SUNRPC: Clean up rpc_run_timer()
[safe/jmp/linux-2.6] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22
23 #include <linux/sunrpc/clnt.h>
24
25 #ifdef RPC_DEBUG
26 #define RPCDBG_FACILITY         RPCDBG_SCHED
27 #define RPC_TASK_MAGIC_ID       0xf00baa
28 #endif
29
30 /*
31  * RPC slabs and memory pools
32  */
33 #define RPC_BUFFER_MAXSIZE      (2048)
34 #define RPC_BUFFER_POOLSIZE     (8)
35 #define RPC_TASK_POOLSIZE       (8)
36 static struct kmem_cache        *rpc_task_slabp __read_mostly;
37 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
38 static mempool_t        *rpc_task_mempool __read_mostly;
39 static mempool_t        *rpc_buffer_mempool __read_mostly;
40
41 static void                     rpc_async_schedule(struct work_struct *);
42 static void                      rpc_release_task(struct rpc_task *task);
43
44 /*
45  * RPC tasks sit here while waiting for conditions to improve.
46  */
47 static struct rpc_wait_queue delay_queue;
48
49 /*
50  * rpciod-related stuff
51  */
52 struct workqueue_struct *rpciod_workqueue;
53
54 /*
55  * Disable the timer for a given RPC task. Should be called with
56  * queue->lock and bh_disabled in order to avoid races within
57  * rpc_run_timer().
58  */
59 static inline void
60 __rpc_disable_timer(struct rpc_task *task)
61 {
62         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
63         task->tk_timeout_fn = NULL;
64         task->tk_timeout = 0;
65 }
66
67 /*
68  * Default timeout handler if none specified by user
69  */
70 static void
71 __rpc_default_timer(struct rpc_task *task)
72 {
73         dprintk("RPC: %5u timeout (default timer)\n", task->tk_pid);
74         task->tk_status = -ETIMEDOUT;
75 }
76
77 /*
78  * Set up a timer for the current task.
79  */
80 static inline void
81 __rpc_add_timer(struct rpc_task *task, rpc_action timer)
82 {
83         if (!task->tk_timeout)
84                 return;
85
86         dprintk("RPC: %5u setting alarm for %lu ms\n",
87                         task->tk_pid, task->tk_timeout * 1000 / HZ);
88
89         if (timer)
90                 task->tk_timeout_fn = timer;
91         else
92                 task->tk_timeout_fn = __rpc_default_timer;
93         set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
94         mod_timer(&task->tk_timer, jiffies + task->tk_timeout);
95 }
96
97 /*
98  * Delete any timer for the current task. Because we use del_timer_sync(),
99  * this function should never be called while holding queue->lock.
100  */
101 static void
102 rpc_delete_timer(struct rpc_task *task)
103 {
104         if (RPC_IS_QUEUED(task))
105                 return;
106         if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) {
107                 del_singleshot_timer_sync(&task->tk_timer);
108                 dprintk("RPC: %5u deleting timer\n", task->tk_pid);
109         }
110 }
111
112 /*
113  * Add new request to a priority queue.
114  */
115 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
116 {
117         struct list_head *q;
118         struct rpc_task *t;
119
120         INIT_LIST_HEAD(&task->u.tk_wait.links);
121         q = &queue->tasks[task->tk_priority];
122         if (unlikely(task->tk_priority > queue->maxpriority))
123                 q = &queue->tasks[queue->maxpriority];
124         list_for_each_entry(t, q, u.tk_wait.list) {
125                 if (t->tk_owner == task->tk_owner) {
126                         list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
127                         return;
128                 }
129         }
130         list_add_tail(&task->u.tk_wait.list, q);
131 }
132
133 /*
134  * Add new request to wait queue.
135  *
136  * Swapper tasks always get inserted at the head of the queue.
137  * This should avoid many nasty memory deadlocks and hopefully
138  * improve overall performance.
