cfg80211: Process regulatory max bandwidth checks for HT40
[safe/jmp/linux-2.6] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/random.h>
38 #include <linux/nl80211.h>
39 #include <linux/platform_device.h>
40 #include <net/cfg80211.h>
41 #include "core.h"
42 #include "reg.h"
43 #include "nl80211.h"
44
45 /* Receipt of information from last regulatory request */
46 static struct regulatory_request *last_request;
47
48 /* To trigger userspace events */
49 static struct platform_device *reg_pdev;
50
51 /*
52  * Central wireless core regulatory domains, we only need two,
53  * the current one and a world regulatory domain in case we have no
54  * information to give us an alpha2
55  */
56 const struct ieee80211_regdomain *cfg80211_regdomain;
57
58 /*
59  * We use this as a place for the rd structure built from the
60  * last parsed country IE to rest until CRDA gets back to us with
61  * what it thinks should apply for the same country
62  */
63 static const struct ieee80211_regdomain *country_ie_regdomain;
64
65 /* Used to queue up regulatory hints */
66 static LIST_HEAD(reg_requests_list);
67 static spinlock_t reg_requests_lock;
68
69 /* Used to queue up beacon hints for review */
70 static LIST_HEAD(reg_pending_beacons);
71 static spinlock_t reg_pending_beacons_lock;
72
73 /* Used to keep track of processed beacon hints */
74 static LIST_HEAD(reg_beacon_list);
75
76 struct reg_beacon {
77         struct list_head list;
78         struct ieee80211_channel chan;
79 };
80
81 /* We keep a static world regulatory domain in case of the absence of CRDA */
82 static const struct ieee80211_regdomain world_regdom = {
83         .n_reg_rules = 5,
84         .alpha2 =  "00",
85         .reg_rules = {
86                 /* IEEE 802.11b/g, channels 1..11 */
87                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
88                 /* IEEE 802.11b/g, channels 12..13. No HT40
89                  * channel fits here. */
90                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
91                         NL80211_RRF_PASSIVE_SCAN |
92                         NL80211_RRF_NO_IBSS),
93                 /* IEEE 802.11 channel 14 - Only JP enables
94                  * this and for 802.11b only */
95                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
96                         NL80211_RRF_PASSIVE_SCAN |
97                         NL80211_RRF_NO_IBSS |
98                         NL80211_RRF_NO_OFDM),
99                 /* IEEE 802.11a, channel 36..48 */
100                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
101                         NL80211_RRF_PASSIVE_SCAN |
102                         NL80211_RRF_NO_IBSS),
103
104                 /* NB: 5260 MHz - 5700 MHz requies DFS */
105
106                 /* IEEE 802.11a, channel 149..165 */
107                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
108                         NL80211_RRF_PASSIVE_SCAN |
109                         NL80211_RRF_NO_IBSS),
110         }
111 };
112
113 static const struct ieee80211_regdomain *cfg80211_world_regdom =
114         &world_regdom;
115
116 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
117 static char *ieee80211_regdom = "US";
118 #else
119 static char *ieee80211_regdom = "00";
120 #endif
121
122 module_param(ieee80211_regdom, charp, 0444);
123 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
124
125 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
126 /*
127  * We assume 40 MHz bandwidth for the old regulatory work.
128  * We make emphasis we are using the exact same frequencies
129  * as before
130  */
131
132 static const struct ieee80211_regdomain us_regdom = {
133         .n_reg_rules = 6,
134         .alpha2 =  "US",
135         .reg_rules = {
136                 /* IEEE 802.11b/g, channels 1..11 */
137                 REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
138                 /* IEEE 802.11a, channel 36 */
139                 REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
140                 /* IEEE 802.11a, channel 40 */
141                 REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
142                 /* IEEE 802.11a, channel 44 */
143                 REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
144                 /* IEEE 802.11a, channels 48..64 */
145                 REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
146                 /* IEEE 802.11a, channels 149..165, outdoor */
147                 REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
148         }
149 };
150
151 static const struct ieee80211_regdomain jp_regdom = {
152         .n_reg_rules = 3,
153         .alpha2 =  "JP",
154         .reg_rules = {
155                 /* IEEE 802.11b/g, channels 1..14 */
156                 REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
157                 /* IEEE 802.11a, channels 34..48 */
158                 REG_RULE(5170-10, 5240+10, 40, 6, 20,
159                         NL80211_RRF_PASSIVE_SCAN),
160                 /* IEEE 802.11a, channels 52..64 */
161                 REG_RULE(5260-10, 5320+10, 40, 6, 20,
162                         NL80211_RRF_NO_IBSS |
163                         NL80211_RRF_DFS),
164         }
165 };
166
167 static const struct ieee80211_regdomain eu_regdom = {
168         .n_reg_rules = 6,
169         /*
170          * This alpha2 is bogus, we leave it here just for stupid
171          * backward compatibility
172          */
173         .alpha2 =  "EU",
174         .reg_rules = {
175                 /* IEEE 802.11b/g, channels 1..13 */
176                 REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
177                 /* IEEE 802.11a, channel 36 */
178                 REG_RULE(5180-10, 5180+10, 40, 6, 23,
179                         NL80211_RRF_PASSIVE_SCAN),
180                 /* IEEE 802.11a, channel 40 */
181                 REG_RULE(5200-10, 5200+10, 40, 6, 23,
182                         NL80211_RRF_PASSIVE_SCAN),
183                 /* IEEE 802.11a, channel 44 */
184                 REG_RULE(5220-10, 5220+10, 40, 6, 23,
185                         NL80211_RRF_PASSIVE_SCAN),
186                 /* IEEE 802.11a, channels 48..64 */
187                 REG_RULE(5240-10, 5320+10, 40, 6, 20,
188                         NL80211_RRF_NO_IBSS |
189                         NL80211_RRF_DFS),
190                 /* IEEE 802.11a, channels 100..140 */
191                 REG_RULE(5500-10, 5700+10, 40, 6, 30,
192                         NL80211_RRF_NO_IBSS |
193                         NL80211_RRF_DFS),
194         }
195 };
196
197 static const struct ieee80211_regdomain *static_regdom(char *alpha2)
198 {
199         if (alpha2[0] == 'U' && alpha2[1] == 'S')
200                 return &us_regdom;
201         if (alpha2[0] == 'J' && alpha2[1] == 'P')
202                 return &jp_regdom;
203         if (alpha2[0] == 'E' && alpha2[1] == 'U')
204                 return &eu_regdom;
205         /* Default, as per the old rules */
206         return &us_regdom;
207 }
208
209 static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
210 {
211         if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
212                 return true;
213         return false;
214 }
215 #else
216 static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
217 {
218         return false;
219 }
220 #endif
221
222 static void reset_regdomains(void)
223 {
224         /* avoid freeing static information or freeing something twice */
225         if (cfg80211_regdomain == cfg80211_world_regdom)
226                 cfg80211_regdomain = NULL;
227         if (cfg80211_world_regdom == &world_regdom)
228                 cfg80211_world_regdom = NULL;
229         if (cfg80211_regdomain == &world_regdom)
230                 cfg80211_regdomain = NULL;
231         if (is_old_static_regdom(cfg80211_regdomain))
232                 cfg80211_regdomain = NULL;
233
234         kfree(cfg80211_regdomain);
235         kfree(cfg80211_world_regdom);
236
237         cfg80211_world_regdom = &world_regdom;
238         cfg80211_regdomain = NULL;
239 }
240
241 /*
242  * Dynamic world regulatory domain requested by the wireless
243  * core upon initialization
244  */
245 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
246 {
247         BUG_ON(!last_request);
248
249         reset_regdomains();
250
251         cfg80211_world_regdom = rd;
252         cfg80211_regdomain = rd;
253 }
254
255 bool is_world_regdom(const char *alpha2)
256 {
257         if (!alpha2)
258                 return false;
259         if (alpha2[0] == '0' && alpha2[1] == '0')
260                 return true;
261         return false;
262 }
263
264 static bool is_alpha2_set(const char *alpha2)
265 {
266         if (!alpha2)
267                 return false;
268         if (alpha2[0] != 0 && alpha2[1] != 0)
269                 return true;
270         return false;
271 }
272
273 static bool is_alpha_upper(char letter)
274 {
275         /* ASCII A - Z */
276         if (letter >= 65 && letter <= 90)
277                 return true;
278         return false;
279 }
280
281 static bool is_unknown_alpha2(const char *alpha2)
282 {
283         if (!alpha2)
284                 return false;
285         /*
286          * Special case where regulatory domain was built by driver
287          * but a specific alpha2 cannot be determined
288          */
289         if (alpha2[0] == '9' && alpha2[1] == '9')
290                 return true;
291         return false;
292 }
293
294 static bool is_intersected_alpha2(const char *alpha2)
295 {
296         if (!alpha2)
297                 return false;
298         /*
299          * Special case where regulatory domain is the
300          * result of an intersection between two regulatory domain
301          * structures
302          */
303         if (alpha2[0] == '9' && alpha2[1] == '8')
304                 return true;
305         return false;
306 }
307
308 static bool is_an_alpha2(const char *alpha2)
309 {
310         if (!alpha2)
311                 return false;
312         if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
313                 return true;
314         return false;
315 }
316
317 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
318 {
319         if (!alpha2_x || !alpha2_y)
320                 return false;
321         if (alpha2_x[0] == alpha2_y[0] &&
322                 alpha2_x[1] == alpha2_y[1])
323                 return true;
324         return false;
325 }
326
327 static bool regdom_changes(const char *alpha2)
328 {
329         assert_cfg80211_lock();
330
331         if (!cfg80211_regdomain)
332                 return true;
333         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
334                 return false;
335         return true;
336 }
337
338 /**
339  * country_ie_integrity_changes - tells us if the country IE has changed
340  * @checksum: checksum of country IE of fields we are interested in
341  *
342  * If the country IE has not changed you can ignore it safely. This is
343  * useful to determine if two devices are seeing two different country IEs
344  * even on the same alpha2. Note that this will return false if no IE has
345  * been set on the wireless core yet.
