cfg80211: mark regdomains with > NL80211_MAX_SUPP_REG_RULES invalid
[safe/jmp/linux-2.6] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/random.h>
38 #include <linux/nl80211.h>
39 #include <linux/platform_device.h>
40 #include <net/wireless.h>
41 #include <net/cfg80211.h>
42 #include "core.h"
43 #include "reg.h"
44
45 /**
46  * struct regulatory_request - receipt of last regulatory request
47  *
48  * @wiphy: this is set if this request's initiator is
49  *      %REGDOM_SET_BY_COUNTRY_IE or %REGDOM_SET_BY_DRIVER. This
50  *      can be used by the wireless core to deal with conflicts
51  *      and potentially inform users of which devices specifically
52  *      cased the conflicts.
53  * @initiator: indicates who sent this request, could be any of
54  *      of those set in reg_set_by, %REGDOM_SET_BY_*
55  * @alpha2: the ISO / IEC 3166 alpha2 country code of the requested
56  *      regulatory domain. We have a few special codes:
57  *      00 - World regulatory domain
58  *      99 - built by driver but a specific alpha2 cannot be determined
59  *      98 - result of an intersection between two regulatory domains
60  * @intersect: indicates whether the wireless core should intersect
61  *      the requested regulatory domain with the presently set regulatory
62  *      domain.
63  */
64 struct regulatory_request {
65         struct wiphy *wiphy;
66         enum reg_set_by initiator;
67         char alpha2[2];
68         bool intersect;
69 };
70
71 /* Receipt of information from last regulatory request */
72 static struct regulatory_request *last_request;
73
74 /* To trigger userspace events */
75 static struct platform_device *reg_pdev;
76
77 /* Keep the ordering from large to small */
78 static u32 supported_bandwidths[] = {
79         MHZ_TO_KHZ(40),
80         MHZ_TO_KHZ(20),
81 };
82
83 /* Central wireless core regulatory domains, we only need two,
84  * the current one and a world regulatory domain in case we have no
85  * information to give us an alpha2 */
86 static const struct ieee80211_regdomain *cfg80211_regdomain;
87
88 /* We keep a static world regulatory domain in case of the absence of CRDA */
89 static const struct ieee80211_regdomain world_regdom = {
90         .n_reg_rules = 1,
91         .alpha2 =  "00",
92         .reg_rules = {
93                 REG_RULE(2412-10, 2462+10, 40, 6, 20,
94                         NL80211_RRF_PASSIVE_SCAN |
95                         NL80211_RRF_NO_IBSS),
96         }
97 };
98
99 static const struct ieee80211_regdomain *cfg80211_world_regdom =
100         &world_regdom;
101
102 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
103 static char *ieee80211_regdom = "US";
104 module_param(ieee80211_regdom, charp, 0444);
105 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
106
107 /* We assume 40 MHz bandwidth for the old regulatory work.
108  * We make emphasis we are using the exact same frequencies
109  * as before */
110
111 static const struct ieee80211_regdomain us_regdom = {
112         .n_reg_rules = 6,
113         .alpha2 =  "US",
114         .reg_rules = {
115                 /* IEEE 802.11b/g, channels 1..11 */
116                 REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
117                 /* IEEE 802.11a, channel 36 */
118                 REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
119                 /* IEEE 802.11a, channel 40 */
120                 REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
121                 /* IEEE 802.11a, channel 44 */
122                 REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
123                 /* IEEE 802.11a, channels 48..64 */
124                 REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
125                 /* IEEE 802.11a, channels 149..165, outdoor */
126                 REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
127         }
128 };
129
130 static const struct ieee80211_regdomain jp_regdom = {
131         .n_reg_rules = 3,
132         .alpha2 =  "JP",
133         .reg_rules = {
134                 /* IEEE 802.11b/g, channels 1..14 */
135                 REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
136                 /* IEEE 802.11a, channels 34..48 */
137                 REG_RULE(5170-10, 5240+10, 40, 6, 20,
138                         NL80211_RRF_PASSIVE_SCAN),
139                 /* IEEE 802.11a, channels 52..64 */
140                 REG_RULE(5260-10, 5320+10, 40, 6, 20,
141                         NL80211_RRF_NO_IBSS |
142                         NL80211_RRF_DFS),
143         }
144 };
145
146 static const struct ieee80211_regdomain eu_regdom = {
147         .n_reg_rules = 6,
148         /* This alpha2 is bogus, we leave it here just for stupid
149          * backward compatibility */
150         .alpha2 =  "EU",
151         .reg_rules = {
152                 /* IEEE 802.11b/g, channels 1..13 */