139  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
140  */
141 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
142 {
143         BUG_ON (RPC_IS_QUEUED(task));
144
145         if (RPC_IS_PRIORITY(queue))
146                 __rpc_add_wait_queue_priority(queue, task);
147         else if (RPC_IS_SWAPPER(task))
148                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
149         else
150                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
151         task->u.tk_wait.rpc_waitq = queue;
152         queue->qlen++;
153         rpc_set_queued(task);
154
155         dprintk("RPC: %5u added to queue %p \"%s\"\n",
156                         task->tk_pid, queue, rpc_qname(queue));
157 }
158
159 /*
160  * Remove request from a priority queue.
161  */
162 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
163 {
164         struct rpc_task *t;
165
166         if (!list_empty(&task->u.tk_wait.links)) {
167                 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
168                 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
169                 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
170         }
171         list_del(&task->u.tk_wait.list);
172 }
173
174 /*
175  * Remove request from queue.
176  * Note: must be called with spin lock held.
177  */
178 static void __rpc_remove_wait_queue(struct rpc_task *task)
179 {
180         struct rpc_wait_queue *queue;
181         queue = task->u.tk_wait.rpc_waitq;
182
183         if (RPC_IS_PRIORITY(queue))
184                 __rpc_remove_wait_queue_priority(task);
185         else
186                 list_del(&task->u.tk_wait.list);
187         queue->qlen--;
188         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
189                         task->tk_pid, queue, rpc_qname(queue));
190 }
191
192 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
193 {
194         queue->priority = priority;
195         queue->count = 1 << (priority * 2);
196 }
197
198 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
199 {
200         queue->owner = pid;
201         queue->nr = RPC_BATCH_COUNT;
202 }
203
204 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
205 {
206         rpc_set_waitqueue_priority(queue, queue->maxpriority);
207         rpc_set_waitqueue_owner(queue, 0);
208 }
209
210 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
211 {
212         int i;
213
214         spin_lock_init(&queue->lock);
215         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
216                 INIT_LIST_HEAD(&queue->tasks[i]);
217         queue->maxpriority = nr_queues - 1;
218         rpc_reset_waitqueue_priority(queue);
219 #ifdef RPC_DEBUG
220         queue->name = qname;
221 #endif
222 }
223
224 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
225 {
226         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
227 }
228
229 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
230 {
231         __rpc_init_priority_wait_queue(queue, qname, 1);
232 }
233 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
234
235 static int rpc_wait_bit_killable(void *word)
236 {
237         if (fatal_signal_pending(current))
238                 return -ERESTARTSYS;
239         schedule();
240         return 0;
241 }
242
243 #ifdef RPC_DEBUG
244 static void rpc_task_set_debuginfo(struct rpc_task *task)
245 {
246         static atomic_t rpc_pid;
247
248         task->tk_magic = RPC_TASK_MAGIC_ID;
249         task->tk_pid = atomic_inc_return(&rpc_pid);
250 }
251 #else
252 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
253 {
254 }
255 #endif
256
257 static void rpc_set_active(struct rpc_task *task)
258 {
259         struct rpc_clnt *clnt;
260         if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
261                 return;
262         rpc_task_set_debuginfo(task);
263         /* Add to global list of all tasks */
264         clnt = task->tk_client;
265         if (clnt != NULL) {
266                 spin_lock(&clnt->cl_lock);
267                 list_add_tail(&task->tk_task, &clnt->cl_tasks);
268                 spin_unlock(&clnt->cl_lock);
269         }
270 }
271
272 /*
273  * Mark an RPC call as having completed by clearing the 'active' bit
274  */
275 static void rpc_mark_complete_task(struct rpc_task *task)
276 {
277         smp_mb__before_clear_bit();
278         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
279         smp_mb__after_clear_bit();
280         wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
281 }
282
283 /*
284  * Allow callers to wait for completion of an RPC call
285  */
286 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
287 {
288         if (action == NULL)
289                 action = rpc_wait_bit_killable;
290         return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
291                         action, TASK_KILLABLE);
292 }
293 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
294
295 /*
296  * Make an RPC task runnable.