346  */
347 static bool country_ie_integrity_changes(u32 checksum)
348 {
349         /* If no IE has been set then the checksum doesn't change */
350         if (unlikely(!last_request->country_ie_checksum))
351                 return false;
352         if (unlikely(last_request->country_ie_checksum != checksum))
353                 return true;
354         return false;
355 }
356
357 /*
358  * This lets us keep regulatory code which is updated on a regulatory
359  * basis in userspace.
360  */
361 static int call_crda(const char *alpha2)
362 {
363         char country_env[9 + 2] = "COUNTRY=";
364         char *envp[] = {
365                 country_env,
366                 NULL
367         };
368
369         if (!is_world_regdom((char *) alpha2))
370                 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
371                         alpha2[0], alpha2[1]);
372         else
373                 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
374                         "regulatory domain\n");
375
376         country_env[8] = alpha2[0];
377         country_env[9] = alpha2[1];
378
379         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
380 }
381
382 /* Used by nl80211 before kmalloc'ing our regulatory domain */
383 bool reg_is_valid_request(const char *alpha2)
384 {
385         if (!last_request)
386                 return false;
387
388         return alpha2_equal(last_request->alpha2, alpha2);
389 }
390
391 /* Sanity check on a regulatory rule */
392 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
393 {
394         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
395         u32 freq_diff;
396
397         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
398                 return false;
399
400         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
401                 return false;
402
403         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
404
405         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
406                         freq_range->max_bandwidth_khz > freq_diff)
407                 return false;
408
409         return true;
410 }
411
412 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
413 {
414         const struct ieee80211_reg_rule *reg_rule = NULL;
415         unsigned int i;
416
417         if (!rd->n_reg_rules)
418                 return false;
419
420         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
421                 return false;
422
423         for (i = 0; i < rd->n_reg_rules; i++) {
424                 reg_rule = &rd->reg_rules[i];
425                 if (!is_valid_reg_rule(reg_rule))
426                         return false;
427         }
428
429         return true;
430 }
431
432 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
433                             u32 center_freq_khz,
434                             u32 bw_khz)
435 {
436         u32 start_freq_khz, end_freq_khz;
437
438         start_freq_khz = center_freq_khz - (bw_khz/2);
439         end_freq_khz = center_freq_khz + (bw_khz/2);
440
441         if (start_freq_khz >= freq_range->start_freq_khz &&
442             end_freq_khz <= freq_range->end_freq_khz)
443                 return true;
444
445         return false;
446 }
447
448 /**
449  * freq_in_rule_band - tells us if a frequency is in a frequency band
450  * @freq_range: frequency rule we want to query
451  * @freq_khz: frequency we are inquiring about
452  *
453  * This lets us know if a specific frequency rule is or is not relevant to
454  * a specific frequency's band. Bands are device specific and artificial
455  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
456  * safe for now to assume that a frequency rule should not be part of a
457  * frequency's band if the start freq or end freq are off by more than 2 GHz.
458  * This resolution can be lowered and should be considered as we add
459  * regulatory rule support for other "bands".
460  **/
461 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
462         u32 freq_khz)
463 {
464 #define ONE_GHZ_IN_KHZ  1000000
465         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
466                 return true;
467         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
468                 return true;
469         return false;
470 #undef ONE_GHZ_IN_KHZ
471 }
472
473 /*
474  * Converts a country IE to a regulatory domain. A regulatory domain
475  * structure has a lot of information which the IE doesn't yet have,
476  * so for the other values we use upper max values as we will intersect
477  * with our userspace regulatory agent to get lower bounds.
478  */
479 static struct ieee80211_regdomain *country_ie_2_rd(
480                                 u8 *country_ie,
481                                 u8 country_ie_len,
482                                 u32 *checksum)
483 {
484         struct ieee80211_regdomain *rd = NULL;
485         unsigned int i = 0;
486         char alpha2[2];
487         u32 flags = 0;
488         u32 num_rules = 0, size_of_regd = 0;
489         u8 *triplets_start = NULL;
490         u8 len_at_triplet = 0;
491         /* the last channel we have registered in a subband (triplet) */
492         int last_sub_max_channel = 0;
493
494         *checksum = 0xDEADBEEF;
495
496         /* Country IE requirements */
497         BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
498                 country_ie_len & 0x01);
499
500         alpha2[0] = country_ie[0];
501         alpha2[1] = country_ie[1];
502
503         /*
504          * Third octet can be:
505          *    'I' - Indoor
506          *    'O' - Outdoor
507          *
508          *  anything else we assume is no restrictions
509          */
510         if (country_ie[2] == 'I')
511                 flags = NL80211_RRF_NO_OUTDOOR;
512         else if (country_ie[2] == 'O')
513                 flags = NL80211_RRF_NO_INDOOR;
514
515         country_ie += 3;
516         country_ie_len -= 3;
517
518         triplets_start = country_ie;
519         len_at_triplet = country_ie_len;
520
521         *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
522
523         /*
524          * We need to build a reg rule for each triplet, but first we must
525          * calculate the number of reg rules we will need. We will need one
526          * for each channel subband
527          */
528         while (country_ie_len >= 3) {
529                 int end_channel = 0;
530                 struct ieee80211_country_ie_triplet *triplet =
531                         (struct ieee80211_country_ie_triplet *) country_ie;
532                 int cur_sub_max_channel = 0, cur_channel = 0;
533
534                 if (triplet->ext.reg_extension_id >=
535                                 IEEE80211_COUNTRY_EXTENSION_ID) {
536                         country_ie += 3;
537                         country_ie_len -= 3;
538                         continue;
539                 }
540
541                 /* 2 GHz */
542                 if (triplet->chans.first_channel <= 14)
543                         end_channel = triplet->chans.first_channel +
544                                 triplet->chans.num_channels;
545                 else
546                         /*
547                          * 5 GHz -- For example in country IEs if the first
548                          * channel given is 36 and the number of channels is 4
549                          * then the individual channel numbers defined for the
550                          * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
551                          * and not 36, 37, 38, 39.
552                          *
553                          * See: http://tinyurl.com/11d-clarification
554                          */
555                         end_channel =  triplet->chans.first_channel +
556                                 (4 * (triplet->chans.num_channels - 1));
557
558                 cur_channel = triplet->chans.first_channel;
559                 cur_sub_max_channel = end_channel;
560
561                 /* Basic sanity check */
562                 if (cur_sub_max_channel < cur_channel)
563                         return NULL;
564
565                 /*
566                  * Do not allow overlapping channels. Also channels
567                  * passed in each subband must be monotonically
568                  * increasing
569                  */
570                 if (last_sub_max_channel) {
571                         if (cur_channel <= last_sub_max_channel)
572                                 return NULL;
573                         if (cur_sub_max_channel <= last_sub_max_channel)
574                                 return NULL;
575                 }
576
577                 /*
578                  * When dot11RegulatoryClassesRequired is supported
579                  * we can throw ext triplets as part of this soup,
580                  * for now we don't care when those change as we
581                  * don't support them
582                  */
583                 *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
584                   ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
585                   ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
586
587                 last_sub_max_channel = cur_sub_max_channel;
588
589                 country_ie += 3;
590                 country_ie_len -= 3;
591                 num_rules++;
592
593                 /*
594                  * Note: this is not a IEEE requirement but
595                  * simply a memory requirement
596                  */
597                 if (num_rules > NL80211_MAX_SUPP_REG_RULES)
598                         return NULL;
599         }
600
601         country_ie = triplets_start;
602         country_ie_len = len_at_triplet;
603
604         size_of_regd = sizeof(struct ieee80211_regdomain) +
605                 (num_rules * sizeof(struct ieee80211_reg_rule));
606
607         rd = kzalloc(size_of_regd, GFP_KERNEL);
608         if (!rd)
609                 return NULL;
610
611         rd->n_reg_rules = num_rules;
612         rd->alpha2[0] = alpha2[0];
613         rd->alpha2[1] = alpha2[1];
614
615         /* This time around we fill in the rd */
616         while (country_ie_len >= 3) {
617                 int end_channel = 0;
618                 struct ieee80211_country_ie_triplet *triplet =
619                         (struct ieee80211_country_ie_triplet *) country_ie;
620                 struct ieee80211_reg_rule *reg_rule = NULL;
621                 struct ieee80211_freq_range *freq_range = NULL;
622                 struct ieee80211_power_rule *power_rule = NULL;
623
624                 /*
625                  * Must parse if dot11RegulatoryClassesRequired is true,
626                  * we don't support this yet
627                  */
628                 if (triplet->ext.reg_extension_id >=
629                                 IEEE80211_COUNTRY_EXTENSION_ID) {
630                         country_ie += 3;
631                         country_ie_len -= 3;
632                         continue;
633                 }
634
635                 reg_rule = &rd->reg_rules[i];
636                 freq_range = &reg_rule->freq_range;
637                 power_rule = &reg_rule->power_rule;
638
639                 reg_rule->flags = flags;
640
641                 /* 2 GHz */
642                 if (triplet->chans.first_channel <= 14)
643                         end_channel = triplet->chans.first_channel +
644                                 triplet->chans.num_channels;
645                 else
646                         end_channel =  triplet->chans.first_channel +
647                                 (4 * (triplet->chans.num_channels - 1));
648
649                 /*
650                  * The +10 is since the regulatory domain expects
651                  * the actual band edge, not the center of freq for
652                  * its start and end freqs, assuming 20 MHz bandwidth on
653                  * the channels passed
654                  */
655                 freq_range->start_freq_khz =
656                         MHZ_TO_KHZ(ieee80211_channel_to_frequency(
657                                 triplet->chans.first_channel) - 10);
658                 freq_range->end_freq_khz =
659                         MHZ_TO_KHZ(ieee80211_channel_to_frequency(
660                                 end_channel) + 10);
661
662                 /*
663                  * These are large arbitrary values we use to intersect later.