153                 REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
154                 /* IEEE 802.11a, channel 36 */
155                 REG_RULE(5180-10, 5180+10, 40, 6, 23,
156                         NL80211_RRF_PASSIVE_SCAN),
157                 /* IEEE 802.11a, channel 40 */
158                 REG_RULE(5200-10, 5200+10, 40, 6, 23,
159                         NL80211_RRF_PASSIVE_SCAN),
160                 /* IEEE 802.11a, channel 44 */
161                 REG_RULE(5220-10, 5220+10, 40, 6, 23,
162                         NL80211_RRF_PASSIVE_SCAN),
163                 /* IEEE 802.11a, channels 48..64 */
164                 REG_RULE(5240-10, 5320+10, 40, 6, 20,
165                         NL80211_RRF_NO_IBSS |
166                         NL80211_RRF_DFS),
167                 /* IEEE 802.11a, channels 100..140 */
168                 REG_RULE(5500-10, 5700+10, 40, 6, 30,
169                         NL80211_RRF_NO_IBSS |
170                         NL80211_RRF_DFS),
171         }
172 };
173
174 static const struct ieee80211_regdomain *static_regdom(char *alpha2)
175 {
176         if (alpha2[0] == 'U' && alpha2[1] == 'S')
177                 return &us_regdom;
178         if (alpha2[0] == 'J' && alpha2[1] == 'P')
179                 return &jp_regdom;
180         if (alpha2[0] == 'E' && alpha2[1] == 'U')
181                 return &eu_regdom;
182         /* Default, as per the old rules */
183         return &us_regdom;
184 }
185
186 static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
187 {
188         if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
189                 return true;
190         return false;
191 }
192 #else
193 static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
194 {
195         return false;
196 }
197 #endif
198
199 static void reset_regdomains(void)
200 {
201         /* avoid freeing static information or freeing something twice */
202         if (cfg80211_regdomain == cfg80211_world_regdom)
203                 cfg80211_regdomain = NULL;
204         if (cfg80211_world_regdom == &world_regdom)
205                 cfg80211_world_regdom = NULL;
206         if (cfg80211_regdomain == &world_regdom)
207                 cfg80211_regdomain = NULL;
208         if (is_old_static_regdom(cfg80211_regdomain))
209                 cfg80211_regdomain = NULL;
210
211         kfree(cfg80211_regdomain);
212         kfree(cfg80211_world_regdom);
213
214         cfg80211_world_regdom = &world_regdom;
215         cfg80211_regdomain = NULL;
216 }
217
218 /* Dynamic world regulatory domain requested by the wireless
219  * core upon initialization */
220 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
221 {
222         BUG_ON(!last_request);
223
224         reset_regdomains();
225
226         cfg80211_world_regdom = rd;
227         cfg80211_regdomain = rd;
228 }
229
230 bool is_world_regdom(const char *alpha2)
231 {
232         if (!alpha2)
233                 return false;
234         if (alpha2[0] == '0' && alpha2[1] == '0')
235                 return true;
236         return false;
237 }
238
239 static bool is_alpha2_set(const char *alpha2)
240 {
241         if (!alpha2)
242                 return false;
243         if (alpha2[0] != 0 && alpha2[1] != 0)
244                 return true;
245         return false;
246 }
247
248 static bool is_alpha_upper(char letter)
249 {
250         /* ASCII A - Z */
251         if (letter >= 65 && letter <= 90)
252                 return true;
253         return false;
254 }
255
256 static bool is_unknown_alpha2(const char *alpha2)
257 {
258         if (!alpha2)
259                 return false;
260         /* Special case where regulatory domain was built by driver
261          * but a specific alpha2 cannot be determined */
262         if (alpha2[0] == '9' && alpha2[1] == '9')
263                 return true;
264         return false;
265 }
266
267 static bool is_an_alpha2(const char *alpha2)
268 {
269         if (!alpha2)
270                 return false;
271         if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
272                 return true;
273         return false;
274 }
275
276 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
277 {
278         if (!alpha2_x || !alpha2_y)
279                 return false;
280         if (alpha2_x[0] == alpha2_y[0] &&
281                 alpha2_x[1] == alpha2_y[1])
282                 return true;
283         return false;
284 }
285
286 static bool regdom_changed(const char *alpha2)
287 {
288         if (!cfg80211_regdomain)
289                 return true;
290         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
291                 return false;
292         return true;
293 }
294
295 /* This lets us keep regulatory code which is updated on a regulatory
296  * basis in userspace. */
297 static int call_crda(const char *alpha2)
