cfg80211: move enum reg_set_by to nl80211.h
[safe/jmp/linux-2.6] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/random.h>
38 #include <linux/nl80211.h>
39 #include <linux/platform_device.h>
40 #include <net/wireless.h>
41 #include <net/cfg80211.h>
42 #include "core.h"
43 #include "reg.h"
44
45 /* Receipt of information from last regulatory request */
46 static struct regulatory_request *last_request;
47
48 /* To trigger userspace events */
49 static struct platform_device *reg_pdev;
50
51 /* Keep the ordering from large to small */
52 static u32 supported_bandwidths[] = {
53         MHZ_TO_KHZ(40),
54         MHZ_TO_KHZ(20),
55 };
56
57 /*
58  * Central wireless core regulatory domains, we only need two,
59  * the current one and a world regulatory domain in case we have no
60  * information to give us an alpha2
61  */
62 const struct ieee80211_regdomain *cfg80211_regdomain;
63
64 /*
65  * We use this as a place for the rd structure built from the
66  * last parsed country IE to rest until CRDA gets back to us with
67  * what it thinks should apply for the same country
68  */
69 static const struct ieee80211_regdomain *country_ie_regdomain;
70
71 /* Used to queue up regulatory hints */
72 static LIST_HEAD(reg_requests_list);
73 static spinlock_t reg_requests_lock;
74
75 /* Used to queue up beacon hints for review */
76 static LIST_HEAD(reg_pending_beacons);
77 static spinlock_t reg_pending_beacons_lock;
78
79 /* Used to keep track of processed beacon hints */
80 static LIST_HEAD(reg_beacon_list);
81
82 struct reg_beacon {
83         struct list_head list;
84         struct ieee80211_channel chan;
85 };
86
87 /* We keep a static world regulatory domain in case of the absence of CRDA */
88 static const struct ieee80211_regdomain world_regdom = {
89         .n_reg_rules = 5,
90         .alpha2 =  "00",
91         .reg_rules = {
92                 /* IEEE 802.11b/g, channels 1..11 */
93                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
94                 /* IEEE 802.11b/g, channels 12..13. No HT40
95                  * channel fits here. */
96                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
97                         NL80211_RRF_PASSIVE_SCAN |
98                         NL80211_RRF_NO_IBSS),
99                 /* IEEE 802.11 channel 14 - Only JP enables
100                  * this and for 802.11b only */
101                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
102                         NL80211_RRF_PASSIVE_SCAN |
103                         NL80211_RRF_NO_IBSS |
104                         NL80211_RRF_NO_OFDM),
105                 /* IEEE 802.11a, channel 36..48 */
106                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
107                         NL80211_RRF_PASSIVE_SCAN |
108                         NL80211_RRF_NO_IBSS),
109
110                 /* NB: 5260 MHz - 5700 MHz requies DFS */
111
112                 /* IEEE 802.11a, channel 149..165 */
113                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
114                         NL80211_RRF_PASSIVE_SCAN |
115                         NL80211_RRF_NO_IBSS),
116         }
117 };
118
119 static const struct ieee80211_regdomain *cfg80211_world_regdom =
120         &world_regdom;
121
122 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
123 static char *ieee80211_regdom = "US";
124 module_param(ieee80211_regdom, charp, 0444);
125 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
126
127 /*
128  * We assume 40 MHz bandwidth for the old regulatory work.
129  * We make emphasis we are using the exact same frequencies
130  * as before
131  */
132
133 static const struct ieee80211_regdomain us_regdom = {
134         .n_reg_rules = 6,
135         .alpha2 =  "US",
136         .reg_rules = {
137                 /* IEEE 802.11b/g, channels 1..11 */
138                 REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
139                 /* IEEE 802.11a, channel 36 */
140                 REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
141                 /* IEEE 802.11a, channel 40 */
142                 REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
143                 /* IEEE 802.11a, channel 44 */
144                 REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
145                 /* IEEE 802.11a, channels 48..64 */
146                 REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
147                 /* IEEE 802.11a, channels 149..165, outdoor */
148                 REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
149         }
150 };
151
152 static const struct ieee80211_regdomain jp_regdom = {
153         .n_reg_rules = 3,
154         .alpha2 =  "JP",
155         .reg_rules = {
156                 /* IEEE 802.11b/g, channels 1..14 */
157                 REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
158                 /* IEEE 802.11a, channels 34..48 */
159                 REG_RULE(5170-10, 5240+10, 40, 6, 20,
160                         NL80211_RRF_PASSIVE_SCAN),
161                 /* IEEE 802.11a, channels 52..64 */
162                 REG_RULE(5260-10, 5320+10, 40, 6, 20,
163                         NL80211_RRF_NO_IBSS |
164                         NL80211_RRF_DFS),
165         }
166 };
167
168 static const struct ieee80211_regdomain eu_regdom = {
169         .n_reg_rules = 6,
170         /*
171          * This alpha2 is bogus, we leave it here just for stupid
172          * backward compatibility
173          */
174         .alpha2 =  "EU",
175         .reg_rules = {
176                 /* IEEE 802.11b/g, channels 1..13 */
177                 REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
178                 /* IEEE 802.11a, channel 36 */
179                 REG_RULE(5180-10, 5180+10, 40, 6, 23,
180                         NL80211_RRF_PASSIVE_SCAN),
181                 /* IEEE 802.11a, channel 40 */
182                 REG_RULE(5200-10, 5200+10, 40, 6, 23,
183                         NL80211_RRF_PASSIVE_SCAN),
184                 /* IEEE 802.11a, channel 44 */
185                 REG_RULE(5220-10, 5220+10, 40, 6, 23,
186                         NL80211_RRF_PASSIVE_SCAN),
187                 /* IEEE 802.11a, channels 48..64 */
188                 REG_RULE(5240-10, 5320+10, 40, 6, 20,
189                         NL80211_RRF_NO_IBSS |
190                         NL80211_RRF_DFS),
191                 /* IEEE 802.11a, channels 100..140 */
192                 REG_RULE(5500-10, 5700+10, 40, 6, 30,
193                         NL80211_RRF_NO_IBSS |
194                         NL80211_RRF_DFS),
195         }
196 };
197
198 static const struct ieee80211_regdomain *static_regdom(char *alpha2)
199 {
200         if (alpha2[0] == 'U' && alpha2[1] == 'S')
201                 return &us_regdom;
202         if (alpha2[0] == 'J' && alpha2[1] == 'P')
203                 return &jp_regdom;
204         if (alpha2[0] == 'E' && alpha2[1] == 'U')
205                 return &eu_regdom;
206         /* Default, as per the old rules */
207         return &us_regdom;
208 }
209
210 static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
211 {
212         if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
213                 return true;
214         return false;
215 }
216 #else
217 static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
218 {
219         return false;
220 }
221 #endif
222
223 static void reset_regdomains(void)
224 {
225         /* avoid freeing static information or freeing something twice */
226         if (cfg80211_regdomain == cfg80211_world_regdom)
227                 cfg80211_regdomain = NULL;
228         if (cfg80211_world_regdom == &world_regdom)
229                 cfg80211_world_regdom = NULL;
230         if (cfg80211_regdomain == &world_regdom)
231                 cfg80211_regdomain = NULL;
232         if (is_old_static_regdom(cfg80211_regdomain))
233                 cfg80211_regdomain = NULL;
234
235         kfree(cfg80211_regdomain);
236         kfree(cfg80211_world_regdom);
237
238         cfg80211_world_regdom = &world_regdom;
239         cfg80211_regdomain = NULL;
240 }
241
242 /*
243  * Dynamic world regulatory domain requested by the wireless
244  * core upon initialization
245  */
246 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
247 {
248         BUG_ON(!last_request);
249
250         reset_regdomains();
251
252         cfg80211_world_regdom = rd;
253         cfg80211_regdomain = rd;
254 }
255
256 bool is_world_regdom(const char *alpha2)
257 {
258         if (!alpha2)
259                 return false;
260         if (alpha2[0] == '0' && alpha2[1] == '0')
261                 return true;
262         return false;
263 }
264
265 static bool is_alpha2_set(const char *alpha2)
266 {
267         if (!alpha2)
268                 return false;
269         if (alpha2[0] != 0 && alpha2[1] != 0)
270                 return true;
271         return false;
272 }
273
274 static bool is_alpha_upper(char letter)
275 {
276         /* ASCII A - Z */
277         if (letter >= 65 && letter <= 90)
278                 return true;
279         return false;
280 }
281
282 static bool is_unknown_alpha2(const char *alpha2)
283 {
284         if (!alpha2)
285                 return false;
286         /*
287          * Special case where regulatory domain was built by driver
288          * but a specific alpha2 cannot be determined
289          */
290         if (alpha2[0] == '9' && alpha2[1] == '9')
291                 return true;
292         return false;
293 }
294
295 static bool is_intersected_alpha2(const char *alpha2)
296 {
297         if (!alpha2)
298                 return false;
299         /*
300          * Special case where regulatory domain is the
301          * result of an intersection between two regulatory domain
302          * structures
303          */
304         if (alpha2[0] == '9' && alpha2[1] == '8')
305                 return true;
306         return false;
307 }
308
309 static bool is_an_alpha2(const char *alpha2)
310 {
311         if (!alpha2)
312                 return false;
313         if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
314                 return true;
315         return false;
316 }
317
318 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
319 {
320         if (!alpha2_x || !alpha2_y)
321                 return false;
322         if (alpha2_x[0] == alpha2_y[0] &&
323                 alpha2_x[1] == alpha2_y[1])
324                 return true;
325         return false;
326 }
327
328 static bool regdom_changes(const char *alpha2)
329 {
330         assert_cfg80211_lock();
331
332         if (!cfg80211_regdomain)
333                 return true;
334         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
335                 return false;
336         return true;
337 }
338
339 /**
340  * country_ie_integrity_changes - tells us if the country IE has changed
341  * @checksum: checksum of country IE of fields we are interested in
342  *
343  * If the country IE has not changed you can ignore it safely. This is
344  * useful to determine if two devices are seeing two different country IEs
345  * even on the same alpha2. Note that this will return false if no IE has
346  * been set on the wireless core yet.