664                  * Increment this if we ever support >= 40 MHz channels
665                  * in IEEE 802.11
666                  */
667                 freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
668                 power_rule->max_antenna_gain = DBI_TO_MBI(100);
669                 power_rule->max_eirp = DBM_TO_MBM(100);
670
671                 country_ie += 3;
672                 country_ie_len -= 3;
673                 i++;
674
675                 BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
676         }
677
678         return rd;
679 }
680
681
682 /*
683  * Helper for regdom_intersect(), this does the real
684  * mathematical intersection fun
685  */
686 static int reg_rules_intersect(
687         const struct ieee80211_reg_rule *rule1,
688         const struct ieee80211_reg_rule *rule2,
689         struct ieee80211_reg_rule *intersected_rule)
690 {
691         const struct ieee80211_freq_range *freq_range1, *freq_range2;
692         struct ieee80211_freq_range *freq_range;
693         const struct ieee80211_power_rule *power_rule1, *power_rule2;
694         struct ieee80211_power_rule *power_rule;
695         u32 freq_diff;
696
697         freq_range1 = &rule1->freq_range;
698         freq_range2 = &rule2->freq_range;
699         freq_range = &intersected_rule->freq_range;
700
701         power_rule1 = &rule1->power_rule;
702         power_rule2 = &rule2->power_rule;
703         power_rule = &intersected_rule->power_rule;
704
705         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
706                 freq_range2->start_freq_khz);
707         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
708                 freq_range2->end_freq_khz);
709         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
710                 freq_range2->max_bandwidth_khz);
711
712         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
713         if (freq_range->max_bandwidth_khz > freq_diff)
714                 freq_range->max_bandwidth_khz = freq_diff;
715
716         power_rule->max_eirp = min(power_rule1->max_eirp,
717                 power_rule2->max_eirp);
718         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
719                 power_rule2->max_antenna_gain);
720
721         intersected_rule->flags = (rule1->flags | rule2->flags);
722
723         if (!is_valid_reg_rule(intersected_rule))
724                 return -EINVAL;
725
726         return 0;
727 }
728
729 /**
730  * regdom_intersect - do the intersection between two regulatory domains
731  * @rd1: first regulatory domain
732  * @rd2: second regulatory domain
733  *
734  * Use this function to get the intersection between two regulatory domains.
735  * Once completed we will mark the alpha2 for the rd as intersected, "98",
736  * as no one single alpha2 can represent this regulatory domain.
737  *
738  * Returns a pointer to the regulatory domain structure which will hold the
739  * resulting intersection of rules between rd1 and rd2. We will
740  * kzalloc() this structure for you.
741  */
742 static struct ieee80211_regdomain *regdom_intersect(
743         const struct ieee80211_regdomain *rd1,
744         const struct ieee80211_regdomain *rd2)
745 {
746         int r, size_of_regd;
747         unsigned int x, y;
748         unsigned int num_rules = 0, rule_idx = 0;
749         const struct ieee80211_reg_rule *rule1, *rule2;
750         struct ieee80211_reg_rule *intersected_rule;
751         struct ieee80211_regdomain *rd;
752         /* This is just a dummy holder to help us count */
753         struct ieee80211_reg_rule irule;
754
755         /* Uses the stack temporarily for counter arithmetic */
756         intersected_rule = &irule;
757
758         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
759
760         if (!rd1 || !rd2)
761                 return NULL;
762
763         /*
764          * First we get a count of the rules we'll need, then we actually
765          * build them. This is to so we can malloc() and free() a
766          * regdomain once. The reason we use reg_rules_intersect() here
767          * is it will return -EINVAL if the rule computed makes no sense.
768          * All rules that do check out OK are valid.
769          */
770
771         for (x = 0; x < rd1->n_reg_rules; x++) {
772                 rule1 = &rd1->reg_rules[x];
773                 for (y = 0; y < rd2->n_reg_rules; y++) {
774                         rule2 = &rd2->reg_rules[y];
775                         if (!reg_rules_intersect(rule1, rule2,
776                                         intersected_rule))
777                                 num_rules++;
778                         memset(intersected_rule, 0,
779                                         sizeof(struct ieee80211_reg_rule));
780                 }
781         }
782
783         if (!num_rules)
784                 return NULL;
785
786         size_of_regd = sizeof(struct ieee80211_regdomain) +
787                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
788
789         rd = kzalloc(size_of_regd, GFP_KERNEL);
790         if (!rd)
791                 return NULL;
792
793         for (x = 0; x < rd1->n_reg_rules; x++) {
794                 rule1 = &rd1->reg_rules[x];
795                 for (y = 0; y < rd2->n_reg_rules; y++) {
796                         rule2 = &rd2->reg_rules[y];
797                         /*
798                          * This time around instead of using the stack lets
799                          * write to the target rule directly saving ourselves
800                          * a memcpy()
801                          */
802                         intersected_rule = &rd->reg_rules[rule_idx];
803                         r = reg_rules_intersect(rule1, rule2,
804                                 intersected_rule);
805                         /*
806                          * No need to memset here the intersected rule here as
807                          * we're not using the stack anymore
808                          */
809                         if (r)
810                                 continue;
811                         rule_idx++;
812                 }
813         }
814
815         if (rule_idx != num_rules) {
816                 kfree(rd);
817                 return NULL;
818         }
819
820         rd->n_reg_rules = num_rules;
821         rd->alpha2[0] = '9';
822         rd->alpha2[1] = '8';
823
824         return rd;
825 }
826
827 /*
828  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
829  * want to just have the channel structure use these
830  */
831 static u32 map_regdom_flags(u32 rd_flags)
832 {
833         u32 channel_flags = 0;
834         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
835                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
836         if (rd_flags & NL80211_RRF_NO_IBSS)
837                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
838         if (rd_flags & NL80211_RRF_DFS)
839                 channel_flags |= IEEE80211_CHAN_RADAR;
840         return channel_flags;
841 }
842
843 static int freq_reg_info_regd(struct wiphy *wiphy,
844                               u32 center_freq,
845                               u32 desired_bw_khz,
846                               const struct ieee80211_reg_rule **reg_rule,
847                               const struct ieee80211_regdomain *custom_regd)
848 {
849         int i;
850         bool band_rule_found = false;
851         const struct ieee80211_regdomain *regd;
852         bool bw_fits = false;
853
854         if (!desired_bw_khz)
855                 desired_bw_khz = MHZ_TO_KHZ(20);
856
857         regd = custom_regd ? custom_regd : cfg80211_regdomain;
858
859         /*
860          * Follow the driver's regulatory domain, if present, unless a country
861          * IE has been processed or a user wants to help complaince further
862          */
863         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
864             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
865             wiphy->regd)
866                 regd = wiphy->regd;
867
868         if (!regd)
869                 return -EINVAL;
870
871         for (i = 0; i < regd->n_reg_rules; i++) {
872                 const struct ieee80211_reg_rule *rr;
873                 const struct ieee80211_freq_range *fr = NULL;
874                 const struct ieee80211_power_rule *pr = NULL;
875
876                 rr = &regd->reg_rules[i];
877                 fr = &rr->freq_range;
878                 pr = &rr->power_rule;
879
880                 /*
881                  * We only need to know if one frequency rule was
882                  * was in center_freq's band, that's enough, so lets
883                  * not overwrite it once found
884                  */
885                 if (!band_rule_found)
886                         band_rule_found = freq_in_rule_band(fr, center_freq);
887
888                 bw_fits = reg_does_bw_fit(fr,
889                                           center_freq,
890                                           desired_bw_khz);
891
892                 if (band_rule_found && bw_fits) {
893                         *reg_rule = rr;
894                         return 0;
895                 }
896         }
897
898         if (!band_rule_found)
899                 return -ERANGE;
900
901         return -EINVAL;
902 }
903 EXPORT_SYMBOL(freq_reg_info);
904
905 int freq_reg_info(struct wiphy *wiphy,
906                   u32 center_freq,
907                   u32 desired_bw_khz,
908                   const struct ieee80211_reg_rule **reg_rule)
909 {
910         assert_cfg80211_lock();
911         return freq_reg_info_regd(wiphy,
912                                   center_freq,
913                                   desired_bw_khz,
914                                   reg_rule,
915                                   NULL);
916 }
917
918 /*
919  * Note that right now we assume the desired channel bandwidth
920  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
921  * per channel, the primary and the extension channel). To support
922  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
923  * new ieee80211_channel.target_bw and re run the regulatory check
924  * on the wiphy with the target_bw specified. Then we can simply use
925  * that below for the desired_bw_khz below.