298 {
299         char country_env[9 + 2] = "COUNTRY=";
300         char *envp[] = {
301                 country_env,
302                 NULL
303         };
304
305         if (!is_world_regdom((char *) alpha2))
306                 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
307                         alpha2[0], alpha2[1]);
308         else
309                 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
310                         "regulatory domain\n");
311
312         country_env[8] = alpha2[0];
313         country_env[9] = alpha2[1];
314
315         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
316 }
317
318 /* Used by nl80211 before kmalloc'ing our regulatory domain */
319 bool reg_is_valid_request(const char *alpha2)
320 {
321         if (!last_request)
322                 return false;
323
324         return alpha2_equal(last_request->alpha2, alpha2);
325 }
326
327 /* Sanity check on a regulatory rule */
328 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
329 {
330         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
331         u32 freq_diff;
332
333         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
334                 return false;
335
336         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
337                 return false;
338
339         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
340
341         if (freq_diff <= 0 || freq_range->max_bandwidth_khz > freq_diff)
342                 return false;
343
344         return true;
345 }
346
347 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
348 {
349         const struct ieee80211_reg_rule *reg_rule = NULL;
350         unsigned int i;
351
352         if (!rd->n_reg_rules)
353                 return false;
354
355         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
356                 return false;
357
358         for (i = 0; i < rd->n_reg_rules; i++) {
359                 reg_rule = &rd->reg_rules[i];
360                 if (!is_valid_reg_rule(reg_rule))
361                         return false;
362         }
363
364         return true;
365 }
366
367 /* Returns value in KHz */
368 static u32 freq_max_bandwidth(const struct ieee80211_freq_range *freq_range,
369         u32 freq)
370 {
371         unsigned int i;
372         for (i = 0; i < ARRAY_SIZE(supported_bandwidths); i++) {
373                 u32 start_freq_khz = freq - supported_bandwidths[i]/2;
374                 u32 end_freq_khz = freq + supported_bandwidths[i]/2;
375                 if (start_freq_khz >= freq_range->start_freq_khz &&
376                         end_freq_khz <= freq_range->end_freq_khz)
377                         return supported_bandwidths[i];
378         }
379         return 0;
380 }
381
382 /* Helper for regdom_intersect(), this does the real
383  * mathematical intersection fun */
384 static int reg_rules_intersect(
385         const struct ieee80211_reg_rule *rule1,
386         const struct ieee80211_reg_rule *rule2,
387         struct ieee80211_reg_rule *intersected_rule)
388 {
389         const struct ieee80211_freq_range *freq_range1, *freq_range2;
390         struct ieee80211_freq_range *freq_range;
391         const struct ieee80211_power_rule *power_rule1, *power_rule2;
392         struct ieee80211_power_rule *power_rule;
393         u32 freq_diff;
394
395         freq_range1 = &rule1->freq_range;
396         freq_range2 = &rule2->freq_range;
397         freq_range = &intersected_rule->freq_range;
398
399         power_rule1 = &rule1->power_rule;
400         power_rule2 = &rule2->power_rule;
401         power_rule = &intersected_rule->power_rule;
402
403         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
404                 freq_range2->start_freq_khz);
405         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
406                 freq_range2->end_freq_khz);
407         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
408                 freq_range2->max_bandwidth_khz);
409
410         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
411         if (freq_range->max_bandwidth_khz > freq_diff)
412                 freq_range->max_bandwidth_khz = freq_diff;
413
414         power_rule->max_eirp = min(power_rule1->max_eirp,
415                 power_rule2->max_eirp);
416         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
417                 power_rule2->max_antenna_gain);
418
419         intersected_rule->flags = (rule1->flags | rule2->flags);
420
421         if (!is_valid_reg_rule(intersected_rule))
422                 return -EINVAL;
423
424         return 0;
425 }
426
427 /**
428  * regdom_intersect - do the intersection between two regulatory domains
429  * @rd1: first regulatory domain
430  * @rd2: second regulatory domain
431  *
432  * Use this function to get the intersection between two regulatory domains.