347  */
348 static bool country_ie_integrity_changes(u32 checksum)
349 {
350         /* If no IE has been set then the checksum doesn't change */
351         if (unlikely(!last_request->country_ie_checksum))
352                 return false;
353         if (unlikely(last_request->country_ie_checksum != checksum))
354                 return true;
355         return false;
356 }
357
358 /*
359  * This lets us keep regulatory code which is updated on a regulatory
360  * basis in userspace.
361  */
362 static int call_crda(const char *alpha2)
363 {
364         char country_env[9 + 2] = "COUNTRY=";
365         char *envp[] = {
366                 country_env,
367                 NULL
368         };
369
370         if (!is_world_regdom((char *) alpha2))
371                 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
372                         alpha2[0], alpha2[1]);
373         else
374                 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
375                         "regulatory domain\n");
376
377         country_env[8] = alpha2[0];
378         country_env[9] = alpha2[1];
379
380         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
381 }
382
383 /* Used by nl80211 before kmalloc'ing our regulatory domain */
384 bool reg_is_valid_request(const char *alpha2)
385 {
386         if (!last_request)
387                 return false;
388
389         return alpha2_equal(last_request->alpha2, alpha2);
390 }
391
392 /* Sanity check on a regulatory rule */
393 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
394 {
395         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
396         u32 freq_diff;
397
398         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
399                 return false;
400
401         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
402                 return false;
403
404         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
405
406         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
407                         freq_range->max_bandwidth_khz > freq_diff)
408                 return false;
409
410         return true;
411 }
412
413 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
414 {
415         const struct ieee80211_reg_rule *reg_rule = NULL;
416         unsigned int i;
417
418         if (!rd->n_reg_rules)
419                 return false;
420
421         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
422                 return false;
423
424         for (i = 0; i < rd->n_reg_rules; i++) {
425                 reg_rule = &rd->reg_rules[i];
426                 if (!is_valid_reg_rule(reg_rule))
427                         return false;
428         }
429
430         return true;
431 }
432
433 /* Returns value in KHz */
434 static u32 freq_max_bandwidth(const struct ieee80211_freq_range *freq_range,
435         u32 freq)
436 {
437         unsigned int i;
438         for (i = 0; i < ARRAY_SIZE(supported_bandwidths); i++) {
439                 u32 start_freq_khz = freq - supported_bandwidths[i]/2;
440                 u32 end_freq_khz = freq + supported_bandwidths[i]/2;
441                 if (start_freq_khz >= freq_range->start_freq_khz &&
442                         end_freq_khz <= freq_range->end_freq_khz)
443                         return supported_bandwidths[i];
444         }
445         return 0;
446 }
447
448 /**
449  * freq_in_rule_band - tells us if a frequency is in a frequency band
450  * @freq_range: frequency rule we want to query
451  * @freq_khz: frequency we are inquiring about
452  *
453  * This lets us know if a specific frequency rule is or is not relevant to
454  * a specific frequency's band. Bands are device specific and artificial
455  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
456  * safe for now to assume that a frequency rule should not be part of a
457  * frequency's band if the start freq or end freq are off by more than 2 GHz.
458  * This resolution can be lowered and should be considered as we add
459  * regulatory rule support for other "bands".
460  **/
461 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
462         u32 freq_khz)
463 {
464 #define ONE_GHZ_IN_KHZ  1000000
465         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
466                 return true;
467         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
468                 return true;
469         return false;
470 #undef ONE_GHZ_IN_KHZ
471 }
472
473 /*
474  * Converts a country IE to a regulatory domain. A regulatory domain
475  * structure has a lot of information which the IE doesn't yet have,
476  * so for the other values we use upper max values as we will intersect
477  * with our userspace regulatory agent to get lower bounds.
478  */
479 static struct ieee80211_regdomain *country_ie_2_rd(
480                                 u8 *country_ie,
481                                 u8 country_ie_len,
482                                 u32 *checksum)
483 {
484         struct ieee80211_regdomain *rd = NULL;
485         unsigned int i = 0;
486         char alpha2[2];
487         u32 flags = 0;
488         u32 num_rules = 0, size_of_regd = 0;
489         u8 *triplets_start = NULL;
490         u8 len_at_triplet = 0;
491         /* the last channel we have registered in a subband (triplet) */
492         int last_sub_max_channel = 0;
493
494         *checksum = 0xDEADBEEF;
495
496         /* Country IE requirements */
497         BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
498                 country_ie_len & 0x01);
499
500         alpha2[0] = country_ie[0];
501         alpha2[1] = country_ie[1];
502
503         /*
504          * Third octet can be:
505          *    'I' - Indoor
506          *    'O' - Outdoor
507          *
508          *  anything else we assume is no restrictions
509          */
510         if (country_ie[2] == 'I')
511                 flags = NL80211_RRF_NO_OUTDOOR;
512         else if (country_ie[2] == 'O')
513                 flags = NL80211_RRF_NO_INDOOR;
514
515         country_ie += 3;
516         country_ie_len -= 3;
517
518         triplets_start = country_ie;
519         len_at_triplet = country_ie_len;
520
521         *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
522
523         /*
524          * We need to build a reg rule for each triplet, but first we must
525          * calculate the number of reg rules we will need. We will need one
526          * for each channel subband
527          */
528         while (country_ie_len >= 3) {
529                 int end_channel = 0;
530                 struct ieee80211_country_ie_triplet *triplet =
531                         (struct ieee80211_country_ie_triplet *) country_ie;
532                 int cur_sub_max_channel = 0, cur_channel = 0;
533
534                 if (triplet->ext.reg_extension_id >=
535                                 IEEE80211_COUNTRY_EXTENSION_ID) {
536                         country_ie += 3;
537                         country_ie_len -= 3;
538                         continue;
539                 }
540
541                 /* 2 GHz */
542                 if (triplet->chans.first_channel <= 14)
543                         end_channel = triplet->chans.first_channel +
544                                 triplet->chans.num_channels;
545                 else
546                         /*
547                          * 5 GHz -- For example in country IEs if the first
548                          * channel given is 36 and the number of channels is 4
549                          * then the individual channel numbers defined for the
550                          * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
551                          * and not 36, 37, 38, 39.