926  */
927 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
928                            unsigned int chan_idx)
929 {
930         int r;
931         u32 flags, bw_flags = 0;
932         u32 desired_bw_khz = MHZ_TO_KHZ(20);
933         const struct ieee80211_reg_rule *reg_rule = NULL;
934         const struct ieee80211_power_rule *power_rule = NULL;
935         const struct ieee80211_freq_range *freq_range = NULL;
936         struct ieee80211_supported_band *sband;
937         struct ieee80211_channel *chan;
938         struct wiphy *request_wiphy = NULL;
939
940         assert_cfg80211_lock();
941
942         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
943
944         sband = wiphy->bands[band];
945         BUG_ON(chan_idx >= sband->n_channels);
946         chan = &sband->channels[chan_idx];
947
948         flags = chan->orig_flags;
949
950         r = freq_reg_info(wiphy,
951                           MHZ_TO_KHZ(chan->center_freq),
952                           desired_bw_khz,
953                           &reg_rule);
954
955         if (r) {
956                 /*
957                  * This means no regulatory rule was found in the country IE
958                  * with a frequency range on the center_freq's band, since
959                  * IEEE-802.11 allows for a country IE to have a subset of the
960                  * regulatory information provided in a country we ignore
961                  * disabling the channel unless at least one reg rule was
962                  * found on the center_freq's band. For details see this
963                  * clarification:
964                  *
965                  * http://tinyurl.com/11d-clarification
966                  */
967                 if (r == -ERANGE &&
968                     last_request->initiator ==
969                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
970 #ifdef CONFIG_CFG80211_REG_DEBUG
971                         printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
972                                 "intact on %s - no rule found in band on "
973                                 "Country IE\n",
974                                 chan->center_freq, wiphy_name(wiphy));
975 #endif
976                 } else {
977                 /*
978                  * In this case we know the country IE has at least one reg rule
979                  * for the band so we respect its band definitions
980                  */
981 #ifdef CONFIG_CFG80211_REG_DEBUG
982                         if (last_request->initiator ==
983                             NL80211_REGDOM_SET_BY_COUNTRY_IE)
984                                 printk(KERN_DEBUG "cfg80211: Disabling "
985                                         "channel %d MHz on %s due to "
986                                         "Country IE\n",
987                                         chan->center_freq, wiphy_name(wiphy));
988 #endif
989                         flags |= IEEE80211_CHAN_DISABLED;
990                         chan->flags = flags;
991                 }
992                 return;
993         }
994
995         power_rule = &reg_rule->power_rule;
996         freq_range = &reg_rule->freq_range;
997
998         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
999                 bw_flags = IEEE80211_CHAN_NO_HT40;
1000
1001         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1002             request_wiphy && request_wiphy == wiphy &&
1003             request_wiphy->strict_regulatory) {
1004                 /*
1005                  * This gaurantees the driver's requested regulatory domain
1006                  * will always be used as a base for further regulatory
1007                  * settings
1008                  */
1009                 chan->flags = chan->orig_flags =
1010                         map_regdom_flags(reg_rule->flags) | bw_flags;
1011                 chan->max_antenna_gain = chan->orig_mag =
1012                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1013                 chan->max_bandwidth = KHZ_TO_MHZ(desired_bw_khz);
1014                 chan->max_power = chan->orig_mpwr =
1015                         (int) MBM_TO_DBM(power_rule->max_eirp);
1016                 return;
1017         }
1018
1019         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1020         chan->max_antenna_gain = min(chan->orig_mag,
1021                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
1022         chan->max_bandwidth = KHZ_TO_MHZ(desired_bw_khz);
1023         if (chan->orig_mpwr)
1024                 chan->max_power = min(chan->orig_mpwr,
1025                         (int) MBM_TO_DBM(power_rule->max_eirp));
1026         else
1027                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1028 }
1029
1030 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1031 {
1032         unsigned int i;
1033         struct ieee80211_supported_band *sband;
1034
1035         BUG_ON(!wiphy->bands[band]);
1036         sband = wiphy->bands[band];
1037
1038         for (i = 0; i < sband->n_channels; i++)
1039                 handle_channel(wiphy, band, i);
1040 }
1041
1042 static bool ignore_reg_update(struct wiphy *wiphy,
1043                               enum nl80211_reg_initiator initiator)
1044 {
1045         if (!last_request)
1046                 return true;
1047         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1048                   wiphy->custom_regulatory)
1049                 return true;
1050         /*
1051          * wiphy->regd will be set once the device has its own
1052          * desired regulatory domain set
1053          */
1054         if (wiphy->strict_regulatory && !wiphy->regd &&
1055             !is_world_regdom(last_request->alpha2))
1056                 return true;
1057         return false;
1058 }
1059
1060 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1061 {
1062         struct cfg80211_registered_device *drv;
1063
1064         list_for_each_entry(drv, &cfg80211_drv_list, list)
1065                 wiphy_update_regulatory(&drv->wiphy, initiator);
1066 }
1067
1068 static void handle_reg_beacon(struct wiphy *wiphy,
1069                               unsigned int chan_idx,
1070                               struct reg_beacon *reg_beacon)
1071 {
1072         struct ieee80211_supported_band *sband;
1073         struct ieee80211_channel *chan;
1074         bool channel_changed = false;
1075         struct ieee80211_channel chan_before;
1076
1077         assert_cfg80211_lock();
1078
1079         sband = wiphy->bands[reg_beacon->chan.band];
1080         chan = &sband->channels[chan_idx];
1081
1082         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1083                 return;
1084
1085         if (chan->beacon_found)
1086                 return;
1087
1088         chan->beacon_found = true;
1089
1090         chan_before.center_freq = chan->center_freq;
1091         chan_before.flags = chan->flags;
1092
1093         if ((chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) &&
1094             !(chan->orig_flags & IEEE80211_CHAN_PASSIVE_SCAN)) {
1095                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1096                 channel_changed = true;
1097         }
1098
1099         if ((chan->flags & IEEE80211_CHAN_NO_IBSS) &&
1100             !(chan->orig_flags & IEEE80211_CHAN_NO_IBSS)) {
1101                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1102                 channel_changed = true;
1103         }
1104
1105         if (channel_changed)
1106                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1107 }
1108
1109 /*
1110  * Called when a scan on a wiphy finds a beacon on
1111  * new channel
1112  */
1113 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1114                                     struct reg_beacon *reg_beacon)
1115 {
1116         unsigned int i;
1117         struct ieee80211_supported_band *sband;
1118
1119         assert_cfg80211_lock();
1120
1121         if (!wiphy->bands[reg_beacon->chan.band])
1122                 return;
1123
1124         sband = wiphy->bands[reg_beacon->chan.band];
1125
1126         for (i = 0; i < sband->n_channels; i++)
1127                 handle_reg_beacon(wiphy, i, reg_beacon);
1128 }
1129
1130 /*
1131  * Called upon reg changes or a new wiphy is added
1132  */
1133 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1134 {
1135         unsigned int i;
1136         struct ieee80211_supported_band *sband;
1137         struct reg_beacon *reg_beacon;
1138
1139         assert_cfg80211_lock();
1140
1141         if (list_empty(&reg_beacon_list))
1142                 return;
1143
1144         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1145                 if (!wiphy->bands[reg_beacon->chan.band])
1146                         continue;
1147                 sband = wiphy->bands[reg_beacon->chan.band];
1148                 for (i = 0; i < sband->n_channels; i++)
1149                         handle_reg_beacon(wiphy, i, reg_beacon);
1150         }
1151 }
1152
1153 static bool reg_is_world_roaming(struct wiphy *wiphy)
1154 {
1155         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1156             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1157                 return true;
1158         if (last_request &&
1159             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1160             wiphy->custom_regulatory)
1161                 return true;
1162         return false;
1163 }
1164
1165 /* Reap the advantages of previously found beacons */
1166 static void reg_process_beacons(struct wiphy *wiphy)
1167 {
1168         /*
1169          * Means we are just firing up cfg80211, so no beacons would
1170          * have been processed yet.