433  * Once completed we will mark the alpha2 for the rd as intersected, "98",
434  * as no one single alpha2 can represent this regulatory domain.
435  *
436  * Returns a pointer to the regulatory domain structure which will hold the
437  * resulting intersection of rules between rd1 and rd2. We will
438  * kzalloc() this structure for you.
439  */
440 static struct ieee80211_regdomain *regdom_intersect(
441         const struct ieee80211_regdomain *rd1,
442         const struct ieee80211_regdomain *rd2)
443 {
444         int r, size_of_regd;
445         unsigned int x, y;
446         unsigned int num_rules = 0, rule_idx = 0;
447         const struct ieee80211_reg_rule *rule1, *rule2;
448         struct ieee80211_reg_rule *intersected_rule;
449         struct ieee80211_regdomain *rd;
450         /* This is just a dummy holder to help us count */
451         struct ieee80211_reg_rule irule;
452
453         /* Uses the stack temporarily for counter arithmetic */
454         intersected_rule = &irule;
455
456         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
457
458         if (!rd1 || !rd2)
459                 return NULL;
460
461         /* First we get a count of the rules we'll need, then we actually
462          * build them. This is to so we can malloc() and free() a
463          * regdomain once. The reason we use reg_rules_intersect() here
464          * is it will return -EINVAL if the rule computed makes no sense.
465          * All rules that do check out OK are valid. */
466
467         for (x = 0; x < rd1->n_reg_rules; x++) {
468                 rule1 = &rd1->reg_rules[x];
469                 for (y = 0; y < rd2->n_reg_rules; y++) {
470                         rule2 = &rd2->reg_rules[y];
471                         if (!reg_rules_intersect(rule1, rule2,
472                                         intersected_rule))
473                                 num_rules++;
474                         memset(intersected_rule, 0,
475                                         sizeof(struct ieee80211_reg_rule));
476                 }
477         }
478
479         if (!num_rules)
480                 return NULL;
481
482         size_of_regd = sizeof(struct ieee80211_regdomain) +
483                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
484
485         rd = kzalloc(size_of_regd, GFP_KERNEL);
486         if (!rd)
487                 return NULL;
488
489         for (x = 0; x < rd1->n_reg_rules; x++) {
490                 rule1 = &rd1->reg_rules[x];
491                 for (y = 0; y < rd2->n_reg_rules; y++) {
492                         rule2 = &rd2->reg_rules[y];
493                         /* This time around instead of using the stack lets
494                          * write to the target rule directly saving ourselves
495                          * a memcpy() */
496                         intersected_rule = &rd->reg_rules[rule_idx];
497                         r = reg_rules_intersect(rule1, rule2,
498                                 intersected_rule);
499                         /* No need to memset here the intersected rule here as
500                          * we're not using the stack anymore */
501                         if (r)
502                                 continue;
503                         rule_idx++;
504                 }
505         }
506
507         if (rule_idx != num_rules) {
508                 kfree(rd);
509                 return NULL;
510         }
511
512         rd->n_reg_rules = num_rules;
513         rd->alpha2[0] = '9';
514         rd->alpha2[1] = '8';
515
516         return rd;
517 }
518
519 /* XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
520  * want to just have the channel structure use these */
521 static u32 map_regdom_flags(u32 rd_flags)
522 {
523         u32 channel_flags = 0;
524         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
525                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
526         if (rd_flags & NL80211_RRF_NO_IBSS)
527                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
528         if (rd_flags & NL80211_RRF_DFS)
529                 channel_flags |= IEEE80211_CHAN_RADAR;
530         return channel_flags;
531 }
532
533 /**
534  * freq_reg_info - get regulatory information for the given frequency
535  * @center_freq: Frequency in KHz for which we want regulatory information for
536  * @bandwidth: the bandwidth requirement you have in KHz, if you do not have one
537  *      you can set this to 0. If this frequency is allowed we then set
538  *      this value to the maximum allowed bandwidth.
539  * @reg_rule: the regulatory rule which we have for this frequency
540  *
541  * Use this function to get the regulatory rule for a specific frequency.