552                          *
553                          * See: http://tinyurl.com/11d-clarification
554                          */
555                         end_channel =  triplet->chans.first_channel +
556                                 (4 * (triplet->chans.num_channels - 1));
557
558                 cur_channel = triplet->chans.first_channel;
559                 cur_sub_max_channel = end_channel;
560
561                 /* Basic sanity check */
562                 if (cur_sub_max_channel < cur_channel)
563                         return NULL;
564
565                 /*
566                  * Do not allow overlapping channels. Also channels
567                  * passed in each subband must be monotonically
568                  * increasing
569                  */
570                 if (last_sub_max_channel) {
571                         if (cur_channel <= last_sub_max_channel)
572                                 return NULL;
573                         if (cur_sub_max_channel <= last_sub_max_channel)
574                                 return NULL;
575                 }
576
577                 /*
578                  * When dot11RegulatoryClassesRequired is supported
579                  * we can throw ext triplets as part of this soup,
580                  * for now we don't care when those change as we
581                  * don't support them
582                  */
583                 *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
584                   ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
585                   ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
586
587                 last_sub_max_channel = cur_sub_max_channel;
588
589                 country_ie += 3;
590                 country_ie_len -= 3;
591                 num_rules++;
592
593                 /*
594                  * Note: this is not a IEEE requirement but
595                  * simply a memory requirement
596                  */
597                 if (num_rules > NL80211_MAX_SUPP_REG_RULES)
598                         return NULL;
599         }
600
601         country_ie = triplets_start;
602         country_ie_len = len_at_triplet;
603
604         size_of_regd = sizeof(struct ieee80211_regdomain) +
605                 (num_rules * sizeof(struct ieee80211_reg_rule));
606
607         rd = kzalloc(size_of_regd, GFP_KERNEL);
608         if (!rd)
609                 return NULL;
610
611         rd->n_reg_rules = num_rules;
612         rd->alpha2[0] = alpha2[0];
613         rd->alpha2[1] = alpha2[1];
614
615         /* This time around we fill in the rd */
616         while (country_ie_len >= 3) {
617                 int end_channel = 0;
618                 struct ieee80211_country_ie_triplet *triplet =
619                         (struct ieee80211_country_ie_triplet *) country_ie;
620                 struct ieee80211_reg_rule *reg_rule = NULL;
621                 struct ieee80211_freq_range *freq_range = NULL;
622                 struct ieee80211_power_rule *power_rule = NULL;
623
624                 /*
625                  * Must parse if dot11RegulatoryClassesRequired is true,
626                  * we don't support this yet
627                  */
628                 if (triplet->ext.reg_extension_id >=
629                                 IEEE80211_COUNTRY_EXTENSION_ID) {
630                         country_ie += 3;
631                         country_ie_len -= 3;
632                         continue;
633                 }
634
635                 reg_rule = &rd->reg_rules[i];
636                 freq_range = &reg_rule->freq_range;
637                 power_rule = &reg_rule->power_rule;
638
639                 reg_rule->flags = flags;
640
641                 /* 2 GHz */
642                 if (triplet->chans.first_channel <= 14)
643                         end_channel = triplet->chans.first_channel +
644                                 triplet->chans.num_channels;
645                 else
646                         end_channel =  triplet->chans.first_channel +
647                                 (4 * (triplet->chans.num_channels - 1));
648
649                 /*
650                  * The +10 is since the regulatory domain expects
651                  * the actual band edge, not the center of freq for
652                  * its start and end freqs, assuming 20 MHz bandwidth on
653                  * the channels passed
654                  */
655                 freq_range->start_freq_khz =
656                         MHZ_TO_KHZ(ieee80211_channel_to_frequency(
657                                 triplet->chans.first_channel) - 10);
658                 freq_range->end_freq_khz =
659                         MHZ_TO_KHZ(ieee80211_channel_to_frequency(
660                                 end_channel) + 10);
661
662                 /*
663                  * These are large arbitrary values we use to intersect later.
664                  * Increment this if we ever support >= 40 MHz channels
665                  * in IEEE 802.11
666                  */
667                 freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
668                 power_rule->max_antenna_gain = DBI_TO_MBI(100);
669                 power_rule->max_eirp = DBM_TO_MBM(100);
670
671                 country_ie += 3;
672                 country_ie_len -= 3;
673                 i++;
674
675                 BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
676         }
677
678         return rd;
679 }
680
681
682 /*
683  * Helper for regdom_intersect(), this does the real
684  * mathematical intersection fun
685  */
686 static int reg_rules_intersect(
687         const struct ieee80211_reg_rule *rule1,
688         const struct ieee80211_reg_rule *rule2,
689         struct ieee80211_reg_rule *intersected_rule)
690 {
691         const struct ieee80211_freq_range *freq_range1, *freq_range2;
692         struct ieee80211_freq_range *freq_range;
693         const struct ieee80211_power_rule *power_rule1, *power_rule2;
694         struct ieee80211_power_rule *power_rule;
695         u32 freq_diff;
696
697         freq_range1 = &rule1->freq_range;
698         freq_range2 = &rule2->freq_range;
699         freq_range = &intersected_rule->freq_range;
700
701         power_rule1 = &rule1->power_rule;
702         power_rule2 = &rule2->power_rule;
703         power_rule = &intersected_rule->power_rule;
704
705         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
706                 freq_range2->start_freq_khz);
707         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
708                 freq_range2->end_freq_khz);
709         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
710                 freq_range2->max_bandwidth_khz);
711
712         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
713         if (freq_range->max_bandwidth_khz > freq_diff)
714                 freq_range->max_bandwidth_khz = freq_diff;
715
716         power_rule->max_eirp = min(power_rule1->max_eirp,
717                 power_rule2->max_eirp);
718         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
719                 power_rule2->max_antenna_gain);
720
721         intersected_rule->flags = (rule1->flags | rule2->flags);
722
723         if (!is_valid_reg_rule(intersected_rule))
724                 return -EINVAL;
725
726         return 0;
727 }
728
729 /**
730  * regdom_intersect - do the intersection between two regulatory domains
731  * @rd1: first regulatory domain
732  * @rd2: second regulatory domain
733  *
734  * Use this function to get the intersection between two regulatory domains.
735  * Once completed we will mark the alpha2 for the rd as intersected, "98",
736  * as no one single alpha2 can represent this regulatory domain.
737  *
738  * Returns a pointer to the regulatory domain structure which will hold the
739  * resulting intersection of rules between rd1 and rd2. We will
740  * kzalloc() this structure for you.
741  */
742 static struct ieee80211_regdomain *regdom_intersect(
743         const struct ieee80211_regdomain *rd1,
744         const struct ieee80211_regdomain *rd2)
745 {
746         int r, size_of_regd;
747         unsigned int x, y;
748         unsigned int num_rules = 0, rule_idx = 0;
749         const struct ieee80211_reg_rule *rule1, *rule2;
750         struct ieee80211_reg_rule *intersected_rule;
751         struct ieee80211_regdomain *rd;
752         /* This is just a dummy holder to help us count */
753         struct ieee80211_reg_rule irule;
754
755         /* Uses the stack temporarily for counter arithmetic */
756         intersected_rule = &irule;
757
758         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
759
760         if (!rd1 || !rd2)
761                 return NULL;
762
763         /*
764          * First we get a count of the rules we'll need, then we actually
765          * build them. This is to so we can malloc() and free() a
766          * regdomain once. The reason we use reg_rules_intersect() here
767          * is it will return -EINVAL if the rule computed makes no sense.
768          * All rules that do check out OK are valid.