297  *
298  * Note: If the task is ASYNC, this must be called with
299  * the spinlock held to protect the wait queue operation.
300  */
301 static void rpc_make_runnable(struct rpc_task *task)
302 {
303         BUG_ON(task->tk_timeout_fn);
304         rpc_clear_queued(task);
305         if (rpc_test_and_set_running(task))
306                 return;
307         /* We might have raced */
308         if (RPC_IS_QUEUED(task)) {
309                 rpc_clear_running(task);
310                 return;
311         }
312         if (RPC_IS_ASYNC(task)) {
313                 int status;
314
315                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
316                 status = queue_work(rpciod_workqueue, &task->u.tk_work);
317                 if (status < 0) {
318                         printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
319                         task->tk_status = status;
320                         return;
321                 }
322         } else
323                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
324 }
325
326 /*
327  * Prepare for sleeping on a wait queue.
328  * By always appending tasks to the list we ensure FIFO behavior.
329  * NB: An RPC task will only receive interrupt-driven events as long
330  * as it's on a wait queue.
331  */
332 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
333                         rpc_action action, rpc_action timer)
334 {
335         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
336                         task->tk_pid, rpc_qname(q), jiffies);
337
338         if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
339                 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
340                 return;
341         }
342
343         __rpc_add_wait_queue(q, task);
344
345         BUG_ON(task->tk_callback != NULL);
346         task->tk_callback = action;
347         __rpc_add_timer(task, timer);
348 }
349
350 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
351                                 rpc_action action, rpc_action timer)
352 {
353         /* Mark the task as being activated if so needed */
354         rpc_set_active(task);
355
356         /*
357          * Protect the queue operations.
358          */
359         spin_lock_bh(&q->lock);
360         __rpc_sleep_on(q, task, action, timer);
361         spin_unlock_bh(&q->lock);
362 }
363 EXPORT_SYMBOL_GPL(rpc_sleep_on);
364
365 /**
366  * __rpc_do_wake_up_task - wake up a single rpc_task
367  * @task: task to be woken up
368  *
369  * Caller must hold queue->lock, and have cleared the task queued flag.
370  */
371 static void __rpc_do_wake_up_task(struct rpc_task *task)
372 {
373         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
374                         task->tk_pid, jiffies);
375
376 #ifdef RPC_DEBUG
377         BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
378 #endif
379         /* Has the task been executed yet? If not, we cannot wake it up! */
380         if (!RPC_IS_ACTIVATED(task)) {
381                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
382                 return;
383         }
384
385         __rpc_disable_timer(task);
386         __rpc_remove_wait_queue(task);
387
388         rpc_make_runnable(task);
389
390         dprintk("RPC:       __rpc_wake_up_task done\n");
391 }
392
393 /*
394  * Wake up the specified task
395  */
396 static void __rpc_wake_up_task(struct rpc_task *task)
397 {
398         if (rpc_start_wakeup(task)) {
399                 if (RPC_IS_QUEUED(task))
400                         __rpc_do_wake_up_task(task);
401                 rpc_finish_wakeup(task);
402         }
403 }
404
405 /*
406  * Wake up the specified task
407  */
408 void rpc_wake_up_task(struct rpc_task *task)
409 {
410         rcu_read_lock_bh();
411         if (rpc_start_wakeup(task)) {
412                 if (RPC_IS_QUEUED(task)) {
413                         struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq;
414
415                         /* Note: we're already in a bh-safe context */
416                         spin_lock(&queue->lock);
417                         __rpc_do_wake_up_task(task);
418                         spin_unlock(&queue->lock);
419                 }
420                 rpc_finish_wakeup(task);
421         }
422         rcu_read_unlock_bh();
423 }
424 EXPORT_SYMBOL_GPL(rpc_wake_up_task);
425
426 /*
427  * Wake up the next task on a priority queue.
428  */
429 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
430 {
431         struct list_head *q;
432         struct rpc_task *task;
433
434         /*
435          * Service a batch of tasks from a single owner.