542  */
543 static int freq_reg_info(u32 center_freq, u32 *bandwidth,
544                          const struct ieee80211_reg_rule **reg_rule)
545 {
546         int i;
547         u32 max_bandwidth = 0;
548
549         if (!cfg80211_regdomain)
550                 return -EINVAL;
551
552         for (i = 0; i < cfg80211_regdomain->n_reg_rules; i++) {
553                 const struct ieee80211_reg_rule *rr;
554                 const struct ieee80211_freq_range *fr = NULL;
555                 const struct ieee80211_power_rule *pr = NULL;
556
557                 rr = &cfg80211_regdomain->reg_rules[i];
558                 fr = &rr->freq_range;
559                 pr = &rr->power_rule;
560                 max_bandwidth = freq_max_bandwidth(fr, center_freq);
561                 if (max_bandwidth && *bandwidth <= max_bandwidth) {
562                         *reg_rule = rr;
563                         *bandwidth = max_bandwidth;
564                         break;
565                 }
566         }
567
568         return !max_bandwidth;
569 }
570
571 static void handle_channel(struct ieee80211_channel *chan)
572 {
573         int r;
574         u32 flags = chan->orig_flags;
575         u32 max_bandwidth = 0;
576         const struct ieee80211_reg_rule *reg_rule = NULL;
577         const struct ieee80211_power_rule *power_rule = NULL;
578
579         r = freq_reg_info(MHZ_TO_KHZ(chan->center_freq),
580                 &max_bandwidth, &reg_rule);
581
582         if (r) {
583                 flags |= IEEE80211_CHAN_DISABLED;
584                 chan->flags = flags;
585                 return;
586         }
587
588         power_rule = &reg_rule->power_rule;
589
590         chan->flags = flags | map_regdom_flags(reg_rule->flags);
591         chan->max_antenna_gain = min(chan->orig_mag,
592                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
593         chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
594         if (chan->orig_mpwr)
595                 chan->max_power = min(chan->orig_mpwr,
596                         (int) MBM_TO_DBM(power_rule->max_eirp));
597         else
598                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
599 }
600
601 static void handle_band(struct ieee80211_supported_band *sband)
602 {
603         int i;
604
605         for (i = 0; i < sband->n_channels; i++)
606                 handle_channel(&sband->channels[i]);
607 }
608
609 static void update_all_wiphy_regulatory(enum reg_set_by setby)
610 {
611         struct cfg80211_registered_device *drv;
612
613         list_for_each_entry(drv, &cfg80211_drv_list, list)
614                 wiphy_update_regulatory(&drv->wiphy, setby);
615 }
616
617 void wiphy_update_regulatory(struct wiphy *wiphy, enum reg_set_by setby)
618 {
619         enum ieee80211_band band;
620         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
621                 if (wiphy->bands[band])
622                         handle_band(wiphy->bands[band]);
623                 if (wiphy->reg_notifier)
624                         wiphy->reg_notifier(wiphy, setby);
625         }
626 }
627
628 /* Return value which can be used by ignore_request() to indicate
629  * it has been determined we should intersect two regulatory domains */
630 #define REG_INTERSECT   1
631
632 /* This has the logic which determines when a new request
633  * should be ignored. */
634 static int ignore_request(struct wiphy *wiphy, enum reg_set_by set_by,
635                           const char *alpha2)
636 {
637         /* All initial requests are respected */
638         if (!last_request)
639                 return 0;
640
641         switch (set_by) {
642         case REGDOM_SET_BY_INIT:
643                 return -EINVAL;
644         case REGDOM_SET_BY_CORE:
645                 /*
646                  * Always respect new wireless core hints, should only happen
647                  * when updating the world regulatory domain at init.
648                  */
649                 return 0;
650         case REGDOM_SET_BY_COUNTRY_IE:
651                 if (unlikely(!is_an_alpha2(alpha2)))
652                         return -EINVAL;
653                 if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
654                         if (last_request->wiphy != wiphy) {
655                                 /*
656                                  * Two cards with two APs claiming different
657                                  * different Country IE alpha2s. We could
658                                  * intersect them, but that seems unlikely
659                                  * to be correct. Reject second one for now.