769          */
770
771         for (x = 0; x < rd1->n_reg_rules; x++) {
772                 rule1 = &rd1->reg_rules[x];
773                 for (y = 0; y < rd2->n_reg_rules; y++) {
774                         rule2 = &rd2->reg_rules[y];
775                         if (!reg_rules_intersect(rule1, rule2,
776                                         intersected_rule))
777                                 num_rules++;
778                         memset(intersected_rule, 0,
779                                         sizeof(struct ieee80211_reg_rule));
780                 }
781         }
782
783         if (!num_rules)
784                 return NULL;
785
786         size_of_regd = sizeof(struct ieee80211_regdomain) +
787                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
788
789         rd = kzalloc(size_of_regd, GFP_KERNEL);
790         if (!rd)
791                 return NULL;
792
793         for (x = 0; x < rd1->n_reg_rules; x++) {
794                 rule1 = &rd1->reg_rules[x];
795                 for (y = 0; y < rd2->n_reg_rules; y++) {
796                         rule2 = &rd2->reg_rules[y];
797                         /*
798                          * This time around instead of using the stack lets
799                          * write to the target rule directly saving ourselves
800                          * a memcpy()
801                          */
802                         intersected_rule = &rd->reg_rules[rule_idx];
803                         r = reg_rules_intersect(rule1, rule2,
804                                 intersected_rule);
805                         /*
806                          * No need to memset here the intersected rule here as
807                          * we're not using the stack anymore
808                          */
809                         if (r)
810                                 continue;
811                         rule_idx++;
812                 }
813         }
814
815         if (rule_idx != num_rules) {
816                 kfree(rd);
817                 return NULL;
818         }
819
820         rd->n_reg_rules = num_rules;
821         rd->alpha2[0] = '9';
822         rd->alpha2[1] = '8';
823
824         return rd;
825 }
826
827 /*
828  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
829  * want to just have the channel structure use these
830  */
831 static u32 map_regdom_flags(u32 rd_flags)
832 {
833         u32 channel_flags = 0;
834         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
835                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
836         if (rd_flags & NL80211_RRF_NO_IBSS)
837                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
838         if (rd_flags & NL80211_RRF_DFS)
839                 channel_flags |= IEEE80211_CHAN_RADAR;
840         return channel_flags;
841 }
842
843 static int freq_reg_info_regd(struct wiphy *wiphy,
844                               u32 center_freq,
845                               u32 *bandwidth,
846                               const struct ieee80211_reg_rule **reg_rule,
847                               const struct ieee80211_regdomain *custom_regd)
848 {
849         int i;
850         bool band_rule_found = false;
851         const struct ieee80211_regdomain *regd;
852         u32 max_bandwidth = 0;
853
854         regd = custom_regd ? custom_regd : cfg80211_regdomain;
855
856         /*
857          * Follow the driver's regulatory domain, if present, unless a country
858          * IE has been processed or a user wants to help complaince further
859          */
860         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
861             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
862             wiphy->regd)
863                 regd = wiphy->regd;
864
865         if (!regd)
866                 return -EINVAL;
867
868         for (i = 0; i < regd->n_reg_rules; i++) {
869                 const struct ieee80211_reg_rule *rr;
870                 const struct ieee80211_freq_range *fr = NULL;
871                 const struct ieee80211_power_rule *pr = NULL;
872
873                 rr = &regd->reg_rules[i];
874                 fr = &rr->freq_range;
875                 pr = &rr->power_rule;
876
877                 /*
878                  * We only need to know if one frequency rule was
879                  * was in center_freq's band, that's enough, so lets
880                  * not overwrite it once found
881                  */
882                 if (!band_rule_found)
883                         band_rule_found = freq_in_rule_band(fr, center_freq);
884
885                 max_bandwidth = freq_max_bandwidth(fr, center_freq);
886
887                 if (max_bandwidth && *bandwidth <= max_bandwidth) {
888                         *reg_rule = rr;
889                         *bandwidth = max_bandwidth;
890                         break;
891                 }
892         }
893
894         if (!band_rule_found)
895                 return -ERANGE;
896
897         return !max_bandwidth;
898 }
899 EXPORT_SYMBOL(freq_reg_info);
900
901 int freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 *bandwidth,
902                          const struct ieee80211_reg_rule **reg_rule)
903 {
904         return freq_reg_info_regd(wiphy, center_freq,
905                 bandwidth, reg_rule, NULL);
906 }
907
908 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
909                            unsigned int chan_idx)
910 {
911         int r;
912         u32 flags;
913         u32 max_bandwidth = 0;
914         const struct ieee80211_reg_rule *reg_rule = NULL;
915         const struct ieee80211_power_rule *power_rule = NULL;
916         struct ieee80211_supported_band *sband;
917         struct ieee80211_channel *chan;
918         struct wiphy *request_wiphy = NULL;
919
920         assert_cfg80211_lock();
921
922         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
923
924         sband = wiphy->bands[band];
925         BUG_ON(chan_idx >= sband->n_channels);
926         chan = &sband->channels[chan_idx];
927
928         flags = chan->orig_flags;
929
930         r = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq),
931                 &max_bandwidth, &reg_rule);
932
933         if (r) {
934                 /*
935                  * This means no regulatory rule was found in the country IE
936                  * with a frequency range on the center_freq's band, since
937                  * IEEE-802.11 allows for a country IE to have a subset of the
938                  * regulatory information provided in a country we ignore
939                  * disabling the channel unless at least one reg rule was
940                  * found on the center_freq's band. For details see this
941                  * clarification:
942                  *
943                  * http://tinyurl.com/11d-clarification
944                  */
945                 if (r == -ERANGE &&
946                     last_request->initiator ==
947                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
948 #ifdef CONFIG_CFG80211_REG_DEBUG
949                         printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
950                                 "intact on %s - no rule found in band on "
951                                 "Country IE\n",
952                                 chan->center_freq, wiphy_name(wiphy));
953 #endif
954                 } else {
955                 /*
956                  * In this case we know the country IE has at least one reg rule
957                  * for the band so we respect its band definitions
958                  */
959 #ifdef CONFIG_CFG80211_REG_DEBUG
960                         if (last_request->initiator ==
961                             NL80211_REGDOM_SET_BY_COUNTRY_IE)
962                                 printk(KERN_DEBUG "cfg80211: Disabling "
963                                         "channel %d MHz on %s due to "
964                                         "Country IE\n",
965                                         chan->center_freq, wiphy_name(wiphy));
966 #endif
967                         flags |= IEEE80211_CHAN_DISABLED;
968                         chan->flags = flags;
969                 }
970                 return;
971         }
972
973         power_rule = &reg_rule->power_rule;
974
975         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
976             request_wiphy && request_wiphy == wiphy &&
977             request_wiphy->strict_regulatory) {
978                 /*
979                  * This gaurantees the driver's requested regulatory domain
980                  * will always be used as a base for further regulatory
981                  * settings
982                  */
983                 chan->flags = chan->orig_flags =
984                         map_regdom_flags(reg_rule->flags);
985                 chan->max_antenna_gain = chan->orig_mag =
986                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
987                 chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
988                 chan->max_power = chan->orig_mpwr =
989                         (int) MBM_TO_DBM(power_rule->max_eirp);
990                 return;
991         }
992
993         chan->flags = flags | map_regdom_flags(reg_rule->flags);
994         chan->max_antenna_gain = min(chan->orig_mag,
995                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
996         chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
997         if (chan->orig_mpwr)
998                 chan->max_power = min(chan->orig_mpwr,
999                         (int) MBM_TO_DBM(power_rule->max_eirp));
1000         else
1001                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1002 }
1003
1004 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1005 {
1006         unsigned int i;
1007         struct ieee80211_supported_band *sband;
1008
1009         BUG_ON(!wiphy->bands[band]);
1010         sband = wiphy->bands[band];
1011
1012         for (i = 0; i < sband->n_channels; i++)
1013                 handle_channel(wiphy, band, i);
1014 }
1015
1016 static bool ignore_reg_update(struct wiphy *wiphy,
1017                               enum nl80211_reg_initiator initiator)
1018 {
1019         if (!last_request)
1020                 return true;
1021         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1022                   wiphy->custom_regulatory)
1023                 return true;
1024         /*
1025          * wiphy->regd will be set once the device has its own
1026          * desired regulatory domain set
1027          */
1028         if (wiphy->strict_regulatory && !wiphy->regd &&
1029             !is_world_regdom(last_request->alpha2))
1030                 return true;
1031         return false;
1032 }
1033
1034 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1035 {
1036         struct cfg80211_registered_device *drv;
1037
1038         list_for_each_entry(drv, &cfg80211_drv_list, list)
1039                 wiphy_update_regulatory(&drv->wiphy, initiator);
1040 }
1041
1042 static void handle_reg_beacon(struct wiphy *wiphy,
1043                               unsigned int chan_idx,
1044                               struct reg_beacon *reg_beacon)
1045 {
1046 #ifdef CONFIG_CFG80211_REG_DEBUG
1047 #define REG_DEBUG_BEACON_FLAG(desc) \
1048         printk(KERN_DEBUG "cfg80211: Enabling " desc " on " \
1049                 "frequency: %d MHz (Ch %d) on %s\n", \
1050                 reg_beacon->chan.center_freq, \
1051                 ieee80211_frequency_to_channel(reg_beacon->chan.center_freq), \
1052                 wiphy_name(wiphy));
1053 #else
1054 #define REG_DEBUG_BEACON_FLAG(desc) do {} while (0)
1055 #endif
1056         struct ieee80211_supported_band *sband;
1057         struct ieee80211_channel *chan;
1058
1059         assert_cfg80211_lock();
1060
1061         sband = wiphy->bands[reg_beacon->chan.band];
1062         chan = &sband->channels[chan_idx];
1063
1064         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1065                 return;
1066
1067         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1068                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1069                 REG_DEBUG_BEACON_FLAG("active scanning");
1070         }
1071
1072         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1073                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1074                 REG_DEBUG_BEACON_FLAG("beaconing");
1075         }
1076
1077         chan->beacon_found = true;
1078 #undef REG_DEBUG_BEACON_FLAG
1079 }
1080
1081 /*
1082  * Called when a scan on a wiphy finds a beacon on
1083  * new channel
1084  */
1085 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1086                                     struct reg_beacon *reg_beacon)
1087 {
1088         unsigned int i;
1089         struct ieee80211_supported_band *sband;
1090
1091         assert_cfg80211_lock();