436          */
437         q = &queue->tasks[queue->priority];
438         if (!list_empty(q)) {
439                 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
440                 if (queue->owner == task->tk_owner) {
441                         if (--queue->nr)
442                                 goto out;
443                         list_move_tail(&task->u.tk_wait.list, q);
444                 }
445                 /*
446                  * Check if we need to switch queues.
447                  */
448                 if (--queue->count)
449                         goto new_owner;
450         }
451
452         /*
453          * Service the next queue.
454          */
455         do {
456                 if (q == &queue->tasks[0])
457                         q = &queue->tasks[queue->maxpriority];
458                 else
459                         q = q - 1;
460                 if (!list_empty(q)) {
461                         task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
462                         goto new_queue;
463                 }
464         } while (q != &queue->tasks[queue->priority]);
465
466         rpc_reset_waitqueue_priority(queue);
467         return NULL;
468
469 new_queue:
470         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
471 new_owner:
472         rpc_set_waitqueue_owner(queue, task->tk_owner);
473 out:
474         __rpc_wake_up_task(task);
475         return task;
476 }
477
478 /*
479  * Wake up the next task on the wait queue.
480  */
481 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
482 {
483         struct rpc_task *task = NULL;
484
485         dprintk("RPC:       wake_up_next(%p \"%s\")\n",
486                         queue, rpc_qname(queue));
487         rcu_read_lock_bh();
488         spin_lock(&queue->lock);
489         if (RPC_IS_PRIORITY(queue))
490                 task = __rpc_wake_up_next_priority(queue);
491         else {
492                 task_for_first(task, &queue->tasks[0])
493                         __rpc_wake_up_task(task);
494         }
495         spin_unlock(&queue->lock);
496         rcu_read_unlock_bh();
497
498         return task;
499 }
500 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
501
502 /**
503  * rpc_wake_up - wake up all rpc_tasks
504  * @queue: rpc_wait_queue on which the tasks are sleeping
505  *
506  * Grabs queue->lock
507  */
508 void rpc_wake_up(struct rpc_wait_queue *queue)
509 {
510         struct rpc_task *task, *next;
511         struct list_head *head;
512
513         rcu_read_lock_bh();
514         spin_lock(&queue->lock);
515         head = &queue->tasks[queue->maxpriority];
516         for (;;) {
517                 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
518                         __rpc_wake_up_task(task);
519                 if (head == &queue->tasks[0])
520                         break;
521                 head--;
522         }
523         spin_unlock(&queue->lock);
524         rcu_read_unlock_bh();
525 }
526 EXPORT_SYMBOL_GPL(rpc_wake_up);
527
528 /**
529  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
530  * @queue: rpc_wait_queue on which the tasks are sleeping
531  * @status: status value to set
532  *
533  * Grabs queue->lock
534  */
535 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
536 {
537         struct rpc_task *task, *next;
538         struct list_head *head;
539
540         rcu_read_lock_bh();
541         spin_lock(&queue->lock);
542         head = &queue->tasks[queue->maxpriority];
543         for (;;) {
544                 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
545                         task->tk_status = status;
546                         __rpc_wake_up_task(task);
547                 }
548                 if (head == &queue->tasks[0])
549                         break;
550                 head--;
551         }
552         spin_unlock(&queue->lock);
553         rcu_read_unlock_bh();
554 }
555 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
556
557 /*
558  * Run a timeout function.