660                                  */
661                                 if (!alpha2_equal(alpha2,
662                                                   cfg80211_regdomain->alpha2))
663                                         return -EOPNOTSUPP;
664                                 return -EALREADY;
665                         }
666                         /* Two consecutive Country IE hints on the same wiphy */
667                         if (!alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
668                                 return 0;
669                         return -EALREADY;
670                 }
671                 /*
672                  * Ignore Country IE hints for now, need to think about
673                  * what we need to do to support multi-domain operation.
674                  */
675                 return -EOPNOTSUPP;
676         case REGDOM_SET_BY_DRIVER:
677                 if (last_request->initiator == REGDOM_SET_BY_DRIVER)
678                         return -EALREADY;
679                 return 0;
680         case REGDOM_SET_BY_USER:
681                 if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE)
682                         return REG_INTERSECT;
683                 return 0;
684         }
685
686         return -EINVAL;
687 }
688
689 /* Caller must hold &cfg80211_drv_mutex */
690 int __regulatory_hint(struct wiphy *wiphy, enum reg_set_by set_by,
691                       const char *alpha2)
692 {
693         struct regulatory_request *request;
694         bool intersect = false;
695         int r = 0;
696
697         r = ignore_request(wiphy, set_by, alpha2);
698
699         if (r == REG_INTERSECT)
700                 intersect = true;
701         else if (r)
702                 return r;
703
704         request = kzalloc(sizeof(struct regulatory_request),
705                           GFP_KERNEL);
706         if (!request)
707                 return -ENOMEM;
708
709         request->alpha2[0] = alpha2[0];
710         request->alpha2[1] = alpha2[1];
711         request->initiator = set_by;
712         request->wiphy = wiphy;
713         request->intersect = intersect;
714
715         kfree(last_request);
716         last_request = request;
717         return call_crda(alpha2);
718 }
719
720 void regulatory_hint(struct wiphy *wiphy, const char *alpha2)
721 {
722         BUG_ON(!alpha2);
723
724         mutex_lock(&cfg80211_drv_mutex);
725         __regulatory_hint(wiphy, REGDOM_SET_BY_DRIVER, alpha2);
726         mutex_unlock(&cfg80211_drv_mutex);
727 }
728 EXPORT_SYMBOL(regulatory_hint);
729
730
731 static void print_rd_rules(const struct ieee80211_regdomain *rd)
732 {
733         unsigned int i;
734         const struct ieee80211_reg_rule *reg_rule = NULL;
735         const struct ieee80211_freq_range *freq_range = NULL;
736         const struct ieee80211_power_rule *power_rule = NULL;
737
738         printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
739                 "(max_antenna_gain, max_eirp)\n");
740
741         for (i = 0; i < rd->n_reg_rules; i++) {
742                 reg_rule = &rd->reg_rules[i];
743                 freq_range = &reg_rule->freq_range;
744                 power_rule = &reg_rule->power_rule;
745
746                 /* There may not be documentation for max antenna gain
747                  * in certain regions */
748                 if (power_rule->max_antenna_gain)
749                         printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
750                                 "(%d mBi, %d mBm)\n",
751                                 freq_range->start_freq_khz,
752                                 freq_range->end_freq_khz,
753                                 freq_range->max_bandwidth_khz,
754                                 power_rule->max_antenna_gain,
755                                 power_rule->max_eirp);
756                 else
757                         printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
758                                 "(N/A, %d mBm)\n",
759                                 freq_range->start_freq_khz,
760                                 freq_range->end_freq_khz,
761                                 freq_range->max_bandwidth_khz,
762                                 power_rule->max_eirp);
763         }
764 }
765
766 static void print_regdomain(const struct ieee80211_regdomain *rd)
767 {
768
769         if (is_world_regdom(rd->alpha2))
770                 printk(KERN_INFO "cfg80211: World regulatory "
771                         "domain updated:\n");
772         else {
773                 if (is_unknown_alpha2(rd->alpha2))
774                         printk(KERN_INFO "cfg80211: Regulatory domain "
775                                 "changed to driver built-in settings "
776                                 "(unknown country)\n");
777                 else
778                         printk(KERN_INFO "cfg80211: Regulatory domain "
779                                 "changed to country: %c%c\n",
780                                 rd->alpha2[0], rd->alpha2[1]);
781         }
782         print_rd_rules(rd);
783 }
784
785 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