1171          */
1172         if (!last_request)
1173                 return;
1174         if (!reg_is_world_roaming(wiphy))
1175                 return;
1176         wiphy_update_beacon_reg(wiphy);
1177 }
1178
1179 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1180 {
1181         if (!chan)
1182                 return true;
1183         if (chan->flags & IEEE80211_CHAN_DISABLED)
1184                 return true;
1185         /* This would happen when regulatory rules disallow HT40 completely */
1186         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1187                 return true;
1188         return false;
1189 }
1190
1191 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1192                                          enum ieee80211_band band,
1193                                          unsigned int chan_idx)
1194 {
1195         struct ieee80211_supported_band *sband;
1196         struct ieee80211_channel *channel;
1197         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1198         unsigned int i;
1199
1200         assert_cfg80211_lock();
1201
1202         sband = wiphy->bands[band];
1203         BUG_ON(chan_idx >= sband->n_channels);
1204         channel = &sband->channels[chan_idx];
1205
1206         if (is_ht40_not_allowed(channel)) {
1207                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1208                 return;
1209         }
1210
1211         /*
1212          * We need to ensure the extension channels exist to
1213          * be able to use HT40- or HT40+, this finds them (or not)
1214          */
1215         for (i = 0; i < sband->n_channels; i++) {
1216                 struct ieee80211_channel *c = &sband->channels[i];
1217                 if (c->center_freq == (channel->center_freq - 20))
1218                         channel_before = c;
1219                 if (c->center_freq == (channel->center_freq + 20))
1220                         channel_after = c;
1221         }
1222
1223         /*
1224          * Please note that this assumes target bandwidth is 20 MHz,
1225          * if that ever changes we also need to change the below logic
1226          * to include that as well.
1227          */
1228         if (is_ht40_not_allowed(channel_before))
1229                 channel->flags |= IEEE80211_CHAN_NO_FAT_BELOW;
1230         else
1231                 channel->flags &= ~IEEE80211_CHAN_NO_FAT_BELOW;
1232
1233         if (is_ht40_not_allowed(channel_after))
1234                 channel->flags |= IEEE80211_CHAN_NO_FAT_ABOVE;
1235         else
1236                 channel->flags &= ~IEEE80211_CHAN_NO_FAT_ABOVE;
1237 }
1238
1239 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1240                                       enum ieee80211_band band)
1241 {
1242         unsigned int i;
1243         struct ieee80211_supported_band *sband;
1244
1245         BUG_ON(!wiphy->bands[band]);
1246         sband = wiphy->bands[band];
1247
1248         for (i = 0; i < sband->n_channels; i++)
1249                 reg_process_ht_flags_channel(wiphy, band, i);
1250 }
1251
1252 static void reg_process_ht_flags(struct wiphy *wiphy)
1253 {
1254         enum ieee80211_band band;
1255
1256         if (!wiphy)
1257                 return;
1258
1259         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1260                 if (wiphy->bands[band])
1261                         reg_process_ht_flags_band(wiphy, band);
1262         }
1263
1264 }
1265
1266 void wiphy_update_regulatory(struct wiphy *wiphy,
1267                              enum nl80211_reg_initiator initiator)
1268 {
1269         enum ieee80211_band band;
1270
1271         if (ignore_reg_update(wiphy, initiator))
1272                 goto out;
1273         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1274                 if (wiphy->bands[band])
1275                         handle_band(wiphy, band);
1276         }
1277 out:
1278         reg_process_beacons(wiphy);
1279         reg_process_ht_flags(wiphy);
1280         if (wiphy->reg_notifier)
1281                 wiphy->reg_notifier(wiphy, last_request);
1282 }
1283
1284 static void handle_channel_custom(struct wiphy *wiphy,
1285                                   enum ieee80211_band band,
1286                                   unsigned int chan_idx,
1287                                   const struct ieee80211_regdomain *regd)
1288 {
1289         int r;
1290         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1291         u32 bw_flags = 0;
1292         const struct ieee80211_reg_rule *reg_rule = NULL;
1293         const struct ieee80211_power_rule *power_rule = NULL;
1294         const struct ieee80211_freq_range *freq_range = NULL;
1295         struct ieee80211_supported_band *sband;
1296         struct ieee80211_channel *chan;
1297
1298         assert_cfg80211_lock();
1299
1300         sband = wiphy->bands[band];
1301         BUG_ON(chan_idx >= sband->n_channels);
1302         chan = &sband->channels[chan_idx];
1303
1304         r = freq_reg_info_regd(wiphy,
1305                                MHZ_TO_KHZ(chan->center_freq),
1306                                desired_bw_khz,
1307                                &reg_rule,
1308                                regd);
1309
1310         if (r) {
1311                 chan->flags = IEEE80211_CHAN_DISABLED;
1312                 return;
1313         }
1314
1315         power_rule = &reg_rule->power_rule;
1316         freq_range = &reg_rule->freq_range;
1317
1318         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1319                 bw_flags = IEEE80211_CHAN_NO_HT40;
1320
1321         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1322         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1323         chan->max_bandwidth = KHZ_TO_MHZ(desired_bw_khz);
1324         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1325 }
1326
1327 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1328                                const struct ieee80211_regdomain *regd)
1329 {
1330         unsigned int i;
1331         struct ieee80211_supported_band *sband;
1332
1333         BUG_ON(!wiphy->bands[band]);
1334         sband = wiphy->bands[band];
1335
1336         for (i = 0; i < sband->n_channels; i++)
1337                 handle_channel_custom(wiphy, band, i, regd);
1338 }
1339
1340 /* Used by drivers prior to wiphy registration */
1341 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1342                                    const struct ieee80211_regdomain *regd)
1343 {
1344         enum ieee80211_band band;
1345
1346         mutex_lock(&cfg80211_mutex);
1347         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1348                 if (wiphy->bands[band])
1349                         handle_band_custom(wiphy, band, regd);
1350         }
1351         mutex_unlock(&cfg80211_mutex);
1352 }
1353 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1354
1355 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
1356                          const struct ieee80211_regdomain *src_regd)
1357 {
1358         struct ieee80211_regdomain *regd;
1359         int size_of_regd = 0;
1360         unsigned int i;
1361
1362         size_of_regd = sizeof(struct ieee80211_regdomain) +
1363           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
1364
1365         regd = kzalloc(size_of_regd, GFP_KERNEL);
1366         if (!regd)
1367                 return -ENOMEM;
1368
1369         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
1370
1371         for (i = 0; i < src_regd->n_reg_rules; i++)
1372                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
1373                         sizeof(struct ieee80211_reg_rule));
1374
1375         *dst_regd = regd;
1376         return 0;
1377 }
1378
1379 /*
1380  * Return value which can be used by ignore_request() to indicate
1381  * it has been determined we should intersect two regulatory domains
1382  */
1383 #define REG_INTERSECT   1
1384
1385 /* This has the logic which determines when a new request
1386  * should be ignored. */
1387 static int ignore_request(struct wiphy *wiphy,
1388                           struct regulatory_request *pending_request)
1389 {
1390         struct wiphy *last_wiphy = NULL;
1391
1392         assert_cfg80211_lock();
1393
1394         /* All initial requests are respected */
1395         if (!last_request)
1396                 return 0;
1397
1398         switch (pending_request->initiator) {
1399         case NL80211_REGDOM_SET_BY_CORE:
1400                 return -EINVAL;
1401         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1402
1403                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1404
1405                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1406                         return -EINVAL;
1407                 if (last_request->initiator ==
1408                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1409                         if (last_wiphy != wiphy) {
1410                                 /*
1411                                  * Two cards with two APs claiming different
1412                                  * different Country IE alpha2s. We could
1413                                  * intersect them, but that seems unlikely
1414                                  * to be correct. Reject second one for now.
1415                                  */
1416                                 if (regdom_changes(pending_request->alpha2))
1417                                         return -EOPNOTSUPP;
1418                                 return -EALREADY;
1419                         }
1420                         /*
1421                          * Two consecutive Country IE hints on the same wiphy.
1422                          * This should be picked up early by the driver/stack
1423                          */
1424                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1425                                 return 0;
1426                         return -EALREADY;
1427                 }
1428                 return REG_INTERSECT;
1429         case NL80211_REGDOM_SET_BY_DRIVER:
1430                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1431                         if (is_old_static_regdom(cfg80211_regdomain))
1432                                 return 0;
1433                         if (regdom_changes(pending_request->alpha2))
1434                                 return 0;
1435                         return -EALREADY;
1436                 }
1437
1438                 /*
1439                  * This would happen if you unplug and plug your card
1440                  * back in or if you add a new device for which the previously
1441                  * loaded card also agrees on the regulatory domain.
1442                  */
1443                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1444                     !regdom_changes(pending_request->alpha2))
1445                         return -EALREADY;
1446
1447                 return REG_INTERSECT;
1448         case NL80211_REGDOM_SET_BY_USER:
1449                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1450                         return REG_INTERSECT;
1451                 /*
1452                  * If the user knows better the user should set the regdom
1453                  * to their country before the IE is picked up
1454                  */
1455                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1456                           last_request->intersect)
1457                         return -EOPNOTSUPP;
1458                 /*
1459                  * Process user requests only after previous user/driver/core
1460                  * requests have been processed
1461                  */
1462                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1463                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1464                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1465                         if (regdom_changes(last_request->alpha2))
1466                                 return -EAGAIN;
1467                 }
1468
1469                 if (!is_old_static_regdom(cfg80211_regdomain) &&
1470                     !regdom_changes(pending_request->alpha2))
1471                         return -EALREADY;
1472
1473                 return 0;
1474         }
1475
1476         return -EINVAL;
1477 }
1478
1479 /**
1480  * __regulatory_hint - hint to the wireless core a regulatory domain
1481  * @wiphy: if the hint comes from country information from an AP, this
1482  *      is required to be set to the wiphy that received the information
1483  * @pending_request: the regulatory request currently being processed
1484  *
1485  * The Wireless subsystem can use this function to hint to the wireless core
1486  * what it believes should be the current regulatory domain.