559  */
560 static void rpc_run_timer(unsigned long ptr)
561 {
562         struct rpc_task *task = (struct rpc_task *)ptr;
563         void (*callback)(struct rpc_task *);
564
565         if (!rpc_start_wakeup(task))
566                 goto out;
567         if (RPC_IS_QUEUED(task)) {
568                 struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq;
569                 callback = task->tk_timeout_fn;
570
571                 dprintk("RPC: %5u running timer\n", task->tk_pid);
572                 if (callback != NULL)
573                         callback(task);
574                 /* Note: we're already in a bh-safe context */
575                 spin_lock(&queue->lock);
576                 __rpc_do_wake_up_task(task);
577                 spin_unlock(&queue->lock);
578         }
579         rpc_finish_wakeup(task);
580 out:
581         smp_mb__before_clear_bit();
582         clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
583         smp_mb__after_clear_bit();
584 }
585
586 static void __rpc_atrun(struct rpc_task *task)
587 {
588 }
589
590 /*
591  * Run a task at a later time
592  */
593 void rpc_delay(struct rpc_task *task, unsigned long delay)
594 {
595         task->tk_timeout = delay;
596         rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun);
597 }
598 EXPORT_SYMBOL_GPL(rpc_delay);
599
600 /*
601  * Helper to call task->tk_ops->rpc_call_prepare
602  */
603 static void rpc_prepare_task(struct rpc_task *task)
604 {
605         lock_kernel();
606         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
607         unlock_kernel();
608 }
609
610 /*
611  * Helper that calls task->tk_ops->rpc_call_done if it exists
612  */
613 void rpc_exit_task(struct rpc_task *task)
614 {
615         task->tk_action = NULL;
616         if (task->tk_ops->rpc_call_done != NULL) {
617                 lock_kernel();
618                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
619                 unlock_kernel();
620                 if (task->tk_action != NULL) {
621                         WARN_ON(RPC_ASSASSINATED(task));
622                         /* Always release the RPC slot and buffer memory */
623                         xprt_release(task);
624                 }
625         }
626 }
627 EXPORT_SYMBOL_GPL(rpc_exit_task);
628
629 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
630 {
631         if (ops->rpc_release != NULL) {
632                 lock_kernel();
633                 ops->rpc_release(calldata);
634                 unlock_kernel();
635         }
636 }
637
638 /*
639  * This is the RPC `scheduler' (or rather, the finite state machine).
640  */
641 static void __rpc_execute(struct rpc_task *task)
642 {
643         int             status = 0;
644
645         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
646                         task->tk_pid, task->tk_flags);
647
648         BUG_ON(RPC_IS_QUEUED(task));
649
650         for (;;) {
651                 /*
652                  * Garbage collection of pending timers...
653                  */
654                 rpc_delete_timer(task);
655
656                 /*
657                  * Execute any pending callback.
658                  */
659                 if (RPC_DO_CALLBACK(task)) {
660                         /* Define a callback save pointer */
661                         void (*save_callback)(struct rpc_task *);
662
663                         /*
664                          * If a callback exists, save it, reset it,
665                          * call it.
666                          * The save is needed to stop from resetting
667                          * another callback set within the callback handler
668                          * - Dave
669                          */
670                         save_callback=task->tk_callback;
671                         task->tk_callback=NULL;
672                         save_callback(task);
673                 }
674
675                 /*
676                  * Perform the next FSM step.
677                  * tk_action may be NULL when the task has been killed
678                  * by someone else.
679                  */
680                 if (!RPC_IS_QUEUED(task)) {
681                         if (task->tk_action == NULL)
682                                 break;
683                         task->tk_action(task);
684                 }
685
686                 /*
687                  * Lockless check for whether task is sleeping or not.
688                  */
689                 if (!RPC_IS_QUEUED(task))
690                         continue;
691                 rpc_clear_running(task);
692                 if (RPC_IS_ASYNC(task)) {
693                         /* Careful! we may have raced... */
694                         if (RPC_IS_QUEUED(task))
695                                 return;
696                         if (rpc_test_and_set_running(task))
697                                 return;
698                         continue;
699                 }
700
701                 /* sync task: sleep here */
702                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
703                 status = out_of_line_wait_on_bit(&task->tk_runstate,
704                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
705                                 TASK_KILLABLE);
706                 if (status == -ERESTARTSYS) {
707                         /*
708                          * When a sync task receives a signal, it exits with
709                          * -ERESTARTSYS. In order to catch any callbacks that
710                          * clean up after sleeping on some queue, we don't
711                          * break the loop here, but go around once more.
