatory_request *reg_request, *tmp;
2532         struct reg_beacon *reg_beacon, *btmp;
2533
2534         cancel_work_sync(&reg_work);
2535
2536         mutex_lock(&cfg80211_mutex);
2537         mutex_lock(&reg_mutex);
2538
2539         reset_regdomains();
2540
2541         kfree(country_ie_regdomain);
2542         country_ie_regdomain = NULL;
2543
2544         kfree(last_request);
2545
2546         platform_device_unregister(reg_pdev);
2547
2548         spin_lock_bh(&reg_pending_beacons_lock);
2549         if (!list_empty(&reg_pending_beacons)) {
2550                 list_for_each_entry_safe(reg_beacon, btmp,
2551                                          &reg_pending_beacons, list) {
2552                         list_del(&reg_beacon->list);
2553                         kfree(reg_beacon);
2554                 }
2555         }
2556         spin_unlock_bh(&reg_pending_beacons_lock);
2557
2558         if (!list_empty(&reg_beacon_list)) {
2559                 list_for_each_entry_safe(reg_beacon, btmp,
2560                                          &reg_beacon_list, list) {
2561                         list_del(&reg_beacon->list);
2562                         kfree(reg_beacon);
2563                 }
2564         }
2565
2566         spin_lock(&reg_requests_lock);
2567         if (!list_empty(&reg_requests_list)) {
2568                 list_for_each_entry_safe(reg_request, tmp,
2569                                          &reg_requests_list, list) {
2570                         list_del(&reg_request->list);
2571                         kfree(reg_request);
2572                 }
2573         }
2574         spin_unlock(&reg_requests_lock);
2575
2576         mutex_unlock(&reg_mutex);
2577         mutex_unlock(&cfg80211_mutex);
2578 }