1487  *
1488  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1489  * already been set or other standard error codes.
1490  *
1491  * Caller must hold &cfg80211_mutex
1492  */
1493 static int __regulatory_hint(struct wiphy *wiphy,
1494                              struct regulatory_request *pending_request)
1495 {
1496         bool intersect = false;
1497         int r = 0;
1498
1499         assert_cfg80211_lock();
1500
1501         r = ignore_request(wiphy, pending_request);
1502
1503         if (r == REG_INTERSECT) {
1504                 if (pending_request->initiator ==
1505                     NL80211_REGDOM_SET_BY_DRIVER) {
1506                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1507                         if (r) {
1508                                 kfree(pending_request);
1509                                 return r;
1510                         }
1511                 }
1512                 intersect = true;
1513         } else if (r) {
1514                 /*
1515                  * If the regulatory domain being requested by the
1516                  * driver has already been set just copy it to the
1517                  * wiphy
1518                  */
1519                 if (r == -EALREADY &&
1520                     pending_request->initiator ==
1521                     NL80211_REGDOM_SET_BY_DRIVER) {
1522                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1523                         if (r) {
1524                                 kfree(pending_request);
1525                                 return r;
1526                         }
1527                         r = -EALREADY;
1528                         goto new_request;
1529                 }
1530                 kfree(pending_request);
1531                 return r;
1532         }
1533
1534 new_request:
1535         kfree(last_request);
1536
1537         last_request = pending_request;
1538         last_request->intersect = intersect;
1539
1540         pending_request = NULL;
1541
1542         /* When r == REG_INTERSECT we do need to call CRDA */
1543         if (r < 0) {
1544                 /*
1545                  * Since CRDA will not be called in this case as we already
1546                  * have applied the requested regulatory domain before we just
1547                  * inform userspace we have processed the request
1548                  */
1549                 if (r == -EALREADY)
1550                         nl80211_send_reg_change_event(last_request);
1551                 return r;
1552         }
1553
1554         return call_crda(last_request->alpha2);
1555 }
1556
1557 /* This processes *all* regulatory hints */
1558 static void reg_process_hint(struct regulatory_request *reg_request)
1559 {
1560         int r = 0;
1561         struct wiphy *wiphy = NULL;
1562
1563         BUG_ON(!reg_request->alpha2);
1564
1565         mutex_lock(&cfg80211_mutex);
1566
1567         if (wiphy_idx_valid(reg_request->wiphy_idx))
1568                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1569
1570         if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1571             !wiphy) {
1572                 kfree(reg_request);
1573                 goto out;
1574         }
1575
1576         r = __regulatory_hint(wiphy, reg_request);
1577         /* This is required so that the orig_* parameters are saved */
1578         if (r == -EALREADY && wiphy && wiphy->strict_regulatory)
1579                 wiphy_update_regulatory(wiphy, reg_request->initiator);
1580 out:
1581         mutex_unlock(&cfg80211_mutex);
1582 }
1583
1584 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1585 static void reg_process_pending_hints(void)
1586         {
1587         struct regulatory_request *reg_request;
1588
1589         spin_lock(&reg_requests_lock);
1590         while (!list_empty(&reg_requests_list)) {
1591                 reg_request = list_first_entry(&reg_requests_list,
1592                                                struct regulatory_request,
1593                                                list);
1594                 list_del_init(&reg_request->list);
1595
1596                 spin_unlock(&reg_requests_lock);
1597                 reg_process_hint(reg_request);
1598                 spin_lock(&reg_requests_lock);
1599         }
1600         spin_unlock(&reg_requests_lock);
1601 }
1602
1603 /* Processes beacon hints -- this has nothing to do with country IEs */
1604 static void reg_process_pending_beacon_hints(void)
1605 {
1606         struct cfg80211_registered_device *drv;
1607         struct reg_beacon *pending_beacon, *tmp;
1608
1609         mutex_lock(&cfg80211_mutex);
1610
1611         /* This goes through the _pending_ beacon list */
1612         spin_lock_bh(&reg_pending_beacons_lock);
1613
1614         if (list_empty(&reg_pending_beacons)) {
1615                 spin_unlock_bh(&reg_pending_beacons_lock);
1616                 goto out;
1617         }
1618
1619         list_for_each_entry_safe(pending_beacon, tmp,
1620                                  &reg_pending_beacons, list) {
1621
1622                 list_del_init(&pending_beacon->list);
1623
1624                 /* Applies the beacon hint to current wiphys */
1625                 list_for_each_entry(drv, &cfg80211_drv_list, list)
1626                         wiphy_update_new_beacon(&drv->wiphy, pending_beacon);
1627
1628                 /* Remembers the beacon hint for new wiphys or reg changes */
1629                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1630         }
1631
1632         spin_unlock_bh(&reg_pending_beacons_lock);
1633 out:
1634         mutex_unlock(&cfg80211_mutex);
1635 }
1636
1637 static void reg_todo(struct work_struct *work)
1638 {
1639         reg_process_pending_hints();
1640         reg_process_pending_beacon_hints();
1641 }
1642
1643 static DECLARE_WORK(reg_work, reg_todo);
1644
1645 static void queue_regulatory_request(struct regulatory_request *request)
1646 {
1647         spin_lock(&reg_requests_lock);
1648         list_add_tail(&request->list, &reg_requests_list);
1649         spin_unlock(&reg_requests_lock);
1650
1651         schedule_work(&reg_work);
1652 }
1653
1654 /* Core regulatory hint -- happens once during cfg80211_init() */
1655 static int regulatory_hint_core(const char *alpha2)
1656 {
1657         struct regulatory_request *request;
1658
1659         BUG_ON(last_request);
1660
1661         request = kzalloc(sizeof(struct regulatory_request),
1662                           GFP_KERNEL);
1663         if (!request)
1664                 return -ENOMEM;
1665
1666         request->alpha2[0] = alpha2[0];
1667         request->alpha2[1] = alpha2[1];
1668         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1669
1670         queue_regulatory_request(request);
1671
1672         return 0;
1673 }
1674
1675 /* User hints */
1676 int regulatory_hint_user(const char *alpha2)
1677 {
1678         struct regulatory_request *request;
1679
1680         BUG_ON(!alpha2);
1681
1682         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1683         if (!request)
1684                 return -ENOMEM;
1685
1686         request->wiphy_idx = WIPHY_IDX_STALE;
1687         request->alpha2[0] = alpha2[0];
1688         request->alpha2[1] = alpha2[1];
1689         request->initiator = NL80211_REGDOM_SET_BY_USER,
1690
1691         queue_regulatory_request(request);
1692
1693         return 0;
1694 }
1695
1696 /* Driver hints */
1697 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1698 {
1699         struct regulatory_request *request;
1700
1701         BUG_ON(!alpha2);
1702         BUG_ON(!wiphy);
1703
1704         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1705         if (!request)
1706                 return -ENOMEM;
1707
1708         request->wiphy_idx = get_wiphy_idx(wiphy);
1709
1710         /* Must have registered wiphy first */
1711         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1712
1713         request->alpha2[0] = alpha2[0];
1714         request->alpha2[1] = alpha2[1];
1715         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1716
1717         queue_regulatory_request(request);
1718
1719         return 0;
1720 }
1721 EXPORT_SYMBOL(regulatory_hint);
1722
1723 static bool reg_same_country_ie_hint(struct wiphy *wiphy,
1724                         u32 country_ie_checksum)
1725 {
1726         struct wiphy *request_wiphy;
1727
1728         assert_cfg80211_lock();
1729
1730         if (unlikely(last_request->initiator !=
1731             NL80211_REGDOM_SET_BY_COUNTRY_IE))
1732                 return false;
1733
1734         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1735
1736         if (!request_wiphy)
1737                 return false;
1738
1739         if (likely(request_wiphy != wiphy))
1740                 return !country_ie_integrity_changes(country_ie_checksum);
1741         /*
1742          * We should not have let these through at this point, they
1743          * should have been picked up earlier by the first alpha2 check
1744          * on the device
1745          */
1746         if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
1747                 return true;
1748         return false;
1749 }
1750
1751 void regulatory_hint_11d(struct wiphy *wiphy,
1752                         u8 *country_ie,
1753                         u8 country_ie_len)
1754 {
1755         struct ieee80211_regdomain *rd = NULL;
1756         char alpha2[2];
1757         u32 checksum = 0;
1758         enum environment_cap env = ENVIRON_ANY;
1759         struct regulatory_request *request;
1760
1761         mutex_lock(&cfg80211_mutex);
1762
1763         if (unlikely(!last_request)) {
1764                 mutex_unlock(&cfg80211_mutex);
1765                 return;
1766         }
1767
1768         /* IE len must be evenly divisible by 2 */
1769         if (country_ie_len & 0x01)
1770                 goto out;
1771
1772         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1773                 goto out;
1774
1775         /*
1776          * Pending country IE processing, this can happen after we
1777          * call CRDA and wait for a response if a beacon was received before
1778          * we were able to process the last regulatory_hint_11d() call
1779          */
1780         if (country_ie_regdomain)
1781                 goto out;
1782
1783         alpha2[0] = country_ie[0];
1784         alpha2[1] = country_ie[1];
1785
1786         if (country_ie[2] == 'I')
1787                 env = ENVIRON_INDOOR;
1788         else if (country_ie[2] == 'O')
1789                 env = ENVIRON_OUTDOOR;
1790
1791         /*
1792          * We will run this for *every* beacon processed for the BSSID, so
1793          * we optimize an early check to exit out early if we don't have to
1794          * do anything
1795          */
1796         if (likely(last_request->initiator ==
1797             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1798             wiphy_idx_valid(last_request->wiphy_idx))) {
1799                 struct cfg80211_registered_device *drv_last_ie;
1800
1801                 drv_last_ie =
1802                         cfg80211_drv_by_wiphy_idx(last_request->wiphy_idx);
1803
1804                 /*
1805                  * Lets keep this simple -- we trust the first AP
1806                  * after we intersect with CRDA
1807                  */
1808                 if (likely(&drv_last_ie->wiphy == wiphy)) {
1809                         /*
1810                          * Ignore IEs coming in on this wiphy with
1811                          * the same alpha2 and environment cap
1812                          */
1813                         if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1814                                   alpha2) &&
1815                                   env == drv_last_ie->env)) {
1816                                 goto out;
1817                         }
1818                         /*
1819                          * the wiphy moved on to another BSSID or the AP
1820                          * was reconfigured. XXX: We need to deal with the
1821                          * case where the user suspends and goes to goes
1822                          * to another country, and then gets IEs from an
1823                          * AP with different settings
1824                          */
1825                         goto out;
1826                 } else {
1827                         /*
1828                          * Ignore IEs coming in on two separate wiphys with
1829                          * the same alpha2 and environment cap
1830                          */
1831                         if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1832                                   alpha2) &&
1833                                   env == drv_last_ie->env)) {
1834                                 goto out;
1835                         }
1836                         /* We could potentially intersect though */
1837                         goto out;
1838                 }
1839         }
1840
1841         rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
1842         if (!rd)
1843                 goto out;
1844
1845         /*
1846          * This will not happen right now but we leave it here for the
1847          * the future when we want to add suspend/resume support and having
1848          * the user move to another country after doing so, or having the user
1849          * move to another AP. Right now we just trust the first AP.