712                          */
713                         dprintk("RPC: %5u got signal\n", task->tk_pid);
714                         task->tk_flags |= RPC_TASK_KILLED;
715                         rpc_exit(task, -ERESTARTSYS);
716                         rpc_wake_up_task(task);
717                 }
718                 rpc_set_running(task);
719                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
720         }
721
722         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
723                         task->tk_status);
724         /* Release all resources associated with the task */
725         rpc_release_task(task);
726 }
727
728 /*
729  * User-visible entry point to the scheduler.
730  *
731  * This may be called recursively if e.g. an async NFS task updates
732  * the attributes and finds that dirty pages must be flushed.
733  * NOTE: Upon exit of this function the task is guaranteed to be
734  *       released. In particular note that tk_release() will have
735  *       been called, so your task memory may have been freed.
736  */
737 void rpc_execute(struct rpc_task *task)
738 {
739         rpc_set_active(task);
740         rpc_set_running(task);
741         __rpc_execute(task);
742 }
743
744 static void rpc_async_schedule(struct work_struct *work)
745 {
746         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
747 }
748
749 struct rpc_buffer {
750         size_t  len;
751         char    data[];
752 };
753
754 /**
755  * rpc_malloc - allocate an RPC buffer
756  * @task: RPC task that will use this buffer
757  * @size: requested byte size
758  *
759  * To prevent rpciod from hanging, this allocator never sleeps,
760  * returning NULL if the request cannot be serviced immediately.
761  * The caller can arrange to sleep in a way that is safe for rpciod.
762  *
763  * Most requests are 'small' (under 2KiB) and can be serviced from a
764  * mempool, ensuring that NFS reads and writes can always proceed,
765  * and that there is good locality of reference for these buffers.
766  *
767  * In order to avoid memory starvation triggering more writebacks of
768  * NFS requests, we avoid using GFP_KERNEL.
769  */
770 void *rpc_malloc(struct rpc_task *task, size_t size)
771 {
772         struct rpc_buffer *buf;
773         gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
774
775         size += sizeof(struct rpc_buffer);
776         if (size <= RPC_BUFFER_MAXSIZE)
777                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
778         else
779                 buf = kmalloc(size, gfp);
780
781         if (!buf)
782                 return NULL;
783
784         buf->len = size;
785         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
786                         task->tk_pid, size, buf);
787         return &buf->data;
788 }
789 EXPORT_SYMBOL_GPL(rpc_malloc);
790
791 /**
792  * rpc_free - free buffer allocated via rpc_malloc
793  * @buffer: buffer to free
794  *
795  */
796 void rpc_free(void *buffer)
797 {
798         size_t size;
799         struct rpc_buffer *buf;
800
801         if (!buffer)
802                 return;
803
804         buf = container_of(buffer, struct rpc_buffer, data);
805         size = buf->len;
806
807         dprintk("RPC:       freeing buffer of size %zu at %p\n",
808                         size, buf);
809
810         if (size <= RPC_BUFFER_MAXSIZE)
811                 mempool_free(buf, rpc_buffer_mempool);
812         else
813                 kfree(buf);
814 }
815 EXPORT_SYMBOL_GPL(rpc_free);
816
817 /*
818  * Creation and deletion of RPC task structures
819  */
820 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
821 {
822         memset(task, 0, sizeof(*task));
823         setup_timer(&task->tk_timer, rpc_run_timer, (unsigned long)task);
824         atomic_set(&task->tk_count, 1);
825         task->tk_flags  = task_setup_data->flags;
826         task->tk_ops = task_setup_data->callback_ops;
827         task->tk_calldata = task_setup_data->callback_data;
828         INIT_LIST_HEAD(&task->tk_task);
829
830         /* Initialize retry counters */
831         task->tk_garb_retry = 2;
832         task->tk_cred_retry = 2;
833
834         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
835         task->tk_owner = current->tgid;
836
837         /* Initialize workqueue for async tasks */
838         task->tk_workqueue = task_setup_data->workqueue;