1092
1093         if (!wiphy->bands[reg_beacon->chan.band])
1094                 return;
1095
1096         sband = wiphy->bands[reg_beacon->chan.band];
1097
1098         for (i = 0; i < sband->n_channels; i++)
1099                 handle_reg_beacon(wiphy, i, reg_beacon);
1100 }
1101
1102 /*
1103  * Called upon reg changes or a new wiphy is added
1104  */
1105 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1106 {
1107         unsigned int i;
1108         struct ieee80211_supported_band *sband;
1109         struct reg_beacon *reg_beacon;
1110
1111         assert_cfg80211_lock();
1112
1113         if (list_empty(&reg_beacon_list))
1114                 return;
1115
1116         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1117                 if (!wiphy->bands[reg_beacon->chan.band])
1118                         continue;
1119                 sband = wiphy->bands[reg_beacon->chan.band];
1120                 for (i = 0; i < sband->n_channels; i++)
1121                         handle_reg_beacon(wiphy, i, reg_beacon);
1122         }
1123 }
1124
1125 static bool reg_is_world_roaming(struct wiphy *wiphy)
1126 {
1127         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1128             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1129                 return true;
1130         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1131             wiphy->custom_regulatory)
1132                 return true;
1133         return false;
1134 }
1135
1136 /* Reap the advantages of previously found beacons */
1137 static void reg_process_beacons(struct wiphy *wiphy)
1138 {
1139         if (!reg_is_world_roaming(wiphy))
1140                 return;
1141         wiphy_update_beacon_reg(wiphy);
1142 }
1143
1144 void wiphy_update_regulatory(struct wiphy *wiphy,
1145                              enum nl80211_reg_initiator initiator)
1146 {
1147         enum ieee80211_band band;
1148
1149         if (ignore_reg_update(wiphy, initiator))
1150                 goto out;
1151         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1152                 if (wiphy->bands[band])
1153                         handle_band(wiphy, band);
1154         }
1155 out:
1156         reg_process_beacons(wiphy);
1157         if (wiphy->reg_notifier)
1158                 wiphy->reg_notifier(wiphy, last_request);
1159 }
1160
1161 static void handle_channel_custom(struct wiphy *wiphy,
1162                                   enum ieee80211_band band,
1163                                   unsigned int chan_idx,
1164                                   const struct ieee80211_regdomain *regd)
1165 {
1166         int r;
1167         u32 max_bandwidth = 0;
1168         const struct ieee80211_reg_rule *reg_rule = NULL;
1169         const struct ieee80211_power_rule *power_rule = NULL;
1170         struct ieee80211_supported_band *sband;
1171         struct ieee80211_channel *chan;
1172
1173         sband = wiphy->bands[band];
1174         BUG_ON(chan_idx >= sband->n_channels);
1175         chan = &sband->channels[chan_idx];
1176
1177         r = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1178                 &max_bandwidth, &reg_rule, regd);
1179
1180         if (r) {
1181                 chan->flags = IEEE80211_CHAN_DISABLED;
1182                 return;
1183         }
1184
1185         power_rule = &reg_rule->power_rule;
1186
1187         chan->flags |= map_regdom_flags(reg_rule->flags);
1188         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1189         chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
1190         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1191 }
1192
1193 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1194                                const struct ieee80211_regdomain *regd)
1195 {
1196         unsigned int i;
1197         struct ieee80211_supported_band *sband;
1198
1199         BUG_ON(!wiphy->bands[band]);
1200         sband = wiphy->bands[band];
1201
1202         for (i = 0; i < sband->n_channels; i++)
1203                 handle_channel_custom(wiphy, band, i, regd);
1204 }
1205
1206 /* Used by drivers prior to wiphy registration */
1207 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1208                                    const struct ieee80211_regdomain *regd)
1209 {
1210         enum ieee80211_band band;
1211         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1212                 if (wiphy->bands[band])
1213                         handle_band_custom(wiphy, band, regd);
1214         }
1215 }
1216 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1217
1218 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
1219                          const struct ieee80211_regdomain *src_regd)
1220 {
1221         struct ieee80211_regdomain *regd;
1222         int size_of_regd = 0;
1223         unsigned int i;
1224
1225         size_of_regd = sizeof(struct ieee80211_regdomain) +
1226           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
1227
1228         regd = kzalloc(size_of_regd, GFP_KERNEL);
1229         if (!regd)
1230                 return -ENOMEM;
1231
1232         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
1233
1234         for (i = 0; i < src_regd->n_reg_rules; i++)
1235                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
1236                         sizeof(struct ieee80211_reg_rule));
1237
1238         *dst_regd = regd;
1239         return 0;
1240 }
1241
1242 /*
1243  * Return value which can be used by ignore_request() to indicate
1244  * it has been determined we should intersect two regulatory domains
1245  */
1246 #define REG_INTERSECT   1
1247
1248 /* This has the logic which determines when a new request
1249  * should be ignored. */
1250 static int ignore_request(struct wiphy *wiphy,
1251                           struct regulatory_request *pending_request)
1252 {
1253         struct wiphy *last_wiphy = NULL;
1254
1255         assert_cfg80211_lock();
1256
1257         /* All initial requests are respected */
1258         if (!last_request)
1259                 return 0;
1260
1261         switch (pending_request->initiator) {
1262         case NL80211_REGDOM_SET_BY_CORE:
1263                 return -EINVAL;
1264         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1265
1266                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1267
1268                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1269                         return -EINVAL;
1270                 if (last_request->initiator ==
1271                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1272                         if (last_wiphy != wiphy) {
1273                                 /*
1274                                  * Two cards with two APs claiming different
1275                                  * different Country IE alpha2s. We could
1276                                  * intersect them, but that seems unlikely
1277                                  * to be correct. Reject second one for now.
1278                                  */
1279                                 if (regdom_changes(pending_request->alpha2))
1280                                         return -EOPNOTSUPP;
1281                                 return -EALREADY;
1282                         }
1283                         /*
1284                          * Two consecutive Country IE hints on the same wiphy.
1285                          * This should be picked up early by the driver/stack
1286                          */
1287                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1288                                 return 0;
1289                         return -EALREADY;
1290                 }
1291                 return REG_INTERSECT;
1292         case NL80211_REGDOM_SET_BY_DRIVER:
1293                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1294                         if (is_old_static_regdom(cfg80211_regdomain))
1295                                 return 0;
1296                         if (regdom_changes(pending_request->alpha2))
1297                                 return 0;
1298                         return -EALREADY;
1299                 }
1300
1301                 /*
1302                  * This would happen if you unplug and plug your card
1303                  * back in or if you add a new device for which the previously
1304                  * loaded card also agrees on the regulatory domain.
1305                  */
1306                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1307                     !regdom_changes(pending_request->alpha2))
1308                         return -EALREADY;
1309
1310                 return REG_INTERSECT;
1311         case NL80211_REGDOM_SET_BY_USER:
1312                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1313                         return REG_INTERSECT;
1314                 /*
1315                  * If the user knows better the user should set the regdom
1316                  * to their country before the IE is picked up
1317                  */
1318                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1319                           last_request->intersect)
1320                         return -EOPNOTSUPP;
1321                 /*
1322                  * Process user requests only after previous user/driver/core
1323                  * requests have been processed
1324                  */
1325                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1326                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1327                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1328                         if (regdom_changes(last_request->alpha2))
1329                                 return -EAGAIN;
1330                 }
1331
1332                 if (!is_old_static_regdom(cfg80211_regdomain) &&
1333                     !regdom_changes(pending_request->alpha2))
1334                         return -EALREADY;
1335
1336                 return 0;
1337         }
1338
1339         return -EINVAL;
1340 }
1341
1342 /**
1343  * __regulatory_hint - hint to the wireless core a regulatory domain
1344  * @wiphy: if the hint comes from country information from an AP, this
1345  *      is required to be set to the wiphy that received the information
1346  * @pending_request: the regulatory request currently being processed
1347  *
1348  * The Wireless subsystem can use this function to hint to the wireless core
1349  * what it believes should be the current regulatory domain.
1350  *
1351  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1352  * already been set or other standard error codes.
1353  *
1354  * Caller must hold &cfg80211_mutex
1355  */
1356 static int __regulatory_hint(struct wiphy *wiphy,
1357                              struct regulatory_request *pending_request)
1358 {
1359         bool intersect = false;
1360         int r = 0;
1361
1362         assert_cfg80211_lock();
1363
1364         r = ignore_request(wiphy, pending_request);
1365
1366         if (r == REG_INTERSECT) {
1367                 if (pending_request->initiator ==
1368                     NL80211_REGDOM_SET_BY_DRIVER) {
1369                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1370                         if (r) {
1371                                 kfree(pending_request);
1372                                 return r;
1373                         }
1374                 }
1375                 intersect = true;
1376         } else if (r) {
1377                 /*
1378                  * If the regulatory domain being requested by the
1379                  * driver has already been set just copy it to the
1380                  * wiphy
1381                  */
1382                 if (r == -EALREADY &&
1383                     pending_request->initiator ==
1384                     NL80211_REGDOM_SET_BY_DRIVER) {
1385                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1386                         if (r) {
1387                                 kfree(pending_request);
1388                                 return r;
1389                         }
1390                         r = -EALREADY;
1391                         goto new_request;
1392                 }
1393                 kfree(pending_request);
1394                 return r;
1395         }
1396
1397 new_request:
1398         kfree(last_request);
1399
1400         last_request = pending_request;
1401         last_request->intersect = intersect;
1402
1403         pending_request = NULL;
1404
1405         /* When r == REG_INTERSECT we do need to call CRDA */
1406         if (r < 0)
1407                 return r;
1408
1409         /*
1410          * Note: When CONFIG_WIRELESS_OLD_REGULATORY is enabled
1411          * AND if CRDA is NOT present nothing will happen, if someone
1412          * wants to bother with 11d with OLD_REG you can add a timer.