1850          *
1851          * If we hit this before we add this support we want to be informed of
1852          * it as it would indicate a mistake in the current design
1853          */
1854         if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1855                 goto free_rd_out;
1856
1857         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1858         if (!request)
1859                 goto free_rd_out;
1860
1861         /*
1862          * We keep this around for when CRDA comes back with a response so
1863          * we can intersect with that
1864          */
1865         country_ie_regdomain = rd;
1866
1867         request->wiphy_idx = get_wiphy_idx(wiphy);
1868         request->alpha2[0] = rd->alpha2[0];
1869         request->alpha2[1] = rd->alpha2[1];
1870         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1871         request->country_ie_checksum = checksum;
1872         request->country_ie_env = env;
1873
1874         mutex_unlock(&cfg80211_mutex);
1875
1876         queue_regulatory_request(request);
1877
1878         return;
1879
1880 free_rd_out:
1881         kfree(rd);
1882 out:
1883         mutex_unlock(&cfg80211_mutex);
1884 }
1885 EXPORT_SYMBOL(regulatory_hint_11d);
1886
1887 static bool freq_is_chan_12_13_14(u16 freq)
1888 {
1889         if (freq == ieee80211_channel_to_frequency(12) ||
1890             freq == ieee80211_channel_to_frequency(13) ||
1891             freq == ieee80211_channel_to_frequency(14))
1892                 return true;
1893         return false;
1894 }
1895
1896 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1897                                  struct ieee80211_channel *beacon_chan,
1898                                  gfp_t gfp)
1899 {
1900         struct reg_beacon *reg_beacon;
1901
1902         if (likely((beacon_chan->beacon_found ||
1903             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1904             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1905              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1906                 return 0;
1907
1908         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1909         if (!reg_beacon)
1910                 return -ENOMEM;
1911
1912 #ifdef CONFIG_CFG80211_REG_DEBUG
1913         printk(KERN_DEBUG "cfg80211: Found new beacon on "
1914                 "frequency: %d MHz (Ch %d) on %s\n",
1915                 beacon_chan->center_freq,
1916                 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1917                 wiphy_name(wiphy));
1918 #endif
1919         memcpy(&reg_beacon->chan, beacon_chan,
1920                 sizeof(struct ieee80211_channel));
1921
1922
1923         /*
1924          * Since we can be called from BH or and non-BH context
1925          * we must use spin_lock_bh()
1926          */
1927         spin_lock_bh(&reg_pending_beacons_lock);
1928         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1929         spin_unlock_bh(&reg_pending_beacons_lock);
1930
1931         schedule_work(&reg_work);
1932
1933         return 0;
1934 }
1935
1936 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1937 {
1938         unsigned int i;
1939         const struct ieee80211_reg_rule *reg_rule = NULL;
1940         const struct ieee80211_freq_range *freq_range = NULL;
1941         const struct ieee80211_power_rule *power_rule = NULL;
1942
1943         printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
1944                 "(max_antenna_gain, max_eirp)\n");
1945
1946         for (i = 0; i < rd->n_reg_rules; i++) {
1947                 reg_rule = &rd->reg_rules[i];
1948                 freq_range = &reg_rule->freq_range;
1949                 power_rule = &reg_rule->power_rule;
1950
1951                 /*
1952                  * There may not be documentation for max antenna gain
1953                  * in certain regions
1954                  */
1955                 if (power_rule->max_antenna_gain)
1956                         printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1957                                 "(%d mBi, %d mBm)\n",
1958                                 freq_range->start_freq_khz,
1959                                 freq_range->end_freq_khz,
1960                                 freq_range->max_bandwidth_khz,
1961                                 power_rule->max_antenna_gain,
1962                                 power_rule->max_eirp);
1963                 else
1964                         printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1965                                 "(N/A, %d mBm)\n",
1966                                 freq_range->start_freq_khz,
1967                                 freq_range->end_freq_khz,
1968                                 freq_range->max_bandwidth_khz,
1969                                 power_rule->max_eirp);
1970         }
1971 }
1972
1973 static void print_regdomain(const struct ieee80211_regdomain *rd)
1974 {
1975
1976         if (is_intersected_alpha2(rd->alpha2)) {
1977
1978                 if (last_request->initiator ==
1979                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1980                         struct cfg80211_registered_device *drv;
1981                         drv = cfg80211_drv_by_wiphy_idx(
1982                                 last_request->wiphy_idx);
1983                         if (drv) {
1984                                 printk(KERN_INFO "cfg80211: Current regulatory "
1985                                         "domain updated by AP to: %c%c\n",
1986                                         drv->country_ie_alpha2[0],
1987                                         drv->country_ie_alpha2[1]);
1988                         } else
1989                                 printk(KERN_INFO "cfg80211: Current regulatory "
1990                                         "domain intersected: \n");
1991                 } else
1992                                 printk(KERN_INFO "cfg80211: Current regulatory "
1993                                         "domain intersected: \n");
1994         } else if (is_world_regdom(rd->alpha2))
1995                 printk(KERN_INFO "cfg80211: World regulatory "
1996                         "domain updated:\n");
1997         else {
1998                 if (is_unknown_alpha2(rd->alpha2))
1999                         printk(KERN_INFO "cfg80211: Regulatory domain "
2000                                 "changed to driver built-in settings "
2001                                 "(unknown country)\n");
2002                 else
2003                         printk(KERN_INFO "cfg80211: Regulatory domain "
2004                                 "changed to country: %c%c\n",
2005                                 rd->alpha2[0], rd->alpha2[1]);
2006         }
2007         print_rd_rules(rd);
2008 }
2009
2010 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2011 {
2012         printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
2013                 rd->alpha2[0], rd->alpha2[1]);
2014         print_rd_rules(rd);
2015 }
2016
2017 #ifdef CONFIG_CFG80211_REG_DEBUG
2018 static void reg_country_ie_process_debug(
2019         const struct ieee80211_regdomain *rd,
2020         const struct ieee80211_regdomain *country_ie_regdomain,
2021         const struct ieee80211_regdomain *intersected_rd)
2022 {
2023         printk(KERN_DEBUG "cfg80211: Received country IE:\n");
2024         print_regdomain_info(country_ie_regdomain);
2025         printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
2026         print_regdomain_info(rd);
2027         if (intersected_rd) {
2028                 printk(KERN_DEBUG "cfg80211: We intersect both of these "
2029                         "and get:\n");
2030                 print_regdomain_info(intersected_rd);
2031                 return;
2032         }
2033         printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
2034 }
2035 #else
2036 static inline void reg_country_ie_process_debug(
2037         const struct ieee80211_regdomain *rd,
2038         const struct ieee80211_regdomain *country_ie_regdomain,
2039         const struct ieee80211_regdomain *intersected_rd)
2040 {
2041 }
2042 #endif
2043
2044 /* Takes ownership of rd only if it doesn't fail */
2045 static int __set_regdom(const struct ieee80211_regdomain *rd)
2046 {
2047         const struct ieee80211_regdomain *intersected_rd = NULL;
2048         struct cfg80211_registered_device *drv = NULL;
2049         struct wiphy *request_wiphy;
2050         /* Some basic sanity checks first */
2051
2052         if (is_world_regdom(rd->alpha2)) {
2053                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2054                         return -EINVAL;
2055                 update_world_regdomain(rd);
2056                 return 0;
2057         }
2058
2059         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2060                         !is_unknown_alpha2(rd->alpha2))
2061                 return -EINVAL;
2062
2063         if (!last_request)
2064                 return -EINVAL;
2065
2066         /*
2067          * Lets only bother proceeding on the same alpha2 if the current
2068          * rd is non static (it means CRDA was present and was used last)
2069          * and the pending request came in from a country IE
2070          */
2071         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2072                 /*
2073                  * If someone else asked us to change the rd lets only bother
2074                  * checking if the alpha2 changes if CRDA was already called
2075                  */
2076                 if (!is_old_static_regdom(cfg80211_regdomain) &&
2077                     !regdom_changes(rd->alpha2))
2078                         return -EINVAL;
2079         }
2080
2081         /*
2082          * Now lets set the regulatory domain, update all driver channels
2083          * and finally inform them of what we have done, in case they want
2084          * to review or adjust their own settings based on their own
2085          * internal EEPROM data
2086          */
2087
2088         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2089                 return -EINVAL;
2090
2091         if (!is_valid_rd(rd)) {
2092                 printk(KERN_ERR "cfg80211: Invalid "
2093                         "regulatory domain detected:\n");
2094                 print_regdomain_info(rd);
2095                 return -EINVAL;
2096         }
2097
2098         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2099
2100         if (!last_request->intersect) {
2101                 int r;
2102
2103                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2104                         reset_regdomains();
2105                         cfg80211_regdomain = rd;
2106                         return 0;
2107                 }
2108
2109                 /*
2110                  * For a driver hint, lets copy the regulatory domain the
2111                  * driver wanted to the wiphy to deal with conflicts
2112                  */
2113
2114                 BUG_ON(request_wiphy->regd);
2115
2116                 r = reg_copy_regd(&request_wiphy->regd, rd);
2117                 if (r)
2118                         return r;
2119
2120                 reset_regdomains();
2121                 cfg80211_regdomain = rd;
2122                 return 0;
2123         }
2124
2125         /* Intersection requires a bit more work */
2126
2127         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2128
2129                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2130                 if (!intersected_rd)
2131                         return -EINVAL;
2132
2133                 /*
2134                  * We can trash what CRDA provided now.