839
840         task->tk_client = task_setup_data->rpc_client;
841         if (task->tk_client != NULL) {
842                 kref_get(&task->tk_client->cl_kref);
843                 if (task->tk_client->cl_softrtry)
844                         task->tk_flags |= RPC_TASK_SOFT;
845         }
846
847         if (task->tk_ops->rpc_call_prepare != NULL)
848                 task->tk_action = rpc_prepare_task;
849
850         if (task_setup_data->rpc_message != NULL) {
851                 memcpy(&task->tk_msg, task_setup_data->rpc_message, sizeof(task->tk_msg));
852                 /* Bind the user cred */
853                 if (task->tk_msg.rpc_cred != NULL)
854                         rpcauth_holdcred(task);
855                 else
856                         rpcauth_bindcred(task);
857                 if (task->tk_action == NULL)
858                         rpc_call_start(task);
859         }
860
861         /* starting timestamp */
862         task->tk_start = jiffies;
863
864         dprintk("RPC:       new task initialized, procpid %u\n",
865                                 task_pid_nr(current));
866 }
867
868 static struct rpc_task *
869 rpc_alloc_task(void)
870 {
871         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
872 }
873
874 static void rpc_free_task_rcu(struct rcu_head *rcu)
875 {
876         struct rpc_task *task = container_of(rcu, struct rpc_task, u.tk_rcu);
877         dprintk("RPC: %5u freeing task\n", task->tk_pid);
878         mempool_free(task, rpc_task_mempool);
879 }
880
881 /*
882  * Create a new task for the specified client.
883  */
884 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
885 {
886         struct rpc_task *task = setup_data->task;
887         unsigned short flags = 0;
888
889         if (task == NULL) {
890                 task = rpc_alloc_task();
891                 if (task == NULL)
892                         goto out;
893                 flags = RPC_TASK_DYNAMIC;
894         }
895
896         rpc_init_task(task, setup_data);
897
898         task->tk_flags |= flags;
899         dprintk("RPC:       allocated task %p\n", task);
900 out:
901         return task;
902 }
903
904 static void rpc_free_task(struct rpc_task *task)
905 {
906         const struct rpc_call_ops *tk_ops = task->tk_ops;
907         void *calldata = task->tk_calldata;
908
909         if (task->tk_flags & RPC_TASK_DYNAMIC)
910                 call_rcu_bh(&task->u.tk_rcu, rpc_free_task_rcu);
911         rpc_release_calldata(tk_ops, calldata);
912 }
913
914 static void rpc_async_release(struct work_struct *work)
915 {
916         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
917 }
918
919 void rpc_put_task(struct rpc_task *task)
920 {
921         if (!atomic_dec_and_test(&task->tk_count))
922                 return;
923         /* Release resources */
924         if (task->tk_rqstp)
925                 xprt_release(task);
926         if (task->tk_msg.rpc_cred)
927                 rpcauth_unbindcred(task);
928         if (task->tk_client) {
929                 rpc_release_client(task->tk_client);
930                 task->tk_client = NULL;
931         }
932         if (task->tk_workqueue != NULL) {
933                 INIT_WORK(&task->u.tk_work, rpc_async_release);
934                 queue_work(task->tk_workqueue, &task->u.tk_work);
935         } else
936                 rpc_free_task(task);
937 }
938 EXPORT_SYMBOL_GPL(rpc_put_task);
939
940 static void rpc_release_task(struct rpc_task *task)
941 {
942 #ifdef RPC_DEBUG
943         BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
944 #endif
945         dprintk("RPC: %5u release task\n", task->tk_pid);
946
947         if (!list_empty(&task->tk_task)) {
948                 struct rpc_clnt *clnt = task->tk_client;
949                 /* Remove from client task list */
950                 spin_lock(&clnt->cl_lock);
951                 list_del(&task->tk_task);
952                 spin_unlock(&clnt->cl_lock);
953         }
954         BUG_ON (RPC_IS_QUEUED(task));
955
956         /* Synchronously delete any running timer */
957         rpc_delete_timer(task);
958
959 #ifdef RPC_DEBUG
960         task->tk_magic = 0;
961 #endif
962         /* Wake up anyone who is waiting for task completion */
963         rpc_mark_complete_task(task);
964
965         rpc_put_task(task);
966 }
967
968 /*
969  * Kill all tasks for the given client.