1413          * If after x amount of time nothing happens you can call:
1414          *
1415          * return set_regdom(country_ie_regdomain);
1416          *
1417          * to intersect with the static rd
1418          */
1419         return call_crda(last_request->alpha2);
1420 }
1421
1422 /* This currently only processes user and driver regulatory hints */
1423 static void reg_process_hint(struct regulatory_request *reg_request)
1424 {
1425         int r = 0;
1426         struct wiphy *wiphy = NULL;
1427
1428         BUG_ON(!reg_request->alpha2);
1429
1430         mutex_lock(&cfg80211_mutex);
1431
1432         if (wiphy_idx_valid(reg_request->wiphy_idx))
1433                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1434
1435         if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1436             !wiphy) {
1437                 kfree(reg_request);
1438                 goto out;
1439         }
1440
1441         r = __regulatory_hint(wiphy, reg_request);
1442         /* This is required so that the orig_* parameters are saved */
1443         if (r == -EALREADY && wiphy && wiphy->strict_regulatory)
1444                 wiphy_update_regulatory(wiphy, reg_request->initiator);
1445 out:
1446         mutex_unlock(&cfg80211_mutex);
1447 }
1448
1449 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1450 static void reg_process_pending_hints(void)
1451         {
1452         struct regulatory_request *reg_request;
1453
1454         spin_lock(&reg_requests_lock);
1455         while (!list_empty(&reg_requests_list)) {
1456                 reg_request = list_first_entry(&reg_requests_list,
1457                                                struct regulatory_request,
1458                                                list);
1459                 list_del_init(&reg_request->list);
1460
1461                 spin_unlock(&reg_requests_lock);
1462                 reg_process_hint(reg_request);
1463                 spin_lock(&reg_requests_lock);
1464         }
1465         spin_unlock(&reg_requests_lock);
1466 }
1467
1468 /* Processes beacon hints -- this has nothing to do with country IEs */
1469 static void reg_process_pending_beacon_hints(void)
1470 {
1471         struct cfg80211_registered_device *drv;
1472         struct reg_beacon *pending_beacon, *tmp;
1473
1474         mutex_lock(&cfg80211_mutex);
1475
1476         /* This goes through the _pending_ beacon list */
1477         spin_lock_bh(&reg_pending_beacons_lock);
1478
1479         if (list_empty(&reg_pending_beacons)) {
1480                 spin_unlock_bh(&reg_pending_beacons_lock);
1481                 goto out;
1482         }
1483
1484         list_for_each_entry_safe(pending_beacon, tmp,
1485                                  &reg_pending_beacons, list) {
1486
1487                 list_del_init(&pending_beacon->list);
1488
1489                 /* Applies the beacon hint to current wiphys */
1490                 list_for_each_entry(drv, &cfg80211_drv_list, list)
1491                         wiphy_update_new_beacon(&drv->wiphy, pending_beacon);
1492
1493                 /* Remembers the beacon hint for new wiphys or reg changes */
1494                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1495         }
1496
1497         spin_unlock_bh(&reg_pending_beacons_lock);
1498 out:
1499         mutex_unlock(&cfg80211_mutex);
1500 }
1501
1502 static void reg_todo(struct work_struct *work)
1503 {
1504         reg_process_pending_hints();
1505         reg_process_pending_beacon_hints();
1506 }
1507
1508 static DECLARE_WORK(reg_work, reg_todo);
1509
1510 static void queue_regulatory_request(struct regulatory_request *request)
1511 {
1512         spin_lock(&reg_requests_lock);
1513         list_add_tail(&request->list, &reg_requests_list);
1514         spin_unlock(&reg_requests_lock);
1515
1516         schedule_work(&reg_work);
1517 }
1518
1519 /* Core regulatory hint -- happens once during cfg80211_init() */
1520 static int regulatory_hint_core(const char *alpha2)
1521 {
1522         struct regulatory_request *request;
1523
1524         BUG_ON(last_request);
1525
1526         request = kzalloc(sizeof(struct regulatory_request),
1527                           GFP_KERNEL);
1528         if (!request)
1529                 return -ENOMEM;
1530
1531         request->alpha2[0] = alpha2[0];
1532         request->alpha2[1] = alpha2[1];
1533         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1534
1535         queue_regulatory_request(request);
1536
1537         return 0;
1538 }
1539
1540 /* User hints */
1541 int regulatory_hint_user(const char *alpha2)
1542 {
1543         struct regulatory_request *request;
1544
1545         BUG_ON(!alpha2);
1546
1547         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1548         if (!request)
1549                 return -ENOMEM;
1550
1551         request->wiphy_idx = WIPHY_IDX_STALE;
1552         request->alpha2[0] = alpha2[0];
1553         request->alpha2[1] = alpha2[1];
1554         request->initiator = NL80211_REGDOM_SET_BY_USER,
1555
1556         queue_regulatory_request(request);
1557
1558         return 0;
1559 }
1560
1561 /* Driver hints */
1562 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1563 {
1564         struct regulatory_request *request;
1565
1566         BUG_ON(!alpha2);
1567         BUG_ON(!wiphy);
1568
1569         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1570         if (!request)
1571                 return -ENOMEM;
1572
1573         request->wiphy_idx = get_wiphy_idx(wiphy);
1574
1575         /* Must have registered wiphy first */
1576         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1577
1578         request->alpha2[0] = alpha2[0];
1579         request->alpha2[1] = alpha2[1];
1580         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1581
1582         queue_regulatory_request(request);
1583
1584         return 0;
1585 }
1586 EXPORT_SYMBOL(regulatory_hint);
1587
1588 static bool reg_same_country_ie_hint(struct wiphy *wiphy,
1589                         u32 country_ie_checksum)
1590 {
1591         struct wiphy *request_wiphy;
1592
1593         assert_cfg80211_lock();
1594
1595         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1596
1597         if (!request_wiphy)
1598                 return false;
1599
1600         if (likely(request_wiphy != wiphy))
1601                 return !country_ie_integrity_changes(country_ie_checksum);
1602         /*
1603          * We should not have let these through at this point, they
1604          * should have been picked up earlier by the first alpha2 check
1605          * on the device
1606          */
1607         if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
1608                 return true;
1609         return false;
1610 }
1611
1612 void regulatory_hint_11d(struct wiphy *wiphy,
1613                         u8 *country_ie,
1614                         u8 country_ie_len)
1615 {
1616         struct ieee80211_regdomain *rd = NULL;
1617         char alpha2[2];
1618         u32 checksum = 0;
1619         enum environment_cap env = ENVIRON_ANY;
1620         struct regulatory_request *request;
1621
1622         mutex_lock(&cfg80211_mutex);
1623
1624         if (unlikely(!last_request)) {
1625                 mutex_unlock(&cfg80211_mutex);
1626                 return;
1627         }
1628
1629         /* IE len must be evenly divisible by 2 */
1630         if (country_ie_len & 0x01)
1631                 goto out;
1632
1633         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1634                 goto out;
1635
1636         /*
1637          * Pending country IE processing, this can happen after we
1638          * call CRDA and wait for a response if a beacon was received before
1639          * we were able to process the last regulatory_hint_11d() call
1640          */
1641         if (country_ie_regdomain)
1642                 goto out;
1643
1644         alpha2[0] = country_ie[0];
1645         alpha2[1] = country_ie[1];
1646
1647         if (country_ie[2] == 'I')
1648                 env = ENVIRON_INDOOR;
1649         else if (country_ie[2] == 'O')
1650                 env = ENVIRON_OUTDOOR;
1651
1652         /*
1653          * We will run this for *every* beacon processed for the BSSID, so
1654          * we optimize an early check to exit out early if we don't have to
1655          * do anything
1656          */
1657         if (likely(wiphy_idx_valid(last_request->wiphy_idx))) {
1658                 struct cfg80211_registered_device *drv_last_ie;
1659
1660                 drv_last_ie =
1661                         cfg80211_drv_by_wiphy_idx(last_request->wiphy_idx);
1662
1663                 /*
1664                  * Lets keep this simple -- we trust the first AP
1665                  * after we intersect with CRDA
1666                  */
1667                 if (likely(&drv_last_ie->wiphy == wiphy)) {
1668                         /*
1669                          * Ignore IEs coming in on this wiphy with
1670                          * the same alpha2 and environment cap
1671                          */
1672                         if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1673                                   alpha2) &&
1674                                   env == drv_last_ie->env)) {
1675                                 goto out;
1676                         }
1677                         /*
1678                          * the wiphy moved on to another BSSID or the AP
1679                          * was reconfigured. XXX: We need to deal with the
1680                          * case where the user suspends and goes to goes
1681                          * to another country, and then gets IEs from an
1682                          * AP with different settings
1683                          */
1684                         goto out;
1685                 } else {
1686                         /*
1687                          * Ignore IEs coming in on two separate wiphys with
1688                          * the same alpha2 and environment cap
1689                          */
1690                         if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1691                                   alpha2) &&
1692                                   env == drv_last_ie->env)) {
1693                                 goto out;
1694                         }
1695                         /* We could potentially intersect though */
1696                         goto out;
1697                 }
1698         }
1699
1700         rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
1701         if (!rd)
1702                 goto out;
1703
1704         /*
1705          * This will not happen right now but we leave it here for the
1706          * the future when we want to add suspend/resume support and having
1707          * the user move to another country after doing so, or having the user
1708          * move to another AP. Right now we just trust the first AP.