786 {
787         printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
788                 rd->alpha2[0], rd->alpha2[1]);
789         print_rd_rules(rd);
790 }
791
792 /* Takes ownership of rd only if it doesn't fail */
793 static int __set_regdom(const struct ieee80211_regdomain *rd)
794 {
795         const struct ieee80211_regdomain *intersected_rd = NULL;
796         /* Some basic sanity checks first */
797
798         if (is_world_regdom(rd->alpha2)) {
799                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
800                         return -EINVAL;
801                 update_world_regdomain(rd);
802                 return 0;
803         }
804
805         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
806                         !is_unknown_alpha2(rd->alpha2))
807                 return -EINVAL;
808
809         if (!last_request)
810                 return -EINVAL;
811
812         /* allow overriding the static definitions if CRDA is present */
813         if (!is_old_static_regdom(cfg80211_regdomain) &&
814             !regdom_changed(rd->alpha2))
815                 return -EINVAL;
816
817         /* Now lets set the regulatory domain, update all driver channels
818          * and finally inform them of what we have done, in case they want
819          * to review or adjust their own settings based on their own
820          * internal EEPROM data */
821
822         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
823                 return -EINVAL;
824
825         if (!is_valid_rd(rd)) {
826                 printk(KERN_ERR "cfg80211: Invalid "
827                         "regulatory domain detected:\n");
828                 print_regdomain_info(rd);
829                 return -EINVAL;
830         }
831
832         if (!last_request->intersect) {
833                 reset_regdomains();
834                 cfg80211_regdomain = rd;
835                 return 0;
836         }
837
838         /* Intersection requires a bit more work */
839
840         if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE) {
841
842                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
843                 if (!intersected_rd)
844                         return -EINVAL;
845
846                 /* We can trash what CRDA provided now */
847                 kfree(rd);
848                 rd = NULL;
849
850                 reset_regdomains();
851                 cfg80211_regdomain = intersected_rd;
852
853                 return 0;
854         }
855
856         /* Country IE parsing coming soon */
857         reset_regdomains();
858         WARN_ON(1);
859
860         return 0;
861 }
862
863
864 /* Use this call to set the current regulatory domain. Conflicts with
865  * multiple drivers can be ironed out later. Caller must've already
866  * kmalloc'd the rd structure. Caller must hold cfg80211_drv_mutex */
867 int set_regdom(const struct ieee80211_regdomain *rd)
868 {
869         int r;
870
871         /* Note that this doesn't update the wiphys, this is done below */
872         r = __set_regdom(rd);
873         if (r) {
874                 kfree(rd);
875                 return r;
876         }
877
878         /* This would make this whole thing pointless */
879         if (!last_request->intersect)
880                 BUG_ON(rd != cfg80211_regdomain);
881
882         /* update all wiphys now with the new established regulatory domain */
883         update_all_wiphy_regulatory(last_request->initiator);
884
885         print_regdomain(cfg80211_regdomain);
886
887         return r;
888 }
889
890 int regulatory_init(void)
891 {
892         int err;
893
894         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
895         if (IS_ERR(reg_pdev))
896                 return PTR_ERR(reg_pdev);
897
898 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
899         cfg80211_regdomain = static_regdom(ieee80211_regdom);
900
901         printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
902         print_regdomain_info(cfg80211_regdomain);
903         /* The old code still requests for a new regdomain and if
904          * you have CRDA you get it updated, otherwise you get
905          * stuck with the static values. We ignore "EU" code as
906          * that is not a valid ISO / IEC 3166 alpha2 */
907         if (ieee80211_regdom[0] != 'E' || ieee80211_regdom[1] != 'U')
908                 err = __regulatory_hint(NULL, REGDOM_SET_BY_CORE,
909                                         ieee80211_regdom);
910 #else
911         cfg80211_regdomain = cfg80211_world_regdom;
912
913         err = __regulatory_hint(NULL, REGDOM_SET_BY_CORE, "00");
914         if (err)
915                 printk(KERN_ERR "cfg80211: calling CRDA failed - "
916                        "unable to update world regulatory domain, "
917                        "using static definition\n");
918 #endif
919
920         return 0;
921 }
922
923 void regulatory_exit(void)
924 {
925         mutex_lock(&cfg80211_drv_mutex);
926
927         reset_regdomains();
928
929         kfree(last_request);
930
931         platform_device_unregister(reg_pdev);
932
933         mutex_unlock(&cfg80211_drv_mutex);
934 }