970  * XXX: kill their descendants as well?
971  */
972 void rpc_killall_tasks(struct rpc_clnt *clnt)
973 {
974         struct rpc_task *rovr;
975
976
977         if (list_empty(&clnt->cl_tasks))
978                 return;
979         dprintk("RPC:       killing all tasks for client %p\n", clnt);
980         /*
981          * Spin lock all_tasks to prevent changes...
982          */
983         spin_lock(&clnt->cl_lock);
984         list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) {
985                 if (! RPC_IS_ACTIVATED(rovr))
986                         continue;
987                 if (!(rovr->tk_flags & RPC_TASK_KILLED)) {
988                         rovr->tk_flags |= RPC_TASK_KILLED;
989                         rpc_exit(rovr, -EIO);
990                         rpc_wake_up_task(rovr);
991                 }
992         }
993         spin_unlock(&clnt->cl_lock);
994 }
995 EXPORT_SYMBOL_GPL(rpc_killall_tasks);
996
997 int rpciod_up(void)
998 {
999         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1000 }
1001
1002 void rpciod_down(void)
1003 {
1004         module_put(THIS_MODULE);
1005 }
1006
1007 /*
1008  * Start up the rpciod workqueue.
1009  */
1010 static int rpciod_start(void)
1011 {
1012         struct workqueue_struct *wq;
1013
1014         /*
1015          * Create the rpciod thread and wait for it to start.
1016          */
1017         dprintk("RPC:       creating workqueue rpciod\n");
1018         wq = create_workqueue("rpciod");
1019         rpciod_workqueue = wq;
1020         return rpciod_workqueue != NULL;
1021 }
1022
1023 static void rpciod_stop(void)
1024 {
1025         struct workqueue_struct *wq = NULL;
1026
1027         if (rpciod_workqueue == NULL)
1028                 return;
1029         dprintk("RPC:       destroying workqueue rpciod\n");
1030
1031         wq = rpciod_workqueue;
1032         rpciod_workqueue = NULL;
1033         destroy_workqueue(wq);
1034 }
1035
1036 void
1037 rpc_destroy_mempool(void)
1038 {
1039         rpciod_stop();
1040         if (rpc_buffer_mempool)
1041                 mempool_destroy(rpc_buffer_mempool);
1042         if (rpc_task_mempool)
1043                 mempool_destroy(rpc_task_mempool);
1044         if (rpc_task_slabp)
1045                 kmem_cache_destroy(rpc_task_slabp);
1046         if (rpc_buffer_slabp)
1047                 kmem_cache_destroy(rpc_buffer_slabp);
1048 }
1049
1050 int
1051 rpc_init_mempool(void)
1052 {
1053         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1054                                              sizeof(struct rpc_task),
1055                                              0, SLAB_HWCACHE_ALIGN,
1056                                              NULL);
1057         if (!rpc_task_slabp)
1058                 goto err_nomem;
1059         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1060                                              RPC_BUFFER_MAXSIZE,
1061                                              0, SLAB_HWCACHE_ALIGN,
1062                                              NULL);
1063         if (!rpc_buffer_slabp)
1064                 goto err_nomem;
1065         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1066                                                     rpc_task_slabp);
1067         if (!rpc_task_mempool)
1068                 goto err_nomem;
1069         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1070                                                       rpc_buffer_slabp);
1071         if (!rpc_buffer_mempool)
1072                 goto err_nomem;
1073         if (!rpciod_start())
1074                 goto err_nomem;
1075         /*
1076          * The following is not strictly a mempool initialisation,
1077          * but there is no harm in doing it here
1078          */
1079         rpc_init_wait_queue(&delay_queue, "delayq");
1080         return 0;
1081 err_nomem:
1082         rpc_destroy_mempool();
1083         return -ENOMEM;
1084 }