1709          *
1710          * If we hit this before we add this support we want to be informed of
1711          * it as it would indicate a mistake in the current design
1712          */
1713         if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1714                 goto free_rd_out;
1715
1716         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1717         if (!request)
1718                 goto free_rd_out;
1719
1720         /*
1721          * We keep this around for when CRDA comes back with a response so
1722          * we can intersect with that
1723          */
1724         country_ie_regdomain = rd;
1725
1726         request->wiphy_idx = get_wiphy_idx(wiphy);
1727         request->alpha2[0] = rd->alpha2[0];
1728         request->alpha2[1] = rd->alpha2[1];
1729         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1730         request->country_ie_checksum = checksum;
1731         request->country_ie_env = env;
1732
1733         mutex_unlock(&cfg80211_mutex);
1734
1735         queue_regulatory_request(request);
1736
1737         return;
1738
1739 free_rd_out:
1740         kfree(rd);
1741 out:
1742         mutex_unlock(&cfg80211_mutex);
1743 }
1744 EXPORT_SYMBOL(regulatory_hint_11d);
1745
1746 static bool freq_is_chan_12_13_14(u16 freq)
1747 {
1748         if (freq == ieee80211_channel_to_frequency(12) ||
1749             freq == ieee80211_channel_to_frequency(13) ||
1750             freq == ieee80211_channel_to_frequency(14))
1751                 return true;
1752         return false;
1753 }
1754
1755 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1756                                  struct ieee80211_channel *beacon_chan,
1757                                  gfp_t gfp)
1758 {
1759         struct reg_beacon *reg_beacon;
1760
1761         if (likely((beacon_chan->beacon_found ||
1762             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1763             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1764              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1765                 return 0;
1766
1767         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1768         if (!reg_beacon)
1769                 return -ENOMEM;
1770
1771 #ifdef CONFIG_CFG80211_REG_DEBUG
1772         printk(KERN_DEBUG "cfg80211: Found new beacon on "
1773                 "frequency: %d MHz (Ch %d) on %s\n",
1774                 beacon_chan->center_freq,
1775                 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1776                 wiphy_name(wiphy));
1777 #endif
1778         memcpy(&reg_beacon->chan, beacon_chan,
1779                 sizeof(struct ieee80211_channel));
1780
1781
1782         /*
1783          * Since we can be called from BH or and non-BH context
1784          * we must use spin_lock_bh()
1785          */
1786         spin_lock_bh(&reg_pending_beacons_lock);
1787         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1788         spin_unlock_bh(&reg_pending_beacons_lock);
1789
1790         schedule_work(&reg_work);
1791
1792         return 0;
1793 }
1794
1795 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1796 {
1797         unsigned int i;
1798         const struct ieee80211_reg_rule *reg_rule = NULL;
1799         const struct ieee80211_freq_range *freq_range = NULL;
1800         const struct ieee80211_power_rule *power_rule = NULL;
1801
1802         printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
1803                 "(max_antenna_gain, max_eirp)\n");
1804
1805         for (i = 0; i < rd->n_reg_rules; i++) {
1806                 reg_rule = &rd->reg_rules[i];
1807                 freq_range = &reg_rule->freq_range;
1808                 power_rule = &reg_rule->power_rule;
1809
1810                 /*
1811                  * There may not be documentation for max antenna gain
1812                  * in certain regions
1813                  */
1814                 if (power_rule->max_antenna_gain)
1815                         printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1816                                 "(%d mBi, %d mBm)\n",
1817                                 freq_range->start_freq_khz,
1818                                 freq_range->end_freq_khz,
1819                                 freq_range->max_bandwidth_khz,
1820                                 power_rule->max_antenna_gain,
1821                                 power_rule->max_eirp);
1822                 else
1823                         printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1824                                 "(N/A, %d mBm)\n",
1825                                 freq_range->start_freq_khz,
1826                                 freq_range->end_freq_khz,
1827                                 freq_range->max_bandwidth_khz,
1828                                 power_rule->max_eirp);
1829         }
1830 }
1831
1832 static void print_regdomain(const struct ieee80211_regdomain *rd)
1833 {
1834
1835         if (is_intersected_alpha2(rd->alpha2)) {
1836
1837                 if (last_request->initiator ==
1838                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1839                         struct cfg80211_registered_device *drv;
1840                         drv = cfg80211_drv_by_wiphy_idx(
1841                                 last_request->wiphy_idx);
1842                         if (drv) {
1843                                 printk(KERN_INFO "cfg80211: Current regulatory "
1844                                         "domain updated by AP to: %c%c\n",
1845                                         drv->country_ie_alpha2[0],
1846                                         drv->country_ie_alpha2[1]);
1847                         } else
1848                                 printk(KERN_INFO "cfg80211: Current regulatory "
1849                                         "domain intersected: \n");
1850                 } else
1851                                 printk(KERN_INFO "cfg80211: Current regulatory "
1852                                         "domain intersected: \n");
1853         } else if (is_world_regdom(rd->alpha2))
1854                 printk(KERN_INFO "cfg80211: World regulatory "
1855                         "domain updated:\n");
1856         else {
1857                 if (is_unknown_alpha2(rd->alpha2))
1858                         printk(KERN_INFO "cfg80211: Regulatory domain "
1859                                 "changed to driver built-in settings "
1860                                 "(unknown country)\n");
1861                 else
1862                         printk(KERN_INFO "cfg80211: Regulatory domain "
1863                                 "changed to country: %c%c\n",
1864                                 rd->alpha2[0], rd->alpha2[1]);
1865         }
1866         print_rd_rules(rd);
1867 }
1868
1869 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1870 {
1871         printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
1872                 rd->alpha2[0], rd->alpha2[1]);
1873         print_rd_rules(rd);
1874 }
1875
1876 #ifdef CONFIG_CFG80211_REG_DEBUG
1877 static void reg_country_ie_process_debug(
1878         const struct ieee80211_regdomain *rd,
1879         const struct ieee80211_regdomain *country_ie_regdomain,
1880         const struct ieee80211_regdomain *intersected_rd)
1881 {
1882         printk(KERN_DEBUG "cfg80211: Received country IE:\n");
1883         print_regdomain_info(country_ie_regdomain);
1884         printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
1885         print_regdomain_info(rd);
1886         if (intersected_rd) {
1887                 printk(KERN_DEBUG "cfg80211: We intersect both of these "
1888                         "and get:\n");
1889                 print_regdomain_info(intersected_rd);
1890                 return;
1891         }
1892         printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
1893 }
1894 #else
1895 static inline void reg_country_ie_process_debug(
1896         const struct ieee80211_regdomain *rd,
1897         const struct ieee80211_regdomain *country_ie_regdomain,
1898         const struct ieee80211_regdomain *intersected_rd)
1899 {
1900 }
1901 #endif
1902
1903 /* Takes ownership of rd only if it doesn't fail */
1904 static int __set_regdom(const struct ieee80211_regdomain *rd)
1905 {
1906         const struct ieee80211_regdomain *intersected_rd = NULL;
1907         struct cfg80211_registered_device *drv = NULL;
1908         struct wiphy *request_wiphy;
1909         /* Some basic sanity checks first */
1910
1911         if (is_world_regdom(rd->alpha2)) {
1912                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1913                         return -EINVAL;
1914                 update_world_regdomain(rd);
1915                 return 0;
1916         }
1917
1918         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1919                         !is_unknown_alpha2(rd->alpha2))
1920                 return -EINVAL;
1921
1922         if (!last_request)
1923                 return -EINVAL;
1924
1925         /*
1926          * Lets only bother proceeding on the same alpha2 if the current
1927          * rd is non static (it means CRDA was present and was used last)
1928          * and the pending request came in from a country IE
1929          */
1930         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1931                 /*
1932                  * If someone else asked us to change the rd lets only bother
1933                  * checking if the alpha2 changes if CRDA was already called
1934                  */
1935                 if (!is_old_static_regdom(cfg80211_regdomain) &&
1936                     !regdom_changes(rd->alpha2))
1937                         return -EINVAL;
1938         }
1939
1940         /*
1941          * Now lets set the regulatory domain, update all driver channels
1942          * and finally inform them of what we have done, in case they want
1943          * to review or adjust their own settings based on their own
1944          * internal EEPROM data
1945          */
1946
1947         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1948                 return -EINVAL;
1949
1950         if (!is_valid_rd(rd)) {
1951                 printk(KERN_ERR "cfg80211: Invalid "
1952                         "regulatory domain detected:\n");
1953                 print_regdomain_info(rd);
1954                 return -EINVAL;
1955         }
1956
1957         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1958
1959         if (!last_request->intersect) {
1960                 int r;
1961
1962                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1963                         reset_regdomains();
1964                         cfg80211_regdomain = rd;
1965                         return 0;
1966                 }
1967
1968                 /*
1969                  * For a driver hint, lets copy the regulatory domain the
1970                  * driver wanted to the wiphy to deal with conflicts
1971                  */
1972
1973                 BUG_ON(request_wiphy->regd);
1974
1975                 r = reg_copy_regd(&request_wiphy->regd, rd);
1976                 if (r)
1977                         return r;
1978
1979                 reset_regdomains();
1980                 cfg80211_regdomain = rd;
1981                 return 0;
1982         }
1983
1984         /* Intersection requires a bit more work */
1985
1986         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1987
1988                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
1989                 if (!intersected_rd)
1990                         return -EINVAL;
1991
1992                 /*
1993                  * We can trash what CRDA provided now.