2135                  * However if a driver requested this specific regulatory
2136                  * domain we keep it for its private use
2137                  */
2138                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2139                         request_wiphy->regd = rd;
2140                 else
2141                         kfree(rd);
2142
2143                 rd = NULL;
2144
2145                 reset_regdomains();
2146                 cfg80211_regdomain = intersected_rd;
2147
2148                 return 0;
2149         }
2150
2151         /*
2152          * Country IE requests are handled a bit differently, we intersect
2153          * the country IE rd with what CRDA believes that country should have
2154          */
2155
2156         BUG_ON(!country_ie_regdomain);
2157         BUG_ON(rd == country_ie_regdomain);
2158
2159         /*
2160          * Intersect what CRDA returned and our what we
2161          * had built from the Country IE received
2162          */
2163
2164         intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2165
2166         reg_country_ie_process_debug(rd,
2167                                      country_ie_regdomain,
2168                                      intersected_rd);
2169
2170         kfree(country_ie_regdomain);
2171         country_ie_regdomain = NULL;
2172
2173         if (!intersected_rd)
2174                 return -EINVAL;
2175
2176         drv = wiphy_to_dev(request_wiphy);
2177
2178         drv->country_ie_alpha2[0] = rd->alpha2[0];
2179         drv->country_ie_alpha2[1] = rd->alpha2[1];
2180         drv->env = last_request->country_ie_env;
2181
2182         BUG_ON(intersected_rd == rd);
2183
2184         kfree(rd);
2185         rd = NULL;
2186
2187         reset_regdomains();
2188         cfg80211_regdomain = intersected_rd;
2189
2190         return 0;
2191 }
2192
2193
2194 /*
2195  * Use this call to set the current regulatory domain. Conflicts with
2196  * multiple drivers can be ironed out later. Caller must've already
2197  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2198  */
2199 int set_regdom(const struct ieee80211_regdomain *rd)
2200 {
2201         int r;
2202
2203         assert_cfg80211_lock();
2204
2205         /* Note that this doesn't update the wiphys, this is done below */
2206         r = __set_regdom(rd);
2207         if (r) {
2208                 kfree(rd);
2209                 return r;
2210         }
2211
2212         /* This would make this whole thing pointless */
2213         if (!last_request->intersect)
2214                 BUG_ON(rd != cfg80211_regdomain);
2215
2216         /* update all wiphys now with the new established regulatory domain */
2217         update_all_wiphy_regulatory(last_request->initiator);
2218
2219         print_regdomain(cfg80211_regdomain);
2220
2221         nl80211_send_reg_change_event(last_request);
2222
2223         return r;
2224 }
2225
2226 /* Caller must hold cfg80211_mutex */
2227 void reg_device_remove(struct wiphy *wiphy)
2228 {
2229         struct wiphy *request_wiphy = NULL;
2230
2231         assert_cfg80211_lock();
2232
2233         kfree(wiphy->regd);
2234
2235         if (last_request)
2236                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2237
2238         if (!request_wiphy || request_wiphy != wiphy)
2239                 return;
2240
2241         last_request->wiphy_idx = WIPHY_IDX_STALE;
2242         last_request->country_ie_env = ENVIRON_ANY;
2243 }
2244
2245 int regulatory_init(void)
2246 {
2247         int err = 0;
2248
2249         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2250         if (IS_ERR(reg_pdev))
2251                 return PTR_ERR(reg_pdev);
2252
2253         spin_lock_init(&reg_requests_lock);
2254         spin_lock_init(&reg_pending_beacons_lock);
2255
2256 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
2257         cfg80211_regdomain = static_regdom(ieee80211_regdom);
2258
2259         printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
2260         print_regdomain_info(cfg80211_regdomain);
2261         /*
2262          * The old code still requests for a new regdomain and if
2263          * you have CRDA you get it updated, otherwise you get
2264          * stuck with the static values. Since "EU" is not a valid
2265          * ISO / IEC 3166 alpha2 code we can't expect userpace to
2266          * give us a regulatory domain for it. We need last_request
2267          * iniitalized though so lets just send a request which we
2268          * know will be ignored... this crap will be removed once
2269          * OLD_REG dies.
2270          */
2271         err = regulatory_hint_core(ieee80211_regdom);
2272 #else
2273         cfg80211_regdomain = cfg80211_world_regdom;
2274
2275         err = regulatory_hint_core(ieee80211_regdom);
2276 #endif
2277         if (err) {
2278                 if (err == -ENOMEM)
2279                         return err;
2280                 /*
2281                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2282                  * memory which is handled and propagated appropriately above
2283                  * but it can also fail during a netlink_broadcast() or during
2284                  * early boot for call_usermodehelper(). For now treat these
2285                  * errors as non-fatal.
2286                  */
2287                 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2288                         "to call CRDA during init");
2289 #ifdef CONFIG_CFG80211_REG_DEBUG
2290                 /* We want to find out exactly why when debugging */
2291                 WARN_ON(err);
2292 #endif
2293         }
2294
2295         return 0;
2296 }
2297
2298 void regulatory_exit(void)
2299 {
2300         struct regulatory_request *reg_request, *tmp;
2301         struct reg_beacon *reg_beacon, *btmp;
2302
2303         cancel_work_sync(&reg_work);
2304
2305         mutex_lock(&cfg80211_mutex);
2306
2307         reset_regdomains();
2308
2309         kfree(country_ie_regdomain);
2310         country_ie_regdomain = NULL;
2311
2312         kfree(last_request);
2313
2314         platform_device_unregister(reg_pdev);
2315
2316         spin_lock_bh(&reg_pending_beacons_lock);
2317         if (!list_empty(&reg_pending_beacons)) {
2318                 list_for_each_entry_safe(reg_beacon, btmp,
2319                                          &reg_pending_beacons, list) {
2320                         list_del(&reg_beacon->list);
2321                         kfree(reg_beacon);
2322                 }
2323         }
2324         spin_unlock_bh(&reg_pending_beacons_lock);
2325
2326         if (!list_empty(&reg_beacon_list)) {
2327                 list_for_each_entry_safe(reg_beacon, btmp,
2328                                          &reg_beacon_list, list) {
2329                         list_del(&reg_beacon->list);
2330                         kfree(reg_beacon);
2331                 }
2332         }
2333
2334         spin_lock(&reg_requests_lock);
2335         if (!list_empty(&reg_requests_list)) {
2336                 list_for_each_entry_safe(reg_request, tmp,
2337                                          &reg_requests_list, list) {
2338                         list_del(&reg_request->list);
2339                         kfree(reg_request);
2340                 }
2341         }
2342         spin_unlock(&reg_requests_lock);
2343
2344         mutex_unlock(&cfg80211_mutex);
2345 }