1994                  * However if a driver requested this specific regulatory
1995                  * domain we keep it for its private use
1996                  */
1997                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
1998                         request_wiphy->regd = rd;
1999                 else
2000                         kfree(rd);
2001
2002                 rd = NULL;
2003
2004                 reset_regdomains();
2005                 cfg80211_regdomain = intersected_rd;
2006
2007                 return 0;
2008         }
2009
2010         /*
2011          * Country IE requests are handled a bit differently, we intersect
2012          * the country IE rd with what CRDA believes that country should have
2013          */
2014
2015         BUG_ON(!country_ie_regdomain);
2016
2017         if (rd != country_ie_regdomain) {
2018                 /*
2019                  * Intersect what CRDA returned and our what we
2020                  * had built from the Country IE received
2021                  */
2022
2023                 intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2024
2025                 reg_country_ie_process_debug(rd, country_ie_regdomain,
2026                         intersected_rd);
2027
2028                 kfree(country_ie_regdomain);
2029                 country_ie_regdomain = NULL;
2030         } else {
2031                 /*
2032                  * This would happen when CRDA was not present and
2033                  * OLD_REGULATORY was enabled. We intersect our Country
2034                  * IE rd and what was set on cfg80211 originally
2035                  */
2036                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2037         }
2038
2039         if (!intersected_rd)
2040                 return -EINVAL;
2041
2042         drv = wiphy_to_dev(request_wiphy);
2043
2044         drv->country_ie_alpha2[0] = rd->alpha2[0];
2045         drv->country_ie_alpha2[1] = rd->alpha2[1];
2046         drv->env = last_request->country_ie_env;
2047
2048         BUG_ON(intersected_rd == rd);
2049
2050         kfree(rd);
2051         rd = NULL;
2052
2053         reset_regdomains();
2054         cfg80211_regdomain = intersected_rd;
2055
2056         return 0;
2057 }
2058
2059
2060 /*
2061  * Use this call to set the current regulatory domain. Conflicts with
2062  * multiple drivers can be ironed out later. Caller must've already
2063  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2064  */
2065 int set_regdom(const struct ieee80211_regdomain *rd)
2066 {
2067         int r;
2068
2069         assert_cfg80211_lock();
2070
2071         /* Note that this doesn't update the wiphys, this is done below */
2072         r = __set_regdom(rd);
2073         if (r) {
2074                 kfree(rd);
2075                 return r;
2076         }
2077
2078         /* This would make this whole thing pointless */
2079         if (!last_request->intersect)
2080                 BUG_ON(rd != cfg80211_regdomain);
2081
2082         /* update all wiphys now with the new established regulatory domain */
2083         update_all_wiphy_regulatory(last_request->initiator);
2084
2085         print_regdomain(cfg80211_regdomain);
2086
2087         return r;
2088 }
2089
2090 /* Caller must hold cfg80211_mutex */
2091 void reg_device_remove(struct wiphy *wiphy)
2092 {
2093         struct wiphy *request_wiphy;
2094
2095         assert_cfg80211_lock();
2096
2097         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2098
2099         kfree(wiphy->regd);
2100         if (!last_request || !request_wiphy)
2101                 return;
2102         if (request_wiphy != wiphy)
2103                 return;
2104         last_request->wiphy_idx = WIPHY_IDX_STALE;
2105         last_request->country_ie_env = ENVIRON_ANY;
2106 }
2107
2108 int regulatory_init(void)
2109 {
2110         int err = 0;
2111
2112         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2113         if (IS_ERR(reg_pdev))
2114                 return PTR_ERR(reg_pdev);
2115
2116         spin_lock_init(&reg_requests_lock);
2117         spin_lock_init(&reg_pending_beacons_lock);
2118
2119 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
2120         cfg80211_regdomain = static_regdom(ieee80211_regdom);
2121
2122         printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
2123         print_regdomain_info(cfg80211_regdomain);
2124         /*
2125          * The old code still requests for a new regdomain and if
2126          * you have CRDA you get it updated, otherwise you get
2127          * stuck with the static values. We ignore "EU" code as
2128          * that is not a valid ISO / IEC 3166 alpha2
2129          */
2130         if (ieee80211_regdom[0] != 'E' || ieee80211_regdom[1] != 'U')
2131                 err = regulatory_hint_core(ieee80211_regdom);
2132 #else
2133         cfg80211_regdomain = cfg80211_world_regdom;
2134
2135         err = regulatory_hint_core("00");
2136 #endif
2137         if (err) {
2138                 if (err == -ENOMEM)
2139                         return err;
2140                 /*
2141                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2142                  * memory which is handled and propagated appropriately above
2143                  * but it can also fail during a netlink_broadcast() or during
2144                  * early boot for call_usermodehelper(). For now treat these
2145                  * errors as non-fatal.
2146                  */
2147                 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2148                         "to call CRDA during init");
2149 #ifdef CONFIG_CFG80211_REG_DEBUG
2150                 /* We want to find out exactly why when debugging */
2151                 WARN_ON(err);
2152 #endif
2153         }
2154
2155         return 0;
2156 }
2157
2158 void regulatory_exit(void)
2159 {
2160         struct regulatory_request *reg_request, *tmp;
2161         struct reg_beacon *reg_beacon, *btmp;
2162
2163         cancel_work_sync(&reg_work);
2164
2165         mutex_lock(&cfg80211_mutex);
2166
2167         reset_regdomains();
2168
2169         kfree(country_ie_regdomain);
2170         country_ie_regdomain = NULL;
2171
2172         kfree(last_request);
2173
2174         platform_device_unregister(reg_pdev);
2175
2176         spin_lock_bh(&reg_pending_beacons_lock);
2177         if (!list_empty(&reg_pending_beacons)) {
2178                 list_for_each_entry_safe(reg_beacon, btmp,
2179                                          &reg_pending_beacons, list) {
2180                         list_del(&reg_beacon->list);
2181                         kfree(reg_beacon);
2182                 }
2183         }
2184         spin_unlock_bh(&reg_pending_beacons_lock);
2185
2186         if (!list_empty(&reg_beacon_list)) {
2187                 list_for_each_entry_safe(reg_beacon, btmp,
2188                                          &reg_beacon_list, list) {
2189                         list_del(&reg_beacon->list);
2190                         kfree(reg_beacon);
2191                 }
2192         }
2193
2194         spin_lock(&reg_requests_lock);
2195         if (!list_empty(&reg_requests_list)) {
2196                 list_for_each_entry_safe(reg_request, tmp,
2197                                          &reg_requests_list, list) {
2198                         list_del(&reg_request->list);
2199                         kfree(reg_request);
2200                 }
2201         }
2202         spin_unlock(&reg_requests_lock);
2203
2204         mutex_unlock(&cfg80211_mutex);
2205 }